1
|
Li L, Zhang Y, Zhao L, Shi Y. C-reactive protein-induced injury in Mycoplasma pneumoniae-infected lung epithelial cells is mediated by the P38 MAPK/mitochondrial apoptosis pathway. Microbiol Spectr 2025; 13:e0162624. [PMID: 39932324 PMCID: PMC11878036 DOI: 10.1128/spectrum.01626-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 03/05/2025] Open
Abstract
Patients with Mycoplasma pneumoniae (MP) infections have markedly higher C-reactive protein (CRP). We investigated how CRP contributes to lung epithelial cell death following MP infection. CRP levels were assessed in children diagnosed with Mycoplasma pneumoniae pneumonia (MPP) and A549 lung epithelial cells infected with MP. A549 cells were genetically modified to overexpress CRP. Effects on cell viability, apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were evaluated. The expression of proteins implicated in the p38 MAPK/mitochondrial apoptotic pathway was analyzed. The protective effects of the p38 MAPK inhibitor SB203580 and the mitochondrial protector cyclosporin A (CsA) were assessed. CRP levels were elevated in both MPP patients and MP-infected A549 cells compared to controls. Increased apoptosis and reduced cell viability were observed in MP-infected cells. CRP overexpression led to upregulation of proteins in the p38 MAPK/mitochondrial apoptosis pathway, increased cytoplasmic Cyt C, decreased Tom 20 and ΔΨm, and elevated ROS. Pretreatment with SB203580 or posttreatment with CsA reduced apoptosis and mitochondrial damage and enhanced cell survival. Increased CRP levels during MP infection promote lung epithelial cell death by activating the p38 MAPK/mitochondrial apoptosis pathway. Targeting this pathway could offer therapeutic potential to reduce lung damage in MPP patients.IMPORTANCEThis study provides critical information in understanding the pathophysiological mechanisms for MP infections concerning CRP in mediating lung epithelial cell injury. This study outlines the significant increase in MP-infected patients and shows its direct involvement in cell apoptosis through the p38 MAPK/mitochondrial apoptosis pathway. By explaining this pathway, the possibility of targeting CRP and its connected signaling mechanisms to devise therapeutic interventions for the amelioration of lung damage in MP-infected patients is brought to light. The implications of such data are not merely in the added knowledge for disease pathobiology but also it brings new promise for novel intervention strategies to result in improved clinical outcomes. The elucidation of specific molecular targets inside the apoptosis pathway heralds a new area regarding the direction of future research and clinical application for humanity in general and concerning the broader relevance and impact of this study on respiratory diseases.
Collapse
Affiliation(s)
- Lianjia Li
- Department of Pediatrics, Liaocheng Second People’s Hospital, Liaocheng, Shandong, China
| | - Yang Zhang
- Department of Pediatric Surgery, Dongying People’s Hospital, Dongying, Shandong, China
| | - Lin Zhao
- Department of Pediatrics, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yalin Shi
- Department of Pediatric Respiratory Medicine, Sunshine Unlon Hospital, Weifang, Shandong, China
| |
Collapse
|
2
|
Markitantova Y, Simirskii V. Retinal Pigment Epithelium Under Oxidative Stress: Chaperoning Autophagy and Beyond. Int J Mol Sci 2025; 26:1193. [PMID: 39940964 PMCID: PMC11818496 DOI: 10.3390/ijms26031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) plays a key role in the normal functioning of the visual system. RPE cells are characterized by an efficient system of photoreceptor outer segment phagocytosis, high metabolic activity, and risk of oxidative damage. RPE dysfunction is a common pathological feature in various retinal diseases. Dysregulation of RPE cell proteostasis and redox homeostasis is accompanied by increased reactive oxygen species generation during the impairment of phagocytosis, lysosomal and mitochondrial failure, and an accumulation of waste lipidic and protein aggregates. They are the inducers of RPE dysfunction and can trigger specific pathways of cell death. Autophagy serves as important mechanism in the endogenous defense system, controlling RPE homeostasis and survival under normal conditions and cellular responses under stress conditions through the degradation of intracellular components. Impairment of the autophagy process itself can result in cell death. In this review, we summarize the classical types of oxidative stress-induced autophagy in the RPE with an emphasis on autophagy mediated by molecular chaperones. Heat shock proteins, which represent hubs connecting the life supporting pathways of RPE cells, play a special role in these mechanisms. Regulation of oxidative stress-counteracting autophagy is an essential strategy for protecting the RPE against pathological damage when preventing retinal degenerative disease progression.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | |
Collapse
|
3
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
4
|
Gugu Nkosi PW, Chandran R, Abrahamse H. Hypocrellin: A Natural Photosensitizer and Nano-Formulation for Enhanced Molecular Targeting of PDT of Melanoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1997. [PMID: 39568119 PMCID: PMC11579242 DOI: 10.1002/wnan.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/29/2024] [Accepted: 09/10/2024] [Indexed: 11/22/2024]
Abstract
Nano-formulation has generated attention in the battle against cancer, because of its great flexibility, reduced adverse side effects, and accuracy in delivering drugs to target tissues dependent on the size and surface characteristics of the disease. The field of photodynamic treatment has advanced significantly in the past years. Photodynamic techniques that use nano-formulations have surfaced to further the field of nanotechnology in medicine, especially in cancer treatment. The pharmaceutical industry is seeing a growing trend toward enhanced drug formulation using nano-formulations such as liposomes, polymeric nanoparticles, dendrimers, nano-emulsions, and micelles. Natural extracts have also shown adverse effects when employed as photosensitizers in cancer therapy because they are cytotoxic when activated by light. Still, natural photosensitizers are a big part of cancer treatment. However, some shortcomings can be minimized by combining nano-formulations with these natural photosensitizers. The synergistic improvement in medication delivery that maintains or increases the mechanism of cell death in malignant cells has also been demonstrated by the combination of photodynamic therapy with nano-formulations and natural photosensitizers. Lastly, this review assesses the feasibility and potential of a photodynamic therapy system based on nano-formulations and natural photosensitizers in clinical treatment applications and briefly discusses the removal of toxic compounds associated with nano-formulations within cells.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfonteinSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfonteinSouth Africa
| |
Collapse
|
5
|
Oidor-Chan VH, Sánchez-López A, Cano-Martinez A, García-Niño WR, Soria-Castro E, del Valle-Mondragón L, Zarco-Olvera G, Patlán M, Guarner-Lans V, Rodríguez-Maldonado E, Flores-Estrada J, Castrejón-Téllez V, Ibarra-Lara L. Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination. Int J Mol Sci 2024; 25:11391. [PMID: 39518943 PMCID: PMC11547148 DOI: 10.3390/ijms252111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmacological preconditioning is an alternative to protect the heart against the consequences of damage from ischemia/reperfusion (I/R). It is based on the administration of specific drugs that imitate the effect of ischemic preconditioning (IPC). Peroxisomal proliferator-activated receptors (PPARs) can prevent apoptosis in pathologies such as I/R and heart failure. Therefore, our objective was to determine if the stimulation of PPARα with fenofibrate (feno) decreases the apoptotic process induced by hypoxia/reoxygenation (HR), high glucose (HG), and HR/HG. For that purpose, cardiomyocyte cultures were divided into the following groups: Group 1-control (Ctrl); Group 2-HR; Group 3-HR + 10 μM feno; Group 4-HG, (25 mM glucose); Group 5-HG + feno; Group 6-HR/HG, and Group 7-HR/HG + feno. Our results indicate that cell viability decreases in neonatal cardiomyocytes undergoing HR, HG, and their combination, while feno improved cell viability. Feno treatment decreased apoptosis compared with HG-, HR-, or HG/HR-vehicle-treated. Nuclear- and mitochondrial-apoptosis markers increased in neonatal cardiomyocytes from HR, HG, and HR/HG; while the cytotoxicity decreased in cells treated with feno. In addition, the expression of Bax, Bad, and caspase 9 decreased due to feno, while 14-3-3ɛ and Bcl2 were increased. Inner mitochondrial cytochrome C increased with feno in every condition, as well as mitochondrial activity. Feno treatment prevented injury in the ultrastructure and in the mitochondrial membranes. Thus, our results suggest that feno decreases apoptosis in neonatal cardiomyocytes, improving the ultrastructure of mitochondria in the pathological conditions studied.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Autonomous Metropolitan University, Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1ª. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico;
| | - Araceli Sánchez-López
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute, Calz. de los Tenorios 235, Col Granjas Coapa, Tlalpan, Mexico City 14330, Mexico;
| | - Agustina Cano-Martinez
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Willy Ramses García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (W.R.G.-N.); (E.S.-C.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (W.R.G.-N.); (E.S.-C.)
| | - Leonardo del Valle-Mondragón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| | - Gabriela Zarco-Olvera
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| | - Mariana Patlán
- Subdirection of Basic and Technological Research, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Veronica Guarner-Lans
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Javier Flores-Estrada
- Division of Investigation, Juarez Hospital of Mexico, Av. Instituto Politecnico Nacional No. 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Vicente Castrejón-Téllez
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (A.C.-M.); (V.G.-L.)
