1
|
Yamauchi I, Sugawa T, Hakata T, Yoshizawa A, Kita T, Kishimoto Y, Kimura S, Sakurai A, Kosugi D, Fujita H, Okamoto K, Ueda Y, Fujii T, Taura D, Sakane Y, Yasoda A, Inagaki N. Transcriptomic landscape of hyperthyroidism in mice overexpressing thyroid-stimulating hormone. iScience 2025; 28:111565. [PMID: 39811643 PMCID: PMC11730581 DOI: 10.1016/j.isci.2024.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome. In particular, enrichment analyses identified the cell cycle, phosphatidylinositol 3-kinase/Akt pathway, and Ras-related protein 1 pathway as possibly associated with goiter development. Regarding hyperthyroidism, Slc26a4 was exclusively upregulated with TSH overexpression among genes crucial to thyroid hormone secretion. To verify its significance, we overexpressed TSH in Slc26a4 knockout mice. TSH overexpression caused hyperthyroidism in Slc26a4 knockout mice, equivalent to that in control mice. Thus, we did not observe significant changes in known genes and pathways involved in thyroid hormone secretion with TSH overexpression. Our datasets might include candidate genes that have not yet been identified as regulators of thyroid function. Our transcriptome datasets regarding hyperthyroidism can contribute to future research on TSHR signaling.
Collapse
Affiliation(s)
- Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taku Sugawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Hakata
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Yoshizawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoko Kita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sadahito Kimura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Sakurai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Kosugi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Okamoto
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Sugawa Clinic, Nakagyo-ku, Kyoto 604-8105, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto 612-8555, Japan
| | - Nobuya Inagaki
- Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Kita-ku, Osaka 530-8480, Japan
| |
Collapse
|
2
|
Hiron TK, Aguiar J, Williams JM, Falcone S, Norman PA, Elliott J, Fowkes RC, Syme HM, Davison LJ. Transcriptomic analysis reveals a critical role for activating G sα mutations in spontaneous feline hyperthyroidism. Sci Rep 2024; 14:28749. [PMID: 39567583 PMCID: PMC11579033 DOI: 10.1038/s41598-024-79564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Feline hyperthyroidism (FHT) is a debilitating disease affecting > 10% of elderly cats. It is generally characterised by chronic elevation of thyroid hormone in the absence of circulating TSH. Understanding of the molecular pathogenesis of FHT is currently limited. However, FHT shares clinical and histopathological similarities with human toxic multinodular goitre, which has been associated with activating mutations in TSH receptor (TSHR) and Gsα encoding genes. Using RNA-seq transcriptomic analysis of thyroid tissue from hyperthyroid and euthyroid cats, we identified differentially expressed genes and dysregulated pathways in FHT, many of which are downstream of TSHR. In addition, we detected missense variants in thyroid RNA-seq reads that alter the structure of both TSHR and Gsα. All FHT-associated mutations were absent in germline sequence from paired blood samples. Only a small number of hyperthyroid cats demonstrated TSHR variation, however all thyroids from advanced cases of FHT carried at least one missense variant affecting Gsα. The activating nature of the acquired Gsα mutations was demonstrated by increased cAMP production in vitro. These data indicate that constitutive activation of signalling downstream of TSHR is central to the TSH-independent production of thyroid hormone in FHT, offering a novel therapeutic target pathway in this common disease.
Collapse
Affiliation(s)
- Thomas K Hiron
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Joana Aguiar
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire, CB8 0UH, UK
| | - Jonathan M Williams
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Sara Falcone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Paul A Norman
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Jonathan Elliott
- Department of Comparative Biomedical Science, The Royal Veterinary College, London, NW1 0TU, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical Science, The Royal Veterinary College, London, NW1 0TU, UK
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI, 48824, USA
| | - Harriet M Syme
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK
| | - Lucy J Davison
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, AL9 7TA, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
3
|
Prévide RM, Wang K, Smiljanic K, Janjic MM, Nunes MT, Stojilkovic SS. Expression and Role of Thyrotropin Receptors in Proopiomelanocortin-Producing Pituitary Cells. Thyroid 2021; 31:850-858. [PMID: 33191870 PMCID: PMC8110008 DOI: 10.1089/thy.2020.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Thyrotropin (TSH) is well known as the hormone of the anterior pituitary thyrotrophs responsible for acting in the thyroid gland, where it stimulates synthesis and release of thyroid hormones through Gs and Gq/11 protein coupled TSH receptors (TSHRs). Methods: In this study, we examined whether the functional TSHRs are also expressed in cultured rat pituitary cells, using double immunocytochemistry, quantitative reverse transcription-polymerase chain reaction analysis, cAMP and hormone measurements, and single-cell calcium imaging. Results: Double immunocytochemistry revealed the expression of TSHRs in cultured corticotrophs and melanotrophs, in addition to previously identified receptors in folliculostellate cells. The functional coupling of these receptors to the Gq/11 signaling pathway was not observed, as demonstrated by the lack of TSH activation of IP3-dependent calcium mobilization in these cells when bathed in calcium-deficient medium. However, TSH increased cAMP production in a time- and concentration-dependent manner and facilitated calcium influx in single corticotrophs and melanotrophs, indicating their coupling to the Gs signaling pathway. Consistent with these findings, TSH stimulated adrenocorticotropin and β-endorphin release in male and female pituitary cells in a time- and concentration-dependent manner without affecting the expression of proopiomelanocortin gene. Conclusions: These results indicate that TSH is a potential paracrine modulator of anterior pituitary corticotrophs and melanotrophs, controlling the exocytotic but not the transcriptional pathway in a cAMP/calcium influx-dependent manner.
