1
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
3
|
Araújo AC, Tang X, Haeggström JZ. Targeting cysteinyl-leukotrienes in abdominal aortic aneurysm. Prostaglandins Other Lipid Mediat 2018; 139:24-28. [PMID: 30248405 DOI: 10.1016/j.prostaglandins.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an asymptomatic dilatation of the vessel wall exceeding the normal vessel diameter by 50%, accompanied by intramural thrombus formation. Since the aneurysm can rupture, AAA is a life-threatening vascular disease, which may be amenable to surgical repair. At present, no pharmacological therapy for AAA is available. The 5-lipoxygenase (5-LOX) pathway of arachidonic acid metabolism leads to biosynthesis of leukotrienes (LTs), potent lipid mediators with pro-inflammatory biological actions. Among the LTs, cysteinyl-leukotrienes (cys-LT) are well-recognized signaling molecules in human asthma and allergic rhinitis. However, the effects of these molecules in cardiovascular diseases have only recently been explored. Drugs antagonizing the CysLT1 receptor, termed lukasts and typified by montelukast, are established therapeutics for clinical management of asthma. Lukasts are safe, well-tolerated drugs that can be administered during long time periods. Here we describe recent data indicating that montelukast may be used for prevention and treatment of AAA, thus representing a promising pharmacological tool for a deadly vascular disease with significant socio-economic impact.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden
| | - Xiao Tang
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden
| | - Jesper Z Haeggström
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 65 Solna, Sweden.
| |
Collapse
|
4
|
Ballerini P, Di Iorio P, Ciccarelli R, Caciagli F, Poli A, Beraudi A, Buccella S, D'Alimonte I, D'Auro M, Nargi E, Patricelli P, Visini D, Traversa U. P2Y1 and Cysteinyl Leukotriene Receptors Mediate Purine and Cysteinyl Leukotriene Co-Release in Primary Cultures of Rat Microglia. Int J Immunopathol Pharmacol 2016; 18:255-68. [PMID: 15888248 DOI: 10.1177/039463200501800208] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammation is widely recognized as contributing to the pathology of acute and chronic neurodegenerative conditions. Microglial cells are pathologic sensors in the brain and activated microglia have been viewed as detrimental. Leukotriene, including cysteinyl leukotrienes (CysLTs) are suggested to be involved in brain inflammation and neurological diseases and ATP, by its receptors is a candidate for microglia activation. A23187 (10μM) stimulated microglia to co-release CysLTs and [3H]adenine based purines ([3H]ABPs), mainly ATP. The biosynthetic production of CysLTs was abolished by 10μM MK-886, an inhibitor of 5-lipoxygenase-activating protein activity. RT-PCR analysis showed that microglia expressed both CysLT1 / CysLT2 receptors, P2Y1 ATP-receptors and several members of the ATP binding cassette (ABC) transporters including MRP1, MRP4 and Pgp. The increase in [Ca2+]i elicited by LTD4 (0.1 μM) and 2MeSATP (100μM), agonists for CysLT- and P2Y1-receptors, was abolished by the respective antagonists, BAYu9773 (0.5 μM) and suramin (50 μM). The stimulation of both receptor subtypes, induced a concomitant increase in the release of both [3H]ABPs and CysLTs that was blocked by the antagonists and significantly reduced by a cocktail of ABC transporter inhibitors, BAPTA/AM (intracellular Ca2+ chelator) and staurosporine (0.1 μM, PKC blocker). P2Y antagonist was unable to antagonise the effects of LTD4 and BAYu9773 did not reduce the effects of 2MeSATP. These data suggest that: i) the efflux of purines and cysteinyl-leukotrienes is specifically and independently controlled by the two receptor types, ii) calcium, PKC and the ABC transporter system can reasonably be considered common mechanisms underlying the release of ABPs and CysLTs from microglia. The blockade of P2Y1 or CysLT1/CysLT2 receptors by specific antagonists that abolished the raise in [Ca2+]i and drastically reduced the concomitant efflux of both compounds, as well as the effects of BAPTA and staurosporine support this hypothesis. In conclusion, the data of the present study suggest a cross talk between the purine and leukotriene systems in a possible autocrine/paracrine control of the microglia-mediated initiation and progression of an inflammatory response.
