1
|
Alonso A, Endres RG, Kirkegaard JB. Local Clustering and Global Spreading of Receptors for Optimal Spatial Gradient Sensing. PHYSICAL REVIEW LETTERS 2025; 134:158401. [PMID: 40315515 DOI: 10.1103/physrevlett.134.158401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 05/04/2025]
Abstract
Spatial information from cell-surface receptors is crucial for processes that require signal processing and sensing of the environment. Here, we investigate the optimal placement of such receptors through a theoretical model that minimizes uncertainty in gradient estimation. Without requiring a priori knowledge of the physical limits of sensing or biochemical processes, we reproduce the emergence of clusters that closely resemble those observed in real cells. On perfect spherical surfaces, optimally placed receptors spread uniformly. When perturbations break their symmetry, receptors cluster in regions of high curvature, massively reducing estimation uncertainty. This agrees in many scenarios with mechanistic models that minimize elastic preference discrepancies between receptors and cell membranes. We further extend our model to motile receptors responding to cell-shape changes and external fluid flow, demonstrating the biological relevance of our model. Our findings provide a simple and utilitarian explanation for receptor clustering at high-curvature regions when high sensing accuracy is paramount.
Collapse
Affiliation(s)
- Albert Alonso
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert G Endres
- Imperial College, Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, London, United Kingdom
| | - Julius B Kirkegaard
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, Department of Computer Science, Copenhagen, Denmark
| |
Collapse
|
2
|
Chen K, Shen S, Lv Z, Guo M, Shao Y, Li C. Lytic coelomocyte death is tuned by cleavage but not phosphorylation of MLKL in echinoderms. PLoS Pathog 2025; 21:e1012991. [PMID: 40085533 PMCID: PMC11932488 DOI: 10.1371/journal.ppat.1012991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Lytic cell death including necroptosis and pyroptosis is induced by mixed lineage kinase domain-like protein (MLKL) phosphorylation and inflammatory caspase specific cleavage Gasdermins in higher mammals, respectively. In this study, we identified a novel MLKL homolog containing a tetrapeptide recognition motif (14-LVAD-17) of inflammatory caspase from Apostichopus japonicus,which was absent of Gasdermins member by genome screening. Functional analysis revealed that AjMLKL was involved in the regulation of Vibrio splendidus AJ01 infection induced lytic coelomocyte death in a cleavage-dependent manner, but not through RIPK3-dependent phosphorylation as mammals. Mechanistically, the activated form of cysteine-aspartic specific proteases-1 (AjCASP-1) bound to the tetrapeptide site of AjMLKL and cleaved it at Asp17. Cleaved AjMLKL18-491 displayed higher binding affinities towards phosphatidylinositol phosphate and cardiolipin compared to those of un-cleaved form. In addition, cleaved AjMLKL18-491 exerted stronger ability in disrupting the membrane integrity of liposome. More importantly, AjMLKL18-491 caused a large non-selective ionic coelomocyte pore and could directly kill the invasive AJ01. Moreover, activation of inflammatory AjCASP-1 was further found to be dependent on forming an inflammasome-like complex via CASc domain of AjCASP-1 and the N-terminal Ig domains of internalized AjNLRC4. All our results proved first evidence that lytic cell death was activated through MLKL cleavage, not MLKL phosphorylation in echinoderm, which offered insights into the functional, evolutionary mechanisms of lytic cell death in invertebrates.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Sikou Shen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Ming Guo
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Lu FT, Huang CC, Lai WY, Yang GY, Liang ZJ, Zhang ZY, Chokshi T, Guo KM, Tang YB, Chen Y, Yang ZH, Liang SJ, Pang RP, Zhou JG, Guan YY, Lv XF, Ma MM. Vascular smooth muscle-specific LRRC8A knockout ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting the WNK1/FOXO3a/MMP signaling pathway. Acta Pharmacol Sin 2024; 45:1848-1860. [PMID: 38719954 PMCID: PMC11335743 DOI: 10.1038/s41401-024-01280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.
Collapse
Affiliation(s)
- Feng-Ting Lu
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Cheng-Cui Huang
- Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Wen-Yi Lai
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Gui-Yong Yang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhu-Jun Liang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zi-Yi Zhang
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tanvi Chokshi
- Research Division, Joslin Diabetes Center, Harvard University, Boston, MA, USA
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yu-Bo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Chen
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhong-Han Yang
- Department of Molecular Medicine, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Jia Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Guo Zhou
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yong-Yuan Guan
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Fei Lv
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ming-Ming Ma
- Department of Pharmacology, and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Ingels A, Scott R, Hooper AR, van der Westhuyzen AE, Wagh SB, de Meester J, Maddau L, Marko D, Aichinger G, Berger W, Vermeersch M, Pérez-Morga D, Maslivetc VA, Evidente A, van Otterlo WAL, Kornienko A, Mathieu V. New hemisynthetic derivatives of sphaeropsidin phytotoxins triggering severe endoplasmic reticulum swelling in cancer cells. Sci Rep 2024; 14:14674. [PMID: 38918539 PMCID: PMC11199504 DOI: 10.1038/s41598-024-65335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.
Collapse
Affiliation(s)
- Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annie R Hooper
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Joséphine de Meester
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Sassari, Italy
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Walter Berger
- Medical University of Vienna Center for Cancer Research, Vienna, Austria
| | - Marjorie Vermeersch
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
6
|
Raut S, Singh K, Sanghvi S, Loyo-Celis V, Varghese L, Singh E, Gururaja Rao S, Singh H. Chloride ions in health and disease. Biosci Rep 2024; 44:BSR20240029. [PMID: 38573803 PMCID: PMC11065649 DOI: 10.1042/bsr20240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024] Open
Abstract
Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.
Collapse
Affiliation(s)
- Satish K. Raut
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Kulwinder Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Loyo-Celis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Liyah Varghese
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ekam R. Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | | | - Harpreet Singh
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
- Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, U.S.A
| |
Collapse
|
7
|
Valencia J, Bonilla-Correal S, Pinart E, Bonet S, Yeste M. Clustering of spermatozoa examined through flow cytometry provides more information than the conventional assessment: a resilience to osmotic stress example. Reprod Fertil Dev 2024; 36:RD23132. [PMID: 38769680 DOI: 10.1071/rd23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Context Conventional sperm quality tests may not be sufficient to predict the fertilising ability of a given ejaculate; thus, rapid, reliable and sensitive tests are necessary to measure sperm function. Aims This study sought to address whether a cluster analysis approach based on flow cytometry variables could provide more information about sperm function. Methods Spermatozoa were exposed to either isotonic (300mOsm/kg) or hypotonic (180mOsm/kg) media for 5 and 20min, and were then stained with SYBR14 and propidium iodide (PI). Based on flow cytometry dot plots, spermatozoa were classified as either viable (SYBR14+ /PI- ) or with different degrees of plasma membrane alteration (SYBR14+ /PI+ and SYBR14- /PI+ ). Moreover, individual values of electronic volume (EV), side scattering (SS), green (FL1) and red (FL3) fluorescence were recorded and used to classify sperm cells through cluster analysis. Two strategies of this approach were run. The first one was based on EV and the FL3/FL1 quotient, and the second was based on EV, SS and the FL3/FL1 quotient. Key results The two strategies led to the identification of more than three sperm populations. In the first strategy, EV did not differ between membrane-intact and membrane-damaged sperm, but it was significantly (P P P Conclusions Cluster analysis based on flow cytometry variables provides more information about sperm function than conventional assessment does. Implications Combining flow cytometry with cluster analysis is a more robust approach for sperm evaluation.