Collapse
Affiliation(s)
- Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
- Address correspondence to: Rafael Maso Prévide, PhD, Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, Room 8N240, 10 Center Drive, Bethesda, MD 20892-1829, USA
| | - Kai Wang
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marija M. Janjic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Boutin A, Gershengorn MC, Neumann S. β-Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Front Endocrinol (Lausanne) 2020; 11:312. [PMID: 32508750 PMCID: PMC7251030 DOI: 10.3389/fendo.2020.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
A direct action of thyrotropin (TSH, thyroid-stimulating hormone) on bone precursors in humans is controversial. Studies in rodent models have provided conflicting findings. We used cells derived from a moderately differentiated osteosarcoma stably overexpressing human TSH receptors (TSHRs) as a model of osteoblast precursors (U2OS-TSHR cells) to investigate TSHR-mediated effects in bone differentiation in human cells. We review our findings that (1) TSHR couples to several different G proteins to induce upregulation of genes associated with osteoblast activity-interleukin 11 (IL-11), osteopontin (OPN), and alkaline phosphatase (ALPL) and that the kinetics of the induction and the G protein-mediated signaling pathways involved were different for these genes; (2) TSH can stimulate β-arrestin-mediated signal transduction and that β-arrestin 1 in part mediates TSH-induced pre-osteoblast differentiation; and (3) TSHR/insulin-like growth factor 1 (IGF1) receptor (IGF1R) synergistically increased OPN secretion by TSH and IGF1 and that this crosstalk was mediated by physical association of these receptors in a signaling complex that uses β-arrestin 1 as a scaffold. These findings were complemented using a novel β-arrestin 1-biased agonist of TSHR. We conclude that TSHR can signal via several transduction pathways leading to differentiation of this model system of human pre-osteoblast cells and, therefore, that TSH can directly regulate these bone cells.
Collapse
|
5
|
Mayati A, Moreau A, Le Vée M, Bruyère A, Jouan E, Denizot C, Parmentier Y, Fardel O. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci Rep 2018; 8:16115. [PMID: 30382126 PMCID: PMC6208432 DOI: 10.1038/s41598-018-34421-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023] Open
Abstract
HepaRG is an original human hepatoma cell line, acquiring highly differentiated hepatic features when exposed to dimethylsulfoxide (DMSO). To search alternatives to DMSO, which may exert some toxicity, we have analyzed the effects of forskolin (FSK), a cAMP-generating agent known to favor differentiation of various cell types. FSK used at 50 µM for 3 days was found to promote polarization of high density-plated HepaRG cells, i.e., it markedly enhanced the formation of functional biliary canaliculi structures. It also increased expressions of various hepatic markers, including those of cytochrome P-450 (CYP) 3A4, of drug transporters like NTCP, OATP2B1 and BSEP, and of metabolism enzymes like glucose 6-phosphatase. In addition, FSK-treated HepaRG cells displayed enhanced activities of CYP3A4, NTCP and OATPs when compared to untreated cells. These polarizing/differentiating effects of FSK were next shown to reflect not only the generation of cAMP, but also the activation of the xenobiotic sensing receptors PXR and FXR by FSK. Co-treatment of HepaRG cells by the cAMP analog Sp-5,6-DCl-cBIMPS and the reference PXR agonist rifampicin reproduced the polarizing effects of FSK. Therefore, FSK may be considered as a relevant alternative to DMSO for getting polarized and differentiated HepaRG cells, notably for pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Amélie Moreau
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claire Denizot
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Yannick Parmentier
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. .,Pôle Biologie, Centre Hospitalier Universitaire, F-35033, Rennes, France.
| |
Collapse
|
6
|
Morshed SA, Ma R, Latif R, Davies TF. Biased signaling by thyroid-stimulating hormone receptor-specific antibodies determines thyrocyte survival in autoimmunity. Sci Signal 2018; 11:11/514/eaah4120. [PMID: 29363585 DOI: 10.1126/scisignal.aah4120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR). Autoimmune hyperthyroidism, commonly known as Graves' disease (GD), is caused by stimulating autoantibodies to the TSHR. We previously described TSHR-specific antibodies (TSHR-Abs) in GD that recognize linear epitopes in the cleavage region of the TSHR ectodomain (C-TSHR-Abs) and induce thyroid cell apoptosis instead of stimulating the TSHR. We found that C-TSHR-Abs entered the cell through clathrin-mediated endocytosis but did not trigger endosomal maturation and failed to undergo normal vesicular sorting and trafficking. We found that stimulating TSHR-Abs (S-TSHR-Abs) activated Gαs and, to a lesser extent, Gαq but that C-TSHR-Abs failed to activate any of the G proteins normally activated in response to TSH. Furthermore, specific inhibition of G proteins in the presence of S-TSHR-mAbs or TSH resulted in a similar failure of endosomal maturation as that caused by C-TSHR-mAbs. Hence, whereas S-TSHR-mAbs and TSH contributed to normal vesicular trafficking of TSHR through the activation of major G proteins, the C-TSHR-Abs resulted in GRK2- and β-arrestin-1-dependent biased signaling, which is interpreted as a danger signal by the cell. Our observations suggest that the binding of antibodies to different TSHR epitopes may decrease cell survival. Antibody-induced cell injury and the response to cell death amplify the loss of self-tolerance, which most likely helps to perpetuate GPCR-mediated autoimmunity.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA.