Collapse
Affiliation(s)
- P Ballerini
- Department of Biomedical Sciences, G. D'Annunzio University of Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014; 171:3551-74. [PMID: 24588652 DOI: 10.1111/bph.12665] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/14/2022] Open
Abstract
The endogenous ligands for the LT, lipoxin (LX) and oxoeicosanoid receptors are bioactive products produced by the action of the lipoxygenase family of enzymes. The LT receptors BLT1 and BLT2 , are activated by LTB4 and the CysLT1 and CysLT2 receptors are activated by the cysteinyl-LTs, whereas oxoeicosanoids exert their action through the OXE receptor. In contrast to these pro-inflammatory mediators, LXA4 transduces responses associated with the resolution of inflammation through the receptor FPR2/ALX (ALX/FPR2). The aim of the present review is to give a state of the field on these receptors, with focus on recent important findings. For example, BLT1 receptor signalling in cancer and the dual role of the BLT2 receptor in pro- and anti-inflammatory actions have added more complexity to lipid mediator signalling. Furthermore, a cross-talk between the CysLT and P2Y receptor systems has been described, and also the presence of novel receptors for cysteinyl-LTs, such as GPR17 and GPR99. Finally, lipoxygenase metabolites derived from ω-3 essential polyunsaturated acids, the resolvins, activate the receptors GPR32 and ChemR23. In conclusion, the receptors for the lipoxygenase products make up a sophisticated and tightly controlled system of endogenous pro- and anti-inflammatory signalling in physiology and pathology.
Collapse
Affiliation(s)
- Magnus Bäck
- Nomenclature Subcommittee for Leukotriene Receptors, International Union of Basic and Clinical Pharmacology, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
7
|
Carnini C, Accomazzo MR, Borroni E, Vitellaro‐Zuccarello L, Durand T, Folco G, Rovati GE, Capra V, Sala A. Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT
2
receptor. FASEB J 2011; 25:3519-28. [DOI: 10.1096/fj.10-177030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chiara Carnini
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | | | - Emanuele Borroni
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM)Unité Mixte de Recherche (UMR) 5247, Centre National de la Recherche Scientifique (CNRS)/UM I/UM II, Faculté de Pharmacie, Université de Montpellier Montpellier France
| | - Giancarlo Folco
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - Valerie Capra
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| | - Angelo Sala
- Department of Pharmacological SciencesUniversity of Milan Milan Italy
| |
Collapse
|
8
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Capra V, Ravasi S, Accomazzo MR, Citro S, Grimoldi M, Abbracchio MP, Rovati GE. CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. J Cell Sci 2006; 118:5625-36. [PMID: 16306225 DOI: 10.1242/jcs.02668] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both cysteinyl-leukotrienes and extracellular nucleotides mediate inflammatory responses via specific G-protein-coupled receptors, the CysLT and the P2Y receptors, respectively. Since these mediators accumulate at sites of inflammation, and inflammatory cells express both classes of receptors, their responses are likely to be crossregulated. We investigated the molecular basis of desensitization and trafficking of the CysLT1 receptor constitutively and transiently expressed in the human monocyte/macrophage-like U937 or COS-7 cells in response to LTD4 or nucleotides. Exposure to agonist induced a rapid homologous desensitization of the CysLT1 receptor [as measured by the reduction in the maximal agonist-induced intracellular cytosolic Ca2+ ([Ca2+]i) transient], followed by receptor internalization (as assessed by equilibrium binding and confocal microscopy). Activation of P2Y receptors with ATP or UDP induced heterologous desensitization of the CysLT1 receptor. Conversely, LTD4-induced CysLT1 receptor activation had no effect on P2Y receptor responses, which suggests that the latter have a hierarchy in producing desensitizing signals. Furthermore, ATP/UDP-induced CysLT1 receptor desensitization was unable to cause receptor internalization, induced a faster recovery of CysLT1 functionality and was dependent upon protein kinase C. By contrast, homologous desensitization, which is probably dependent upon G-protein-receptor kinase 2 activation, induced a fast receptor downregulation and, accordingly, a slower recovery of CysLT1 functionality. Hence, CysLT1 receptor desensitization and trafficking are differentially regulated by the CysLT1 cognate ligand or by extracellular nucleotides. This crosstalk may have a profound physiological implication in the regulation of responses at sites of inflammation, and may represent just an example of a feedback mechanism used by cells to fine-tune their responses.
