1
|
Dong L, Klassen TP, Johnson DW, Correll R, Gouin S, Bhatt M, Patel H, Joubert G, Black KJL, Turner TWS, Whitehouse SR, Plint AC, Heath A. The probability of reducing hospitalization rates for bronchiolitis with epinephrine and dexamethasone: A Bayesian analysis. PLoS One 2025; 20:e0318853. [PMID: 40378135 PMCID: PMC12083810 DOI: 10.1371/journal.pone.0318853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Bronchiolitis exerts a high burden on children, their families and the healthcare system. The Canadian Bronchiolitis Epinephrine Steroid Trial (CanBEST) assessed whether administering epinephrine alone, dexamethasone alone, or in combination (EpiDex) could reduce bronchiolitis-related hospitalizations among children less than 12 months of age compared to placebo. CanBEST demonstrated a statistically significant reduction in 7-day hospitalization risk with EpiDex in an unadjusted analysis but not after adjustment. OBJECTIVE To explore the probability that EpiDex results in a reduction in hospitalizations using Bayesian methods. STUDY DESIGN Using prior distributions that represent varying levels of preexisting enthusiasm or skepticism, i.e., how confident or doubtful one is that EpiDex may reduce hospitalizations, and information about the treatment effect before data were collected, the posterior distribution of the relative risk of hospitalization compared to placebo was determined. The probability that the treatment effect is less than 1, 0.9, 0.8 and 0.6, indicating increasing reductions in hospitalization risk, are computed alongside 95% credible intervals. RESULTS Combining a minimally informative prior distribution with the data from CanBEST provides comparable results to the original analysis. Unless strongly skeptical views about the effectiveness of EpiDex were considered, the 95% credible interval for the treatment effect lies below 1, indicating a reduction in hospitalizations. There is a 90% probability that EpiDex results in a clinically meaningful reduction in hospitalization of 10% even when incorporating skeptical views, with a 67% probability when considering strongly skeptical views. CONCLUSION A Bayesian analysis demonstrates a high chance that EpiDex reduces hospitalization rates for bronchiolitis, although strongly skeptical individuals may require additional evidence to change practice. TRIAL REGISTRATION Clinical Trial registry name, registration number: Current Controlled Trials number, ISRCTN56745572.
Collapse
Affiliation(s)
- Larry Dong
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, Canada
| | - Terry P. Klassen
- Children’s Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W. Johnson
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Departments of Pediatrics, Emergency Medicine and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rhonda Correll
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Serge Gouin
- Pediatric Emergency Department, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Maala Bhatt
- Department of Pediatrics, University of Ottawa, Ottawa, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Canada
| | - Hema Patel
- McGill University Health Centre Research Institute, Montréal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Gary Joubert
- Department of Pediatrics, Children’s Hospital, Western University, London, Canada
| | - Karen J. L. Black
- Division of Pediatric Emergency Medicine, British Columbia Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Troy W. S. Turner
- Pediatric Emergency Department, Stollery Children’s HospitalAlberta, Canada
- Department of Pediatrics, University of Alberta. Edmonton, Alberta, Canada
| | | | - Amy C. Plint
- Children’s Hospital of Eastern Ontario, Ottawa, Canada
- Department of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, Canada
| | - Anna Heath
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, Canada
- Department of Statistical Science, University College London, London, United Kingdom
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Jayasinghe V, Joshi R, Joshi T, Paracha TU, Kooi C, Mostafa MM, Bauer CMT, Charlton SJ, Iartchouk O, Maillet A, Morris MK, Ruda VM, Sandham DA, Wang Y, Newton R, Giembycz MA. Genomic crosstalk between carbachol, a muscarinic receptor agonist, and the long-acting β 2-adrenoceptor agonist, indacaterol, in human airway epithelial cells. J Pharmacol Exp Ther 2025; 392:103579. [PMID: 40305997 DOI: 10.1016/j.jpet.2025.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Many patients with chronic obstructive pulmonary disease are susceptible to recurrent exacerbations. In this study, we hypothesized that endogenous acetylcholine (ACh) may act as a proinflammatory mediator because long-acting muscarinic receptor antagonists protect against exacerbations, which have an inflammatory basis. This possibility was explored by determining if carbachol (CCh), a stable ACh analog, was a genomic stimulus in BEAS-2B bronchial epithelial cells. The ability of CCh to interact with indacaterol (Ind), a long-acting β2-adrenoceptor agonist, was also assessed given that (1) sympathomimetic bronchodilators can promote adverse gene expression changes in airway structural cells, and (2) crosstalk between β2-adrenoceptor and Gq-coupled muscarinic receptor agonists is well described. Unlike Ind, which induced 624 unique genes, CCh was a relatively weak genomic stimulus, implying that ACh may not behave as a proinflammatory mediator as hypothesized. Nevertheless, checkerboard assays using BEAS-2B cells expressing a cAMP-response element luciferase reporter determined that CCh interacted with Ind in a supra-additive manner and that this interaction was replicated on 39 Ind-regulated genes. Functional annotation of the Ind-regulated transcriptomes identified "transcription" and "signalling" as the dominant themes, with gene ontology terms associated with "inflammation" and "immune processes" being highly represented. A comparable gene ontology signature was obtained when Ind and CCh were combined; however, the number, magnitude and duration of gene expression changes were significantly enhanced. If genomic interactions occur between a long-acting β2-adrenoceptor agonist and ACh in vivo, then they may enhance the expression of adverse-effect genes that could maintain, or even augment, features of lung pathology in chronic obstructive pulmonary disease. SIGNIFICANCE STATEMENT: Long-acting muscarinic receptor antagonists reduce exacerbation risk in chronic obstructive pulmonary disease, implying the etiology could have an inflammatory basis mediated by acetylcholine. However, in BEAS-2B cells, carbachol was a weak genomic stimulus, although it enhanced changes in indacaterol-regulated gene expression. Functional annotation of carbachol + indacaterol-regulated genes identified gene ontology terms associated with several themes, including inflammation. Interaction between a long-acting β2-adrenoceptor agonist and endogenous acetylcholine could, paradoxically, augment airway inflammation in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Vera M Ruda
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Yanqun Wang
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Robert Newton
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Cunico D, Giannì G, Scavone S, Buono EV, Caffarelli C. The Relationship Between Asthma and Food Allergies in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1295. [PMID: 39594870 PMCID: PMC11592619 DOI: 10.3390/children11111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Asthma and food allergy are two complex allergic diseases with an increasing prevalence in childhood. They share risk factors, including atopic family history, atopic dermatitis, allergen sensitization, and T2 inflammatory pathways. Several studies have shown that in children with a food allergy, the risk of developing asthma, particularly in early childhood, is high. Food allergen intake or the inhalation of aerosolized allergens can induce respiratory symptoms such as bronchospasm. Patients with both conditions have an increased risk of severe asthma exacerbations, hospitalization, and mortality. The current management of clinical food hypersensitivity primarily involves the dietary avoidance of food allergens and the use of self-injectable adrenaline for severe reactions. Poorly controlled asthma limits the prescription of oral immunotherapy to foods, which has emerged as an alternative therapy for managing food allergies. Biological therapies that are effective in severe asthma have been explored for treating food allergies. Omalizumab improves asthma control and, either alone or in combination with oral immunotherapy, increases the threshold of allergen tolerance. Understanding the interplay between asthma and food allergy is crucial for developing successful treatment approaches and ameliorating patient results.
Collapse
Affiliation(s)
| | | | | | | | - Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (D.C.); (G.G.); (S.S.); (E.V.B.)