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| |
Collapse
|
7
|
Jitsukawa S, Kamekura R, Kawata K, Ito F, Sato A, Matsumiya H, Nagaya T, Yamashita K, Kubo T, Kikuchi T, Sato N, Hasegawa T, Kiyonari H, Mukumoto Y, Takano KI, Himi T, Ichimiya S. Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression. J Pathol 2017; 243:342-353. [PMID: 28771744 DOI: 10.1002/path.4951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy and its prevalence has recently been increasing worldwide. We previously reported that the level of sorting nexin 5 (Snx5), an endosomal translocator, is preferentially decreased during the progression of well-differentiated thyroid carcinoma into poorly differentiated carcinoma. To address the functional role of Snx5 in the development and progression of thyroid carcinoma, we established Snx5-deficient (Snx5-/- ) mice. In comparison to wild-type (Snx5+/+ ) mice, Snx5-/- mice showed enlarged thyroid glands that consisted of thyrocytes with large irregular-shaped vacuoles. Snx5-/- thyrocytes exhibited a higher growth potential and higher sensitivity to thyroid-stimulating hormone (TSH). A high content of early endosomes enriched with TSH receptors was found in Snx5-/- thyrocytes, suggesting that loss of Snx5 caused retention of the TSH receptor (TSHR) in response to TSH. Similar data were found for internalized EGF in primary thyrocytes. The increased TSH sensitivities in Snx5-/- thyrocytes were also confirmed by results showing that Snx5-/- mice steadily developed thyroid tumors with high metastatic potential under high TSH. Furthermore, a thyroid cancer model using carcinogen and an anti-thyroidal agent revealed that Snx5-/- mice developed metastasizing thyroid tumors with activation of MAP kinase and AKT pathways, which are postulated to be major pathways of malignant progression of human thyroid carcinoma. Our results suggest that thyrocytes require Snx5 to lessen tumorigenic signaling driven by TSH, which is a major risk factor for thyroid carcinoma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumie Ito
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Matsumiya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Nagaya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keiji Yamashita
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoki Kikuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Krieger CC, Perry JD, Morgan SJ, Kahaly GJ, Gershengorn MC. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 2017; 158:3676-3683. [PMID: 28938449 PMCID: PMC5659693 DOI: 10.1210/en.2017-00528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022]
Abstract
We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.
Collapse
Affiliation(s)
- Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Joseph D. Perry
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131 Mainz, Germany
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Movasseghi AR, Rodríguez-Estival J, Smits JEG. Thyroid pathology in deer mice (Peromyscus maniculata) from a reclaimed mine site on the athabasca oil sands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:42-49. [PMID: 28104343 DOI: 10.1016/j.envpol.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Information on naturally occurring thyroid disease in wild animals in general and in small mammals specifically is extremely limited. In the present field-based work, we investigated the structure and function of thyroid glands of deer mice (Peromyscus maniculata) studied as sentinels of ecosystem sustainability on reclaimed areas post-mining on the oil sands of northeastern Alberta, because of their greater sensitivity to contaminants relative to meadow voles (Microtus pennsylvanicus) on the same sites. Extraction of bitumen in the oil sands of northeastern Alberta, results in the release of contaminants including polycyclic aromatic compounds (PACs), metals, and metalloids to the environment that have a measurable biological cost to wildlife living in the affected areas. In previous investigations, deer mice exposed to pollution at reclaimed areas showed compromised ability to regenerate glutathione indicating oxidative stress, together with decreased testicular mass and body condition during the breeding season. In the present study, thyroid glands from those deer mice from the reclaimed site had markedly increased follicular cell proliferation and decreased colloid compared to animals from the reference site. This pathology was positively associated with the greater oxidative stress in the deer mice. Thyroid hormones, both thyroxine and triiodothyronine, were also higher in animals with greater oxidative stress indicating increased metabolic demands from contaminant related subclinical toxicity. This work emphasizes the value of using a combination of endocrinological, histological and oxidative stress biomarkers to provide sensitive measures of contaminant exposure in small mammals on the oil sands.
Collapse
Affiliation(s)
- Ahmad R Movasseghi
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW Calgary, Alberta T2N 4Z6, Canada.
| | - Jaime Rodríguez-Estival
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW Calgary, Alberta T2N 4Z6, Canada.
| | - Judit E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
10
|
Takahashi M, Li Y, Dillon TJ, Stork PJS. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem 2016; 292:1449-1461. [PMID: 28003362 DOI: 10.1074/jbc.m116.768986] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Indexed: 12/31/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1 have been proposed to mediate this activation. Using HEK293 cells as a model system, we have recently shown that both Ras and Rap1 are required for cAMP signaling to ERKs. However, cAMP-dependent Ras signaling to ERKs is transient and rapidly terminated by PKA phosphorylation of the Raf isoforms C-Raf and B-Raf. In contrast, cAMP-dependent Rap1 signaling to ERKs and Rap1 is potentiated by PKA. We show that this is due to sustained binding of B-Raf to Rap1. One of the targets of PKA is Rap1 itself, directly phosphorylating Rap1a on serine 180 and Rap1b on serine 179. We show that these phosphorylations create potential binding sites for the adaptor protein 14-3-3 that links Rap1 to the scaffold protein KSR. These results suggest that Rap1 activation of ERKs requires PKA phosphorylation and KSR binding. Because KSR and B-Raf exist as heterodimers within the cell, this binding also brings B-Raf to Rap1, allowing Rap1 to couple to ERKs through B-Raf binding to Rap1 independently of its Ras-binding domain.
Collapse
Affiliation(s)
- Maho Takahashi
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Yanping Li
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Tara J Dillon
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Philip J S Stork
- From the Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
11
|
Li Y, Dillon TJ, Takahashi M, Earley KT, Stork PJS. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem 2016; 291:21584-21595. [PMID: 27531745 DOI: 10.1074/jbc.m116.730978] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Indexed: 11/06/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is an important mediator of hormonal stimulation of cell growth and differentiation through its activation of the extracellular signal-regulated kinase (ERK) cascade. Two small G proteins, Ras and Rap1, have been proposed to mediate this activation, with either Ras or Rap1 acting in distinct cell types. Using Hek293 cells, we show that both Ras and Rap1 are required for cAMP signaling to ERKs. The roles of Ras and Rap1 were distinguished by their mechanism of activation, dependence on the cAMP-dependent protein kinase (PKA), and the magnitude and kinetics of their effects on ERKs. Ras was required for the early portion of ERK activation by cAMP and was activated independently of PKA. Ras activation required the Ras/Rap guanine nucleotide exchange factor (GEF) PDZ-GEF1. Importantly, this action of PDZ-GEF1 was disrupted by mutation within its putative cyclic nucleotide-binding domain within PDZ-GEF1. Compared with Ras, Rap1 activation of ERKs was of longer duration. Rap1 activation was dependent on PKA and required Src family kinases and the Rap1 exchanger C3G. This is the first report of a mechanism for the cooperative actions of Ras and Rap1 in cAMP activation of ERKs. One physiological role for the sustained activation of ERKs is the transcription and stabilization of a range of transcription factors, including c-FOS. We show that the induction of c-FOS by cAMP required both the early and sustained phases of ERK activation, requiring Ras and Rap1, as well as for each of the Raf isoforms, B-Raf and C-Raf.