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (L.d.V.-M.); (G.Z.-O.)
| |
Collapse
|
6
|
Meruvu S, Ding Z, Choudhury M. Mono-(2-ethylhexyl) phthalate induces trophoblast hypoxia and mitochondrial dysfunction through HIF-1α-miR-210-3p axis in HTR-8/SVneo cell line. Curr Res Toxicol 2024; 7:100188. [PMID: 39175913 PMCID: PMC11338994 DOI: 10.1016/j.crtox.2024.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, 1114 TAMU, College Station, TX 77843-0000, USA
| |
Collapse
|
7
|
Cui H, Zhu B, Li H, Meng Y, Cai M, Wang H, Yuan M, Zhong X, Wang B, Shan H, Zhe Miao M, Chai K, Zheng J, Zhang L, Liu Y. Malonate differentially affects cell survival and confers chemoresistance in cancer cells via the induction of p53-dependent autophagy. Biochem Pharmacol 2024; 219:115950. [PMID: 38043718 DOI: 10.1016/j.bcp.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Metabolic network intertwines with cancerous signaling and drug responses. Malonate is a prevailing metabolite in cancer and a competitive inhibitor of succinate dehydrogenase (SDH). Recent studies showed that malonate induced reactive oxygen species (ROS)-dependent apoptosis in neuroblastoma cells, but protected cells from ischemia-reperfusion injury. We here revealed that malonate differentially regulated cell death and survival in cancer cells. While high-dose malonate triggered ROS-dependent apoptosis, the low-dose malonate induced autophagy and conferred resistance to multiple chemotherapeutic agents. Mechanistically, our results showed that malonate increased p53 stability and transcriptionally up-regulated autophagy modulator DRAM (damage-regulated autophagy modulator), thus promoting autophagy. We further proved that autophagy is required for malonate-associated chemoresistance. Collectively, our findings suggest that malonate plays a double-edge function in cancer response to stressors, and highlights a pro-cancer impact of p53-induced autophagy in response to malonate.
Collapse
Affiliation(s)
- Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huiyan Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Cai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Yuan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjian Shan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Michael Zhe Miao
- Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Keli Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Li R, Kato H, Fumimoto C, Nakamura Y, Yoshimura K, Minagawa E, Omatsu K, Ogata C, Taguchi Y, Umeda M. Essential Amino Acid Starvation-Induced Oxidative Stress Causes DNA Damage and Apoptosis in Murine Osteoblast-like Cells. Int J Mol Sci 2023; 24:15314. [PMID: 37894999 PMCID: PMC10607495 DOI: 10.3390/ijms242015314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Intracellular nutrient metabolism, particularly the metabolism of essential amino acids (EAAs), is crucial for cellular functions, including energy production and redox homeostasis. An EAA deficiency can lead to cellular dysfunction and oxidative stress. This study explores the mechanisms underlying cellular responses to EAA starvation, focusing on ROS-induced DNA damage and apoptosis. MC3T3-E1 cells were subjected to EAA starvation, and various assays were conducted to assess cell proliferation, survival, DNA damage, and apoptosis. The antioxidant N-acetylcysteine (NAC) was employed to block ROS formation and mitigate cellular damage. Gene expression and Western blot analyses were performed to elucidate molecular pathways. EAA starvation-induced ROS generation, DNA damage, and apoptosis in MC3T3-E1 cells. NAC administration effectively reduced DNA damage and apoptosis, highlighting the pivotal role of ROS in mediating these cellular responses during EAA deficiency. This study demonstrates that EAA starvation triggers ROS-mediated DNA damage and apoptosis, offering insights into the intricate interplay between nutrient deficiency, oxidative stress, and programmed cell death. NAC emerges as a potential therapeutic intervention to counteract these adverse effects.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chihiro Fumimoto
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yurika Nakamura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kimihiro Yoshimura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Emika Minagawa
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Keiju Omatsu
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chizuko Ogata
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
9
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kim M, An G, Lim W, Song G. Fluroxypyr-1-methylheptyl ester induced ROS production and mitochondrial apoptosis through the MAPK signaling cascade in porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105196. [PMID: 36127068 DOI: 10.1016/j.pestbp.2022.105196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
FPMH (Fluroxypyr-1-methylheptyl ester) is a synthetic auxin herbicide used in agriculture. The mechanism by which FPMH induces adverse effects in porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, which are involved in porcine implantation, have not been studied yet. Therefore, the present study investigates the toxicological effects of FPMH on pTr and pLE cells. We confirmed that FPMH induced cytotoxic effects on the cells, including apoptosis induction, mitochondrial membrane potential (MMP) depolarization, and ROS production. The phosphorylation of the MAPK pathway (ERK1/2, JNK, and p38) was dysregulated by FPMH administration. In addition, FPMH could suppress cell-cell adhesion and migration abilities of pTr and pLE, which are crucial for implantation. Therefore, exposure to FPMH induced adverse effects in pTr and pLE cells and could result in implantation failure.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Sandberg AA, Manning E, Wilkins HM, Mazzarino R, Minckley T, Swerdlow RH, Patterson D, Qin Y, Linseman DA. Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β. J Alzheimers Dis 2022; 86:1727-1744. [PMID: 35253745 PMCID: PMC10084495 DOI: 10.3233/jad-215108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) is a principal cleavage product of amyloid-β protein precursor (AβPP) and is widely recognized as a key pathogenic player in Alzheimer's disease (AD). Yet, there is increasing evidence of a neurotoxic role for the AβPP intracellular domain (AICD) which has been proposed to occur through its nuclear function. Intriguingly, there is a γ-secretase resident at the mitochondria which could produce AICD locally. OBJECTIVE We examined the potential of AICD to induce neuronal apoptosis when targeted specifically to the mitochondria and compared its mechanism of neurotoxicity to that of Aβ. METHODS We utilized transient transfection of HT22 neuronal cells with bicistronic plasmids coding for DsRed and either empty vector (Ires), Aβ, AICD59, or mitochondrial-targeted AICD (mitoAICD) in combination with various inhibitors of pathways involved in apoptosis. RESULTS AICD induced significant neuronal apoptosis only when targeted to the mitochondria. Apoptosis required functional mitochondria as neither Aβ nor mitoAICD induced significant toxicity in cells devoid of mitochondrial DNA. Both glutathione and a Bax inhibitor protected HT22 cells from either peptide. However, inhibition of the mitochondrial permeability transition pore only protected from Aβ, while pan-caspase inhibitors uniquely rescued cells from mitoAICD. CONCLUSION Our results show that AICD displays a novel neurotoxic function when targeted to mitochondria. Moreover, mitoAICD induces apoptosis via a mechanism that is distinct from that of Aβ. These findings suggest that AICD produced locally at mitochondria via organelle-specific γ-secretase could act in a synergistic manner with Aβ to cause mitochondrial dysfunction and neuronal death in AD.