Collapse
Affiliation(s)
- Julian Valencia
- Faculty of Veterinary Medicine, University Antonio Nariño, Popayán CO-190002, Colombia; and Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Sebastián Bonilla-Correal
- Faculty of Veterinary Medicine, University Antonio Nariño, Popayán CO-190002, Colombia; and Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain
| |
Collapse
|
8
|
Role of NKCC1 and KCC2 during hypoxia-induced neuronal swelling in the neonatal neocortex. Neurobiol Dis 2023; 178:106013. [PMID: 36706928 PMCID: PMC9945323 DOI: 10.1016/j.nbd.2023.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Neonatal hypoxia causes cytotoxic neuronal swelling by the entry of ions and water. Multiple water pathways have been implicated in neurons because these cells lack water channels, and their membrane has a low water permeability. NKCC1 and KCC2 are cation-chloride cotransporters (CCCs) involved in water movement in various cell types. However, the role of CCCs in water movement in neonatal neurons during hypoxia is unknown. We studied the effects of modulating CCCs pharmacologically on neuronal swelling in the neocortex (layer IV/V) of neonatal mice (post-natal day 8-13) during prolonged and brief hypoxia. We used acute brain slices from Clomeleon mice which express a ratiometric fluorophore sensitive to Cl- and exposed them to oxygen-glucose deprivation (OGD) while imaging neuronal size and [Cl-]i by multiphoton microscopy. Neurons were identified using a convolutional neural network algorithm, and changes in the somatic area and [Cl-]i were evaluated using a linear mixed model for repeated measures. We found that (1) neuronal swelling and Cl- accumulation began after OGD, worsened during 20 min of OGD, or returned to baseline during reoxygenation if the exposure to OGD was brief (10 min). (2) Neuronal swelling did not occur when the extracellular Cl- concentration was low. (3) Enhancing KCC2 activity did not alter OGD-induced neuronal swelling but prevented Cl- accumulation; (4) blocking KCC2 led to an increase in Cl- accumulation during prolonged OGD and aggravated neuronal swelling during reoxygenation; (5) blocking NKCC1 reduced neuronal swelling during early but not prolonged OGD and aggravated Cl- accumulation during prolonged OGD; and (6) treatment with the "broad" CCC blocker furosemide reduced both swelling and Cl- accumulation during prolonged and brief OGD, whereas simultaneous NKCC1 and KCC2 inhibition using specific pharmacological blockers aggravated neuronal swelling during prolonged OGD. We conclude that CCCs, and other non-CCCs, contribute to water movement in neocortical neurons during OGD in the neonatal period.
Collapse
|
9
|
Stark RJ, Nguyen HN, Bacon MK, Rohrbough JC, Choi H, Lamb FS. Chloride Channel-3 (ClC-3) Modifies the Trafficking of Leucine-Rich Repeat-Containing 8A (LRRC8A) Anion Channels. J Membr Biol 2022; 256:125-135. [PMID: 36322172 PMCID: PMC10085862 DOI: 10.1007/s00232-022-00271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Chloride channel-3 (ClC-3) Cl-/H+ antiporters and leucine-rich repeat-containing 8 (LRRC8) family anion channels have both been associated with volume-regulated anion currents (VRACs). VRACs are often altered in ClC-3 null cells but are absent in LRRC8A null cells. To explore the relationship between ClC-3, LRRC8A, and VRAC we localized tagged proteins in human epithelial kidney (HEK293) cells using multimodal microscopy. Expression of ClC-3-GFP induced large multivesicular bodies (MVBs) with ClC-3 in the delimiting membrane. LRRC8A-RFP localized to the plasma membrane and to small cytoplasmic vesicles. Co-expression demonstrated co-localization in small, highly mobile cytoplasmic vesicles that associated with the early endosomal marker Rab5A. However, most of the small LRRC8A-positive vesicles were constrained within large MVBs with abundant ClC-3 in the delimiting membrane. Dominant negative (S34A) Rab5A prevented ClC-3 overexpression from creating enlarged MVBs, while constitutively active (Q79L) Rab5A enhanced this phenotype. Thus, ClC-3 and LRRC8A are endocytosed together but independently sorted in Rab5A MVBs. Subsequently, LRRC8A-labeled vesicles were sorted to MVBs labeled by Rab27A and B exosomal compartment markers, but not to Rab11 recycling endosomes. VRAC currents were significantly larger in ClC-3 null HEK293 cells. This work demonstrates dependence of LRRC8A trafficking on ClC-3 which may explain the association between ClC-3 and VRACs.
Collapse
Affiliation(s)
- Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hong N Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Matthew K Bacon
- Department of Pediatrics, University of Kentucky, Lexington, KY, 40536, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 Garland Avenue, Light Hall-1055D, Nashville, TN, 37232-3122v, USA.
| |
Collapse
|
10
|
Cancer as a Channelopathy—Appreciation of Complimentary Pathways Provides a Different Perspective for Developing Treatments. Cancers (Basel) 2022; 14:cancers14194627. [PMID: 36230549 PMCID: PMC9562872 DOI: 10.3390/cancers14194627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary While improvements in technology have improved our ability to treat many forms of cancer when diagnosed at an early stage of the disease, the ability to improve survival and quality of life for patients with late stage disease has been limited, largely due to the ability of cancer cells to evade destruction when treatments block preferred paths for survival. Here, we review the role that ions and ion channels play in normal cell function, the development of disease and their role in the life and death of a cell. It is hoped that viewing cancer from the perspective of altered ion channel expression and ion balance may provide a novel approach for developing more effective treatments for this devastating disease. Abstract Life depends upon the ability of cells to evaluate and adapt to a constantly changing environment and to maintain internal stability to allow essential biochemical reactions to occur. Ions and ion channels play a crucial role in this process and are essential for survival. Alterations in the expression of the transmembrane proteins responsible for maintaining ion balance that occur as a result of mutations in the genetic code or in response to iatrogenically induced changes in the extracellular environment is a characteristic feature of oncogenesis and identifies cancer as one of a constellation of diseases known as channelopathies. The classification of cancer as a channelopathy provides a different perspective for viewing the disease. Potentially, it may expand opportunities for developing novel ways to affect or reverse the deleterious changes that underlie establishing and sustaining disease and developing tolerance to therapeutic attempts at treatment. The role of ions and ion channels and their interactions in the cell’s ability to maintain ionic balance, homeostasis, and survival are reviewed and possible approaches that mitigate gain or loss of ion channel function to contribute to new or enhance existing cancer therapies are discussed.
Collapse
|
11
|
Ghouli MR, Fiacco TA, Binder DK. Structure-function relationships of the LRRC8 subunits and subdomains of the volume-regulated anion channel (VRAC). Front Cell Neurosci 2022; 16:962714. [PMID: 36035259 PMCID: PMC9399500 DOI: 10.3389/fncel.2022.962714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Volume Regulated Anion Channels (VRAC) are critical contributors to cell volume homeostasis and are expressed ubiquitously in all vertebrate cells. VRAC sense increases in cell volume, and act to return cells to baseline volume in a process known as regulatory volume decrease (RVD) through the efflux of anions and organic osmolytes. This review will highlight seminal studies that elucidated the role of VRAC in RVD, their characteristics as a function of subunit specificity, and their clinical relevance in physiology and pathology. VRAC are also known as volume-sensitive outward rectifiers (VSOR) and volume-sensitive organic osmolyte/anion channels (VSOAC). In this review, the term VRAC will be used to refer to this family of channels.