Collapse
Affiliation(s)
- Yanping Li
- From the Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Tara J Dillon
- From the Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Maho Takahashi
- From the Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Keith T Earley
- From the Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Philip J S Stork
- From the Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098
| |
Collapse
|
12
|
Yamanaka M, Tian Z, Darvish-Ghane S, Zhuo M. Pre-LTP requires extracellular signal-regulated kinase in the ACC. Mol Pain 2016; 12:12/0/1744806916647373. [PMID: 27178245 PMCID: PMC4956388 DOI: 10.1177/1744806916647373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders.
Collapse
Affiliation(s)
- Manabu Yamanaka
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Shanxi, China Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Zhen Tian
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Shanxi, China Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Soroush Darvish-Ghane
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Shanxi, China Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
13
|
Somatostatin activates Ras and ERK1/2 via a G protein βγ-subunit-initiated pathway in thyroid cells. Mol Cell Biochem 2015; 411:253-60. [PMID: 26472731 DOI: 10.1007/s11010-015-2587-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Somatostatin (SST) is one of the main regulators of thyroid function. It acts by binding to its receptors, which lead to the dissociation of G proteins into Gαi and Gβγ subunits. However, much less is known about the function of Gβγ in thyroid cells. Here, we studied the role of SST and Gβγ dimers released upon SST stimulation on the Ras-ERK1/2 pathway in FTRL-5 thyroid cells. We demonstrate that SST activates Ras through Gi proteins, since SST-induced Ras activation is inhibited by pertussis toxin. Moreover, the specific sequestration of Gβγ dimers decreases Ras-GTP and phosphorylated ERK1/2 levels, and overexpression of Gβγ increases ERK1/2 phosphorylation induced by SST, indicating that Gβγ dimers released after SST treatment mediate activation of Ras and ERK1/2. On the other hand, SST treatment does not modify the expression of the thyroid differentiation marker sodium/iodide symporter (NIS) through ERK1/2 activation. However, SST increases AKT activation and the inhibition of the Src/PI3K/AKT pathway increases NIS levels in SST-treated cells. Thus, we conclude that, in thyroid cells, signalling from SST receptors to ERK1/2 involves a Gβγ-mediated signal acting on a Ras-dependent pathway. Moreover, we demonstrate that SST might regulates NIS expression through a Src/PI3K/AKT-dependent mechanism, but not through ERK1/2 signalling, showing the main role of this hormone in thyroid function.
Collapse
|
14
|
Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology. Pflugers Arch 2014; 466:2025-34. [PMID: 24722829 DOI: 10.1007/s00424-014-1509-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.
Collapse
|
15
|
Boutin A, Eliseeva E, Gershengorn MC, Neumann S. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J 2014; 28:3446-55. [PMID: 24723693 DOI: 10.1096/fj.14-251124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thyrotropin (TSH) activation of the TSH receptor (TSHR), a 7-transmembrane-spanning receptor (7TMR), may have osteoprotective properties by direct effects on bone. TSHR activation by TSH phosphorylates protein kinases AKT1, p38α, and ERK1/2 in some cells. We found TSH-induced phosphorylation of these kinases in 2 cell lines engineered to express TSHRs, human embryonic kidney HEK-TSHR cells and human osteoblastic U2OS-TSHR cells. In U2OS-TSHR cells, TSH up-regulated pAKT1 (7.1±0.5-fold), p38α (2.9±0.4-fold), and pERK1/2 (3.1±0.2-fold), whereas small molecule TSHR agonist C2 had no or little effect on pAKT1 (1.8±0.08-fold), p38α (1.2±0.09-fold), and pERK1/2 (1.6±0.19-fold). Furthermore, TSH increased expression of osteoblast marker genes ALPL (8.2±4.6-fold), RANKL (21±5.9-fold), and osteopontin (OPN; 17±5.3-fold), whereas C2 had little effect (ALPL, 1.7±0.5-fold; RANKL, 1.3±0.6-fold; and OPN, 2.2±0.7-fold). β-Arrestin-1 and -2 can mediate activatory signals by 7TMRs. TSH stimulated translocation of β-arrestin-1 and -2 to TSHR, whereas C2 failed to translocate either β-arrestin. Down-regulation of β-arrestin-1 by siRNA inhibited TSH-stimulated phosphorylation of ERK1/2, p38α, and AKT1, whereas down-regulation of β-arrestin-2 increased phosphorylation of AKT1 in both cell types and of ERK1/2 in HEK-TSHR cells. Knockdown of β-arrestin-1 inhibited TSH-stimulated up-regulation of mRNAs for OPN by 87 ± 1.7% and RANKL by 73 ± 2.4%, and OPN secretion by 74 ± 10%. We conclude that TSH enhances osteoblast differentiation in U2OS cells that is, in part, caused by activatory signals mediated by β-arrestin-1.