Collapse
Affiliation(s)
- Alexandra A. Sandberg
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Evan Manning
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Heather M. Wilkins
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - Randall Mazzarino
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Taylor Minckley
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| |
Collapse
|
12
|
Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol 2021; 36:e22942. [PMID: 34725879 DOI: 10.1002/jbt.22942] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are produced in cells during metabolic processes. Excessive intracellular ROS may react with large biomolecules, such as DNA, RNA, proteins, and small biomolecules, that is, glutathione (GSH) and unsaturated fatty acids. GSH has physiological functions, including free radical scavenging, anti-oxidation, and electrophile elimination. The disruption of ROS/GSH balance results in the deleterious oxidation and chemical modification of biomacromolecules, which eventually leads to cell-cycle arrest and proliferation inhibition, and even induces cell death. Imbalanced ROS/GSH may result from a direct increase of ROS, consumption of GSH, intracellular oxidoreductase interference, or thioredoxin activity reduction. Some chemicals including arsenic trioxide (ATO), pyrogallol (PG), and carbobenzoxy-Leu-Leu-leucinal (MG132) could also disrupt the balance of GSH and ROS. This article reviews the occurrence and consequences of the imbalance between GSH and ROS and introduces factors responsible for the disruption of cellular ROS and GSH balance, resulting in cell death. "GSH" and "ROS" were used as keywords to search the relevant literaturess.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Li Sun
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yubin Zhang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
d’Hose D, Isenborghs P, Brusa D, Jordan BF, Gallez B. The Short-Term Exposure to SDHI Fungicides Boscalid and Bixafen Induces a Mitochondrial Dysfunction in Selective Human Cell Lines. Molecules 2021; 26:5842. [PMID: 34641386 PMCID: PMC8510389 DOI: 10.3390/molecules26195842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Fungicides are used to suppress the growth of fungi for crop protection. The most widely used fungicides are succinate dehydrogenase inhibitors (SDHIs) that act by blocking succinate dehydrogenase, the complex II of the mitochondrial electron transport chain. As recent reports suggested that SDHI-fungicides could not be selective for their fungi targets, we tested the mitochondrial function of human cells (Peripheral Blood Mononuclear Cells or PBMCs, HepG2 liver cells, and BJ-fibroblasts) after exposure for a short time to Boscalid and Bixafen, the two most used SDHIs. Electron Paramagnetic Resonance (EPR) spectroscopy was used to assess the oxygen consumption rate (OCR) and the level of mitochondrial superoxide radical. The OCR was significantly decreased in the three cell lines after exposure to both SDHIs. The level of mitochondrial superoxide increased in HepG2 after Boscalid and Bixafen exposure. In BJ-fibroblasts, mitochondrial superoxide was increased after Bixafen exposure, but not after Boscalid. No significant increase in mitochondrial superoxide was observed in PBMCs. Flow cytometry revealed an increase in the number of early apoptotic cells in HepG2 exposed to both SDHIs, but not in PBMCs and BJ-fibroblasts, results consistent with the high level of mitochondrial superoxide found in HepG2 cells after exposure. In conclusion, short-term exposure to Boscalid and Bixafen induces a mitochondrial dysfunction in human cells.
Collapse
Affiliation(s)
- Donatienne d’Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Pauline Isenborghs
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Davide Brusa
- CytoFlux-Flow Cytometry Platform, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (D.d.); (P.I.); (B.F.J.)
| |
Collapse
|
14
|
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev Med Chem 2021; 21:816-832. [PMID: 33213355 DOI: 10.2174/1389557520666201118153242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.
Collapse
Affiliation(s)
- Jindriska Leischner Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Zdenek Kejik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Borowska 211, Poland
| | - Petr Filipensky
- Department of Urology, St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
15
|
Wang X, Gong Q, Song C, Fang J, Yang Y, Liang X, Huang X, Liu J. Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol 2021; 418:115484. [PMID: 33716044 DOI: 10.1016/j.taap.2021.115484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
The clinical use of cisplatin are limited due to its drug resistance. Thus, it is urgent to find effective combination therapy that sensitizes tumor cells to this drug. The combined chemo-photodynamic therapy could increase anti-tumor efficacy while also reduce the side effects of cisplatin. Berberine is an isoquinoline alkaloid, which has been reported to show high photosensitizing activity. In this study, we have examined the effect of a combination of cisplatin and berberine-PDT in cisplatin-resistant melanoma cells. The cytotoxic effects of berberine-PDT alone or in combination with cisplatin were tested by MTT assays. We then examined the subcellular localization of berberine with confocal fluorescence microscopy. The percentage of apoptotic cells, the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) generation assessed using flow cytometry analysis. Western blotting used in this study to determine the expression levels of MAPK signaling pathways and apoptosis-related proteins. Experimental data revealed that the mode of cell death is the caspase-dependent mitochondrial apoptotic pathways. Excessive accumulation of ROS played a key role in this process, which is confirmed by alleviation of cytotoxicity upon pretreatment with NAC. Furthermore, we found that the combined treatment activated MAPK signaling pathway. The inhibition of p38 MAPK by pretreating with SB203580 block the combined treatment-induced apoptotic cell death. In conclusion, berberine-PDT could be used as a chemo-sensitizer by promoting cell death through activation of a ROS/p38/caspase cascade.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaping Fang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Yang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xuan Huang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China; Natural Medicine and Health Food Research & Technology Innovation Team of Jiaxing, Jiaxing, Zhejiang 314001, China; Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research, China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
16
|
Lei D, Hong T, Li L, Chen L, Luo X, Wu Q, Liu Z. Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett 2021; 21:101. [PMID: 33376534 PMCID: PMC7751356 DOI: 10.3892/ol.2020.12362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Several chemicals in the environment, particularly those with estrogenic activity and small amounts (micromolar or lower) of environmental estrogen can cause changes in cell function and interfere with endocrine functions of animals and humans. These compounds enter the human body and increase the load of estrogen in the body, leading to an increasing incidence of estrogen-related tumors in breast cancer, ovarian cancer and endometrial cancer. Previous studies have demonstrated that ginger can inhibit the expression of estrogen receptors, while the bioactive ingredients of ginger sig-nificantly inhibit proliferation and promote the apoptosis of breast cancer cells. In the present study, a quantitative proteomics technique based on relative and absolute quanti-tative isobaric labeling was used to determine the effect of ginger essential oil (GEO) and BPA combined treatment on the proteomic characteristics of MCF-7 cells. In total, 5,084 proteins were detected. Proteins that were upregulated >1.2-fold and downregu-lated by >0.8-fold were differentially expressed. Overall, 528 differentially expressed proteins were identified. Compared with the control group, MCF-7 cells treated with GEO, BPA and GEO-BPA resulted in 45 (14 up- and 31 downregulated), 481 (141 up- and 340 downregulated) and 34 (13 up- and 21 downregulated) differentially ex-pressed proteins, respectively. Compared with the BPA group, MCF- 7 cells treated with GEO-BPA resulted in 210 (117 up- and 93 downregulated) differentially expressed proteins, among the 210 differentially expressed proteins in the GEO-BPA group, 10 proteins were associated with oxidative phosphorylation pathways, while succinate dehydrogenase (ubiquinone) iron-sulfur subunit (SDHB), succinate dehydrogenase cytochrome b560 subunit, mitochondrial (SDHC), cytochrome c oxidase subunit 2 and superoxide dismutase (Mn), mitochondrial (SOD2) expression was decreased with GEO-BPA combined treatment. Through the analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, the cellular localization, functional annotation and biological pathways of differentially expressed proteins were ex-amined. The results indicated that GEO-BPA may act through the oxidative phosphory-lation pathway, decreased the expression of SDHB and SDHC, affected the tricarbox-ylic acid cycle and decreased the expression of SOD2. This may have led to oxidative stress and the death of breast cancer cells, and the SDH signaling pathway may be an important mediator of the inhibitory effects of GEO in MCF-7 breast cancer cells. GEO can inhibit the proliferation of breast cancer MCF-7 cells induced by BPA, and the underlying mechanism may be associated with oxidative phosphorylation. These results may aid the development of future treatment strategies for breast cancer caused by environmental estrogen exposure.