Collapse
Affiliation(s)
- Manolia R. Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California–Riverside, Riverside, CA, United States
| | - Todd A. Fiacco
- Department of Cell Biology and Neuroscience, Center for Glial-Neuronal Interactions, University of California–Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California–Riverside, Riverside, CA, United States
- *Correspondence: Devin K. Binder
| |
Collapse
|
12
|
López-Cayuqueo KI, Planells-Cases R, Pietzke M, Oliveras A, Kempa S, Bachmann S, Jentsch TJ. Renal Deletion of LRRC8/VRAC Channels Induces Proximal Tubulopathy. J Am Soc Nephrol 2022; 33:1528-1545. [PMID: 35777784 PMCID: PMC9342636 DOI: 10.1681/asn.2021111458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Volume-regulated anion channels (VRACs) are heterohexamers of LRRC8A with LRRC8B, -C, -D, or -E in various combinations. Depending on the subunit composition, these swelling-activated channels conduct chloride, amino acids, organic osmolytes, and drugs. Despite VRACs' role in cell volume regulation, and large osmolarity changes in the kidney, neither the localization nor the function of VRACs in the kidney is known. METHODS Mice expressing epitope-tagged LRRC8 subunits were used to determine the renal localization of all VRAC subunits. Mice carrying constitutive deletions of Lrrc8b-e, or with inducible or cell-specific ablation of Lrrc8a, were analyzed to assess renal functions of VRACs. Analysis included histology, urine and serum parameters in different diuresis states, and metabolomics. RESULTS The kidney expresses all five VRAC subunits with strikingly distinct localization. Whereas LRRC8C is exclusively found in vascular endothelium, all other subunits are found in the nephron. LRRC8E is specific for intercalated cells, whereas LRRC8A, LRRC8B, and LRRC8D are prominent in basolateral membranes of proximal tubules. Conditional deletion of LRRC8A in proximal but not distal tubules and constitutive deletion of LRRC8D cause proximal tubular injury, increased diuresis, and mild Fanconi-like symptoms. CONCLUSIONS VRAC/LRRC8 channels are crucial for the function and integrity of proximal tubules, but not for more distal nephron segments despite their larger need for volume regulation. LRRC8A/D channels may be required for the basolateral exit of many organic compounds, including cellular metabolites, in proximal tubules. Proximal tubular injury likely results from combined accumulation of several transported molecules in the absence of VRAC channels.
Collapse
Affiliation(s)
- Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Matthias Pietzke
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Anna Oliveras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Stefan Kempa
- Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany,NeuroCure Centre of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Yurinskaya VE, Vereninov AA. Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water/Ionic Balance Regulation Under Hyperosmolar Conditions: In Silico and Experimental Studies of Opposite RVI and AVD Responses of U937 Cells to Hyperosmolar Media. Front Cell Dev Biol 2022; 9:830563. [PMID: 35141234 PMCID: PMC8818862 DOI: 10.3389/fcell.2021.830563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022] Open
Abstract
Studying the transport of monovalent ions across the cell membrane in living cells is complicated by the strong interdependence of fluxes through parallel pathways and requires therefore computational analysis of the entire electrochemical system of the cell. Current paper shows how to calculate changes in the cell water balance and ion fluxes caused by changes in the membrane channels and transporters during a normal regulatory increase in cell volume in response to osmotic cell shrinkage (RVI) followed by a decrease in cell volume associated with apoptosis (AVD). Our recently developed software is used as a computational analysis tool and the established human lymphoid cells U937 are taken as an example of proliferating animal cells. It is found that, in contrast to countless statements in the literature that cell volume restoration requires the activation of certain ion channels and transporters, the cellular responses such as RVI and AVD can occur in an electrochemical system like U937 cells without any changes in the state of membrane channels or transporters. These responses depend on the types of chloride cotransporters in the membrane and differ in a hyperosmolar medium with additional sucrose and in a medium with additional NaCl. This finding is essential for the identification of the true changes in membrane channels and transporters responsible for RVI and AVD in living cells. It is determined which changes in membrane parameters predicted by computational analysis are consistent with experimental data obtained on living human lymphoid cells U937, Jurkat, and K562 and which are not. An essential part of the results is the developed software that allows researchers without programming experience to calculate the fluxes of monovalent ions via the main transmembrane pathways and electrochemical gradients that move ions across the membrane. The software is available for download. It is useful for studying the functional expression of the channels and transporters in living cells and understanding how the cell electrochemical system works.
Collapse
|
14
|
The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021; 23:ijms23010333. [PMID: 35008759 PMCID: PMC8745646 DOI: 10.3390/ijms23010333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is a significant gynecological cancer and causes cancer-related deaths worldwide. Human papillomavirus (HPV) is implicated in the etiology of cervical malignancy. However, much evidence indicates that HPV infection is a necessary but not sufficient cause in cervical carcinogenesis. Therefore, the cellular pathophysiology of cervical cancer is worthy of study. This review summarizes the recent findings concerning the ion transport processes involved in cell volume regulation and intracellular Ca2+ homeostasis of epithelial cells and how these transport systems are themselves regulated by the tumor microenvironment. For cell volume regulation, we focused on the volume-sensitive Cl− channels and K+-Cl− cotransporter (KCC) family, important regulators for ionic and osmotic homeostasis of epithelial cells. Regarding intracellular Ca2+ homeostasis, the Ca2+ store sensor STIM molecules and plasma membrane Ca2+ channel Orai proteins, the predominant Ca2+ entry mechanism in epithelial cells, are discussed. Furthermore, we evaluate the potential of these membrane ion transport systems as diagnostic biomarkers and pharmacological interventions and highlight the challenges.
Collapse
|
15
|
Yurinskaya VE, Vereninov AA. Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease. Front Cell Dev Biol 2021; 9:736488. [PMID: 34869320 PMCID: PMC8635019 DOI: 10.3389/fcell.2021.736488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cation-coupled chloride cotransporters play a key role in generating the Cl- electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl- channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.
Collapse
Affiliation(s)
- Valentina E Yurinskaya
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Laboratory of Cell Physiology, Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
16
|
Engels M, Kalia M, Rahmati S, Petersilie L, Kovermann P, van Putten MJAM, Rose CR, Meijer HGE, Gensch T, Fahlke C. Glial Chloride Homeostasis Under Transient Ischemic Stress. Front Cell Neurosci 2021; 15:735300. [PMID: 34602981 PMCID: PMC8481871 DOI: 10.3389/fncel.2021.735300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl–]int) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl–]int are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl–]int in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature. We observed substantial heterogeneity in baseline [Cl–]int, ranging from 14.0 ± 2.0 mM in neocortical astrocytes to 28.4 ± 3.0 mM in dentate gyrus astrocytes. Chloride accumulation by the Na+-K+-2Cl– cotransporter (NKCC1) and chloride outward transport (efflux) through K+-Cl– cotransporters (KCC1 and KCC3) or excitatory amino acid transporter (EAAT) anion channels control [Cl–]int to variable extent in distinct brain regions. In hippocampal astrocytes, blocking NKCC1 decreased [Cl–]int, whereas KCC or EAAT anion channel inhibition had little effect. In contrast, neocortical astrocytic or RGL [Cl–]int was very sensitive to block of chloride outward transport, but not to NKCC1 inhibition. Mathematical modeling demonstrated that higher numbers of NKCC1 and KCC transporters can account for lower [Cl–]int in neocortical than in hippocampal astrocytes. Energy depletion mimicking ischemia for up to 10 min did not result in pronounced changes in [Cl–]int in any of the tested glial cell types. However, [Cl–]int changes occurred under ischemic conditions after blocking selected anion transporters. We conclude that stimulated chloride accumulation and chloride efflux compensate for each other and prevent glial swelling under transient energy deprivation.