Collapse
Affiliation(s)
- Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013; 8:e75077. [PMID: 24086441 PMCID: PMC3781042 DOI: 10.1371/journal.pone.0075077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the “cocktail” of K+ channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn2+ and Hg2+ inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K+ currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn2+ and Hg2. 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Luis Cubano
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Hector Maldonado
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Rostislav Bychkov
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
17
|
Morshed SA, Ma R, Latif R, Davies TF. How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis. J Autoimmun 2013; 47:17-24. [PMID: 23958398 DOI: 10.1016/j.jaut.2013.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
Abstract
Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves' disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called "neutral" (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and James J. Peters VA Medical Center, New York, NY, USA.
| | | | | | | |
Collapse
|
18
|
Löf C, Sukumaran P, Viitanen T, Vainio M, Kemppainen K, Pulli I, Näsman J, Kukkonen JP, Törnquist K. Communication between the calcium and cAMP pathways regulate the expression of the TSH receptor: TRPC2 in the center of action. Mol Endocrinol 2012; 26:2046-57. [PMID: 23015753 DOI: 10.1210/me.2012-1171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function.
Collapse
Affiliation(s)
- Christoffer Löf
- Department of Biosciences, Åbo Akademi University, Biocity, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ge JF, Peng L, Hu CM, Wu TN. Impaired learning and memory performance in a subclinical hypothyroidism rat model induced by hemi-thyroid electrocauterisation. J Neuroendocrinol 2012; 24:953-61. [PMID: 22324892 DOI: 10.1111/j.1365-2826.2012.02297.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It is well known that clinical hypothyroidism (CH) can induce cognitive deficits, and the decision to start treatment for CH with thyroxine is usually straightforward. However, the relationship of cognition dysfunction with subclinical hypothyroidism (SCH) is inconsistent, and the decision concerning the need to treat SCH is controversial. In the present study, we induced a SCH rat model by hemi-thyroid electrocauterisation; then employed a serial of behavioural tests, including a beam balance, open field task and Morris water maze (MWM), to investigate the behaviour performance of SCH rats; and finally explored the protein expression of phosphorylated extracellular signal-regulated kinase (ERK)1/2 in the hippocampus by western blotting. The results demonstrated that hemi-thyroid electrocauterised rats had an elevated plasma thyrotrophin-stimulating hormone (TSH) level, with normal free thyroxine (fT4) and triiodothyronine (T3) concentrations, which defines SCH in humans. If rat SCH is diagnosed according to measurements of both plasma TSH higher than 97.5 percentile for the sham group and fT4 in the range 2.5-97.5 percentile for the sham group, the success rate of SCH modelling was 66.6%. SCH decreased exploratory behaviour but did not affect motor function in rats, showing a negative correlation of exploratory behaviour with plasma TSH concentration. Moreover, SCH rats displayed an impairment of learning and memory ability in the MWM task, with a longer escape latency in the acquisition phase and a shorter duration in the target quadrant in the test phase compared to that of sham rats. The mechanism for this might be related to the increased plasma TSH concentration, the decreased hippocampal T3 level and the enhanced expression of phosphorylated ERK1/2 in the hippocampus. The results of the present study, together with the results obtained in other studies, suggest that treatment is necessary for SCH.
Collapse
Affiliation(s)
- J-F Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | | | | | | |
Collapse
|
20
|
Liu YY, Zhang X, Ringel MD, Jhiang SM. Modulation of sodium iodide symporter expression and function by LY294002, Akti-1/2 and Rapamycin in thyroid cells. Endocr Relat Cancer 2012; 19:291-304. [PMID: 22355179 PMCID: PMC3736852 DOI: 10.1530/erc-11-0288] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The selective increase of Na(+)/I(-) symporter (NIS)-mediated active iodide uptake in thyroid cells allows the use of radioiodine I(131) for diagnosis and targeted treatment of thyroid cancers. However, NIS-mediated radioiodine accumulation is often reduced in thyroid cancers due to decreased NIS expression/function. As PI3K signaling is overactivated in many thyroid tumors, we investigated the effects of inhibitors for PI3K, Akt, or mTORC1 as well as their interplay on NIS modulation in thyroid cells under chronic TSH stimulation. PI3K inhibition by LY294002 increased NIS-mediated radioiodide uptake (RAIU) mainly through upregulation of NIS expression, however, mTORC1 inhibition by Rapamycin did not increase NIS-mediated RAIU despite increased NIS protein levels. In comparison, Akt inhibition by Akti-1/2 did not increase NIS protein levels, yet markedly increased NIS-mediated RAIU by decreasing iodide efflux rate and increasing iodide transport rate and iodide affinity of NIS. The effects of Akti-1/2 on NIS-mediated RAIU are not detected in nonthyroid cells, implying that Akti-1/2 or its derivatives may represent potential pharmacological reagents to selectively increase thyroidal radioiodine accumulation and therapeutic efficacy.
Collapse
Affiliation(s)
- Yu-Yu Liu
- The Ohio State Biochemistry Program, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
21
|
Ihara Y, Kanda Y, Seo M, Watanabe Y, Akamizu T, Tanaka Y. Growth stimulating antibody, as another predisposing factor of Graves' disease (GD): analysis using monoclonal TSH receptor antibodies derived from patients with GD. Endocr J 2012; 59:571-7. [PMID: 22510947 DOI: 10.1507/endocrj.ej11-0348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TSH receptor antibody (TRAb) is clinically classified into thyroid stimulating antibody (TSAb) and thyroid-stimulation blocking antibody (TSBAb). Although the former is considered to cause Graves' disease (GD), its activity does not necessarily reflect hormone production and goiter size. Moreover, uptake of 99mTcO4(-), the best indicator for GD, is correlated with activity of TSH binding inhibitor immunoglobulin better than activity of TSAb. Because uptake of 99mTcO4(-) reflects thyroid volume, these observations suggest that there exist TRAb with thyrocyte growth stimulating activity (GSA) other than TSAb. In this study, we analyzed GSA of monoclonal TRAb established from patients with GD or idiopathic myxedema (IME). GSA was measured as the degree of FRTL-5 cell growth stimulated by each TRAb. The signaling pathways of the cell growth were pharmacologically analyzed. The cell growth stimulated by TSH was strongly suppressed by protein kinase A (PKA) inhibitor, but was not affected by extracellular signal regulated kinase kinase (MEK) inhibitor. Although TSAb from GD stimulated the cell growth, both inhibitors suppressed it. Surprisingly, the cell growth was also induced by TSBAb from GD and was only suppressed by MEK inhibitor. TSBAb from IME did not have GSA and attenuated the cell growth stimulated by TSH. We concluded that 1; in GD, not only TSAb but some TSBAb could stimulate thyrocyte growth. 2; TSBAb might be classified with respect to their effects on thyrocyte growth; i.e., thyrocyte growth stimulating antibody and thyrocyte growth-stimulation blocking antibody.