Collapse
Affiliation(s)
- Valérie Capra
- Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Ravasi S, Citro S, Viviani B, Capra V, Rovati GE. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respir Res 2006; 7:42. [PMID: 16553950 PMCID: PMC1488842 DOI: 10.1186/1465-9921-7-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/22/2006] [Indexed: 01/02/2023] Open
Abstract
Background Cysteine-containing leukotrienes (cysteinyl-LTs) are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC) proliferation. We used human ASMC (HASMC) to identify the signal transduction pathway(s) of the leukotriene D4 (LTD4)-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R) and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS) was estimated by measuring dichlorodihydrofluorescein (DCF) oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX) and phosphoinositide 3-kinase (PI3K) inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC) abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF-R through the intervention of PI3K and ROS. While PI3K and ROS involvement is an early event, the activation of Src occurs downstream of EGF-R activation and is followed by the classical Ras-ERK1/2 signaling pathway to control G1 progression and cell proliferation.
Collapse
Affiliation(s)
- Saula Ravasi
- Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Simona Citro
- Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Barbara Viviani
- Laboratory of Toxicology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Valérie Capra
- Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - G Enrico Rovati
- Laboratory of Molecular Pharmacology, Section of Eicosanoid Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
11
|
Capra V, Veltri A, Foglia C, Crimaldi L, Habib A, Parenti M, Rovati GE. Mutational analysis of the highly conserved ERY motif of the thromboxane A2 receptor: alternative role in G protein-coupled receptor signaling. Mol Pharmacol 2004; 66:880-9. [PMID: 15229298 DOI: 10.1124/mol.104.001487] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The presence of highly conserved amino acid stretches in G protein-coupled receptors (GPCRs) usually predicts an important role in receptor function. Considerable attention has therefore been focused on the involvement of the highly conserved Glu/Asp-Arg-Tyr (E/DRY) motif at the cytoplasmic end of transmembrane domain 3 in the regulation of GPCR conformational states and/or the mediation of G protein activation. In the present study, we investigated the role of Glu129 and Arg130 in the ERY of thromboxane A2 receptor alpha (TPalpha) in transfected human embryonic kidney 293 cells. We show that no conservative or nonconservative substitutions of Glu129 and Arg130 generated a constitutively active TPalpha mutant, but a nonconservative mutation of Arg130 (R130V) yielded a mutant receptor with significantly impaired 9,11-dideoxy-9alpha,11alpha-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U46619)-induced accumulation of inositol phosphates (IPs). This loss-of-function phenotype seems to be caused by the uncoupling of the TPalpha receptor from Gq, as demonstrated by the loss of high-affinity agonist binding, and not by receptor internalization, as shown by localization studies with the R130V-green fluorescent protein fusion protein. It is interesting to note that U46619-induced activation of the nonconservative E129V mutant stimulated the production of IPs with a approximately 10-fold lower EC50 and a approximately 2-fold higher Emax than in the wild-type receptor. Collectively, these data demonstrate that, unlike other GPCRs, mutations of Glu129 do not induce constitutive activity, whereas Arg130 is involved in G protein coupling or recognition, and they suggest the existence within class A GPCRs of at least two different subclasses that make different uses of the highly conserved E/DRY motif.