Collapse
Affiliation(s)
- Dan Lei
- Experimental Animal Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Tao Hong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Longxue Li
- Experimental Animal Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Lai Chen
- Experimental Animal Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaoquan Luo
- Experimental Animal Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Qinghua Wu
- Basic Medical College, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Zhiyong Liu
- Experimental Animal Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
17
|
Tabassum S, Misrani A, Yang L. Exploiting Common Aspects of Obesity and Alzheimer's Disease. Front Hum Neurosci 2020; 14:602360. [PMID: 33384592 PMCID: PMC7769820 DOI: 10.3389/fnhum.2020.602360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an example of age-related dementia, and there are still no known preventive or curative measures for this disease. Obesity and associated metabolic changes are widely accepted as risk factors of age-related cognitive decline. Insulin is the prime mediator of metabolic homeostasis, which is impaired in obesity, and this impairment potentiates amyloid-β (Aβ) accumulation and the formation of neurofibrillary tangles (NFTs). Obesity is also linked with functional and morphological alterations in brain mitochondria leading to brain insulin resistance (IR) and memory deficits associated with AD. Also, increased peripheral inflammation and oxidative stress due to obesity are the main drivers that increase an individual’s susceptibility to cognitive deficits, thus doubling the risk of AD. This enhanced risk of AD is alarming in the context of a rapidly increasing global incidence of obesity and overweight in the general population. In this review, we summarize the risk factors that link obesity with AD and emphasize the point that the treatment and management of obesity may also provide a way to prevent AD.
Collapse
Affiliation(s)
- Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
18
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. J Biol Chem 2020; 295:8494-8504. [PMID: 32371393 DOI: 10.1074/jbc.ra119.012079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
The selective pressure imposed by extrinsic death signals and stressors adds to the challenge of isolating and interpreting the roles of proteins in stress-activated signaling networks. By expressing a kinase with activating mutations and a caged lysine blocking the active site, we can rapidly switch on catalytic activity with light and monitor the ensuing dynamics. Applying this approach to MAP kinase 6 (MKK6), which activates the p38 subfamily of MAPKs, we found that decaging active MKK6 in fibroblasts is sufficient to trigger apoptosis in a p38-dependent manner. Both in fibroblasts and in a murine melanoma cell line expressing mutant B-Raf, MKK6 activation rapidly and potently inhibited the pro-proliferative extracellular signal-regulated kinase (ERK) pathway; to our surprise, this negative cross-regulation was equally robust when all p38 isoforms were inhibited. These results position MKK6 as a new pleiotropic signal transducer that promotes both pro-apoptotic and anti-proliferative signaling, and they highlight the utility of caged, light-activated kinases for dissecting stress-activated signaling networks.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Neochamaejasmin A Induces Mitochondrial-Mediated Apoptosis in Human Hepatoma Cells via ROS-Dependent Activation of the ERK1/2/JNK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3237150. [PMID: 32411325 PMCID: PMC7201479 DOI: 10.1155/2020/3237150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.
Collapse
|
20
|
Liu Q, Liu Y, Guan X, Wu J, He Z, Kang J, Tao Z, Deng Y. Effect of M2 Macrophages on Injury and Apoptosis of Renal Tubular Epithelial Cells Induced by Calcium Oxalate Crystals. Kidney Blood Press Res 2019; 44:777-791. [DOI: 10.1159/000501558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Background: M2 macrophages have important roles in diseases such as tumours, cardiovascular diseases and renal diseases. This study aimed to determine the effects and protective mechanism of M2 macrophages against oxidative stress injury and apoptosis induced by calcium oxalate crystals (CaOx) in renal tubular epithelial cells (HK-2) under coculture conditions. Methods: THP-1 cells were induced to differentiate into M2 macrophages by using phorbol-12-myristate-13-acetate, IL-4 and IL-13. Morphological features were observed by microscopy. Phenotypic markers were identified by reverse transcription-polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay (ELISA). HK-2 cells were treated with 0.5 mg/mL CaOx crystals and co-cultured with M2 macrophages or apocynin. The viability of HK-2 cells was detected by CCK-8 assay. The lactate dehydrogenase (LDH) activity of HK-2 cells was analysed using a microplate reader. The apoptosis of HK-2 cells was examined by flow cytometry and Hoechst 33258 staining. Reactive oxygen species (ROS) expression and mitochondrial membrane potential in HK-2 cells were detected by a fluorescence microplate reader. Western blot analysis was conducted to detect the expression of p47phox, Bcl-2, cleaved caspase-3, cytochrome c, p38 MAPK, phospho-p38 MAPK, Akt and phospho-Akt. Results: The results of morphology, reverse transcription-polymerase chain reaction, Western blot and ELISA showed that THP-1 cells were successfully polarised to M2 macrophages. The results of co-culture suggested that M2 macrophages or apocynin significantly increased the cell viability and decreased the LDH activity and apoptosis rate after HK-2 cells were challenged with CaOx crystals. The expression of the p47phox protein and the concentration of ROS were reduced, the release of mitochondrial membrane potential and the expression of the Bcl-2 protein were upregulated and the protein expression of cleaved caspase-3 and cytochrome c was downregulated. The expression of the phosphorylated form of p38 MAPK increased. Under coculture conditions with M2 macrophages, the Akt protein of HK-2 cells treated with CaOx crystals was dephosphorylated, but the phosphorylated form of Akt was not reduced by apocynin. Conclusions: M2 macrophages reduced the oxidative stress injury and apoptosis of HK-2 cells by downregulating the activation of NADPH oxidase, reducing the production of ROS, inhibiting the phosphorylation of p38 MAPK and enhancing the phosphorylation of Akt. We have revealed one of the possible mechanisms by which M2 macrophages reduce the formation of kidney stones.
Collapse
|
21
|
Cui S, Nian Q, Chen G, Wang X, Zhang J, Qiu J, Zhang Z. Ghrelin ameliorates A549 cell apoptosis caused by paraquat via p38-MAPK regulated mitochondrial apoptotic pathway. Toxicology 2019; 426:152267. [PMID: 31381934 DOI: 10.1016/j.tox.2019.152267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/19/2022]
Abstract
Paraquat has relatively strong detrimental effects on humans and animals and can cause acute lung injury with high mortality. Ghrelin is a brain-gut peptide which plays important roles in regulating various physiological processes. This study investigated whether ghrelin could inhibit paraquat-induced lung injuries and attempted to elucidate the possible molecular mechanisms. A549 cells were preincubated with different concentrations of ghrelin and then treated with 200 μM of PQ for 24 h. Then cell survival, apoptosis, cellular oxidative stress and lipid peroxidation of A549 cells were detected after different treatments. Subsequently, we analyzed the mitochondrial membrane potential (ΔΨm) and measured caspase-3 activation in A549 cells. In addition, we investigated the activation of the MAPKs pathway and the function of p38-MAPK within mitochondrial apoptosis. Our study indicated that ghrelin administration improved cell viability and reduced apoptosis of PQ-treated A549 cells dose-dependently. Ghrelin treatment reduced the elevation of ROS and MDA, while improved GSH content in A549 cells after paraquat exposure. Moreover, we found that ghrelin dose-dependently increased ΔΨm and decreased caspase-3 activity. The phosphorylated p38 MAPK and JNK levels elevated following PQ exposure, while the phosphorylation of p38 MAPK decreased following ghrelin pretreatment. p38 MAPK siRNA or SB203580 pretreatment ameliorated PQ-caused cell injury and apoptosis related signals, however, the intracellular ROS production was not affected. N-Acetylcysteine (NAC), a classic antioxidant pretreatment decreased the phosphorylated p38 MAPK level and intracellular ROS production, alleviated cell injury, and inhibited apoptosis. The results showed that p38-MAPK pathway plays an important role in PQ-caused alveolar epithelial cell insult, and ghrelin might attenuate PQ-induced cell injury by inhibiting ROS-induced p38-MAPK modulated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Shuqing Cui
- Standardized Residency Training Center, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Qing Nian
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Gang Chen
- Department of Vascular Intervention, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Xingyong Wang
- Department of Emergency, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jinying Zhang
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Jianqing Qiu
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China.
| | - Zhiqiang Zhang
- Department of Emergency, Binzhou Medical University Hospital, Binzhou 256603, China.
| |
Collapse
|
22
|
Wang K, Chu D, Wu J, Zhao M, Zhang M, Li B, Du W, Du J, Guo R. WITHDRAWN: Cinobufagin induced cell apoptosis and protective autophagy through the ROS/MAPK signaling pathway. Life Sci 2019:116642. [PMID: 31301417 DOI: 10.1016/j.lfs.2019.116642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou 450000, PR China
| | - Danxia Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Mengling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Miaomiao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Bijun Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Wenjun Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Jianmin Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China.