Collapse
Affiliation(s)
- Yoshiaki Ihara
- Department of General Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 2010; 151:5537-49. [PMID: 20844004 PMCID: PMC2954721 DOI: 10.1210/en.2010-0424] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TSH receptor (TSHR) antibodies (Abs) may be stimulating, blocking, or neutral in their functional influences and are found in patients with autoimmune thyroid disease, especially Graves' disease (GD). Stimulators are known to activate the thyroid epithelial cells via both Gs- and Gq-coupled signaling pathways, whereas blockers inhibit the action of TSH and may act as weak agonists. However, TSHR neutral Abs do not block TSH binding and are unable to induce cAMP via Gsα. The importance of such neutral Abs in GD remains unclear because their functional consequence has been assumed to be zero. We hypothesized that: 1) neutral TSHR Abs are more common to GD than generally recognized; 2) they may induce distinct signaling imprints at the TSHR not seen with TSH itself; and 3) these signaling events may alter cellular function. To evaluate these hypotheses, we first confirmed the presence of neutral TSHR Abs in sera from patients with GD and then, using mouse and hamster neutral TSHR monoclonal Abs (N-mAbs) performed detailed signaling studies, including a proteomic Ab array, with rat thyrocytes (FRTL-5) as targets. This allowed us to examine a battery of signaling cascades and their downstream effectors. Neutral TSHR Abs were indeed frequently present in sera from patients with GD. Sixteen of 27 patients (59%) had detectable neutral TSHR Abs by competition assay with N-mAbs. On examining signaling cascades, we found that N-mAbs induced signal transduction, primarily via the protein kinase A II cascade. In addition to the activation of phosphatidylinositol 3K/Akt, N-mAbs, unlike TSH, had the ability to exclusively activate the mammalian target of rapamycin/p70 S6K, nuclear factor-κB, and MAPK-ERK1/2/p38α signaling cascades and their downstream effectors p90 ribosomal kinase/MAPK-interacting kinase-1/mitogen and stress-activated kinase-1 and N-mAbs activated all forms of protein kinase C isozymes. To define the downstream effector mechanisms produced by these signaling cascades, cytokine production, proliferation, and apoptosis in thyrocytes were investigated. Although N-mAbs produced less cytokines and proliferation compared with TSH, they had the distinction of inducing thyroid cell apoptosis under the experimental conditions used. When dissecting out possible mechanisms of apoptosis, we found that activation of multiple oxidative stress markers was the primary mechanism orchestrating the death signals. Therefore, using oxidative stress-induced apoptosis, N-mAbs may be capable of exacerbating the autoimmune response in GD via apoptotic cells inducing antigen-driven mechanisms. This may help explain the inflammatory nature of this common disorder.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
23
|
Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 2010; 10:242-67. [PMID: 20201784 DOI: 10.2174/156800910791054194] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I)) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy.
Collapse
Affiliation(s)
- Mohan Hingorani
- The Institute of Cancer Research, 237 Fulham Road, London SW36JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu H, Enyeart JA, Enyeart JJ. ACTH induces Cav3.2 current and mRNA by cAMP-dependent and cAMP-independent mechanisms. J Biol Chem 2010; 285:20040-50. [PMID: 20424171 DOI: 10.1074/jbc.m110.104190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express Ca(v)3.2 T-type Ca(2+) channels that function pivotally in adrenocorticotropic hormone (ACTH)-stimulated cortisol secretion. The regulation of Ca(v)3.2 expression in AZF cells by ACTH, cAMP analogs, and their metabolites was studied using Northern blot and patch clamp recording. Exposing AZF cells to ACTH for 3-6 days markedly enhanced the expression of Ca(v)3.2 current. The increase in Ca(v)3.2 current was preceded by an increase in corresponding CACNA1H mRNA. O-Nitrophenyl,sulfenyl-adrenocorticotropin, which produces a minimal increase in cAMP, also enhanced Ca(v)3.2 current. cAMP analogs, including 8-bromoadenosine cAMP (600 mum) and 6-benzoyladenosine cAMP (300 mum) induced CACNA1H mRNA, but not Ca(v)3.2 current. In contrast, 8-(4-chlorophenylthio) (8CPT)-cAMP (10-50 mum) enhanced CACNA1H mRNA and Ca(v)3.2 current, whereas nonhydrolyzable Sp-8CPT-cAMP failed to increase either Ca(v)3.2 current or mRNA. Metabolites of 8CPT-cAMP, including 8CPT-adenosine and 8CPT-adenine, increased Ca(v)3.2 current and mRNA with a potency and effectiveness similar to the parent compound. The Epac activator 8CPT-2'-O-methyl-cAMP and its metabolites 8CPT-2'-OMe-5'-AMP and 8CPT-2'-O-methyl-adenosine increased CACNA1H mRNA and Ca(v)3.2 current; Sp-8CPT-2'-O-methyl-cAMP increased neither Ca(v)3.2 current nor mRNA. These results reveal an interesting dichotomy between ACTH and cAMP with regard to regulation of CACNA1H mRNA and Ca(2+) current. Specifically, ACTH induces expression of CACNA1H mRNA and Ca(v)3.2 current in AZF cells by mechanisms that depend at most only partly on cAMP. In contrast, cAMP enhances expression of CACNA1H mRNA but not the corresponding Ca(2+) current. Surprisingly, chlorophenylthio-cAMP analogs stimulate the expression of Ca(v)3.2 current indirectly through metabolites. ACTH and the metabolites may induce Ca(v)3.2 expression by the same, unidentified mechanism.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio 43210-1239, USA
| | | | | |
Collapse
|
25
|
Enyeart JA, Liu H, Enyeart JJ. cAMP analogs and their metabolites enhance TREK-1 mRNA and K+ current expression in adrenocortical cells. Mol Pharmacol 2010; 77:469-82. [PMID: 20028740 PMCID: PMC2835421 DOI: 10.1124/mol.109.061861] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022] Open
Abstract