| |
Collapse
|
5
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Drug-Drug Interactions and Synergy: From Pharmacological Models to Clinical Application. Pharmacol Rev 2024; 76:1159-1220. [PMID: 39009470 DOI: 10.1124/pharmrev.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
This review explores the concept of synergy in pharmacology, emphasizing its importance in optimizing treatment outcomes through the combination of drugs with different mechanisms of action. Synergy, defined as an effect greater than the expected additive effect elicited by individual agents according to specific predictive models, offers a promising approach to enhance therapeutic efficacy while minimizing adverse events. The historical evolution of synergy research, from ancient civilizations to modern pharmacology, highlights the ongoing quest to understand and harness synergistic interactions. Key concepts, such as concentration-response curves, additive effects, and predictive models, are discussed in detail, emphasizing the need for accurate assessment methods throughout translational drug development. Although various mathematical models exist for synergy analysis, selecting the appropriate model and software tools remains a challenge, necessitating careful consideration of experimental design and data interpretation. Furthermore, this review addresses practical considerations in synergy assessment, including preclinical and clinical approaches, mechanism of action, and statistical analysis. Optimizing synergy requires attention to concentration/dose ratios, target site localization, and timing of drug administration, ensuring that the benefits of combination therapy detected bench-side are translatable into clinical practice. Overall, the review advocates for a systematic approach to synergy assessment, incorporating robust statistical analysis, effective and simplified predictive models, and collaborative efforts across pivotal sectors, such as academic institutions, pharmaceutical companies, and regulatory agencies. By overcoming critical challenges and maximizing therapeutic potential, effective synergy assessment in drug development holds promise for advancing patient care. SIGNIFICANCE STATEMENT: Combining drugs with different mechanisms of action for synergistic interactions optimizes treatment efficacy and safety. Accurate interpretation of synergy requires the identification of the expected additive effect. Despite innovative models to predict the additive effect, consensus in drug-drug interactions research is lacking, hindering the bench-to-bedside development of combination therapies. Collaboration among science, industry, and regulation is crucial for advancing combination therapy development, ensuring rigorous application of predictive models in clinical settings.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Clive Page
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Maria Gabriella Matera
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Mario Cazzola
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Paola Rogliani
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| |
Collapse
|
6
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
7
|
Jeon DY, Jeong SY, Lee JW, Kim J, Kim JH, Chu HS, Jeong WJ, Lee BJ, Ahn B, Kim J, Choi SH, Park JW. FOXO1 Is a Key Mediator of Glucocorticoid-Induced Expression of Tristetraprolin in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232213673. [PMID: 36430156 PMCID: PMC9693238 DOI: 10.3390/ijms232213673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The mRNA destabilizing factor tristetraprolin (TTP) functions as a tumor suppressor by down-regulating cancer-associated genes. TTP expression is significantly reduced in various cancers, which contributes to cancer processes. Enforced expression of TTP impairs tumorigenesis and abolishes maintenance of the malignant state, emphasizing the need to identify a TTP inducer in cancer cells. To search for novel candidate agents for inducing TTP in cancer cells, we screened a library containing 1019 natural compounds using MCF-7 breast cancer cells transfected with a reporter vector containing the TTP promoter upstream of the luciferase gene. We identified one molecule, of which the enantiomers are betamethasone 21-phosphate (BTM-21-P) and dexamethasone 21-phosphate (BTM-21-P), as a potent inducer of TTP in cancer cells. We confirmed that BTM-21-P, DXM-21-P, and dexamethasone (DXM) induced the expression of TTP in MDA-MB-231 cells in a glucocorticoid receptor (GR)-dependent manner. To identify potential pathways linking BTM-21-P and DXM-21-P to TTP induction, we performed an RNA sequencing-based transcriptome analysis of MDA-MB-231 cells at 3 h after treatment with these compounds. A heat map analysis of FPKM expression showed a similar expression pattern between cells treated with the two compounds. The KEGG pathway analysis results revealed that the upregulated DEGs were strongly associated with several pathways, including the Hippo signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, NF-κB signaling pathway, and p53 signaling pathway. Inhibition of the FOXO pathway using a FOXO1 inhibitor blocked the effects of BTM-21-P and DXM-21-P on the induction of TTP in MDA-MB-231 cells. We found that DXM enhanced the binding of FOXO1 to the TTP promoter in a GR-dependent manner. In conclusion, we identified a natural compound of which the enantiomers are DXM-21-P and BTM-21-P as a potent inducer of TTP in breast cancer cells. We also present new insights into the role of FOXO1 in the DXM-21-P- and BTM-21-P-induced expression of TTP in cancer cells.
Collapse
Affiliation(s)
- Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - So Yeon Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Ju Won Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Won Jin Jeong
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Seong Hee Choi
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| |
Collapse
|
8
|
Development and Verification of a Combined Diagnostic Model for Sarcopenia with Random Forest and Artificial Neural Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2957731. [PMID: 36050999 PMCID: PMC9427323 DOI: 10.1155/2022/2957731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
Background Sarcopenia is a chronic disease characterized by an age-related decline in skeletal muscle mass and function, and diagnosis is challenging owing to the lack of a clear “gold standard” assessment method. Objective This study is aimed at combining random forest (RF) and artificial neural network (ANN) methods to screen key potential biomarkers and establish an early sarcopenia diagnostic model. Methods Three gene expression datasets were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in the merged dataset were identified by R software and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Afterward, the STRING database was employed for interaction analysis of the differentially encoded proteins. Then, RF was used to identify key genes from the DEGs, and a sarcopenia diagnostic model was constructed by ANN. Finally, the diagnostic model was assessed using a validation dataset, while its diagnostic performance was evaluated by the area under curve (AUC) value. Results 107 sarcopenia-related DEGs were identified, and they were mainly enriched in the FoxO and AMPK signaling pathways involved in the molecular pathogenesis of sarcopenia. Thereafter, seven key genes (MT1X, FAM171A1, ZNF415, ARHGAP36, CISD1, ETNPPL, and WISP2) were identified by the RF classifier. The proteins encoded by three of these genes (CISD1, ETNPPL, and WISP2) may be potential biomarkers for sarcopenia. Finally, a diagnostic model for sarcopenia was successfully designed by ANN, achieving an AUC of 0.999 and 0.85 in the training and testing datasets, respectively. Conclusion We identified several potential genetic biomarkers and successfully developed an early predictive model with high diagnostic performance for sarcopenia. Moreover, our results provide a valuable reference for the early diagnosis and screening of sarcopenia in the future.
Collapse
|
9
|
Dexamethasone Attenuates the Expression of MMP-13 in Chondrocytes through MKP-1. Int J Mol Sci 2022; 23:ijms23073880. [PMID: 35409238 PMCID: PMC8998740 DOI: 10.3390/ijms23073880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the effects of the glucocorticoid dexamethasone on the expression of catabolic enzymes in chondrocytes and tested the hypothesis that these effects are mediated through MKP-1. Dexamethasone was found to significantly attenuate the expression of matrix metalloproteinase (MMP)-13 in human OA chondrocytes as well as in chondrocytes from MKP-1 WT mice, but not in chondrocytes from MKP-1 KO mice. Dexamethasone also increased the expression of MKP-1 in murine and human OA chondrocytes. Furthermore, p38 MAP kinase inhibitors significantly attenuated MMP-13 expression in human OA chondrocytes, while JNK MAP kinase inhibitors had no effect. The results indicate that the effect of dexamethasone on MMP-13 expression in chondrocytes was mediated by an MKP-1 and p38 MAP kinase-dependent manner. These findings, together with previous results, support the concept of MKP-1 as a protective factor in articular chondrocytes in inflammatory conditions and as a potential drug target to treat OA.
Collapse
|
10
|
Alzahrani A, Hakeem J, Biddle M, Alhadian F, Hussain A, Khalfaoui L, Roach KM, Tliba O, Bradding P, Amrani Y. Human Lung Mast Cells Impair Corticosteroid Responsiveness in Human Airway Smooth Muscle Cells. FRONTIERS IN ALLERGY 2021; 2:785100. [PMID: 35387008 PMCID: PMC8974721 DOI: 10.3389/falgy.2021.785100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying corticosteroid insensitivity in severe asthma have not been elucidated although some indirect clinical evidence points toward a role of mast cells. Here, we tested the hypothesis that mast cells can drive corticosteroid insensitivity in airway smooth muscle cells, a key player in asthma pathogenesis. Conditioned media from resting or FcεR1-activated human lung mast cells were incubated with serum-deprived ASM cells (1:4 dilution, 24 h) to determine their impact on the anti-inflammatory action of fluticasone on ASM cell chemokine expression induced by TNFα (10 ng/ml). Conditioned media from FcεR1-activated mast cells (but not that from non-activated mast cells or control media) significantly reduced the ability of 100 nM fluticasone to suppress ASM TNFα-dependent CCL5 and CXCL10 production at both mRNA and protein levels. In contrast, fluticasone inhibition of CXCL-8 production by TNFα was still preserved in the presence of activated mast cell conditioned media. Transcriptomic analysis validated by individual qPCR assays revealed that activated mast cell conditioned media dramatically reduced the number of anti-inflammatory genes induced by fluticasone in ASM cells. Our study demonstrates for the first time that conditioned media from FcεR1-activated mast cells blunt the anti-inflammatory action of corticosteroids in ASM cells by altering their transactivation properties. Because infiltration of mast cells within the ASM bundles is a defining feature of asthma, mast cell-derived mediators may contribute to the glucocorticoid insensitivity present in severe asthma.
Collapse
Affiliation(s)
- Abdulrahman Alzahrani
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- Department of Applied Medical Sciences, Applied College, Albaha University, Albaha, Saudi Arabia
| | - Jameel Hakeem
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Michael Biddle
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Fahad Alhadian
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Aamir Hussain
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Latifa Khalfaoui
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Katy M. Roach
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Peter Bradding
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- *Correspondence: Yassine Amrani
| |
Collapse
|
11
|
Liu D, Zeng YY, Shi MM, Qu JM. Glucocorticoids Elevate Pseudomonas aeruginosa Binding to Airway Epithelium by Upregulating Syndecan-1 Expression. Front Microbiol 2021; 12:725483. [PMID: 34790176 PMCID: PMC8591732 DOI: 10.3389/fmicb.2021.725483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids are commonly used for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Inhaled corticosteroids are associated with a significantly increased risk of pneumonia. Syndecan-1 (SDC1) located in the cell membrane of airway epithelial cell is the crucial molecule mediating infections by P. aeruginosa (PA). In the present study, we found that SDC1 expression was upregulated and the adhesion of PA to human bronchial epithelial (HBE) cells increased to 125 and 138%, respectively, after stimulation by dexamethasone or budesonide. The HBE cells knocking down SDC1 showed lower affinity to PA compared with control. CCAAT-enhancer-binding protein β (C/EBP β) and its phosphorylated form participated in the regulation of glucocorticoid to SDC1 for interfering C/EBP β or inhibiting phosphorylation of C/EBP β by LiCl and BIO, which are inhibitors of glycogen synthase kinase 3β (GSK-3β), and could prevent glucocorticoids from upregulating SDC1 expression. One should be cautious in administering glucocorticoids in chronic lung disease because of their property of increasing the expression of SDC1 and PA binding to the airway epithelium.