| |
Collapse
|
23
|
Dalla Pozza E, Dando I, Pacchiana R, Liboi E, Scupoli MT, Donadelli M, Palmieri M. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol 2019; 98:4-14. [PMID: 31039394 DOI: 10.1016/j.semcdb.2019.04.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Elio Liboi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Gao L, Zhang Z, Xu W, Li T, Ying G, Qin B, Li J, Zheng J, Zhao T, Yan F, Zhu Y, Chen G. Natrium Benzoate Alleviates Neuronal Apoptosis via the DJ-1-Related Anti-oxidative Stress Pathway Involving Akt Phosphorylation in a Rat Model of Traumatic Spinal Cord Injury. Front Mol Neurosci 2019; 12:42. [PMID: 30853891 PMCID: PMC6395451 DOI: 10.3389/fnmol.2019.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the neuroprotective effects and mechanisms of natrium benzoate (NaB) and DJ-1 in attenuating reactive oxygen species (ROS)-induced neuronal apoptosis in traumatic spinal cord injury (t-SCI) in rats. T-SCI was induced by clip compression. The protein expression and neuronal apoptosis was evaluated by Western blotting, double immunofluorescence staining and transmission electron microscope (TEM). ROS level, spinal cord water content (SCWC) and Evans blue (EB) extravasation was also examined. Locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) and inclined plane test (IPT) scores. We found that DJ-1 is expressed in spinal cord neurons and increased after t-SCI. At 24 h post-injury, the levels of DJ-1, p-Akt, SOD2, ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3 increased, while the Bcl-2/Bax ratio decreased. NaB upregulated DJ-1, p-Akt, and SOD2, decreased ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3, and increased the Bcl-2/Bax ratio, which were reversed by DJ-1 siRNA. The proportion of CC-3- and TUNEL-positive neurons also increased after t-SCI and was reduced by NaB. These effects were reversed by MK2206. Moreover, the level of oxDJ-1 increased after t-SCI, which was decreased by DJ-1 siRNA, NaB or the combination of them. NaB also reduced mitochondrial vacuolization, SCWC and EB extravasation, and improved locomotor function assessed by the BBB and IPT scores. In conclusion, NaB increased DJ-1, and thus reduced ROS and ROS-induced neuronal apoptosis by promoting Akt phosphorylation in t-SCI rats. NaB shows potential as a therapeutic agent for t-SCI, with DJ-1 as its main target.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tengfei Zhao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Postsynaptic p47phox regulates long-term depression in the hippocampus. Cell Discov 2018; 4:44. [PMID: 30181899 PMCID: PMC6110736 DOI: 10.1038/s41421-018-0046-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
It is well documented that reactive oxygen species (ROS) affects neurodegeneration in the brain. Several studies also implicate ROS in the regulation of synapse function and learning and memory processes, although the precise source of ROS generation within these contexts remains to be further explored. Here we show that postsynaptic superoxide generation through PKCζ-activated NADPH oxidase 2 (NOX2) is critical for long-term depression (LTD) of synaptic transmission in the CA1-Shaffer collateral synapse of the rat hippocampus. Specifically, PKCζ-dependent phosphorylation of p47phox at serine 316, a NOX2 regulatory subunit, is required for LTD but is not necessary for long-term potentiation (LTP). Our data suggest that postsynaptic p47phox phosphorylation at serine 316 is a key upstream determinant for LTD and synapse weakening.
Collapse
|
26
|
Al-Obeed O, Vaali-Mohammed MA, Eldehna WM, Al-Khayal K, Mahmood A, Abdel-Aziz HA, Zubaidi A, Alafeefy A, Abdulla M, Ahmad R. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2-STAT3 pathway. Onco Targets Ther 2018; 11:3313-3322. [PMID: 29892198 PMCID: PMC5993033 DOI: 10.2147/ott.s148108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown. Materials and methods 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis. Results Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2–STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability. Conclusion Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2–STAT3 signaling in CRC.
Collapse
Affiliation(s)
- Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Egypt
| | - Ahmed Zubaidi
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alafeefy
- Department of Chemistry, Kulliyyah of Science, International Islamic University, Kuantan, Malaysia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Fu L, Liu S, Wang H, Ma Y, Li L, He X, Mou X, Tong X, Hu Z, Ru G. Low expression of NEK2 is associated with hepatocellular carcinoma progression and poor prognosis. Cancer Biomark 2018; 20:101-106. [PMID: 28759960 DOI: 10.3233/cbm-170586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND NIMA-related kinase 2 (NEK2), a serine/threonine kinase, is located in the centrosome and is a member of cell cycle regulation related protein kinase (CCRK) family. Aberrant expression of NEK2 is linked with carcinogenesis and progression of various tumors. OBJECTIVE To investigate the expression level of NEK2 and its relationship with clinicopathological factors in hepatocellular carcinoma (HCC). METHODS Immunohistochemistry was used to measure the expression of NEK2 in 310 patients' specimen tissues and 197 adjacent normal liver tissues of HCC cases, and the subsequent prognostic value for each sample was estimated. RESULTS NEK2 expression levels in HCC were lower than in adjacent tissues (49.7% vs. 72.6%, P< 0.001). First, patients with relatively low NEK2 expression had increased cancer progression and poorer prognosis than those with high expression. Second, NEK2 expression was significantly reduced in patients with large tumors (P= 0.025), with stage III Edmondson-Steiner Grading (P= 0.015). Third, patients' tumor size positively correlated with high AFP concentration (P= 0.017). Fourth, using the Kaplan-Meier survival curve, we found a lower survival rate in patients with decreased expression of NEK2 than those with high NEK2 expression in HCC (P= 0.029, Log-rank test). CONCLUSIONS Low NEK2 expression might be a useful predictor in HCC as a poor prognostic factor, and could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Suxia Liu
- School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Huiju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Li Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xianglei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Xiangmin Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Department of Clinical Laboratory, Lishui Central Hospital, Lishui 323000, Zhejiang, China
| | - Zhiming Hu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
28
|
Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Exp Neurol 2018; 302:112-128. [DOI: 10.1016/j.expneurol.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022]
|
29
|
Mihailidou C, Papakotoulas P, Papavassiliou AG, Karamouzis MV. Superior efficacy of the antifungal agent ciclopirox olamine over gemcitabine in pancreatic cancer models. Oncotarget 2018; 9:10360-10374. [PMID: 29535812 PMCID: PMC5828195 DOI: 10.18632/oncotarget.23164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Ciclopirox olamine (CPX) is an antifungal agent that has recently demonstrated promising anti-neoplastic activity against hematologic and solid tumors. Here, we evaluated CPX compared with gemcitabine alone as well as their combination in human pancreatic cancer cell lines; BxPC-3, Panc-1, and MIA PaCa-2 and in humanized xenograft mouse models. We also examined the preclinical pharmacodynamic activity of CPX. CPX caused a pronounced decrease in cell proliferation and clonogenic growth potential. These inhibitory effects were accompanied by induction of reactive oxygen species (ROS), which were strongly associated with reduced Bcl-xL and survivin levels and activation of a panel of caspases, especially caspase-3, and finally resulted in apoptotic death. CPX-induced apoptosis was associated with reduced pEGFR (Y1068) and pAkt (Ser473) protein levels. Additionally, decreased proliferation was observed in CPX-treated xenografts tumors, demonstrating unique tumor regression and a profound survival benefit. Finally, we showed that CPX significantly abrogated gemcitabine-induced ROS levels in pancreatic tissues. These pre-clinical results have verified the superior antitumor efficacy of CPX over gemcitabine alone, while their combination is even more effective, providing the rationale for further clinical testing of CPX plus gemcitabine in pancreatic cancer patients.
Collapse
Affiliation(s)
- Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Pavlos Papakotoulas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 2 Department of Medical Oncology, Theagenion Hospital, 54007 Thessaloniki, Greece
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
30
|
Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3804979. [PMID: 29770166 PMCID: PMC5892600 DOI: 10.1155/2018/3804979] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury) has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.
Collapse
|
31
|
Mild C(sp 3)-H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur J Med Chem 2017. [PMID: 28641156 DOI: 10.1016/j.ejmech.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five β-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 μM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 μM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.