Collapse
Affiliation(s)
- Miriam Engels
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Manu Kalia
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands.,Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Rahmati
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Laura Petersilie
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hil G E Meijer
- Applied Analysis, Department of Applied Mathematics, University of Twente, Enschede, Netherlands
| | - Thomas Gensch
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
18
|
LRRC8A-containing chloride channel is crucial for cell volume recovery and survival under hypertonic conditions. Proc Natl Acad Sci U S A 2021; 118:2025013118. [PMID: 34083438 PMCID: PMC8201826 DOI: 10.1073/pnas.2025013118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rapid regulatory volume increase (RVI) is important for cell survival under hypertonic conditions. RVI is driven by Cl− uptake via the Na–K–Cl cotransporter (NKCC), which is activated by WNK kinases following a reduction in intracellular [Cl−]. However, how intracellular [Cl−] is regulated to modulate the WNK–NKCC axis and engage a protective RVI remains unknown. Our work reveals that LRRC8A-containing chloride channel is a key protective factor against hypertonic shocks. Considering that LRRC8A (SWELL1) is typically activated by low ionic strength under hypotonic stress, our results posed another interesting question: what activates this chloride channel under hypertonic stress? We demonstrated that, upon hyperosmotic activation, the p38-MSK1 pathway gates LRRC8A-containing chloride channel to facilitate activation of WNK–NKCC and an effective RVI. Regulation of cell volume is essential for tissue homeostasis and cell viability. In response to hypertonic stress, cells need rapid electrolyte influx to compensate water loss and to prevent cell death in a process known as regulatory volume increase (RVI). However, the molecular component able to trigger such a process was unknown to date. Using a genome-wide CRISPR/Cas9 screen, we identified LRRC8A, which encodes a chloride channel subunit, as the gene most associated with cell survival under hypertonic conditions. Hypertonicity activates the p38 stress-activated protein kinase pathway and its downstream MSK1 kinase, which phosphorylates and activates LRRC8A. LRRC8A-mediated Cl− efflux facilitates activation of the with-no-lysine (WNK) kinase pathway, which in turn, promotes electrolyte influx via Na+/K+/2Cl− cotransporter (NKCC) and RVI under hypertonic stress. LRRC8A-S217A mutation impairs channel activation by MSK1, resulting in reduced RVI and cell survival. In summary, LRRC8A is key to bidirectional osmotic stress responses and cell survival under hypertonic conditions.
Collapse
|
19
|
Du H, Ye C, Wu D, Zang YY, Zhang L, Chen C, He XY, Yang JJ, Hu P, Xu Z, Wan G, Shi YS. The Cation Channel TMEM63B Is an Osmosensor Required for Hearing. Cell Rep 2021; 31:107596. [PMID: 32375046 DOI: 10.1016/j.celrep.2020.107596] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023] Open
Abstract
Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Dan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Linqing Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Xue-Yan He
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Healthcare Hospital, Nanjing 210004, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Healthcare Hospital, Nanjing 210004, China
| | - Guoqiang Wan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210032, China; Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210032, China; Institute for Brain Sciences, Nanjing University, Nanjing 210032, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210032, China.
| |
Collapse
|
20
|
Xie Y, Zhang P, Zhang L. Genome-Wide Transcriptional Responses of Marine Nematode Litoditis marina to Hyposaline and Hypersaline Stresses. Front Physiol 2021; 12:672099. [PMID: 34017268 PMCID: PMC8129518 DOI: 10.3389/fphys.2021.672099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of osmotic homeostasis is essential for all organisms, especially for marine animals in the ocean with 3% salinity or higher. However, the underlying molecular mechanisms that how marine animals adapt to high salinity environment compared to their terrestrial relatives, remain elusive. Here, we investigated marine animal’s genome-wide transcriptional responses to salinity stresses using an emerging marine nematode model Litoditis marina. We found that the transthyretin-like family genes were significantly increased in both hyposaline and hypersaline conditions, while multiple neurotransmitter receptor and ion transporter genes were down-regulated in both conditions, suggesting the existence of conserved strategies for response to stressful salinity environments in L. marina. Unsaturated fatty acids biosynthesis related genes, neuronal related tubulins and intraflagellar transport genes were specifically up-regulated in hyposaline treated worms. By contrast, cuticle related collagen genes were enriched and up-regulated for hypersaline response. Given a wide range of salinity tolerance of the marine nematodes, this study and further genetic analysis of key gene(s) of osmoregulation in L. marina will likely provide important insights into biological evolution and environmental adaptation mechanisms in nematodes and other invertebrate animals in general.
Collapse
Affiliation(s)
- Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
21
|
Alhuthali S, Kotidis P, Kontoravdi C. Osmolality Effects on CHO Cell Growth, Cell Volume, Antibody Productivity and Glycosylation. Int J Mol Sci 2021; 22:ijms22073290. [PMID: 33804825 PMCID: PMC8037477 DOI: 10.3390/ijms22073290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg-1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg-1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.
Collapse
|
22
|
Chorieva NM, Fayziev DD, Tsiferova NA, Toshtemirova GA, Khamidova OJ, Merzlyak PG, Kurbannazarova RS, Ziyaev KL, Gafurov MB, Sabirov RZ. Lytic and sublytic effects of gossypol on red blood cells and thymocytes. Clin Exp Pharmacol Physiol 2021; 48:227-237. [PMID: 33124084 DOI: 10.1111/1440-1681.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Gossypol is a natural polyphenol presently considered as a promising biological phytochemical with a range of activities including anticancer. We examined volume regulation-dependent effects of gossypol using erythrocytes and thymic lymphocytes. Gossypol effectively lysed human red blood cells (RBC) with a half-maximal concentration of 67.4 ± 1.6 μmol/L and in a non-colloid osmotic manner. Sublytic gossypol doses of 1-10 μmol/L significantly protected RBC from osmotic hemolysis, but potentiated their sensitivity to the colloid-osmotic lysis induced by a pore-former nystatin. When added to the thymocytes suspension, gossypol caused a strong depression of the ability of cells to restore their volume under hypoosmotic stress with a half-maximal activity at 2.1 ± 0.3 μmol/L. Gossypol suppressed regulatory volume decrease under experimental conditions, when cationic permeability was controlled by gramicidin D, and volume recovery depended mainly on anionic conductance, suggesting that the polyphenol inhibits the swelling-induced anion permeability. In direct patch-clamp experiments, gossypol inhibited the volume-sensitive outwardly rectifying (VSOR) chloride channel in thymocytes and in human HCT116 and HeLa cells, possibly by a mechanism when gossypol molecule with a radius close to the size of channel pore plugs into the narrowest portion of the native VSOR chloride channel. Micromolar gossypol suppressed proliferation of thymocytes, HCT116 and HeLa cells. VSOR blockage may represent new mechanism of anticancer activity of gossypol in addition to its action as a BH3-mimetic.
Collapse
Affiliation(s)
- Nargiza M Chorieva
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Termez State University, Termez, Uzbekistan
| | - Diyor D Fayziev
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Gulnoza A Toshtemirova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Technical Institute of the National Guard, Tashkent, Uzbekistan
| | - Khayrulla L Ziyaev
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Makhmud B Gafurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
23
|
Kalisvaart ACJ, Wilkinson CM, Gu S, Kung TFC, Yager J, Winship IR, van Landeghem FKH, Colbourne F. An update to the Monro-Kellie doctrine to reflect tissue compliance after severe ischemic and hemorrhagic stroke. Sci Rep 2020; 10:22013. [PMID: 33328490 PMCID: PMC7745016 DOI: 10.1038/s41598-020-78880-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
High intracranial pressure (ICP) can impede cerebral blood flow resulting in secondary injury or death following severe stroke. Compensatory mechanisms include reduced cerebral blood and cerebrospinal fluid volumes, but these often fail to prevent raised ICP. Serendipitous observations in intracerebral hemorrhage (ICH) suggest that neurons far removed from a hematoma may shrink as an ICP compliance mechanism. Here, we sought to critically test this observation. We tracked the timing of distal tissue shrinkage (e.g. CA1) after collagenase-induced striatal ICH in rat; cell volume and density alterations (42% volume reduction, 34% density increase; p < 0.0001) were highest day one post-stroke, and rebounded over a week across brain regions. Similar effects were seen in the filament model of middle cerebral artery occlusion (22% volume reduction, 22% density increase; p ≤ 0.007), but not with the Vannucci-Rice model of hypoxic-ischemic encephalopathy (2.5% volume increase, 14% density increase; p ≥ 0.05). Concerningly, this 'tissue compliance' appears to cause sub-lethal damage, as revealed by electron microscopy after ICH. Our data challenge the long-held assumption that 'healthy' brain tissue outside the injured area maintains its volume. Given the magnitude of these effects, we posit that 'tissue compliance' is an important mechanism invoked after severe strokes.