Collapse
Affiliation(s)
- Valérie Capra
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Capra V, Accomazzo MR, Ravasi S, Parenti M, Macchia M, Nicosia S, Rovati GE. Involvement of prenylated proteins in calcium signaling induced by LTD4 in differentiated U937 cells. Prostaglandins Other Lipid Mediat 2003; 71:235-51. [PMID: 14518564 DOI: 10.1016/s1098-8823(03)00045-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated signal transduction pathways for LTD4 in the human promonocytic cell line U937 known, upon differentiation, to express CysLT1 receptors. We confirmed the presence of high-affinity binding sites for 3H-LTD4, which, in functional studies, displayed the features of CysLT1 receptor. In fact, three potent and selective CysLT1 receptor antagonists were able to completely inhibit LTD4-induced response. In turn, cytosolic Ca2+ ([Ca2+]i) increase (EC50 = 3.4 nM +/- 27% CV) was only partially sensitive to pertussis toxin (PTx) as well as to the prenylation inhibitor fluvastatin and to the specific geranylgeranylation and farnesylation inhibitors BAL 9504 and FPT II. Finally, Clostridium sordellii lethal toxin, inhibitor of the Ras family of GTPases, and FTS, a potent methyltransferase inhibitor, were both able to partially inhibit LTD4-induced [Ca2+] increase, suggesting a role for a Ras family member in [Ca2+]i regulation. In conclusion, in dU937 LTD4 signal transduction involves: (a) at least two pathways, one sensitive and one insensitive to PTx; (b) isoprenylated proteins, such as betagamma subunits and, possibly, a small G protein of the Ras family.
Collapse
Affiliation(s)
- Valérie Capra
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cysteinyl-leukotrienes, i.e. leukotriene (LT) C4, D4 and E4, are inflammatory mediators and potent airway- and vasoconstrictors. Two different cysteinyl-leukotriene receptors, CysLT1 and CysLT2, have been cloned and functionally characterised using potent CysLT1 receptor antagonists and the dual CysLT1/CysLT2 receptor antagonist BAY u9773. However, the rank order of potency of the cysteinyl-leukotrienes at the CysLT receptors differs between tissues and studies, and a CysLT receptor classification based on agonist selectivity has not been established. In addition, the existence of more than two receptor subtypes for cysteinyl-leukotrienes has been suggested.
Collapse
Affiliation(s)
- Magnus Bäck
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
14
|
Ravasi S, Capra V, Panigalli T, Rovati GE, Nicosia S. Pharmacological differences among CysLT(1) receptor antagonists with respect to LTC(4) and LTD(4) in human lung parenchyma. Biochem Pharmacol 2002; 63:1537-46. [PMID: 11996896 DOI: 10.1016/s0006-2952(02)00889-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously reported, by means of equilibrium binding studies, the existence of two distinct binding sites with receptor characteristics for LTC(4) and LTD(4) in human lung parenchyma (HLP) membranes using S-decyl-glutathione (S-decyl-GSH) to inhibit LTC(4) binding to a number of non-receptor sites. Recently, we have been able to avoid the use of S-decyl-GSH in kinetic experiments and to characterize a distinctive pharmacological profile for the LTC(4) high affinity binding sites which do not correlates with the ability of both LTD(4) and LTC(4) to contract isolated HLP strips through the CysLT(1) receptor. Here, we report that the most advanced CysLT(1) receptor antagonists, some of which are already in clinical use, displayed a different behavior toward LTC(4) and LTD(4) in HLP. Equilibrium and kinetic binding studies demonstrated the following rank order of potency for (3)H-LTD(4) receptor (CysLT(1)): zafirlukast = montelukast > LM-1507 = LM-1484 = pranlukast. In addition, LM-1507, LM-1484, pranlukast and montelukast but not zafirlukast are able to interact also with the high affinity site for (3)H-LTC(4) (LM-1507 = LM-1484 > pranlukast; montelukast not detectable in the presence of S-decyl-GSH). In this respect, the behavior of the LM antagonists closely resembles that of pranlukast although LM-1507 and LM-1484 display a higher affinity for (3)H-LTC(4) sites. Montelukast has an intermediate behavior, inasmuch as its interaction with (3)H-LTC(4) sites can be revealed only in kinetic studies, while zafirlukast is totally unable to inhibit (3)H-LTC(4) binding. It might be, therefore, most relevant for a complete understanding of the clinical efficacy, besides their nominal potency, of the most advanced CysLT(1) receptor antagonists to consider their pharmacological differences with respect not only to LTD(4)/LTE(4), but also to LTC(4).