Collapse
Affiliation(s)
- Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying-Ying Zeng
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng-Meng Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Garzon-Siatoya WT, Carrillo-Martin I, Chiarella SE, Gonzalez-Estrada A. State-of-the-art beta-adrenoreceptor agonists for the treatment of asthma. Expert Opin Pharmacother 2021; 23:243-254. [PMID: 34753370 DOI: 10.1080/14656566.2021.1988074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Asthma, a heterogeneous disease, is characterized by chronic airway inflammation and hyperreactivity. β2-adrenoreceptor agonists (β2-agonists) remain pivotal for asthma management. Short-acting β2-agonists (SABAs) result in rapid symptomatic alleviation and bronchospasm prevention. Patients experience significant clinical benefits from therapy with long-acting β2-agonists (LABAs) with efficacy to bronchodilate, and prolonged lung function betterment. Recently discovered β2-agonists with longer half-lives offer once-daily dosing. AREAS COVERED The authors provide a thorough review of the pharmacokinetics, pharmacodynamics, efficacy, tolerability, classification, and safety of β2-agonists through an in-depth review of current literature using these databases: U.S. National Institutes of Health's National Library of Medicine (NIH/NLM), PubMed Central, and NLM clinical trials. EXPERT OPINION β2- agonists act primarily on airway smooth muscle cells and are quintessential for adequate asthma management. Given their pharmacodynamic and pharmacokinetic properties, SABAs are used as rescue medication. Notably, the current Global Initiative for Asthma (GINA) strategy document recommends using LABA/inhaled corticosteroid combinations both as a daily controller and as a rescue medication. Clinicians should assess this new treatment plan on a per-case basis, making sure to evaluate inhaler adherence and treat modifiable risk factors. The development of next-generation β2- agonists is an exciting research area that could significantly improve patients' adherence to treatment regimens and, consequently, asthma control and quality of life.
Collapse
Affiliation(s)
- W Tatiana Garzon-Siatoya
- Division of Pulmonary, Allergy, and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ismael Carrillo-Martin
- Division of Pulmonary, Allergy, and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Sergio E Chiarella
- Division of Allergic Diseases, Mayo Clinic, Rochester, MN, United States
| | - Alexei Gonzalez-Estrada
- Division of Pulmonary, Allergy, and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
13
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Abdullah K, Fell DB, Radhakrishnan D, Hawken S, Johnson DW, Mandhane P, To T, Joubert G, Plint AC. Risk of asthma in children diagnosed with bronchiolitis during infancy: protocol of a longitudinal cohort study linking emergency department-based clinical data to provincial health administrative databases. BMJ Open 2021; 11:e048823. [PMID: 33941638 PMCID: PMC8098926 DOI: 10.1136/bmjopen-2021-048823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The Canadian Bronchiolitis Epinephrine Steroid Trial (CanBEST) and the Bronchiolitis Severity Cohort (BSC) study enrolled infants with bronchiolitis during the first year of life. The CanBEST trial suggested that treatment of infants with a combined therapy of high-dose corticosteroids and nebulised epinephrine reduced the risk of admission to hospital. Our study aims to-(1) quantify the risk of developing asthma by age 5 and 10 years in children treated with high-dose corticosteroid and epinephrine for bronchiolitis during infancy, (2) identify risk factors associated with development of asthma in children with bronchiolitis during infancy, (3) develop asthma prediction models for children diagnosed with bronchiolitis during infancy. METHODS AND ANALYSIS We propose a longitudinal cohort study in which we will link data from the CanBEST and BSC study with routinely collected data from provincial health administrative databases. Our outcome is asthma incidence measured using a validated health administrative data algorithm. Primary exposure will be treatment with a combined therapy of high-dose corticosteroids and nebulised epinephrine for bronchiolitis. Covariates will include type of viral pathogen, disease severity, medication use, maternal, prenatal, postnatal and demographic factors and variables related to health service utilisation for acute lower respiratory tract infection. The risk associated with development of asthma in children treated with high-dose corticosteroid and epinephrine for bronchiolitis will be assessed using multivariable Cox proportional hazards regression models. Prediction models will be developed using multivariable logistic regression analysis and internally validated using a bootstrap approach. ETHICS AND DISSEMINATION Our study has been approved by the ethics board of all four participating sites of the CanBEST and BSC study. Finding of the study will be disseminated to the academic community and relevant stakeholders through conferences and peer-reviewed publications. TRIAL REGISTRATION NUMBER ISRCTN56745572; Post-results.
Collapse
Affiliation(s)
- Kawsari Abdullah
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
| | - Deshayne B Fell
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dhenuka Radhakrishnan
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven Hawken
- ICES, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David W Johnson
- Departments of Pediatrics and Physiology and Pharmacology, University of Calgary, Calgery, Alberta, Canada
- Maternal Newborn Child & Youth SCN, Alberta Health Services, Calgery, Alberta, Canada
| | - Piush Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Teresa To
- ICES, Ottawa, Ontario, Canada
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gary Joubert
- London Health Sciences Centre, London, Ontario, Canada
| | - Amy C Plint
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Mostafa MM, Rider CF, Wathugala ND, Leigh R, Giembycz MA, Newton R. Transcriptome-Level Interactions between Budesonide and Formoterol Provide Insight into the Mechanism of Action of Inhaled Corticosteroid/Long-Acting β 2-Adrenoceptor Agonist Combination Therapy in Asthma. Mol Pharmacol 2021; 99:197-216. [PMID: 33376135 DOI: 10.1124/molpharm.120.000146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022] Open
Abstract
In 2019, the Global Initiative for Asthma treatment guidelines were updated to recommend that inhaled corticosteroid (ICS)/long-acting β 2-adrenoceptor agonist (LABA) combination therapy should be a first-in-line treatment option for asthma. Although clinically superior to ICS, mechanisms underlying the efficacy of this combination therapy remain unclear. We hypothesized the existence of transcriptomic interactions, an effect that was tested in BEAS-2B and primary human bronchial epithelial cells (pHBECs) using formoterol and budesonide as representative LABA and ICS, respectively. In BEAS-2B cells, formoterol produced 267 (212 induced; 55 repressed) gene expression changes (≥2/≤0.5-fold) that were dominated by rapidly (1 to 2 hours) upregulated transcripts. Conversely, budesonide induced 370 and repressed 413 mRNAs, which occurred predominantly at 6-18 hours and was preceded by transcripts enriched in transcriptional regulators. Significantly, genes regulated by both formoterol and budesonide were over-represented in the genome; moreover, budesonide plus formoterol induced and repressed 609 and 577 mRNAs, respectively, of which ∼one-third failed the cutoff criterion for either treatment alone. Although induction of many mRNAs by budesonide plus formoterol was supra-additive, the dominant (and potentially beneficial) effect of budesonide on formoterol-induced transcripts, including those encoding many proinflammatory proteins, was repression. Gene ontology analysis of the budesonide-modulated transcriptome returned enriched terms for transcription, apoptosis, proliferation, differentiation, development, and migration. This "functional" ICS signature was augmented in the presence of formoterol. Thus, LABAs modulate glucocorticoid action, and comparable transcriptome-wide interactions in pHBECs imply that such effects may be extrapolated to individuals with asthma taking combination therapy. Although repression of formoterol-induced proinflammatory mRNAs should be beneficial, the pathophysiological consequences of other interactions require investigation. SIGNIFICANCE STATEMENT: In human bronchial epithelial cells, formoterol, a long-acting β 2-adrenoceptor agonist (LABA), enhanced the expression of inflammatory genes, and many of these changes were reduced by the glucocorticoid budesonide. Conversely, the ability of formoterol to enhance both gene induction and repression by budesonide provides mechanistic insight as to how adding a LABA to an inhaled corticosteroid may improve clinical outcomes in asthma.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christopher F Rider
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - N Dulmini Wathugala
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Nguyen JP, Kim Y, Cao Q, Hirota JA. Interactions between ABCC4/MRP4 and ABCC7/CFTR in human airway epithelial cells in lung health and disease. Int J Biochem Cell Biol 2021; 133:105936. [PMID: 33529712 DOI: 10.1016/j.biocel.2021.105936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
ATP binding cassette (ABC) transporters are present in all three domains of life - Archaea, Bacteria, and Eukarya. The conserved nature is a testament to the importance of these transporters in regulating endogenous and exogenous substrates required for life to exist. In humans, 49 ABC transporters have been identified to date with broad expression in different lung cell types with multiple transporter family members contributing to lung health and disease. The ABC transporter most commonly known to be linked to lung pathology is ABCC7, also known as cystic fibrosis transmembrane conductance regulator - CFTR. Closely related to the CFTR genomic sequence is ABCC4/multi-drug resistance protein-4. Genomic proximity is shared with physical proximity, with ABCC4 and CFTR physically coupled in cell membrane microenvironments of epithelial cells to orchestrate functional consequences of cyclic-adenosine monophosphate (cAMP)-dependent second messenger signaling and extracellular transport of endogenous and exogenous substrates. The present concise review summarizes the emerging data defining a role of the (ABCC7/CFTR)-ABCC4 macromolecular complex in human airway epithelial cells as a physiologically important pathway capable of impacting endogenous and exogenous mediator transport and ion transport in both lung health and disease.