Collapse
Affiliation(s)
- Anna C J Kalisvaart
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Cassandra M Wilkinson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Sherry Gu
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Tiffany F C Kung
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jerome Yager
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Frank K H van Landeghem
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Canada
| | - Frederick Colbourne
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
24
|
Centeio R, Ousingsawat J, Schreiber R, Kunzelmann K. Ca 2+ Dependence of Volume-Regulated VRAC/LRRC8 and TMEM16A Cl - Channels. Front Cell Dev Biol 2020; 8:596879. [PMID: 33335902 PMCID: PMC7736618 DOI: 10.3389/fcell.2020.596879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
All vertebrate cells activate Cl- currents (ICl ,swell) when swollen by hypotonic bath solution. The volume-regulated anion channel VRAC has now been identified as LRRC8/SWELL1. However, apart from VRAC, the Ca2+-activated Cl- channel (CaCC) TMEM16A and the phospholipid scramblase and ion channel TMEM16F were suggested to contribute to cell swelling-activated whole-cell currents. Cell swelling was shown to induce Ca2+ release from the endoplasmic reticulum and to cause subsequent Ca2+ influx. It is suggested that TMEM16A/F support intracellular Ca2+ signaling and thus Ca2+-dependent activation of VRAC. In the present study, we tried to clarify the contribution of TMEM16A to ICl ,swell. In HEK293 cells coexpressing LRRC8A and LRRC8C, we found that activation of ICl ,swell by hypotonic bath solution (Hypo; 200 mosm/l) was Ca2+ dependent. TMEM16A augmented the activation of LRRC8A/C by enhancing swelling-induced local intracellular Ca2+ concentrations. In HT29 cells, knockdown of endogenous TMEM16A attenuated ICl ,swell and changed time-independent swelling-activated currents to VRAC-typical time-dependent currents. Activation of ICl ,swell by Hypo was attenuated by blocking receptors for inositol trisphosphate and ryanodine (IP3R; RyR), as well as by inhibiting Ca2+ influx. The data suggest that TMEM16A contributes directly to ICl ,swell as it is activated through swelling-induced Ca2+ increase. As activation of VRAC is shown to be Ca2+-dependent, TMEM16A augments VRAC currents by facilitating Hypo-induced Ca2+ increase in submembraneous signaling compartments by means of ER tethering.
Collapse
Affiliation(s)
| | | | | | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Bortner CD, Cidlowski JA. Ions, the Movement of Water and the Apoptotic Volume Decrease. Front Cell Dev Biol 2020; 8:611211. [PMID: 33324655 PMCID: PMC7723978 DOI: 10.3389/fcell.2020.611211] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
The movement of water across the cell membrane is a natural biological process that occurs during growth, cell division, and cell death. Many cells are known to regulate changes in their cell volume through inherent compensatory regulatory mechanisms. Cells can sense an increase or decrease in their cell volume, and compensate through mechanisms known as a regulatory volume increase (RVI) or decrease (RVD) response, respectively. The transport of sodium, potassium along with other ions and osmolytes allows the movement of water in and out of the cell. These compensatory volume regulatory mechanisms maintain a cell at near constant volume. A hallmark of the physiological cell death process known as apoptosis is the loss of cell volume or cell shrinkage. This loss of cell volume is in stark contrast to what occurs during the accidental cell death process known as necrosis. During necrosis, cells swell or gain water, eventually resulting in cell lysis. Thus, whether a cell gains or loses water after injury is a defining feature of the specific mode of cell death. Cell shrinkage or the loss of cell volume during apoptosis has been termed apoptotic volume decrease or AVD. Over the years, this distinguishing feature of apoptosis has been largely ignored and thought to be a passive occurrence or simply a consequence of the cell death process. However, studies on AVD have defined an underlying movement of ions that result in not only the loss of cell volume, but also the activation and execution of the apoptotic process. This review explores the role ions play in controlling not only the movement of water, but the regulation of apoptosis. We will focus on what is known about specific ion channels and transporters identified to be involved in AVD, and how the movement of ions and water change the intracellular environment leading to stages of cell shrinkage and associated apoptotic characteristics. Finally, we will discuss these concepts as they apply to different cell types such as neurons, cardiomyocytes, and corneal epithelial cells.
Collapse
Affiliation(s)
- Carl D. Bortner
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
26
|
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-Induced Cell Death and Survival. Role of α1-Na,K-ATPase-Mediated Signaling and [Na +] i/[K +] i-Dependent Gene Expression. Front Physiol 2020; 11:1060. [PMID: 33013454 PMCID: PMC7498651 DOI: 10.3389/fphys.2020.01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Ouabain is of cardiotonic steroids (CTS) family that is plant-derived compounds and is known for many years as therapeutic and cytotoxic agents. They are specific inhibitors of Na,K-ATPase, the enzyme, which pumps Na+ and K+ across plasma membrane of animal cells. Treatment of cells by CTS affects various cellular functions connected with the maintenance of the transmembrane gradient of Na+ and K+. Numerous studies demonstrated that binding of CTS to Na,K-ATPase not only suppresses its activity but also induces some signal pathways. This review is focused on different mechanisms of two ouabain effects: their ability (1) to protect rodent cells from apoptosis through the expression of [Na+]i-sensitive genes and (2) to trigger death of non-rodents cells (so-called «oncosis»), possessing combined markers of «classic» necrosis and «classic» apoptosis. Detailed study of oncosis demonstrated that the elevation of the [Na+]i/[K+]i ratio is not a sufficient for its triggering. Non-rodent cell death is determined by the characteristic property of "sensitive" to ouabain α1-subunit of Na,K-ATPase. In this case, ouabain binding leads to enzyme conformational changes triggering the activation of p38 mitogen-activated protein kinases (MAPK) signaling. The survival of rodent cells with ouabain-«resistant» α1-subunit is connected with another conformational transition induced by ouabain binding that results in the activation of ERK 1/2 signaling pathway.
Collapse
Affiliation(s)
- Olga Dmitrievna Lopina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Mikhaylovich Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Sergei Nikolaevich Orlov
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Channels that Cooperate with TRPV4 in the Brain. J Mol Neurosci 2020; 70:1812-1820. [PMID: 32524421 DOI: 10.1007/s12031-020-01574-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective Ca2+-permeable cation channel that is a member of the TRP channel family. It is clear that TRPV4 channels are broadly expressed in the brain. As they are expressed on the plasma membrane, they interact with other channels and play a crucial role in nervous system activity. Under some pathological conditions, TRPV4 channels are upregulated and sensitized via cellular signaling pathways, and this can cause nervous system diseases. In this review, we focus on receptors that cooperate with TRPV4, including large-conductance Ca2+-activated K+(BKca) channels, N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs), inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), aquaporin 4 (AQP4), and other potential cooperative receptors in the brain. The data demonstrate how these channels work together to cause nervous system diseases under pathological conditions. The aim of this review was to discuss the receptors and signaling pathways related to TRPV4 based on recent data on the important physiological functions of TRPV4 channels to provide new clues for future studies and prospective therapeutic targets for related brain diseases.