Collapse
Affiliation(s)
- Saula Ravasi
- Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
15
|
Mita H, Hasegawa M, Saito H, Akiyama K. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy 2001; 31:1714-23. [PMID: 11696047 DOI: 10.1046/j.1365-2222.2001.01184.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLTs) have been implicated as important contributors in the pathophysiology of asthma and their biological effects are mediated by at least two distinct G-protein-coupled receptors. cDNA sequences of cysteinyl leukotriene receptor 1 (CysLTR1) and cysteinyl leukotriene receptor 2 (CysLTR2) have recently been elucidated. OBJECTIVES Our aim is to explore gene expression and the comparative expression of CysLTR1 mRNA and CysLTR2 mRNA in human peripheral blood leucocytes. METHODS Gene expression of CysLTR1 and CysLTR2 mRNAs in human peripheral blood eosinophils, neutrophils, monocytes and T lymphocytes has been measured by competitive reverse transcription-polymerase chain reactions using RNA or DNA competitors. RESULTS (a) When cellular levels of CysLTR1 mRNA were normalized to those of G3PDH mRNA, the relative concentration of CysLTR1 mRNA in eosinophils (43.8 +/- 37.2, n = 29) was significantly higher than that in neutrophils (18.7 +/- 23.3, n = 11), monocytes (0.93 +/- 1.1, n = 10) and T lymphocytes (3.4 +/- 2.4, n = 11). (b) When measured using each DNA competitor, mRNAs for both types of CysLTR coexisted in each type of leucocyte. The ratio of CysLTR1 mRNA to CysLTR2 mRNA was significantly lower in eosinophils (0.65 +/- 0.42, n = 12) than in neutrophils (6.9 +/- 4.9, n = 12), monocytes (1.8 +/- 0.9, n = 10) and T lymphocytes (4.5 +/- 5.7, n = 10). (c) Human umbilical vein endothelial cells expressed CysLTR2 mRNA, but not CysLTR1 mRNA. CONCLUSION These studies reveal that CysLTR1 mRNA and, in particular, CysLTR2 mRNA are abundantly expressed at high levels in eosinophils, raising the possibility that CysLTR2 may have an important physiological role in eosinophils and a CysLTR2 antagonist may be a good target for preventing signal transduction by CysLTs in eosinophils.
Collapse
Affiliation(s)
- H Mita
- Clinical Research Centre, National Sagamihara Hospital, Sagamihara, Kanagawa, Japan
| | | | | | | |
Collapse
|
16
|
Martin V, Sawyer N, Stocco R, Unett D, Lerner MR, Abramovitz M, Funk CD. Molecular cloning and functional characterization of murine cysteinyl-leukotriene 1 (CysLT(1)) receptors. Biochem Pharmacol 2001; 62:1193-200. [PMID: 11705452 DOI: 10.1016/s0006-2952(01)00774-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We sought to clone and characterize the murine cysteinyl-leukotriene D(4) receptor (mCysLT(1)R) to complement our studies with leukotriene-deficient mice. A cDNA, cloned from trachea mRNA by reverse transcriptase-polymerase chain reaction, has two potential initiator ATG codons that would encode for polypeptides of 352 and 339 amino acids, respectively. These two potential forms, predicted to be seven transmembrane-spanning domain proteins, have 87% amino acid identity with the human CysLT(1) receptor (hCysLT(1)R). Membrane fractions of Cos-7 cells transiently expressing the short mCysLT(1)R demonstrated high affinity and specific binding for leukotriene D(4) (LTD(4), K(d) = 0.25 +/- 0.04 nM). In competition binding experiments, LTD(4) was the most potent competitor (K(i) = 0.8 +/- 0.2 nM) followed by LTE(4) and LTC(4) (K(i) = 86.6 +/- 24.5 and 100.1 +/- 17.1 nM, respectively) and LTB(4) (K(i) > 1.5 microM). Binding of LTD(4) was competitively inhibited by the specific CysLT(1) receptor antagonists MK-571 [(+)-3-(((3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-(dimethylamino)-3-oxopropyl)thio)methyl)thio)propanoic acid], pranlukast (Onon), and zafirlukast (Accolate), while the CysLT(1)/CysLT(2) receptor antagonist BAY-u9773 [6(R)-(4'-carboxyphenylthio)-5(S)-hydroxy-7(E),9(E),11(Z),14(Z)-eicosatetrenoic acid] was 1000 times less potent than LTD(4). In transiently transfected HEK293-T cells expressing either the long or short form of mCysLT(1)R, LTD(4) induced an increase of intracellular calcium. In Xenopus laevis melanophores transiently expressing either isoform, LTD(4) induced the dispersion of pigment granules, consistent with the activation by LTD(4) of a G(alphaq) (calcium) pathway. Functional elucidation of mCysLT(1)R properties as described here will enable further experiments to clarify the selective role of LTD(4) in murine models of inflammation and asthma.