Collapse
|
32
|
Cao S, Zhu X, Du L. P38 MAP kinase is involved in oleuropein-induced apoptosis in A549 cells by a mitochondrial apoptotic cascade. Biomed Pharmacother 2017; 95:1425-1435. [PMID: 28946190 DOI: 10.1016/j.biopha.2017.09.072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is one of malignant tumors that cause great threats to human health, which causes the fastest growing morbidity and mortality. Oleuropein as natural production exerts anticancer effects in several cancer cells. In the study, we investigated apoptotic effect of oleuropein on A549 cells and the underlying mechanisms. Oleuropein markedly decreased cell viability in A549 cells by resulting in G2/M phase arrest, but failed to decreased cell viability in BEAS-2B cells significantly. Apoptosis by oleuropein was confirmed by apoptotic morphology, accumulation in a sub-G1 peak, nucleus fragmentation and cleavage of PARP. Dose-dependent elevation in p-p38MAPK and p-ATF-2 was observed whereas apparent changes could not be observed in p-JNK and p-c-Jun, showing activation of p38MAPK but not JNK. Interestingly, ERK1/2 appeared to be constant while p-ERK1/2 was reduced dose-dependently. Oleuropein caused decrease in mitochondrial membrane potential, increase in Bax/Bcl- 2 ratio, release of mitochondrial cytochrome c and activation of caspase-9 and caspase-3, implying that mitochondrial apoptotic pathway was activated. Additionally, oleuropein-induced apoptosis was dramatically attenuated by Z-VAD-FMK (caspase inhibitor). The p38MAPK inhibitor prevented production of apoptotic bodies and reduced expressions of cleaved-PARP, p-P38, p-ATF-2 and release of cytochrome c. Taken together, these results demonstrated p38MAPK signaling pathway mediated oleuropein-induced apoptosis via mitochondrial apoptotic cascade in A549 cells. Oleuropein has the potential to be a therapeutic drug for lung cancer treatment.
Collapse
Affiliation(s)
- Shasha Cao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Xixi Zhu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
33
|
Han BR, Park WH. MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O 2•- levels. Oncol Lett 2017; 14:1179-1185. [PMID: 28693293 DOI: 10.3892/ol.2017.6185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
Pyrogallol (PG) induces apoptosis in lung cancer cells via the overproduction of O2•- and affects mitogen-activated protein kinases (MAPKs) in these cells. The aim of the present study was to elucidate the effect of PG and/or MAPK inhibitors on human pulmonary fibroblast (HPF) cell viability in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50 or 100 µM PG inhibited the viability of HPF cells, and induced cell death and the loss of mitochondrial membrane potential (MMP; ΔΨm). In particular, treatment with 100 µM PG induced cell death via apoptosis as well as necrosis in HPF cells. PG increased mitochondrial O2•- levels and the number of GSH-depleted HPF cells. All the MAPK (mitogen-activated protein kinase kinase, c-Jun N-terminal kinase and p38) inhibitors enhanced the inhibition of cell viability, cell death and MMP (ΔΨm) loss in 100 µM PG-treated HPF cells. All the inhibitors increased the O2•- levels in 100 µM PG-treated HPF cells, but none of the inhibitors significantly altered the PG-induced GSH depletion. In conclusion, PG treatment induced cell death via apoptosis and necrosis in HPF cells. Treatment with MAPK inhibitors slightly enhanced cell death in PG-treated HPF cells. HPF cell death induced by PG and/or MAPK inhibitors was at least partially associated with changes in O2•- levels and GSH content. The present data provided useful information to understand PG-induced normal lung cell death in association with MAPK signaling pathways and ROS levels.
Collapse
Affiliation(s)
- Bo Ram Han
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| |
Collapse
|
34
|
Aukkanimart R, Boonmars T, Sriraj P, Sripan P, Songsri J, Ratanasuwan P, Laummaunwai P, Boueroy P, Khueangchaingkhwang S, Pumhirunroj B, Artchayasawat A, Boonjaraspinyo S, Wu Z, Hahnvajanawong C, Vaeteewoottacharn K, Wongkham S. In Vitro and In Vivo Inhibitory Effects of α-Mangostin on Cholangiocarcinoma Cells and Allografts. Asian Pac J Cancer Prev 2017; 18:707-713. [PMID: 28441703 PMCID: PMC5464488 DOI: 10.22034/apjcp.2017.18.3.707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the anti-cholangiocarcinoma effect of α-mangostin from Garcinia mangostana pericarp extract (GM) in a human cholangiocarcinoma (CCA) cell line and a hamster CCA allograft model. In vitro, human CCA cells were treated with GM at various concentrations and for different time periods; then cell-cycle arrest and apoptosis were evaluated using flow cytometry, and metastatic potential with wound healing assays. In vivo, hamster allografts were treated with GM, gemcitabine (positive control) and a placebo (negative control) for 1 month; tumor weight and volume were then determined. Histopathological features and immunostaining (CK19 and PCNA) characteristics were examined by microscopy. The present study found that α-mangostin could: inhibit CCA cell proliferation by inducing apoptosis through the mitochondrial pathway; induce G1 cell-cycle arrest; and inhibit metastasis. Moreover, α-mangostin could inhibit CCA growth, i.e. reduce tumor mass (weight and size) and alter CCA pathology, as evidenced by reduced positive staining for CK19 and PCNA. The present study thus suggested that α-mangostin is a promising anti-CCA compound whose ready availability in tropical countries might indicate use for prevention and treatment of CCA.
Collapse
Affiliation(s)
- Ratchadawan Aukkanimart
- Department of Thai Traditional Medicine, Faculty of Natural Resources, Rajamangala University of Technology Isan Sakonnakhon Campus, Sakon Nakhon, Thailand
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Pranee Sriraj
- Department of Thai Traditional Medicine, Faculty of Natural Resources, Rajamangala University of Technology Isan Sakonnakhon Campus, Sakon Nakhon, Thailand
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
| | - Panupan Sripan
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Jiraporn Songsri
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
| | - Panaratana Ratanasuwan
- Department of Anesthesiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Parichart Boueroy
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sukhonthip Khueangchaingkhwang
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Benjamabhorn Pumhirunroj
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Atchara Artchayasawat
- Neglected, Zoonosis and Vector-Borne Disease Group, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirintip Boonjaraspinyo
- Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Zhiliang Wu
- Department of Parasitology Graduate School of Medicine Gifu University, Gifu, Japan
| | - Chariya Hahnvajanawong
- Liver Fluke and Cholangiocarcinoma Research Center, Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Liver Fluke and Cholangiocarcinoma Research Center, Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
35
|
Hu YR, Ma H, Zou ZY, He K, Xiao YB, Wang Y, Feng M, Ye XL, Li XG. Activation of Akt and JNK/Nrf2/NQO1 pathway contributes to the protective effect of coptisine against AAPH-induced oxidative stress. Biomed Pharmacother 2016; 85:313-322. [PMID: 27903425 DOI: 10.1016/j.biopha.2016.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/26/2023] Open
Abstract
Coptisine (COP) is one of the main active constituents of Coptidis Rhizoma. Previous studies have clarified that COP possesses antioxidant activity, but its defensive effects against pathological characteristics accompanied by oxidative damage in animal models and antioxidant mechanism are still unclear. Therefore, our purpose was to confirm the antioxidant activity of COP and explore its mechanism of action. We first detected the effects of COP on intracellular reactive oxygen species (ROS), heart beating rate, lipid peroxidation and cell death in zebrafish model with AAPH-induced oxidative stress. The results showed that COP of 10μg/mL significantly reduced ROS production, the increase of heart beating rate, lipid peroxidation and cell death by 41.3%, 24.5%, 26.5% and 30.0%, respectively. In addition, COP of 0.8μg/mL also decreased ROS, increased glutathione (GSH) content and elevated activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) by 40.1%, 19.8%, 18.3% and 49.3%, respectively in HepG2 cells. Further assays were carried out to explore the mRNA expression in zebrafish and protein expression of key factors in HepG2 cells. We demonstrated that COP up-regulated phase II antioxidant enzymes NAD(P)H/quinone oxidoreductase 1 (NQO1) through activating the nuclear factor erythroid-2 related factor 2 (Nrf2). Moreover, as the upstream signalings of Nrf2, the protein kinase B (Akt) and c-Jun NH2-terminal kinase (JNK) signalings were also induced by COP. And up-regulating Nrf2-mediated NQO1 expression of COP was in Akt and JNK-dependent manner. Taken together, COP exerted its antioxidant activity against AAPH-induced toxicity involving in activating Akt and JNK/Nrf2/NQO1 pathway.