Collapse
Affiliation(s)
- Jenny P Nguyen
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Yechan Kim
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Quynh Cao
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Jeremy A Hirota
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada; McMaster Immunology Research Centre, McMaster University, Canada; Department of Biology, University of Waterloo, Canada; Department of Medicine, University of British Columbia, Canada.
| |
Collapse
|
17
|
Liu J, Liang R, Huang H, Zhang Y, Xie A, Zhong Y. Effect of an Antagonistic Peptide of CCR5 on the Expression of Autophagy-related Genes and β-Arrestin 2 in Lung Tissues of Asthmatic Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:106-121. [PMID: 33191680 PMCID: PMC7680831 DOI: 10.4168/aair.2021.13.1.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Purpose The mechanisms of CC chemokine receptor 5 (CCR5) in the process of autophagy remain unknown. In this study, we examined the role of HY peptide, which is an antagonistic peptide specifically binding the second extracellular loop of CCR5, in the expression of autophagy genes and β-arrestin 2 in lung tissues of asthmatic mice. Methods Experimental asthmatic mice were treated with HY peptide and dexamethasone sodium phosphate (Dex). Airway inflammation, autophagy-related genes, autophagic vacuoles (AVs) and β-arrestin 2 were examined in lung tissues, and the correlation between β-arrestin 2 and LC3 expression was assessed. Results HY peptide and Dex treatments alleviate airway inflammation. The expression of autophagy-related genes, such as BECN1, ATG5 and LC3, was decreased in the lung tissues of the asthmatic mice. However, HY peptide and Dex treatments increased the expression of these genes as well as the formation of AVs. Additionally, the expression of the β-arrestin 2 protein was significantly increased in the HY peptide-treated group, and positive cells expressing β-arrestin 2 were mainly located in the membrane and cytoplasm of bronchial epithelial cells. The β-arrestin 2 expression was positively correlated with the expression of LC3 in the model and HY peptide-treated groups. Conclusions HY peptide inhibits airway inflammation, autophagic dysfunction exists in asthmatic mice, and targeting HY peptide increases the expression of autophagy-related genes. Thus, β-arrestin 2 may participate in the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Juan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongrong Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huarong Huang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingli Zhang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aicen Xie
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqiang Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Activation of β 2 adrenergic receptor signaling modulates inflammation: a target limiting the progression of kidney diseases. Arch Pharm Res 2020; 44:49-62. [PMID: 33155167 DOI: 10.1007/s12272-020-01280-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
Beta 2 adrenergic receptor (β2-AR)-agonists, widely used as bronchodilators, have demonstrated wide-spectrum anti-inflammatory properties in both immune and non-immune cells in various tissues. Their anti-inflammatory properties are mediated primarily, but not exclusively, via activation of the canonical β2-AR signaling pathway (β2-AR/cAMP/PKA). As non-canonical β2-AR signaling also occurs, several inconsistent findings on the anti-inflammatory effect of β2-agonists are notably present. Increasing amounts of evidence have unveiled the alternative mechanisms of the β2-AR agonists in protecting the tissues against injuries, i.e., by augmenting mitochondria biogenesis and SIRT1 activity, and by attenuating fibrotic signaling. This review mainly covers the basic mechanisms of the anti-inflammatory effects of β2-AR activation along with its limitations. Specifically, we summarized the role of β2-AR signaling in regulating kidney function and in mediating the progression of acute and chronic kidney diseases. Given their versatile protective effects, β2-agonists can be a promising avenue in the treatment of kidney diseases.
Collapse
|
19
|
Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213:107589. [PMID: 32473159 PMCID: PMC7434707 DOI: 10.1016/j.pharmthera.2020.107589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are the treatment of choice for chronic inflammatory diseases such as asthma. Despite proven effective anti-inflammatory and immunosuppressive effects, long-term and/or systemic use of GCs can potentially induce adverse effects. Strikingly, some recent experimental evidence suggests that GCs may even exacerbate some disease outcomes. In asthma, airway smooth muscle (ASM) cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction, but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here will review the beneficial effects of GCs on ASM cells, emphasizing the differential nature of GC effects on pro-inflammatory genes and on other features associated with asthma pathogenesis. We will also summarize evidence describing how GCs can potentially promote pro-inflammatory and remodeling features in asthma with a specific focus on ASM cells. Finally, some of the possible solutions to overcome these unanticipated effects of GCs will be discussed.
Collapse
Affiliation(s)
- Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Patricia Ramos-Ramirez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | | | - Klaudia Kaczmarek
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Omar Tliba
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
20
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
21
|
Fu M, Zou B, An K, Yu Y, Tang D, Wu J, Xu Y, Ti H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata 'Chachi'). Food Funct 2019; 10:903-911. [PMID: 30694283 DOI: 10.1039/c8fo01753k] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pericarpium Citri Reticulatae (PCR, Citrus reticulata 'Chachi', Guangchenpi in Chinese) is one of the most famous Chinese citrus herbal medicines. The in vivo anti-asthmatic activity of 'Chachi' PCR was investigated using a histamine-induced experimental asthma model in Guinea pigs. Two alkaloid-type compounds, synephrine and stachydrine, were analyzed and identified in the 'Chachi' PCR alkaloid fraction. The alkaloid fraction and synephrine protected Guinea pigs against histamine-induced experimental asthma in a dose-dependent manner. The respective application of high, middle, and low doses of the 'Chachi' PCR alkaloid fraction significantly increased specific airway resistance by 284%, 328%, and 355%, and decreased dynamic compliance by 57%, 67%, and 75%. A similar change was observed for synephrine. The expression of eosinophils in bronchoalveolar lavage fluid (BALF) and serum IgE, IL-4, and IL-5 levels in histamine-induced experimental asthmatic Guinea pigs were significantly downregulated by the 'Chachi' PCR alkaloid fraction and synephrine compared to the control group, whereas stachydrine did not impart a statistically significant effect on the expression of tested inflammatory cells (leucocytes, eosinophils, neutrophils, and lymphocytes), immunoglobulin (IgE), or cytokines (IL-4 and IL-5). Pathological changes in lung tissues in each treatment group included the infiltration of inflammatory cells around the bronchia.
Collapse
Affiliation(s)
- Manqin Fu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Joshi R, Yan D, Hamed O, Mostafa MM, Joshi T, Newton R, Giembycz MA. Impact of Phosphodiesterase 4 Inhibition on the Operational Efficacy, Response Maxima, and Kinetics of Indacaterol-Induced Gene Expression Changes in BEAS-2B Airway Epithelial Cells: A Global Transcriptomic Analysis. Mol Pharmacol 2019; 96:56-72. [PMID: 31036559 DOI: 10.1124/mol.118.115311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/25/2019] [Indexed: 02/14/2025] Open
Abstract
The effects of phosphodiesterase (PDE) 4 inhibitors on gene expression changes in BEAS-2B human airway epithelial cells are reported and discussed in relation to the mechanism(s) of action of roflumilast in chronic obstructive pulmonary disease (COPD). Microarray-based gene expression profiling failed to identify mRNA transcripts that were differentially regulated by the PDE4 inhibitor 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) after 1, 2, 6, or 18 hours of exposure. However, real-time polymerase chain reaction analysis revealed that GSK 256066 was a weak stimulus, and the negative microarray results reflected low statistical power due to small sample sizes. Furthermore, GSK 256066, roflumilast, and its biologically active metabolite roflumilast N-oxide generally potentiated gene expression changes produced by the long-acting β 2-adrenoceptor agonists (LABAs) salmeterol, indacaterol, and formoterol. Many of these genes encode proteins with antiviral, anti-inflammatory, and antibacterial activities that could contribute to the clinical efficacy of roflumilast in COPD. RNA-sequencing experiments established that the sensitivity of genes to salmeterol varied by ∼7.5-fold. Consequently, the degree to which a PDE4 inhibitor potentiated the effect of a given concentration of LABA was gene-dependent. Operational model fitting of concentration-response curve data from cells subjected to fractional, β 2-adrenoceptor inactivation determined that PDE4 inhibition increased the potency and doubled the efficacy of LABAs. Thus, adding roflumilast to standard triple therapy, as COPD guidelines recommend, may have clinical relevance, especially in target tissues where LABAs behave as partial agonists. Collectively, these results suggest that the genomic impact of roflumilast, including its ability to augment LABA-induced gene expression changes, may contribute to its therapeutic activity in COPD.