Collapse
Affiliation(s)
- V Martin
- Center for Experimental Therapeutics, 814 BRB II/III, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kamohara M, Takasaki J, Matsumoto M, Saito T, Soga T, Matsushime H, Furuichi K. Functional characterization of cysteinyl leukotriene CysLT(2) receptor on human coronary artery smooth muscle cells. Biochem Biophys Res Commun 2001; 287:1088-92. [PMID: 11587533 DOI: 10.1006/bbrc.2001.5695] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteinyl leukotrienes (LTC(4), LTD(4), and LTE(4)) are a class of biologically active lipids that exert potent effects on the heart. To assess their roles, we investigated the distribution of their receptors, CysLT(1) and CysLT(2), in the cardiovascular system. CysLT(2) mRNA was detected at high levels in the human atrium and ventricle and at intermediate levels in the coronary artery, whereas CysLT(1) mRNA was barely detected. Further analysis by in situ hybridization revealed that CysLT(2) mRNA was expressed in myocytes, fibroblasts, and vascular smooth muscle cells, but not in endothelial cells. When human coronary smooth muscle cells were stimulated with LTC(4), the intracellular calcium concentration increased in a dose-dependent manner, and this action was partially inhibited by nicardipine. Additionally, these cells showed chemotactic responses to LTC(4). This is the first report on the physiological role of CysLT(2), and the findings suggest that CysLT(2) has biological significance in the cardiovascular system.
Collapse
Affiliation(s)
- M Kamohara
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Company, Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
This review describes the aspects of leukotriene (LT) pharmacology and biology that are relevant to their important role in asthma. The biosynthesis and metabolism, including transcellular metabolism, of LTB4 and the cysteinyl-LTs (i.e. LTC4, LTD4 and LTE4) are described, and their transport is briefly outlined. The existence, distribution and pharmacological characterization of the receptors (BLT, CysLT1, CysLT2), as well as the transduction mechanisms triggered, are discussed in detail. We also describe their effects on airway smooth muscle tone, hyperresponsiveness and proliferation, on vascular tone and permeability, on mucus secretion, on neural fibers and inflammatory cell functions. Finally, the evidence supporting their role as asthma mediators is reviewed, including the effects of anti LT drugs (both biosynthesis inhibitors and receptor antagonists) in experimental and clinical asthma.
Collapse
Affiliation(s)
- S Nicosia
- Laboratory of Molecular Pharmacology, Institute of Pharmacological Sciences, University of Milan, via Balzaretti, Milan, 9-20133, Italy.
| | | | | |
Collapse
|
19
|
Bäck M, Norel X, Walch L, Gascard J, Mazmanian G, Dahlén S, Brink C. Antagonist resistant contractions of the porcine pulmonary artery by cysteinyl-leukotrienes. Eur J Pharmacol 2000; 401:381-8. [PMID: 10936497 DOI: 10.1016/s0014-2999(00)00452-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The contractile response to cysteinyl-leukotrienes was studied in isolated porcine pulmonary arterial rings. In endothelium-denuded preparations, the concentration-response curves for leukotriene C(4) and leukotriene D(4) were identical, whereas leukotriene E(4) did not contract these tissues. The response to leukotriene C(4) was not blocked by either CysLT(1)/CysLT(2) receptor antagonism or by pre-treatment with leukotriene E(4). In preparations with an intact endothelium, leukotriene C(4) was somewhat more potent than leukotriene D(4) and the concentration-response curves were only slightly depressed in the presence of either ICI 204,219 (4-(5-cyclopentyloxycarbonylamino-1-methylindol-3-ylmethy l)-3-methoxy -N-o-tolylsulfonylbenzamide, 1 microM) or BAY u9773 (6(R)-(4'-carboxyphenylthio)-5(S)-hydroxy-7(E),9(E), 11(Z)14(Z)-eicosatetrenoic acid, 3 microM). Indomethacin (1.7 microM) significantly reduced the response to leukotriene C(4) whereas the response to leukotriene D(4) was unchanged. These findings suggest that a CysLT receptor subtype resistant to current antagonists mediated the major part of the contractions to leukotriene C(4) and leukotriene D(4) in intact preparations, and was the sole receptor associated with contractions of endothelium-denuded preparations.