Collapse
|
28
|
Affiliation(s)
- Rachel G Scheraga
- Respiratory Instituteand.,Lerner Research InstituteCleveland Clinic FoundationCleveland, Ohio
| | - Mitchell A Olman
- Respiratory Instituteand.,Lerner Research InstituteCleveland Clinic FoundationCleveland, Ohio
| |
Collapse
|
29
|
Non-apoptotic cell death induced by opening the large conductance mechanosensitive channel MscL in hepatocellular carcinoma HepG2 cells. Biomaterials 2020; 250:120061. [PMID: 32361391 DOI: 10.1016/j.biomaterials.2020.120061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Most anticancer therapies trigger apoptosis to eliminate malignant cells. However, the majority of malignant cancer cells are resistant to apoptosis due to genetic mutations or heterogeneity. Here, we report that opening the pore of the bacterial large conductance mechanosensitivity channel (MscL) provides a novel approach of inducing non-apoptotic cell death. The gain-of-function mutant V23A-MscL and chemically responsive mutant G26C-MscL can be functionally expressed in hepatocellular carcinoma HepG2 cells. V23A-MscL spontaneously opens, and G26C-MscL also responds to its chemical activator MTSET. Opening of the MscL channel causes increased intracellular Ca2+ concentration and suppressed cell growth and viability. MTSET-activated G26C channels induce necrosis, while V23A-MscL expression leads to cytoplasmic vacuolization cell death in HepG2 cells and suppresses tumor growth in a mouse model. We propose that MscL may act as a nanovalve through which intracellular homeostasis suffers a disruption and results in malignant tumor cell damage, leading to a new strategy for cancer therapy.
Collapse
|
30
|
Tsai CM. AqF026 may act as a cancer therapeutic agent via inducing cancer cell oncosis. Med Hypotheses 2020; 140:109685. [PMID: 32220711 DOI: 10.1016/j.mehy.2020.109685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
Cancer is one of the leading causes of death worldwide, and metastasis is the major cause of death in cancer, therefore, treatments to attenuate metastasis are urgently needed. Cell migration is indispensable in metastatic cascade, and aquaporins (AQPs) promote cell migration by facilitating water influx at cell front (lamellipodia). In fact, AQPs overexpressed widely among many cancer types. Accordingly, previous efforts of targeting AQPs as strategies of cancer treatments were based on AQP inhibitors, yet the efficacy of AQP inhibition was limited based on recent surveys. On the contrary, whether AQP agonist has role in cancer treatments has not been explored. AqF026, an AQP1 agonist, was initially applied to a mouse model of peritoneal dialysis. Herein, we aimed to apply AqF026 to magnify the water influx into lamellipodia of migrating cancer cells so as to induce oncosis by causing overloaded cancer cell swelling in advance of metastatic cascade. Cell swelling is a characteristic of oncosis. With impairment or insufficient regulatory volume decrease (RVD), cell swelling can lead to oncosis. Cancer cells with metastatic potentials shared the same population of cancer cells with multidrug resistance (MDR) lineage, and the impairment or insufficient RVD is shown in cancer cells with MDR. Taken together, the author hypothesized that given appropriate concentration or dose of AQP1 agonist AqF026, the AqF026 may induce oncosis of cancer cells preferentially rather than normal cells by causing overloaded water influx via AQP1 and consequent irreversible cell swelling.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pediatrics, MacKay Children Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Porcari CY, Debarba LK, Amigone JL, Caeiro XE, Reis LC, Cunha TM, Mecawi AS, Elias LL, Antunes-Rodrigues J, Vivas L, Godino A. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm Behav 2020; 118:104658. [PMID: 31874139 DOI: 10.1016/j.yhbeh.2019.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo‑sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Collapse
Affiliation(s)
- C Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - T M Cunha
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - L L Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
32
|
Barrera P, Skorka C, Boktor M, Dave N, Jimenez V. A Novel Calcium-Activated Potassium Channel Controls Membrane Potential and Intracellular pH in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 9:464. [PMID: 32010643 PMCID: PMC6974456 DOI: 10.3389/fcimb.2019.00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi develops in environments where nutrient availability, osmolarity, ionic concentrations, and pH undergo significant changes. The ability to adapt and respond to such conditions determines the survival and successful transmission of T. cruzi. Ion channels play fundamental roles in controlling physiological parameters that ensure cell homeostasis by rapidly triggering compensatory mechanisms. Combining molecular, cellular and electrophysiological approaches we have identified and characterized the expression and function of a novel calcium-activated potassium channel (TcCAKC). This channel resides in the plasma membrane of all 3 life stages of T. cruzi and shares structural features with other potassium channels. We expressed TcCAKC in Xenopus laevis oocytes and established its biophysical properties by two-electrode voltage clamp. Oocytes expressing TcCAKC showed a significant increase in inward currents after addition of calcium ionophore ionomycin or thapsigargin. These responses were abolished by EGTA suggesting that TcCAKC activation is dependent of extracellular calcium. This activation causes an increase in current and a negative shift in reversal potential that is blocked by barium. As predicted, a single point mutation in the selectivity filter (Y313A) completely abolished the activity of the channels, confirming its potassium selective nature. We have generated knockout parasites deleting one or both alleles of TcCAKC. These parasite strains showed impaired growth, decreased production of trypomastigotes and slower intracellular replication, pointing to an important role of TcCAKC in regulating infectivity. To understand the cellular mechanisms underlying these phenotypic defects, we used fluorescent probes to evaluate intracellular membrane potential, pH, and intracellular calcium. Epimastigotes lacking the channel had significantly lower cytosolic calcium, hyperpolarization, changes in intracellular pH, and increased rate of proton extrusion. These results are in agreement with previous reports indicating that, in trypanosomatids, membrane potential and intracellular pH maintenance are linked. Our work shows TcCAKC is a novel potassium channel that contributes to homeostatic regulation of important physiological processes in T. cruzi and provides new avenues to explore the potential of ion channels as targets for drug development against protozoan parasites.
Collapse
Affiliation(s)
- Patricia Barrera
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Christopher Skorka
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Michael Boktor
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noopur Dave
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Veronica Jimenez
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
33
|
Rustamova SI, Tsiferova NA, Khamidova OJ, Kurbannazarova RS, Merzlyak PG, Khushbaktova ZA, Syrov VN, Botirov EK, Eshbakova KA, Sabirov RZ. Effect of plant flavonoids on the volume regulation of rat thymocytes under hypoosmotic stress. Pharmacol Rep 2019; 71:1079-1087. [PMID: 31629088 DOI: 10.1016/j.pharep.2019.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 μM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.