Collapse
Affiliation(s)
- Radhika Joshi
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Departments of Physiology and Pharmacology (R.J., D.Y., O.H., T.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Formoterol counteracts the inhibitory effect of cigarette smoke on glucocorticoid-induced leucine zipper (GILZ) transactivation in human bronchial smooth muscle cells. Eur J Pharmacol 2019; 850:8-14. [PMID: 30753866 DOI: 10.1016/j.ejphar.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
Abstract
Cigarette smokers with asthma and chronic obstructive pulmonary disease (COPD) are less responsive to glucocorticoids (GCs). The anti-inflammatory action of GCs depends also on their ability to transactivate genes such as GC-induced leucine zipper (GILZ). We investigated the effects of aqueous cigarette smoke extract (CSE) on GILZ transactivation evoked by 17-beclomethasone monopropionate (BMP) or fluticasone propionate (FP) in the presence or absence of the long acting β2-adrenoceptor agonist (LABA) bronchodilator formoterol or salmeterol in human primary cultures of human bronchial smooth muscle cells (HBSMC). We monitored GC receptor Ser211 phosphorylation by western blot analysis and GC receptor nuclear translocation by immunostaining followed high-content imaging analysis. BMP, as well as FP, induced GILZ expression in a concentration-dependent manner (EC50 of 0.87 and 0.16 nM respectively). Pre-incubation with CSE inhibited GC-evoked GILZ transactivation (>50%), GC receptor Ser211 phosphorylation and nuclear translocation. Both formoterol and salmeterol counteracted the effect of CSE on GC-induced GILZ expression but not on nuclear translocation or phosphorylation. The effect of formoterol was mimicked by the cAMP-elevating agent forskolin and blocked by ICI 118,551, a selective β2-adrenoceptor antagonist. Pre-incubation with TNF-α also reduced GC-evoked GILZ transactivation but was not counteracted by formoterol undercovering a different responsiveness to LABAs of TNF-α in comparison to CSE. In sum, CSE inhibits GC-evoked transactivation of GILZ and such effect is counteracted by LABAs, through β2-adrenoceptors and a cAMP-dependent mechanism. This study sheds light on a mechanism underlying complementary interactions between LABAs and inhaled GCs that could be relevant in smokers with asthma and COPD.
Collapse
|
24
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
25
|
Rider CF, Altonsy MO, Mostafa MM, Shah SV, Sasse S, Manson ML, Yan D, Kärrman-Mårdh C, Miller-Larsson A, Gerber AN, Giembycz MA, Newton R. Long-Acting β2-Adrenoceptor Agonists Enhance Glucocorticoid Receptor (GR)-Mediated Transcription by Gene-Specific Mechanisms Rather Than Generic Effects via GR. Mol Pharmacol 2018; 94:1031-1046. [PMID: 29959223 PMCID: PMC7385531 DOI: 10.1124/mol.118.112755] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
In asthma, the clinical efficacy of inhaled corticosteroids (ICSs) is enhanced by long-acting β2-adrenoceptor agonists (LABAs). ICSs, or more accurately, glucocorticoids, promote therapeutically relevant changes in gene expression, and, in primary human bronchial epithelial cells (pHBECs) and airway smooth muscle cells, this genomic effect can be enhanced by a LABA. Modeling this interaction in human bronchial airway epithelial BEAS-2B cells transfected with a 2× glucocorticoid response element (2×GRE)-driven luciferase reporter showed glucocorticoid-induced transcription to be enhanced 2- to 3-fold by LABA. This glucocorticoid receptor (GR; NR3C1)-dependent effect occurred rapidly, was insensitive to protein synthesis inhibition, and was maximal when glucocorticoid and LABA were added concurrently. The ability of LABA to enhance GR-mediated transcription was not associated with changes in GR expression, serine (Ser203, Ser211, Ser226) phosphorylation, ligand affinity, or nuclear translocation. Chromatin immunoprecipitation demonstrated that glucocorticoid-induced recruitment of GR to the integrated 2×GRE reporter and multiple gene loci, whose mRNAs were unaffected or enhanced by LABA, was also unchanged by LABA. Transcriptomic analysis revealed glucocorticoid-induced mRNAs were variably enhanced, unaffected, or repressed by LABA. Thus, events leading to GR binding at target genes are not the primary explanation for how LABAs modulate GR-mediated transcription. As many glucocorticoid-induced genes are independently induced by LABA, gene-specific control by GR- and LABA-activated transcription factors may explain these observations. Because LABAs promote similar effects in pHBECs, therapeutic relevance is likely. These data illustrate the need to understand gene function(s), and the mechanisms leading to gene-specific induction, if existing ICS/LABA combination therapies are to be improved.
Collapse
Affiliation(s)
- Christopher F Rider
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mohammed O Altonsy
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mahmoud M Mostafa
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Suharsh V Shah
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Sarah Sasse
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Martijn L Manson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Dong Yan
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Carina Kärrman-Mårdh
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anna Miller-Larsson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anthony N Gerber
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mark A Giembycz
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Robert Newton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| |
Collapse
|
26
|
Yan D, Hamed O, Joshi T, Mostafa MM, Jamieson KC, Joshi R, Newton R, Giembycz MA. Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the Adverse and Therapeutic Effects of β2-Adrenoceptor Agonists. J Pharmacol Exp Ther 2018; 366:220-236. [PMID: 29653961 DOI: 10.1124/jpet.118.249292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
The contribution of gene expression changes to the adverse and therapeutic effects of β2-adrenoceptor agonists in asthma was investigated using human airway epithelial cells as a therapeutically relevant target. Operational model-fitting established that the long-acting β2-adrenoceptor agonists (LABA) indacaterol, salmeterol, formoterol, and picumeterol were full agonists on BEAS-2B cells transfected with a cAMP-response element reporter but differed in efficacy (indacaterol ≥ formoterol > salmeterol ≥ picumeterol). The transcriptomic signature of indacaterol in BEAS-2B cells identified 180, 368, 252, and 10 genes that were differentially expressed (>1.5- to <0.67-fold) after 1-, 2-, 6-, and 18-hour of exposure, respectively. Many upregulated genes (e.g., AREG, BDNF, CCL20, CXCL2, EDN1, IL6, IL15, IL20) encode proteins with proinflammatory activity and are annotated by several, enriched gene ontology (GO) terms, including cellular response to interleukin-1, cytokine activity, and positive regulation of neutrophil chemotaxis The general enriched GO term extracellular space was also associated with indacaterol-induced genes, and many of those, including CRISPLD2, DMBT1, GAS1, and SOCS3, have putative anti-inflammatory, antibacterial, and/or antiviral activity. Numerous indacaterol-regulated genes were also induced or repressed in BEAS-2B cells and human primary bronchial epithelial cells by the low efficacy LABA salmeterol, indicating that this genomic effect was neither unique to indacaterol nor restricted to the BEAS-2B airway epithelial cell line. Collectively, these data suggest that the consequences of inhaling a β2-adrenoceptor agonist may be complex and involve widespread changes in gene expression. We propose that this genomic effect represents a generally unappreciated mechanism that may contribute to the adverse and therapeutic actions of β2-adrenoceptor agonists in asthma.
Collapse
Affiliation(s)
- Dong Yan
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyla C Jamieson
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Cianchetti S, Cardini C, Corti A, Menegazzi M, Darra E, Ingrassia E, Pompella A, Paggiaro P. The beclomethasone anti-inflammatory effect occurs in cell/mediator-dependent manner and is additively enhanced by formoterol: NFkB, p38, PKA analysis. Life Sci 2018; 203:27-38. [PMID: 29660434 DOI: 10.1016/j.lfs.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
AIMS Beclomethasone/formoterol (BDP/FOR) has been reported to be more effective than its separate components in airway disease control and in airway inflammation improvement. However, BDP/FOR effects on cytokine-induced inflammation in structural cells have not been described and whether these effects occur in a cell- and mediator-dependent manner has not been fully elucidated. We sought to evaluate BDP and/or FOR effects on endothelial ICAM-1, E-selectin, IL-8 and on bronchial epithelial ICAM-1 and IL-8. Specific intracellular signaling pathways were also investigated. MATERIALS AND METHODS Surface adhesion molecule expression and IL-8 release induced by TNF-alpha were measured by ELISA. Intracellular signaling pathways were investigated by a) EMSA and Western blot analysis to evaluate NF-κB DNA-binding and MAPK-p38 phosphorylation; b) PDTC/SB203580 as NF-κB/p38 inhibitors; c) forskolin/H-89 as PKA activator/inhibitor. KEY FINDINGS BDP/FOR additively reduced endothelial E-selectin and IL-8 as well as bronchial epithelial ICAM-1 and IL-8. BDP/FOR and SB203580 showed the highest inhibitory effect on epithelial IL-8, whereas endothelial ICAM-1 was never affected by BDP/FOR and PDTC. TNF-alpha-induced NF-κB DNA-binding and MAPK-p38 phosphorylation were not influenced by BDP/FOR. Forskolin mimicked FOR effects; H-89 partially reversed the BDP/FOR inhibition in a mediator-dependent manner. SIGNIFICANCE The BDP/FOR inhibition degree was related to the inflammatory mediator- and cell-type considered. FOR additively enhanced BDP effects by partially involving both dependent- and independent-PKA mechanisms. Our results might contribute to highlight the strong relationship between specific molecular pathways and different sensitivity to the corticosteroid/β2-agonist effects and to clarify the molecular mechanisms underlying the BDP/FOR anti-inflammatory activity in vivo.
Collapse
Affiliation(s)
- Silvana Cianchetti
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy.
| | - Cristina Cardini
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Darra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Pierluigi Paggiaro
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
29
|
Moosavi SM, Prabhala P, Ammit AJ. Role and regulation of MKP-1 in airway inflammation. Respir Res 2017; 18:154. [PMID: 28797290 PMCID: PMC5554001 DOI: 10.1186/s12931-017-0637-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a protein with anti-inflammatory properties and the archetypal member of the dual-specificity phosphatases (DUSPs) family that have emerged over the past decade as playing an instrumental role in the regulation of airway inflammation. Not only does MKP-1 serve a critical role as a negative feedback effector, controlling the extent and duration of pro-inflammatory MAPK signalling in airway cells, upregulation of this endogenous phosphatase has also emerged as being one of the key cellular mechanism responsible for the beneficial actions of clinically-used respiratory medicines, including β2-agonists, phosphodiesterase inhibitors and corticosteroids. Herein, we review the role and regulation of MKP-1 in the context of airway inflammation. We initially outline the structure and biochemistry of MKP-1 and summarise the multi-layered molecular mechanisms responsible for MKP-1 production more generally. We then focus in on some of the key in vitro studies in cell types relevant to airway disease that explain how MKP-1 can be regulated in airway inflammation at the transcriptional, post-translation and post-translational level. And finally, we address some of the potential challenges with MKP-1 upregulation that need to be explored further to fully exploit the potential of MKP-1 to repress airway inflammation in chronic respiratory disease.