bTREK-1 K(+) channels set the resting membrane potential of bovine adrenal zona fasciculata (AZF) cells and function pivotally in the physiology of cortisol secretion. Adrenocorticotropic hormone controls the function and expression of bTREK-1 channels through signaling mechanisms that may involve cAMP and downstream effectors including protein kinase A (PKA) and exchange protein 2 directly activated by cAMP (Epac2). Using patch-clamp and Northern blot analysis, we explored the regulation of bTREK-1 mRNA and K(+) current expression by cAMP analogs and several of their putative metabolites in bovine AZF cells. At concentrations sufficient to activate both PKA and Epac2, 8-bromoadenosine-cAMP enhanced the expression of both bTREK-1 mRNA and K(+) current. N(6)-Benzoyladenosine-cAMP, which activates PKA but not Epac, also enhanced the expression of bTREK-1 mRNA and K(+) current measured at times from 24 to 96 h. An Epac-selective cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (8CPT-2'-OMe-cAMP), potently stimulated bTREK-1 mRNA and K(+) current expression, whereas the nonhydrolyzable Epac activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, Sp-isomer was ineffective. Metabolites of 8CPT-2'-OMe-cAMP, including 8-(4-chlorophenylthio)-2'-O-methyladenosine-5'-O-monophosphate and 8CPT-2'-OMe-adenosine, promoted the expression of bTREK-1 transcripts and ion current with a temporal pattern, potency, and effectiveness resembling that of the parent compound. Likewise, at low concentrations, 8-(4-chlorophenylthio)-cAMP (8CPT-cAMP; 30 microM) but not its nonhydrolyzable analog 8-(4-chlorophenylthio)-cAMP, Sp-isomer, enhanced the expression of bTREK-1 mRNA and current. 8CPT-cAMP metabolites, including 8CPT-adenosine and 8CPT-adenine, also increased bTREK-1 expression. These results indicate that cAMP increases the expression of bTREK-1 mRNA and K(+) current through a cAMP-dependent but Epac2-independent mechanism. They further demonstrate that one or more metabolites of 8-(4-chlorophenylthio)-cAMP analogs potently stimulate bTREK-1 expression by activation of a novel cAMP-independent mechanism. These findings raise significant questions regarding the specificity of 8-(4-chlorophenylthio)-cAMP analogs as cAMP mimetics.
Collapse
Affiliation(s)
- Judith A Enyeart
- Department of Neuroscience, The Ohio State University, College of Medicine and Public Health, 5196 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA.
| | | | | |
Collapse
|
26
|
Liu H, Enyeart JA, Enyeart JJ. N6-substituted cAMP analogs inhibit bTREK-1 K+ channels and stimulate cortisol secretion by a protein kinase A-independent mechanism. Mol Pharmacol 2009; 76:1290-301. [PMID: 19734321 PMCID: PMC2784727 DOI: 10.1124/mol.109.057075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/04/2009] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels whose inhibition by cAMP is coupled to membrane depolarization and cortisol secretion through complex signaling mechanisms. cAMP analogs with substitutions in the 6 position of the adenine ring selectively activate cAMP-dependent protein kinase (PKA) but not exchange proteins activated by cAMP (Epacs). In whole-cell patch-clamp recordings from AZF cells, we found that 6-benzoyl-cAMP (6-Bnz-cAMP) and 6-monobutyryl-cAMP potently inhibit bTREK-1 K+ channels, even under conditions in which PKA activity was abolished. Specifically, when applied through the patch electrode, 6-Bnz-cAMP inhibited bTREK-1 with an IC(50) of less than 0.2 microM. Inhibition of bTREK-1 by 6-Bnz-cAMP was not diminished by PKA antagonists, including N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), adenosine 3'-5'cyclic monophosphothiate, Rp-isomer, protein kinase inhibitor (PKI) (6-22) amide, and myristoylated PKI (14-22), applied alone or in combination, externally and intracellularly through the patch pipette. Under similar conditions, these same antagonists completely blocked PKA activation by 6-Bnz-cAMP. Inhibition of bTREK-1 by 6-Bnz-cAMP was voltage-independent and eliminated in the absence of ATP in the pipette solution. 6-Bnz-cAMP also produced delayed increases in cortisol synthesis and the expression of CYP11a1 mRNA that were only partially blocked by PKA antagonists. These results indicate that 6-Bnz-cAMP and other 6-substituted cAMP analogs can inhibit bTREK-1 K+ channels and stimulate delayed increases in cortisol synthesis by AZF cells through a PKA- and Epac-independent mechanism. They also suggest that adrenocorticotropin and cAMP function in these cells through a third cAMP-dependent protein. Finally, although 6-modified cAMP analogs exhibit high selectivity in activating PKA over Epac, they also may interact with other unidentified proteins expressed by eukaryotic cells.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, OSU College of Medicine and Public Health, Columbus, OH, USA
| | | | | |
Collapse
|
27
|
Vuchak LA, Tsygankova OM, Prendergast GV, Meinkoth JL. Protein kinase A and B-Raf mediate extracellular signal-regulated kinase activation by thyrotropin. Mol Pharmacol 2009; 76:1123-9. [PMID: 19720729 PMCID: PMC2774990 DOI: 10.1124/mol.109.060129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/31/2009] [Indexed: 01/30/2023] Open
Abstract
Thyrotropin (TSH) regulates thyroid cell proliferation and function through cAMP-mediated signaling pathways that activate protein kinase A (PKA) and Epac/Rap1. The respective roles of PKA versus Epac/Rap1 in TSH signaling remain unclear. We set out to determine whether PKA and/or Rap1 mediate extracellular signal-regulated kinase (ERK) activation by TSH. Neither blocking Rap1 activity nor silencing the expression of Rap1 impaired TSH or forskolin-induced ERK activation in Wistar rat thyroid cells. Direct activation of Epac1 failed to stimulate ERK activity in starved cells, suggesting that Epac-induced Rap1 activity is not coupled to ERK activation in rat thyroid cells. By contrast, PKA activity was required for cAMP-stimulated ERK phosphorylation and was sufficient to increase ERK phosphorylation in starved cells. Expression of dominant-negative Ras inhibited ERK activation by TSH, forskolin, and N(6)-monobutyryl (6MB)-cAMP, a selective activator of PKA. Silencing the expression of B-Raf also inhibited ERK activation by TSH, forskolin, and 6MB-cAMP, but not that stimulated by insulin or serum. Depletion of B-Raf impaired TSH-induced DNA synthesis, indicating a functional role for B-Raf in TSH-regulated proliferation. Collectively, these results position PKA, Ras, and B-Raf as upstream regulators of ERK activation and identify B-Raf as a selective target of cAMP-elevating agents in thyroid cells. These data provide the first evidence for a functional role for B-Raf in TSH signaling.