Collapse
Affiliation(s)
- Sarvinoz I Rustamova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Zainab A Khushbaktova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Vladimir N Syrov
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | | | - Kamila A Eshbakova
- Institute of Chemistry of Plant Substances, Academy Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan; Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
34
|
Jia X, Liu Y, Li X, Huo C, Li D, Xu R, Hou L, Wang X. Norcepharadione B attenuates H 2O 2-induced neuronal injury by upregulating cellular antioxidants and inhibiting volume-sensitive Cl - channel. Exp Biol Med (Maywood) 2019; 244:1463-1474. [PMID: 31583895 DOI: 10.1177/1535370219881358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress acts as an essential culprit factor in the development of stroke and Alzheimer’s disease. Norcepharadione B possesses various pharmacologic features as an extract obtained from Houttuynia cordata. Nevertheless, the anti-apoptotic and neuroprotective characteristics of norcepharadione B remain unclear. In this study, the neuronal protection effect provided by norcepharadione B against injury caused by hydrogen peroxide (H2O2) in HT22 cell as well as the fundamental mechanism was systematically explored. The neurotoxicity assays of hippocampal cells, which were co-cultured with H2O2, showed that norcepharadione B had the ability to insulate the toxicity induced by H2O2 with significant reduced cell apoptosis. Besides, norcepharadione B potentiated the activity of superoxide dismutase (SOD), increased the level of glutathione (GSH), and decreased malondialdehyde content. The H2O2-induced apoptotic protein Bax was suppressed, and the anti-apoptotic protein Bcl-2 was boosted by norcepharadione B. Norcepharadione B promoted Akt phosphorylation and further upregulated heme oxygenase (HO-1) in cells exposed to oxidative stress. However, the inductive effect of HO-1 by norcepharadione B was shut off via the PI3K/Akt inhibitor LY294002. Furthermore, 2-h incubation with H2O2 substantially increased cell volume in HT22 cells, while norcepharadione B effectively alleviated such effect by interrupting the activation of VSOR Cl− channel. Collectively, our data revealed protective properties of norcepharadione B in resisting oxidative stress induced by H2O2 through elevation of HO-1 in the dependence of PI3K/Akt and in inhibiting H2O2-induced cell swelling by VSOR Cl− channel obstruction in HT22 cells. Impact statement Norcepharadione B is an aporphine alkaloid compound extracted from Chinese herb Houttuynia cordata. It was well known for its anti-inflammatory, anti-cancer, and anti-platelet aggregation outcomes. Our study demonstrated that Norcepharadione B protected hippocampal neurons against oxidative stress and the resultant cell apoptosis upon H2O2 exposure. Meanwhile, Norcepharadione B also substantially reduced cell swelling induced by H2O2 via inhibiting VSOR Cl− channel in neurons. These findings uncovered the potential mechanisms of Norcepharadione B in protecting neuron apoptosis under oxidative stress and propose that Norcepharadione B may serve as a favorable herb medicine for restoring neuronal injury in the pathogenesis of stroke together with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Jia
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Dongtao Li
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liming Hou
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
35
|
Binding of the protein ICln to α-integrin contributes to the activation of ICl swell current. Sci Rep 2019; 9:12195. [PMID: 31434921 PMCID: PMC6704128 DOI: 10.1038/s41598-019-48496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
IClswell is the chloride current induced by cell swelling, and plays a fundamental role in several biological processes, including the regulatory volume decrease (RVD). ICln is a highly conserved, ubiquitously expressed and multifunctional protein involved in the activation of IClswell. In platelets, ICln binds to the intracellular domain of the integrin αIIb chain, however, whether the ICln/integrin interaction plays a role in RVD is not known. Here we show that a direct molecular interaction between ICln and the integrin α-chain is not restricted to platelets and involves highly conserved amino acid motifs. Integrin α recruits ICln to the plasma membrane, thereby facilitating the activation of IClswell during hypotonicity. Perturbation of the ICln/integrin interaction prevents the transposition of ICln towards the cell surface and, in parallel, impedes the activation of IClswell. We suggest that the ICln/integrin interaction interface may represent a new molecular target enabling specific IClswell suppression in pathological conditions when this current is deregulated or plays a detrimental role.
Collapse
|
36
|
Hall AC. The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Curr Rheumatol Rep 2019; 21:38. [PMID: 31203465 PMCID: PMC6571082 DOI: 10.1007/s11926-019-0837-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Articular chondrocytes are exclusively responsible for the turnover of the extracellular matrix (ECM) of hyaline cartilage. However, chondrocytes are phenotypically unstable and, if they de-differentiate into hypertrophic or fibroblastic forms, will produce a defective and weak matrix. Chondrocyte volume and morphology exert a strong influence over phenotype and a full appreciation of the factors controlling chondrocyte phenotype stability is central to understanding (a) the mechanisms underlying the cartilage failure in osteoarthritis (OA), (b) the rationale for hyaline cartilage repair, and (c) the strategies for improving the engineering of resilient cartilage. The focus of this review is on the factors involved in, and the importance of regulating, chondrocyte morphology and volume as key controllers of chondrocyte phenotype. RECENT FINDINGS The visualisation of fluorescently-labelled in situ chondrocytes within non-degenerate and mildly degenerate cartilage, by confocal scanning laser microscopy (CLSM) and imaging software, has identified the marked heterogeneity of chondrocyte volume and morphology. The presence of chondrocytes with cytoplasmic processes, increased volume, and clustering suggests important early changes to their phenotype. Results from experiments more closely aligned to the normal physico-chemical environment of in situ chondrocytes are emphasising the importance of understanding the factors controlling chondrocyte morphology and volume that ultimately affect phenotype. An appreciation of the importance of chondrocyte volume and morphology for controlling the chondrocyte phenotype is advancing at a rapid pace and holds particular promise for developing strategies for protecting the chondrocytes against deleterious changes and thereby maintaining healthy and resilient cartilage.
Collapse
Affiliation(s)
- Andrew C Hall
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
37
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
38
|
Verkerk AO, Lodder EM, Wilders R. Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 2019; 20:ijms20082039. [PMID: 31027200 PMCID: PMC6514906 DOI: 10.3390/ijms20082039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Effects of amantadine on corneal endothelium. Exp Eye Res 2019; 181:208-212. [DOI: 10.1016/j.exer.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 02/12/2019] [Indexed: 11/21/2022]
|
40
|
Glitsch M. Mechano- and pH-sensing convergence on Ca 2+-mobilising proteins - A recipe for cancer? Cell Calcium 2019; 80:38-45. [PMID: 30952068 DOI: 10.1016/j.ceca.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Alterations in the (bio)chemical and physical microenvironment of cells accompany and often promote disease formation and progression. This is particularly well established for solid cancers, which are typically stiffer than the healthy tissue in which they arise, and often display profound acidification of their interstitial fluid. Cell surface receptors can sense changes in the mechanical and (bio)chemical properties of the surrounding extracellular matrix and fluid, and signalling through these receptors is thought to play a key role in disease development and advancement. This review will look at ion channels and G protein coupled receptors that are activated by mechanical cues and extracellular acidosis, and stimulation of which results in increases in intracellular Ca2+ concentrations. Cellular Ca2+ levels are dysregulated in cancer as well as cancer-associated cells, and mechano- and proton-sensing proteins likely contribute to these aberrant intracellular Ca2+ signals, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
41
|
Bais S, Greenberg RM. TRP channels as potential targets for antischistosomals. Int J Parasitol Drugs Drug Resist 2018; 8:511-517. [PMID: 30224169 PMCID: PMC6287577 DOI: 10.1016/j.ijpddr.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Ion channels are membrane protein complexes that underlie electrical excitability in cells, allowing ions to diffuse through cell membranes in a regulated fashion. They are essential for normal functioning of the neuromusculature and other tissues. Ion channels are also validated targets for many current anthelmintics, yet the properties of only a small subset of ion channels in parasitic helminths have been explored in any detail. Transient receptor potential (TRP) channels comprise a widely diverse superfamily of ion channels with important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other functions. There are several subtypes of TRP channels, including TRPA1 and TRPV1 channels, both of which are involved in, among other functions, sensory, nociceptive, and inflammatory signaling in mammals. Several lines of evidence indicate that TRPA1-like channels in schistosomes exhibit pharmacological sensitivities that differ from their mammalian counterparts and that may signify unique physiological properties as well. Thus, in addition to responding to TRPA1 modulators, schistosome TRPA1-like channels also respond to compounds that in other organisms modulate TRPV1 channels. Notably, TRPV channel genes are not found in schistosome genomes. Here, we review the evidence leading to these conclusions and examine potential implications. We also discuss recent results showing that praziquantel, the current drug of choice against schistosomiasis, selectively targets host TRP channels in addition to its likely primary targets in the parasite. The results we discuss add weight to the notion that schistosome TRP channels are worthy of investigation as candidate therapeutic targets.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA.
| |
Collapse
|
42
|
Orlov SN, Shiyan A, Boudreault F, Ponomarchuk O, Grygorczyk R. Search for Upstream Cell Volume Sensors: The Role of Plasma Membrane and Cytoplasmic Hydrogel. CURRENT TOPICS IN MEMBRANES 2018; 81:53-82. [PMID: 30243440 DOI: 10.1016/bs.ctm.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The plasma membrane plays a prominent role in the regulation of cell volume by mediating selective transport of extra- and intracellular osmolytes. Recent studies show that upstream sensors of cell volume changes are mainly located within the cytoplasm that displays properties of a hydrogel and not in the plasma membrane. Cell volume changes occurring in anisosmotic medium as well as in isosmotic environment affect properties of cytoplasmic hydrogel that, in turn, trigger rapid regulatory volume increase and decrease (RVI and RVD). The downstream signaling pathways include reorganization of 2D cytoskeleton and altered composition of polyphosphoinositides located on the inner surface of the plasma membrane. In addition to its action on physico-chemical properties of cytoplasmic hydrogel, cell volume changes in anisosmotic conditions affect the ionic strength of the cytoplasm and the [Na+]i/[K+]i ratio. Elevated intracellular ionic strength evoked by long term exposure of cells to hypertonic environment resulted in the activation of TonEBP and augmented expression of genes controlling intracellular organic osmolyte levels. The role of Na+i/K+i -sensitive, Ca2+i -mediated and Ca2+i-independent mechanisms of excitation-transcription coupling in cell volume-adjustment remains unknown.