Collapse
Affiliation(s)
- Seyed M Moosavi
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Pavan Prabhala
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Alaina J Ammit
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia. .,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Abstract
β2-adrenoceptor agonists, often used in combination with corticosteroids, have been extensively used for the treatment of asthma. However, concerns have been raised regarding their adverse effects and safety including poor asthma control, life-threatening exacerbations, exacerbations that often require hospitalization, and asthma-related deaths. The question as to whether these adverse effects relate to the loss of their bronchoprotective action remains an interesting possibility. In the chapter, we will review the experimental evidence that describes the different potential factors and associated mechanisms that can blunt the therapeutic action of β2-adrenoceptor agonists in asthma. We show here evidence that various key inflammatory cytokines, growth factors, some respiratory viruses, certain allergens, unknown factors present in serum from atopic asthmatics have the capacity to impair β2-adrenoceptor function in airway smooth muscle, the main target of these drugs. More importantly, we present our latest research describing the role played by mast cells in impairing β2-adrenoceptor function. Although no definitive conclusion could be made regarding the implication of one single mechanism, receptor uncoupling, or receptor desensitization due to phosphorylation represents the main inhibitory pathways associated with a loss of β2-adrenoceptor function in airway smooth muscle. Targeting the pathways leading to β2-adrenoceptor dysfunction will likely provide novel therapies to improve the efficacy of β2-agonists in asthma.
Collapse
|
31
|
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O'Neil JD, Clark AR. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E 2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep 2017; 7:4350. [PMID: 28659609 PMCID: PMC5489520 DOI: 10.1038/s41598-017-04100-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E2 (PGE2). PGE2 has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF). The tight control of both biosynthesis of, and cellular responses to, PGE2 are critical for the precise orchestration of the initiation and resolution of inflammatory responses. Here we describe evidence of a negative feedback loop, in which PGE2 augments the expression of dual specificity phosphatase 1, impairs the activity of mitogen-activated protein kinase p38, increases the activity of the mRNA-destabilizing factor tristetraprolin, and thereby inhibits the expression of COX-2. The same feedback mechanism contributes to PGE2-mediated suppression of TNF release. Engagement of the DUSP1-TTP regulatory axis by PGE2 is likely to contribute to the switch between initiation and resolution phases of inflammation.
Collapse
Affiliation(s)
- Tina Tang
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Thomas E Scambler
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Tim Smallie
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Helen E Cunliffe
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Ewan A Ross
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Dalya R Rosner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - John D O'Neil
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
32
|
Kua KP, Lee SWH. Systematic Review and Meta-Analysis of the Efficacy and Safety of Combined Epinephrine and Corticosteroid Therapy for Acute Bronchiolitis in Infants. Front Pharmacol 2017; 8:396. [PMID: 28690542 PMCID: PMC5479924 DOI: 10.3389/fphar.2017.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023] Open
Abstract
Objective: To evaluate the effectiveness of combined epinephrine and corticosteroid therapy for acute bronchiolitis in infants. Methods: Four electronic databases (MEDLINE, EMBASE, CINAHL, and CENTRAL) were searched from their inception to February 28, 2017 for studies involving infants aged less than 24 months with bronchiolitis which assessed the use of epinephrine and corticosteroid combination therapy. The methodological quality of the included studies was assessed using the Cochrane Collaboration's Risk of Bias Tool. A random-effects meta-analysis was used to pool the effect estimates. The primary outcomes were hospital admission rate and length of hospital stay. Results: Of 1,489 citations identified, 5 randomized controlled trials involving 1,157 patients were included. All studies were of high quality and low risk of bias. Results of the meta-analysis showed no significant differences in the primary outcomes. Hospitalization rate was reduced by combinatorial therapy of epinephrine and corticosteroid in only one out of five studies, whereas pooled data indicated no benefit over epinephrine plus placebo. Clinical severity scores were significantly improved in all five RCTs when assessed individually, but no benefit was observed compared to epinephrine monotherapy when the data were pooled together. Pooled data showed that combination therapy was more effective at improving oxygen saturation level (mean difference: −0.70; 95% confidence interval: −1.17 to −0.22, p = 0.004). There was no difference in the risk of serious adverse events in infants treated with the combined epinephrine and corticosteroid therapy. Conclusions: Combination treatment of epinephrine and dexamethasone was ineffective in reducing hospital admission and length of stay among infants with bronchiolitis.
Collapse
Affiliation(s)
- Kok P Kua
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Petaling District Health Office, Ministry of Health MalaysiaPetaling Jaya, Malaysia
| | - Shaun W H Lee
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| |
Collapse
|
33
|
Quintano Jiménez JA, Ginel Mendoza L, Entrenas Costa LM, Polo García J. [Fixed-dose combination fluticasone propionate/formoterol for the treatment of asthma: a review of its pharmacology, efficacy and tolerability]. Semergen 2017; 42 Suppl 1:2-9. [PMID: 27474345 DOI: 10.1016/s1138-3593(16)30132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fixed-dose combination fluticasone propionate/formoterol (FPF) is a novel combination of a widely known and used inhaled glucocorticoid (IGC) and a long-acting β2-adrenergic agonist (LABA), available for the first time in a single device. This fixed-dose combination of FPF has a demonstrated efficacy and safety profile in clinical trials compared with its individual components and other fixed-dose combinations of IGC/LABA and is indicated for the treatment of persistent asthma in adults and adolescents. FPF is available in a wide range of doses that can adequately cover the therapeutic steps recommended by treatment guidelines, constituting a fixed-dose combination of GCI/LABA that is effective, rapid, well tolerated and with a reasonable acquisition cost. Various assessment agencies of the Spanish Autonomous Communities consider this combination to be an appropriate alternative therapy for asthma in the primary care setting.
Collapse
Affiliation(s)
- J A Quintano Jiménez
- Medicina de Familia, Neumólogo, Centro de Salud Lucena I, Córdoba, España Coordinador Nacional del Grupo de Trabajo de Respiratorio de SEMERGEN.
| | - L Ginel Mendoza
- Medicina de Familia, Centro de Salud Ciudad Jardín, Málaga, España
| | - L M Entrenas Costa
- Servicio de Neumología, Hospital Universitario Reina Sofía, Córdoba, España
| | - J Polo García
- Medicina de Familia, Centro de Salud Cañaveral, Cáceres, España
| |
Collapse
|
34
|
Fluticasone furoate/vilanterol dry-powder inhaler in asthma: a guide to its use in the EU. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Newton R, Shah S, Altonsy MO, Gerber AN. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J Biol Chem 2017; 292:7163-7172. [PMID: 28283576 DOI: 10.1074/jbc.r117.777318] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid.
Collapse
Affiliation(s)
- Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada,
| | - Suharsh Shah
- the Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Alberta T2N 4Z6, Canada
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada.,the Faculty of Science, Sohag University, Sohag 82524, Egypt, and
| | - Antony N Gerber
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
36
|
Joshi T, Yan D, Hamed O, Tannheimer SL, Phillips GB, Wright CD, Kim M, Salmon M, Newton R, Giembycz MA. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells. J Pharmacol Exp Ther 2017; 360:324-340. [PMID: 27927912 DOI: 10.1124/jpet.116.237743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 03/08/2025] Open
Abstract
(R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition with potential to interact on target tissues in a synergistic manner. Such polypharmacological behavior may be particularly effective in chronic obstructive pulmonary disease and other complex disorders where multiple processes interact to promote disease pathogenesis and progression.
Collapse
Affiliation(s)
- Taruna Joshi
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Dong Yan
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Omar Hamed
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Stacey L Tannheimer
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Gary B Phillips
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Clifford D Wright
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Musong Kim
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Michael Salmon
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Robert Newton
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| | - Mark A Giembycz
- Departments of Physiology and Pharmacology (T.J., D.Y., O.H., M.A.G.) and Cell Biology and Anatomy (R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Translational Medicine, Biomarkers (S.L.T.), Inflammation Research (C.D.W., M.S.), and Medicinal Chemistry (G.B.P., M.K.), Gilead Sciences Inc., Seattle, Washington
| |
Collapse
|
37
|
George T, Bell M, Chakraborty M, Siderovski DP, Giembycz MA, Newton R. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation. PLoS One 2017; 12:e0170269. [PMID: 28107494 PMCID: PMC5249169 DOI: 10.1371/journal.pone.0170269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2) reduces signalling from G-protein-coupled receptors (GPCRs) that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs) and long-acting β2-adrenoceptor agonists (LABAs) such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM)-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week) reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance). While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57%) compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil) numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11) release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.