Collapse
Affiliation(s)
- Yin-Ran Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Zong-Yao Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Kai He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Yu-Bo Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Yue Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Feng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China
| | - Xiao-Li Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xue-Gang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China; Chongqing Productivity Promotion Centre for the Modernization of Chinese Medicine, Chongqing, 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400716, China.
| |
Collapse
|
36
|
Zhao T, Feng Y, Jin W, Pan H, Li H, Zhao Y. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism. Cell Biol Int 2016; 40:686-95. [PMID: 27006094 DOI: 10.1002/cbin.10606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/19/2016] [Indexed: 12/26/2022]
Abstract
Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline.
Collapse
Affiliation(s)
- Ting Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yang Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wenling Jin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Hui Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haizhou Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yang Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20000, China
| |
Collapse
|
37
|
Saez-Atienzar S, Bonet-Ponce L, da Casa C, Perez-Dolz L, Blesa JR, Nava E, Galindo MF, Jordan J. Bcl-xL-mediated antioxidant function abrogates the disruption of mitochondrial dynamics induced by LRRK2 inhibition. Biochim Biophys Acta Mol Basis Dis 2015; 1862:20-31. [PMID: 26435084 DOI: 10.1016/j.bbadis.2015.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 12/30/2022]
Abstract
We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade.
Collapse
Affiliation(s)
- Sara Saez-Atienzar
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, IDINE, Albacete, Spain; Facultad de Medicina y Odontología, Universidad Católica de Valencia ¨San Vicente Mártir, Valencia, Spain; Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Luis Bonet-Ponce
- Facultad de Medicina y Odontología, Universidad Católica de Valencia ¨San Vicente Mártir, Valencia, Spain
| | - Carmen da Casa
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, IDINE, Albacete, Spain; Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Laura Perez-Dolz
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, IDINE, Albacete, Spain; Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Jose R Blesa
- Facultad de Medicina y Odontología, Universidad Católica de Valencia ¨San Vicente Mártir, Valencia, Spain
| | - Eduardo Nava
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, IDINE, Albacete, Spain
| | - Maria F Galindo
- Unidad de Neuropsicofarmacología Traslacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | - Joaquín Jordan
- Grupo de Neurofarmacología, Dpto. Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, IDINE, Albacete, Spain.
| |
Collapse
|
38
|
Barros-Miñones L, Orejana L, Goñi-Allo B, Suquía V, Hervías I, Aguirre N, Puerta E. Modulation of the ASK1-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate. Br J Pharmacol 2015. [PMID: 23186227 DOI: 10.1111/bph.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE PD5 inhibitors have recently been reported to exert beneficial effects against ischaemia-reperfusion injury in several organs. However, there are few studies regarding their neuroprotective effects in brain ischaemia. The present study was designed to assess the effects of sildenafil against chemical hypoxia induced by malonate. Intrastriatal injection of malonate produces energy depletion and striatal lesions similar to that seen in cerebral ischaemia through mechanisms that involve generation of reactive oxygen species (ROS). EXPERIMENTAL APPROACH Volume lesion was analysed by cytochrome oxidase histochemistry. Generation of reactive species was determined by in situ visualization of superoxide production and nitrotyrosine measurement. Protein levels were determined by Western blot after subcellular fractionation. KEY RESULTS Sildenafil, given 30 min before malonate, significantly decreased the lesion volume in the rat. This protective effect cannot be attributed to any effect on ROS production but to the inhibition of downstream pathways. Thus, malonate induced the activation of apoptosis signal-regulating kinase-1 (ASK1) and two MAPK kinases, MKK3/6 and MKK7, which lead to an increased phosphorylation of JNK and p38 MAPK, effects that were blocked by sildenafil. Selective inhibitors of p38 and JNK (SB203580 or SP600125, respectively) were used in combination with malonate in order to evaluate the plausible implication of these pathways in the protection afforded by sildenafil. While inhibition of p38 provided a significant protection against malonate-induced neurotoxicity, inhibition of JNK did not. CONCLUSIONS AND IMPLICATIONS Sildenafil protects against the chemical hypoxia induced by malonate through the regulation of the ASK1-MKK3/6-p38/MAPK signalling pathway.
Collapse
Affiliation(s)
- L Barros-Miñones
- Department of Pharmacology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1400-9. [PMID: 25779081 DOI: 10.1016/j.bbadis.2015.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS.
Collapse
|
40
|
Cheng HB, Bo Y, Shen WX, Ren XG, Tan JN, Jia ZR, Xu CL. Longikaurin E induces apoptosis of pancreatic cancer cells via modulation of the p38 and PI3K/AKT pathways by ROS. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:623-34. [PMID: 25743573 DOI: 10.1007/s00210-015-1107-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a devastating disease with a poor prognosis. It ranks as the fourth or fifth most common cancer in men and women and has the lowest 5-year survival rate. Therefore, there is an urgent need to develop novel therapeutic agents for pancreatic cancer. Longikaurin E (LE), which is derived from the traditional herbal medicine Rabdosia longituba, had been reported to have anti-proliferative and pro-apoptotic properties in several types of cancers. In this study, we investigated the cytotoxic properties of LE against pancreatic cancer cells and explored the mechanism behind the observed apoptosis. Pancreatic cancer cell lines cultured in the presence of LE exhibited dose- and time-dependent growth suppression by clone formation, methylthiazoltetrazolium assay, lactate dehydrogenase cytotoxicity assay, and fluorescence-activated cell sorting analysis, respectively. In addition, these culture conditions also induced the generation of cellular reactive oxygen species (ROS). In order to determine the mechanisms underlying LE-induced cytotoxicity, we used reverse transcription polymerase chain reaction and Western blot analysis in the pancreatic cancer cell line PANC1. The results showed that the expression of Bax was noticeably upregulated and the expression levels of Bcl-2, Bcl-XL, survivin, and c-Myc were significantly downregulated. We also observed increased p38 phosphorylation and decreased phosphorylation of the PI3K/AKT pathway. Interestingly, we also found that LE activated caspase-3. However, N-acetyl-L-cysteine, a kind of antioxidant, reversed all of these cellular activities. In conclusion, this study suggested that LE induced apoptosis of pancreatic cancer cells via ROS generation to modulate the p38 and PI3K/AKT pathways and could be a promising anti-pancreatic agent.