Collapse
Affiliation(s)
- Sergei N Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Siberian State Medical University, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Aleksandra Shiyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olga Ponomarchuk
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ryszard Grygorczyk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
43
|
Netti V, Pizzoni A, Pérez-Domínguez M, Ford P, Pasantes-Morales H, Ramos-Mandujano G, Capurro C. Release of taurine and glutamate contributes to cell volume regulation in human retinal Müller cells: differences in modulation by calcium. J Neurophysiol 2018; 120:973-984. [PMID: 29790838 DOI: 10.1152/jn.00725.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.
Collapse
Affiliation(s)
- Vanina Netti
- Universidad de Buenos Aires, Facultad de Medicina. Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Fisiología y Biofísica "Bernardo Houssay," Buenos Aires, Argentina
| | - Alejandro Pizzoni
- Universidad de Buenos Aires, Facultad de Medicina. Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Fisiología y Biofísica "Bernardo Houssay," Buenos Aires, Argentina
| | - Martha Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paula Ford
- Universidad de Buenos Aires, Facultad de Medicina. Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Fisiología y Biofísica "Bernardo Houssay," Buenos Aires, Argentina
| | - Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramos-Mandujano
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia Capurro
- Universidad de Buenos Aires, Facultad de Medicina. Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas , Buenos Aires , Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Fisiología y Biofísica "Bernardo Houssay," Buenos Aires, Argentina
| |
Collapse
|
44
|
Bernardinelli E, Costa R, Scantamburlo G, To J, Morabito R, Nofziger C, Doerrier C, Krumschnabel G, Paulmichl M, Dossena S. Mis-targeting of the mitochondrial protein LIPT2 leads to apoptotic cell death. PLoS One 2017; 12:e0179591. [PMID: 28628643 PMCID: PMC5476274 DOI: 10.1371/journal.pone.0179591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022] Open
Abstract
Lipoyl(Octanoyl) Transferase 2 (LIPT2) is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD) current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell), mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation. The findings presented here may help elucidate the molecular mechanisms underlying derangements of lipoic acid biosynthesis.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Roberta Costa
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Giada Scantamburlo
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Markus Paulmichl
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
45
|
Netti V, Fernández J, Kalstein M, Pizzoni A, Di Giusto G, Rivarola V, Ford P, Capurro C. TRPV4 Contributes to Resting Membrane Potential in Retinal Müller Cells: Implications in Cell Volume Regulation. J Cell Biochem 2017; 118:2302-2313. [PMID: 28098409 DOI: 10.1002/jcb.25884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 11/10/2022]
Abstract
Neural activity alters osmotic gradients favoring cell swelling in retinal Müller cells. This swelling is followed by a regulatory volume decrease (RVD), partially mediated by an efflux of KCl and water. The transient receptor potential channel 4 (TRPV4), a nonselective calcium channel, has been proposed as a candidate for mediating intracellular Ca2+ elevation induced by swelling. We previously demonstrated in a human Müller cell line (MIO-M1) that RVD strongly depends on ion channel activation and, consequently, on membrane potential (Vm ). The aim of this study was to investigate if Ca2+ influx via TRPV4 contributes to RVD by modifying intracellular Ca2+ concentration and/or modulating Vm in MIO-M1 cells. Cell volume, intracellular Ca2+ levels, and Vm changes were evaluated using fluorescent probes. Results showed that MIO-M1 cells express functional TRPV4 which determines the resting Vm associated with K+ channels. Swelling-induced increases in Ca2+ levels was due to both Ca2+ release from intracellular stores and Ca2+ influx by a pathway alternative to TRPV4. TRPV4 blockage affected swelling-induced biphasic response (depolarization-repolarization), suggesting its participation in modulating Vm changes during RVD. Agonist stimulation of Ca2+ influx via TRPV4 activated K+ channels hyperpolarizing Vm and accelerating RVD. We propose that TRPV4 forms a signaling complex with Ca2+ and/or voltage-dependent K+ channels to define resting Vm and Vm changes during RVD. TRPV4 involvement in RVD depends on the type of stimuli and/or degree of channel activation, leading to a maximum RVD response when Ca2+ influx overcomes a threshold and activates further signaling pathways in cell volume regulation. J. Cell. Biochem. 118: 2302-2313, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanina Netti
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Fernández
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maia Kalstein
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Pizzoni
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Di Giusto
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Rivarola
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Capurro
- Laboratorio de Biomembranas, IFIBIO Houssay, CONICET-UBA, Departamento de Ciencia Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Karwad MA, Macpherson T, Wang B, Theophilidou E, Sarmad S, Barrett DA, Larvin M, Wright KL, Lund JN, O'Sullivan SE. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα. FASEB J 2016; 31:469-481. [PMID: 27623929 DOI: 10.1096/fj.201500132] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022]
Abstract
Cannabinoids modulate intestinal permeability through cannabinoid receptor 1 (CB1). The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability. Transepithelial electrical resistance (TEER) was measured in human Caco-2 cells to assess permeability after application of OEA and PEA and relevant antagonists. Cells treated with OEA and PEA were stained for cytoskeletal F-actin changes and lysed for immunoassay. OEA and PEA were measured by liquid chromatography-tandem mass spectrometry. OEA (applied apically, logEC50 -5.4) and PEA (basolaterally, logEC50 -4.9; apically logEC50 -5.3) increased Caco-2 resistance by 20-30% via transient receptor potential vanilloid (TRPV)-1 and peroxisome proliferator-activated receptor (PPAR)-α. Preventing their degradation (by inhibiting fatty acid amide hydrolase) enhanced the effects of OEA and PEA. OEA and PEA induced cytoskeletal changes and activated focal adhesion kinase and ERKs 1/2, and decreased Src kinases and aquaporins 3 and 4. In Caco-2 cells treated with IFNγ and TNFα, OEA (via TRPV1) and PEA (via PPARα) prevented or reversed the cytokine-induced increased permeability compared to vehicle (0.1% ethanol). PEA (basolateral) also reversed increased permeability when added 48 or 72 h after cytokines (P < 0.001, via PPARα). Cellular and secreted levels of OEA and PEA (P < 0.001-0.001) were increased in response to inflammatory mediators. OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.-Karwad, M. A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.
Collapse
Affiliation(s)
- Mustafa A Karwad
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Tara Macpherson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Bo Wang
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Elena Theophilidou
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Sarir Sarmad
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; and
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; and
| | - Michael Larvin
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Karen L Wright
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Jonathan N Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Saoirse E O'Sullivan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, United Kingdom;
| |
Collapse
|
47
|
Elgoyhen AB, Barajas-López C. A Latin American Perspective on Ion Channels. Mol Pharmacol 2016; 90:286-7. [PMID: 27535998 DOI: 10.1124/mol.116.105510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Héctor N Torres," Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina (A.B.E.), and División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, México (C.B.-L.)
| | - Carlos Barajas-López
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Héctor N Torres," Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina (A.B.E.), and División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, México (C.B.-L.)
| |
Collapse
|
48
|
Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 2016; 26:1007-20. [PMID: 27573174 PMCID: PMC5034106 DOI: 10.1038/cr.2016.100] [Citation(s) in RCA: 610] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis.
Collapse
|