Collapse
Affiliation(s)
- Tresa George
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Bell
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Mainak Chakraborty
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - David P. Siderovski
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Mark A. Giembycz
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
38
|
Abstract
Viral bronchiolitis is a common clinical syndrome affecting infants and young children. Concern about its associated morbidity and cost has led to a large body of research that has been summarised in systematic reviews and integrated into clinical practice guidelines in several countries. The evidence and guideline recommendations consistently support a clinical diagnosis with the limited role for diagnostic testing for children presenting with the typical clinical syndrome of viral upper respiratory infection progressing to the lower respiratory tract. Management is largely supportive, focusing on maintaining oxygenation and hydration of the patient. Evidence suggests no benefit from bronchodilator or corticosteroid use in infants with a first episode of bronchiolitis. Evidence for other treatments such as hypertonic saline is evolving but not clearly defined yet. For infants with severe disease, the insufficient available data suggest a role for high-flow nasal cannula and continuous positive airway pressure use in a monitored setting to prevent respiratory failure.
Collapse
Affiliation(s)
- Todd A Florin
- Division of Pediatric Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Amy C Plint
- Division of Emergency Medicine, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Joseph J Zorc
- Division of Emergency Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Altonsy MO, Mostafa MM, Gerber AN, Newton R. Long-acting β 2-agonists promote glucocorticoid-mediated repression of NF-κB by enhancing expression of the feedback regulator TNFAIP3. Am J Physiol Lung Cell Mol Physiol 2016; 312:L358-L370. [PMID: 28039105 DOI: 10.1152/ajplung.00426.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids, or corticosteroids, are effective treatments for many chronic inflammatory diseases, and in mild/moderate asthma, long-acting β2-adrenoceptor agonists (LABAs) enhance the efficacy of inhaled corticosteroids (ICSs) more than increasing the ICS dose. In human bronchial epithelial, BEAS-2B, cells, expression of TNFα-induced protein-3 (TNFAIP3), or A20, a dual-ubiquitin ligase that provides feedback inhibition of NF-κB, was induced by budesonide, an ICS, and formoterol, a LABA, and was further enhanced by budesonide-formoterol combination. The proinflammatory cytokine TNF induced TNFAIP3 and TNF expression. Whereas subsequent budesonide treatment enhanced TNF-induced TNFAIP3 and reduced TNF expression, formoterol amplified these differential effects. In primary human airway smooth muscle cells, TNFAIP3 expression was induced by TNF. This was largely unaffected by budesonide but was acutely enhanced by budesonide-formoterol combination. In BEAS-2B cells, TNF recruited RELA, the main NF-κB transactivating subunit, to a 3' region of the TNF gene. RELA binding was reduced by budesonide, was further reduced by formoterol cotreatment, and was associated with reduced RNA polymerase II recruitment to the TNF gene. This is consistent with reduced TNF expression. TNFAIP3 knockdown enhanced TNF expression in the presence of TNF, TNF plus budesonide, and TNF plus budesonide-formoterol combination and confirms feedback inhibition. A luciferase reporter containing the TNF 3' RELA binding region recapitulated TNF inducibility and was inhibited by an IκB kinase inhibitor and TNFAIP3 overexpression. Repression of reporter activity by budesonide was increased by formoterol and involved TNFAIP3. Thus LABAs may improve the anti-inflammatory properties of ICSs by augmenting TNFAIP3 expression to negatively regulate NF-κB.
Collapse
Affiliation(s)
- Mohammed O Altonsy
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Zoology, Sohag University, Sohag, Egypt
| | - Mahmoud M Mostafa
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado; and.,Department of Medicine, University of Colorado, Denver, Colorado
| | - Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
40
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Arango-Lievano M, Jeanneteau F. Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors. Pharmacol Res 2016; 113:1-17. [DOI: 10.1016/j.phrs.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
|
42
|
Leigh R, Mostafa MM, King EM, Rider CF, Shah S, Dumonceaux C, Traves SL, McWhae A, Kolisnik T, Kooi C, Slater DM, Kelly MM, Bieda M, Miller-Larsson A, Newton R. An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti- and proinflammatory effector genes. Pharmacol Res Perspect 2016; 4:e00243. [PMID: 28116096 PMCID: PMC5242176 DOI: 10.1002/prp2.243] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022] Open
Abstract
Although inhaled glucocorticoids, or corticosteroids (ICS), are generally effective in asthma, understanding their anti‐inflammatory actions in vivo remains incomplete. To characterize glucocorticoid‐induced modulation of gene expression in the human airways, we performed a randomized placebo‐controlled crossover study in healthy male volunteers. Six hours after placebo or budesonide inhalation, whole blood, bronchial brushings, and endobronchial biopsies were collected. Microarray analysis of biopsy RNA, using stringent (≥2‐fold, 5% false discovery rate) or less stringent (≥1.25‐fold, P ≤ 0.05) criteria, identified 46 and 588 budesonide‐induced genes, respectively. Approximately two third of these genes are transcriptional regulators (KLF9, PER1, TSC22D3, ZBTB16), receptors (CD163, CNR1, CXCR4, LIFR, TLR2), or signaling genes (DUSP1, NFKBIA, RGS1, RGS2, ZFP36). Listed genes were qPCR verified. Expression of anti‐inflammatory and other potentially beneficial genes is therefore confirmed and consistent with gene ontology (GO) terms for negative regulation of transcription and gene expression. However, GO terms for transcription, signaling, metabolism, proliferation, inflammatory responses, and cell movement were also associated with the budesonide‐induced genes. The most enriched functional cluster indicates positive regulation of proliferation, locomotion, movement, and migration. Moreover, comparison with the budesonide‐induced expression profile in primary human airway epithelial cells shows considerable cell type specificity. In conclusion, increased expression of multiple genes, including the transcriptional repressor, ZBTB16, that reduce inflammatory signaling and gene expression, occurs in the airways and blood and may contribute to the therapeutic efficacy of ICS. This provides a previously lacking insight into the in vivo effects of ICS and should promote strategies to improve glucocorticoid efficacy in inflammatory diseases.
Collapse
Affiliation(s)
- Richard Leigh
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Mahmoud M Mostafa
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Elizabeth M King
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Christopher F Rider
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Suharsh Shah
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Curtis Dumonceaux
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Suzanne L Traves
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Andrew McWhae
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Tyler Kolisnik
- Alberta Children's Hospital Research Institute University of Calgary Calgary Alberta T2N 4Z6
| | - Cora Kooi
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Donna M Slater
- Alberta Children's Hospital Research Institute University of Calgary Calgary Alberta T2N 4Z6
| | - Margaret M Kelly
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| | - Mark Bieda
- Alberta Children's Hospital Research Institute University of Calgary Calgary Alberta T2N 4Z6
| | | | - Robert Newton
- Airways Inflammation Research Group Snyder Institute for Chronic Diseases University of Calgary Calgary Alberta T2N 4Z6
| |
Collapse
|
43
|
Pelaia G, Vatrella A, Busceti MT, Fabiano F, Terracciano R, Matera MG, Maselli R. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma. Pulm Pharmacol Ther 2016; 40:15-21. [PMID: 27381656 DOI: 10.1016/j.pupt.2016.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/04/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
Inhaled glucocorticoids are the mainstay of asthma treatment. Indeed, such therapeutic agents effectively interfere with many pathogenic circuits underpinning asthma. Among these drugs, during the last decades budesonide has been probably the most used molecule in both experimental studies and clinical practice. Therefore, a large body of evidence clearly shows that budesonide, either alone or in combination with long-acting bronchodilators, provides a successful control of asthma in many patients ranging throughout the overall spectrum of disease severity. These excellent therapeutic properties of budesonide basically depend on its molecular mechanisms of action, capable of inhibiting within the airways the activity of multiple immune-inflammatory and structural cells involved in asthma pathobiology.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy.
| | - Alessandro Vatrella
- Department of Medicine and Surgery, Section of Respiratory Diseases, University of Salerno, Italy
| | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy
| | - Francesco Fabiano
- Pulmonary Rehabilitation, "Fondazione Don Carlo Gnocchi", Milan, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Italy
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Græcia" of Catanzaro, Italy
| |
Collapse
|
44
|
Hapgood JP, Avenant C, Moliki JM. Glucocorticoid-independent modulation of GR activity: Implications for immunotherapy. Pharmacol Ther 2016; 165:93-113. [PMID: 27288728 DOI: 10.1016/j.pharmthera.2016.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Pharmacological doses of glucocorticoids (GCs), acting via the glucocorticoid receptor (GR) to repress inflammation and immune function, remain the most effective therapy in the treatment of inflammatory and immune diseases. Since many patients on GC therapy exhibit GC resistance and severe side-effects, much research is focused on developing more selective GCs and combination therapies, with greater anti-inflammatory potency. GCs mediate their classical genomic transcriptional effects by binding to the cytoplasmic GR, followed by nuclear translocation and modulation of transcription of target genes by direct DNA binding of the GR or its tethering to other transcription factors. Recent evidence suggests, however, that the responses mediated by the GR are much more complex and involve multiple parallel mechanisms integrating simultaneous signals from other receptors, both in the absence and presence of GCs, to shift the sensitivity of a target cell to GCs. The level of cellular stress, immune activation status, or the cell cycle phase may be crucial for determining GC sensitivity and GC responsiveness as well as subcellular localization of the GR and GR levels. Central to the development of new drugs that target GR signaling alone or as add-on therapies, is an in-depth understanding of the molecular mechanisms of GC-independent GR desensitization, priming and activation of the unliganded GR, as well as synergy and cross-talk with other signaling pathways. This review will discuss the information currently available on these topics and their relevance to immunotherapy, as well as identify unanswered questions and future areas of research.