Collapse
Affiliation(s)
- Hai-bo Cheng
- Translational Medicine Research Center, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Xiong XX, Liu JM, Qiu XY, Pan F, Yu SB, Chen XQ. Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways. Acta Pharmacol Sin 2015; 36:362-74. [PMID: 25619389 PMCID: PMC4349924 DOI: 10.1038/aps.2014.141] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/13/2014] [Indexed: 01/26/2023]
Abstract
AIM To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. METHODS Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or flow cytometry. ROS levels in the cells were determined using DCFH-DA staining and flow cytometry. Expression of apoptotic and autophagic signaling proteins was analyzed using Western blotting. RESULTS PL inhibited the viability of BMMNCs from the patients with myeloid leukemias (with IC50 less than 20 μmol/L), but not that of BMMNCs from a patient with MDS. Furthermore, PL (10 and 20 μmol/L) induced apoptosis of BMMNCs from the patients with myeloid leukemias in a dose-dependent manner. PL markedly increased ROS levels in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the antioxidant N-acetyl-L-cysteine abolished PL-induced ROS accumulation and effectively reduced PL-induced cytotoxicity. Moreover, PL markedly increased the expression of the apoptotic proteins (Bax, Bcl-2 and caspase-3) and autophagic proteins (Beclin-1 and LC3B), and phosphorylation of p38 and JNK in BMMNCs from the patients with myeloid leukemias, whereas pretreatment with the specific p38 inhibitor SB203580 or the specific JNK inhibitor SP600125 partially reversed PL-induced ROS production, apoptotic/autophagic signaling activation and cytotoxicity. CONCLUSION Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/drug effects
- Cell Survival/drug effects
- Dioxolanes/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation
- Humans
- Inhibitory Concentration 50
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- Phosphorylation
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xin-xin Xiong
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ju-mei Liu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin-yao Qiu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Pan
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shang-bin Yu
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-qian Chen
- Department of Pathophysiology, School of Basic Medicine; Key Laboratory of Neurological Diseases, Ministry of Education; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
42
|
ISAV infection promotes apoptosis of SHK-1 cells through a ROS/p38 MAPK/Bad signaling pathway. Mol Immunol 2015; 64:1-8. [DOI: 10.1016/j.molimm.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
|
43
|
Han D, Scott EL, Dong Y, Raz L, Wang R, Zhang Q. Attenuation of mitochondrial and nuclear p38α signaling: a novel mechanism of estrogen neuroprotection in cerebral ischemia. Mol Cell Endocrinol 2015; 400:21-31. [PMID: 25462588 DOI: 10.1016/j.mce.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
P38 mitogen-activated protein kinase (MAPK) is a pro-apoptotic and pro-inflammatory protein that is activated in response to cellular stress. While p38 is known to be activated in response to cerebral ischemia, the precise role of p38 and its isoforms in ischemia-induced neuronal apoptosis remains unclear. In the current study, we examined the differential activation and functional roles of p38α and p38β MAPK isoforms in short-term ovariectomized female rats treated with either the neuroprotective ovarian hormone 17beta-estradiol (E2) or placebo in a model of global cerebral ischemia (GCI). GCI induced biphasic activation of total p38 in the hippocampal CA1, with peaks at 30 min and 1 day after 10-min ischemia-reperfusion. Further study demonstrated that activated p38α, but not p38β, translocated to the nucleus 30 min and 3 h post reperfusion, and that this event coincided with increased phosphorylation of activating transcription factor 2 (ATF2), a p38 target protein. Intriguingly, activated p38α was also enhanced in mitochondrial fractions of CA1 neurons 1 day after GCI, and there was loss of mitochondrial membrane potential, as well as enhanced cytochrome c release and caspase-3 cleavage at 2 days post GCI. Importantly, E2 prevented the biphasic activation of p38, as well as both nuclear and mitochondrial translocation of p38α after GCI, and these findings correlated with attenuation of mitochondrial dysfunction and delayed neuronal cell death in the hippocampal CA1. Furthermore, administration of a p38 inhibitor was able to mimic the neuroprotective effects of E2 in the hippocampal CA1 region by preventing nuclear and mitochondrial translocation of p38α, loss of mitochondrial membrane potential, and neuronal apoptosis. As a whole, this study suggests that changes in subcellular localization of the activated p38α isoform are required for neuronal apoptosis following GCI, and that E2 exerts robust neuroprotection, in part, through dual inhibition of activation and subcellular trafficking of p38α.
Collapse
Affiliation(s)
- Dong Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Jiangsu 221004, China
| | - Erin L Scott
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Limor Raz
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Neurobiology Institute of Medical Research Centre, Hebei United University, Tangshan, Hebei 06300, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
44
|
Effect of evodiagenine mediates photocytotoxicity on human breast cancer cells MDA-MB-231 through inhibition of PI3K/AKT/mTOR and activation of p38 pathways. Fitoterapia 2014; 99:292-9. [DOI: 10.1016/j.fitote.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 11/20/2022]
|
45
|
Aminzadeh A, Dehpour AR, Safa M, Mirzamohammadi S, Sharifi AM. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway. Cell Mol Neurobiol 2014; 34:1143-50. [PMID: 25073869 PMCID: PMC11488919 DOI: 10.1007/s10571-014-0089-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022]
Abstract
Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.
Collapse
Affiliation(s)
- A. Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. R. Dehpour
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Safa
- Department of Hematology, School of Allied Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - S. Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. M. Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Ferrante A, Martire A, Pepponi R, Varani K, Vincenzi F, Ferraro L, Beggiato S, Tebano MT, Popoli P. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease. Neurobiol Dis 2014; 71:193-204. [PMID: 25132555 DOI: 10.1016/j.nbd.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/15/2014] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine A1 receptor (A1R) stimulation exerts beneficial effects in response to various insults to the brain and, although it was found neuroprotective in a lesional model of Huntington's disease (HD), the features of this receptor in genetic models of HD have never been explored. In the present study we characterized the expression, affinity and functional effects of A1Rs in R6/2 mice (the most widely used transgenic model of HD) and in a cellular model of HD. Binding studies revealed that the density of A1Rs was significantly reduced in the cortex and the striatum of R6/2 mice compared to age-matched wild-type (WT), while receptor affinity was unchanged. The selective A1R agonist cyclopentyladenosine (CPA, 300nM) was significantly more effective in reducing synaptic transmission in corticostriatal slices from symptomatic R6/2 than in age-matched WT mice. Such an effect was due to a stronger inhibition of glutamate release from the pre-synaptic terminal. The different functional activities of A1Rs in HD mice were associated also to a different intracellular signaling pathway involved in the synaptic effect of CPA. In fact, while the PKA pathway was involved in both genotypes, p38 MAPK inhibitor SB203580 partially prevented synaptic effects of CPA in R6/2, but not in WT, mice; moreover, CPA differently modulated the phosphorylation status of p38 in the two genotypes. In vitro studies confirmed a different behavior of A1Rs in HD: CPA (100 nM for 5h) modulated cell viability in STHdh(Q111/Q111) (mhttHD cells), without affecting the viability of STHdh(Q7/Q7) (wthtt cells). This effect was prevented by the application of SB203580. Our results demonstrate that in the presence of the HD mutation A1Rs undergo profound changes in terms of expression, pharmacology and functional activity. These changes have to be taken in due account when considering A1Rs as a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Antonella Ferrante
- Istituto Superiore di Sanità, Department of Therapeutic Research and Medicines Evaluation, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Alberto Martire
- Istituto Superiore di Sanità, Department of Therapeutic Research and Medicines Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - Rita Pepponi
- Istituto Superiore di Sanità, Department of Therapeutic Research and Medicines Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Maria Teresa Tebano
- Istituto Superiore di Sanità, Department of Therapeutic Research and Medicines Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - Patrizia Popoli
- Istituto Superiore di Sanità, Department of Therapeutic Research and Medicines Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
47
|
Gladding CM, Fan J, Zhang LYJ, Wang L, Xu J, Li EHY, Lombroso PJ, Raymond LA. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem 2014; 130:145-59. [PMID: 24588402 DOI: 10.1111/jnc.12700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 01/29/2023]
Abstract
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre-symptomatic (excitotoxin-sensitive) transgenic mice expressing full-length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex-NMDAR) localization and signaling. Furthermore, Ex-NMDAR stimulation facilitates excitotoxicity in wild-type cortical neurons via calpain-mediated cleavage of STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen-activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain-mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal-regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6-week-old, excitotoxin-sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA-induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR-post-synaptic density protein-95 (PSD-95) binding but not by calpain inhibition. In 1-year-old excitotoxin-resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR-PSD-95 interactions contributes to elevated p38 signaling in early, excitotoxin-sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin-resistant stages. The YAC128 Huntington's disease mouse model shows early, enhanced susceptibility to NMDA receptor-mediated striatal apoptosis, progressing to late-stage excitotoxicity resistance. This study shows that elevated NMDA receptor-PSD-95 interactions as well as decreased extrasynaptic STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61) activation may contribute to early enhanced apoptotic signaling. In late-stage YAC128 mice, reduced STEP61 levels and activity correlate with elevated MAPK signaling, consistent with excitotoxicity resistance. Solid and dotted arrows indicate conclusions drawn from the current study and other literature, respectively.
Collapse
Affiliation(s)
- Clare M Gladding
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dau A, Gladding CM, Sepers MD, Raymond LA. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 2014; 62:533-42. [DOI: 10.1016/j.nbd.2013.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022] Open
|
49
|
Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696107. [PMID: 24587987 PMCID: PMC3921973 DOI: 10.1155/2014/696107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 02/02/2023]
Abstract
Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.
Collapse
|
50
|
Nikhil K, Sharan S, Chakraborty A, Bodipati N, Krishna Peddinti R, Roy P. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice. Exp Cell Res 2014; 320:311-328. [PMID: 24216289 DOI: 10.1016/j.yexcr.2013.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 11/22/2022]
Abstract
Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC50=25 ± 0.38) when compared to reference compound PTER (IC50=65 ± 0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells.
Collapse
Affiliation(s)
- Kumar Nikhil
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Shruti Sharan
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Ajanta Chakraborty
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Naganjaneyulu Bodipati
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| |
Collapse
|