Collapse
Affiliation(s)
- M Bäck
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
20
|
Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, Ohishi T, Ishii H, Ota T, Nishikawa T, Kawai Y, Masuho Y, Isogai T, Suzuki Y, Sugano S, Furuichi K. The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor. Biochem Biophys Res Commun 2000; 274:316-22. [PMID: 10913337 DOI: 10.1006/bbrc.2000.3140] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteinyl leukotrienes (CysLTs), slow-reacting substances of anaphylaxis, are lipid mediators known to possess potent proinflammatory action. Pharmacological studies using CysLTs indicate that at least two classes of G protein-coupled receptors (GPCRs), named CysLT(1) and CysLT(2), exist; the former is sensitive and the latter is resistant to the CysLT(1) antagonists currently used to treat asthma. Although the CysLT(1) receptor gene has been recently cloned, the molecular identity of the CysLT(2) receptor has remained elusive. Here we show that the pharmacological profile of an orphan GPCR (PSEC0146) is consistent with that of the CysLT(2) receptor. In human embryonic kidney 293 cells that express the PSEC0146 cDNA, leukotriene C(4) (LTC(4)) and leukotriene D(4) (LTD(4)) induce equal increases in intracellular calcium mobilization; these increases are not affected by CysLT(1) antagonists. Additionally, [(3)H]LTC(4) specifically binds to membranes from COS-1 cells transiently transfected with PSEC0146. Large amounts of the PSEC0146 mRNA are found in human heart, placenta, spleen, and peripheral blood leukocytes but not in the lung and the trachea. Pharmacological feature and expression studies will eventually lead to a better understanding of the classification of CysLT receptors, possibly leading to a reconsideration of the pathological and physiological role of CysLTs.
Collapse
Affiliation(s)
- J Takasaki
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Capra V, Ravasi S, Bolla M, Viappiani S, Pagliardini S, Belloni PA, Mezzetti M, Folco GC, Nicosia S, Rovati GE. Evaluation of the pharmacological activity of the pure cysteinyl-leukotriene receptor antagonists CGP 45715A (iralukast) and CGP 57698 in human airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 469:313-8. [PMID: 10667347 DOI: 10.1007/978-1-4615-4793-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- V Capra
- Laboratory of Molecular Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- S T Holgate
- University Medicine, Southampton General Hospital, Southampton, United Kingdom
| | | |
Collapse
|
23
|
Affiliation(s)
- S Nicosia
- Laboratory of Molecular Pharmacology, Institute of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
24
|
Nicosia S, Capra V, Accomazzo MR, Ragnuni D, Ravasi S, Caiani A, Jommi L, Saponara R, Mezzetti M, Rovati GE. Receptors for cysteinyl-leukotrienes in human cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 447:165-70. [PMID: 10086192 DOI: 10.1007/978-1-4615-4861-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- S Nicosia
- Laboratory of Molecular Pharmacology, Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Ligand-binding studies remain a very popular technique among many experimentalists. As far as equilibrium experiments are concerned, saturation and displacement curves are commonly performed for simplicity, convenience or for the sake of tradition. However, alternative protocols, such as 'mixed'-type protocols or multiligand experiments, are also possible. Indeed, there are cases where kinetic experiments, usually considered a 'second-choice' experiment, might have a superior resolving power compared to equilibrium ones. A combination of equilibrium and kinetic experiments might be a powerful solution to overcome limits and shortcomings of each specific technique and is discussed in this issue by G. Enrico Rovati. Thus, a careful choice of the design, a protocol optimization and a computerized analysis of the data can yield a dramatic improvement in the precision of the parameter estimation over more conventional approaches.
Collapse
Affiliation(s)
- G E Rovati
- Laboratory of Molecular Pharmacology, University of Milan, Italy
| |
Collapse
|