Collapse
Affiliation(s)
- Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa.
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa
| | - Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa
| |
Collapse
|
45
|
Rumzhum NN, Ammit AJ. Prostaglandin E2 induces expression of MAPK phosphatase 1 (MKP-1) in airway smooth muscle cells. Eur J Pharmacol 2016; 782:1-5. [PMID: 27108790 DOI: 10.1016/j.ejphar.2016.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
Abstract
Prostaglandin E2 (PGE2) is a prostanoid with diverse actions in health and disease. In chronic respiratory diseases driven by inflammation, PGE2 has both positive and negative effects. An enhanced understanding of the receptor-mediated cellular signalling pathways induced by PGE2 may help us separate the beneficial properties from unwanted actions of this important prostaglandin. PGE2 is known to exert anti-inflammatory and bronchoprotective actions in human airways. To date however, whether PGE2 increases production of the anti-inflammatory protein MAPK phosphatase 1 (MKP-1) was unknown. We address this herein and use primary cultures of human airway smooth muscle (ASM) cells to show that PGE2 increases MKP-1 mRNA and protein upregulation in a concentration-dependent manner. We explore the signalling pathways responsible and show that PGE2-induces CREB phosphorylation, not p38 MAPK activation, in ASM cells. Moreover, we utilize selective antagonists of EP2 (PF-04418948) and EP4 receptors (GW 627368X) to begin to identify EP-mediated functional outcomes in ASM cells in vitro. Taken together with earlier studies, our data suggest that PGE2 increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and demonstrates that EP2 may, in part, be involved.
Collapse
Affiliation(s)
| | - Alaina J Ammit
- Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
46
|
Lee J, Machin M, Russell KE, Pavlidis S, Zhu J, Barnes PJ, Chung KF, Adcock IM, Durham AL. Corticosteroid modulation of immunoglobulin expression and B-cell function in COPD. FASEB J 2016; 30:2014-26. [PMID: 26887440 DOI: 10.1096/fj.201500135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/27/2016] [Indexed: 11/11/2022]
Abstract
We investigated changes in gene expression that occur in chronic obstructive pulmonary disease (COPD) after corticosteroid treatment and sought to identify the mechanisms that regulate these changes. Biopsy samples were taken from patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage I to II) before and after treatment with fluticasone propionate (FP)/salmeterol (SM) (50/500, 4 wk). Gene expression was measured by microarray and was confirmed by real-time reverse transcription-quantitative PCR (RT-qPCR). The effect of FP on IgG expression and B-cell proliferation in the presence of oxidative stress was also studied. FP/SM significantly increased the expression of 180 genes while repressing 343 genes. The top 5 down-regulated genes were associated with immunoglobulin production, whereas the immunomodulatory FK506 binding protein (FK506BP) was up-regulated. Genes including IL6, IL8, and TBET-encoding TBX21 were unaffected. FP reduced IgG protein and mRNA expression and proliferation of human B cells through the dephosphorylation of ERK-1/2 via increased DUSP1 (dual-specificity protein phosphatase 1) expression. Consistent with in vivo data, oxidative stress did not prevent FP-induced suppression of IgG expression in human B cells in vitro Changes in expression were validated by RT-qPCR and by gene set enrichment analysis in distinct COPD cohorts. FP may reduce the adaptive immune response in COPD and may be more effective in patients with an increased B-cell/antibody response indicated by high autoantibody titers.-Lee, J., Machin, M., Russell, K. E., Pavlidis, S., Zhu, J., Barnes, P. J., Chung, K. F., Adcock, I. M., Durham, A. L. Corticosteroid modulation of immunoglobulin expression and B-cell function in COPD.
Collapse
Affiliation(s)
- Jin Lee
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Matthew Machin
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kirsty E Russell
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | | | - Jie Zhu
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kian F Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Andrew L Durham
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
47
|
Chantaphakul H, Ruxrungtham K. Fixed-Dose combination of the inhaled corticosteroid and long-acting beta2-agonist therapy in adults with persistent asthma. Expert Opin Pharmacother 2016; 17:631-42. [PMID: 26799114 DOI: 10.1517/14656566.2016.1145659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Asthma is a respiratory condition characterized by airway inflammation, airflow obstruction, and bronchial hyperresponsiveness. The standard treatment of asthma comprises inhaled corticosteroid and beta2-agonist. Inhaled short-acting-beta2-agonists have been used as rescue medication for exacerbation. However, long-acting-beta2-agonists (LABA) used as monotherapy for asthma had been reported for having a safety concern. Consequently, it had been recommended as an add-on treatment to inhaled corticosteroid (ICS) in moderate to severe persistent asthma. The fixed-dose combination (FDC) of ICS and LABA has been approved since the year 2000. Evidences revealed using the combination of these medications is more effective in asthma control. AREAS COVERED The rational and phase III onward randomized-controlled studies were reviewed. Sources of evidences were from studies published in Medline until November 2015. EXPERT OPINION There are six FDC inhaler regimens approved worldwide. The significant synergistic effects of ICS and LABA in one device are well evidenced. A FDC reduces the daily dosage of ICS and asthma exacerbation. It is safe to use regularly as controller. The efficacy of each individual combination on asthma treatment is generally similar. Clinical experience, ease of use, cost and side effects of medication would guide the clinician's preferences.
Collapse
Affiliation(s)
- Hiroshi Chantaphakul
- a Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Kiat Ruxrungtham
- a Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
48
|
Grundy S, Plumb J, Kaur M, Ray D, Singh D. Additive anti-inflammatory effects of corticosteroids and phosphodiesterase-4 inhibitors in COPD CD8 cells. Respir Res 2016; 17:9. [PMID: 26809346 PMCID: PMC4727404 DOI: 10.1186/s12931-016-0325-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND CD8 lymphocytes play an important role in the pathogenesis of COPD. Corticosteroids and phosphodiesterase 4 (PDE4) inhibitors are anti-inflammatory drugs used for COPD treatment. Little is known of the combined effect of these drugs on COPD CD8 cells. We studied the effect of corticosteroid combined with PDE4 inhibitors on cytokine release form circulating and pulmonary CD8 cells, and on glucocorticoid (GR) nuclear translocation. METHODS The effect of dexamethasone alone and in combination with the PDE4 inhibitors roflumilast and GSK256066 on cytokine release from circulating and pulmonary CD8 cells was measured. The effect of the compounds on nuclear translocation of GR and cyclic AMP-responsive element-binding protein (CREB) was studied using immunofluorescence. RESULTS Dexamethasone inhibited cytokine release from COPD CD8 cells in a concentration dependent manner. PDE4 inhibitors enhanced this anti-inflammatory effect in an additive manner. PDE4 inhibitors did not increase corticosteroid induced GR nuclear translocation. PDE4 inhibitors, but not corticosteroid, increased phospho-CREB nuclear translocation. CONCLUSION The combination of corticosteroids and PDE4 inhibitors results in an additive anti-inflammatory effect in COPD CD8 cells. This enhanced anti-inflammatory effect could translate to important clinical benefits for patients with COPD.
Collapse
Affiliation(s)
- Seamus Grundy
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust Southmoor Road, Manchester, M23 9LT, UK.
| | - Jonathan Plumb
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust Southmoor Road, Manchester, M23 9LT, UK
| | - Manminder Kaur
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust Southmoor Road, Manchester, M23 9LT, UK
| | - David Ray
- School of Medicine and Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust Southmoor Road, Manchester, M23 9LT, UK
| |
Collapse
|
49
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
50
|
Syed YY. Fluticasone furoate/vilanterol: a review of its use in patients with asthma. Drugs 2016; 75:407-18. [PMID: 25648266 DOI: 10.1007/s40265-015-0354-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Fluticasone furoate/vilanterol (Relvar(®)) is a once-daily, fixed combination of an inhaled corticosteroid (ICS) and a long-acting β2-adrenoreceptor agonist (LABA), delivered via a dry powder inhaler (Ellipta(®)). It is approved for the treatment of asthma in the EU and Japan, and is the first once-daily ICS/LABA to be available for this indication. Fluticasone furoate is an enhanced-affinity glucocorticoid receptor agonist, with potent anti-inflammatory activity. Vilanterol produces rapid and prolonged bronchodilation. In phase III trials in adolescents and adults with various levels of asthma uncontrolled on ICS and/or ICS/LABA, fluticasone furoate/vilanterol 100/25 or 200/25 µg once daily (approved dosages in the EU) significantly improved pulmonary function compared with placebo or equivalent dosages of fluticasone furoate alone (in some trials) or fluticasone propionate. In similar trials, fluticasone furoate/vilanterol 100/25 µg once daily was as effective as fluticasone propionate/salmeterol 250/50 µg twice daily in improving pulmonary function and significantly reduced the risk of severe asthma exacerbation relative to fluticasone furoate alone. In clinical trials, fluticasone furoate/vilanterol was generally well tolerated with fewer than 15 % of patients experiencing treatment-related adverse events, the most common of which were oral/oropharyngeal candidiasis, dysphonia, extrasystoles and cough. The tolerability profile of fluticasone furoate/vilanterol was generally similar to that of fluticasone propionate/salmeterol. Thus, fluticasone furoate/vilanterol is an effective and generally well tolerated ICS/LABA option for the treatment of uncontrolled asthma.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer, Private Bag 65901, Mairangi Bay 0754, Auckland, New Zealand,
| |
Collapse
|