Collapse
Affiliation(s)
- Lisa A Vuchak
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6061, USA
| | | | | | | |
Collapse
|
28
|
Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin North Am 2009; 38:319-41, viii. [PMID: 19328414 DOI: 10.1016/j.ecl.2009.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) has a central role in thyrocyte function and is also one of the major autoantigens for the autoimmune thyroid diseases. We review the post-translational processing, multimerization, and intramolecular cleavage of TSHR, all of which may modulate its signal transduction. The recent characterization of monoclonal antibodies to the TSHR, including stimulating, blocking, and neutral antibodies, have also revealed unique biologic insights into receptor activation and the variety of these TSHR antibodies may help explain the multiple clinical phenotypes seen in autoimmune thyroid diseases. Knowledge of the structure/function relationship of the TSHR is beginning to provide a greater understanding of thyroid physiology and thyroid autoimmunity.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Mount Sinai School of Medicine and the James J. Peters VA Medical Center, New York, NY 10468, USA.
| | | | | | | |
Collapse
|
29
|
Obara Y, Nakahata N, Stork PJS. [cAMP signaling for ERK activation in neuronal cells]. Nihon Yakurigaku Zasshi 2009; 133:63-8. [PMID: 19218743 DOI: 10.1254/fpj.133.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Michalek K, Morshed SA, Latif R, Davies TF. TSH receptor autoantibodies. Autoimmun Rev 2009; 9:113-6. [PMID: 19332151 DOI: 10.1016/j.autrev.2009.03.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 03/24/2009] [Indexed: 11/30/2022]
Abstract
Thyrotropin receptor autoantibodies (TSHR-Abs) of the stimulating variety are the hallmark of Graves' disease. The presence of immune defects leading to synthesis of TSHR-Abs causes hyperthyroidism and is associated with other extrathyroidal manifestations. Further characterization of these antibodies has now been made possible by the generation of monoclonal antibodies with this unique stimulating capacity as well as similar TSHR-Abs not associated with hyperthyroidism. Their present classification divides TSHR-Abs into stimulating, blocking (competing with TSH binding) and neutral (no signaling). Recent studies using monoclonal TSHR-Abs has revealed that stimulating and blocking antibodies bind to the receptor using mostly conformational epitopes, whilst neutral antibodies utilize exclusively linear peptides. Subtle differences in epitopes for stimulating and blocking antibodies account for the diversity of their biological actions. Recently non-classical signaling elicited by neutral antibodies has also been described, raising the need for a new classification of TSHR-Abs.
Collapse
Affiliation(s)
- Krzysztof Michalek
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters VA Medical Center, New York, NY 10468, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The TSH receptor (TSHR) is constitutively active and is further enhanced by TSH ligand binding or by stimulating TSHR antibodies (TSHR-Abs) as seen in Graves' disease. TSH is known to activate the thyroid epithelial cell via both Galphas-cAMP/protein kinase A/ERK and Galphaq-Akt/protein kinase C coupled signaling networks. The recent development of monoclonal antibodies to the TSHR has enabled us to investigate the hypothesis that different TSHR-Abs may have unique signaling imprints that differ from TSH ligand itself. We have, therefore, performed sequential studies, using rat thyrocytes (FRTL-5, passages 5-20) as targets, to examine the signaling pathways activated by a series of monoclonal TSHR-Abs in comparison with TSH itself. Activation of key signaling molecules was estimated by specific immunoblots and/or enzyme immunoassays. Continuing constitutive TSHR activity in thyroid cells, deprived of TSH and serum for 48 h, was demonstrated by pathway-specific chemical inhibition. Under our experimental conditions, TSH ligand and TSHR-stimulating antibodies activated both Galphas and Galphaq effectors. Importantly, some TSHR-blocking and TSHR-neutral antibodies were also able to generate signals, influencing primarily the Galphaq effectors and induced cell proliferation. Most strikingly, antibodies that used the Galphaq cascades used c-Raf-ERK-p90RSK as a unique signaling cascade not activated by TSH. Our study demonstrated that individual TSHR-Abs had unique molecular signatures which resulted in sequential preferences. Because downstream thyroid cell signaling by the TSHR is both ligand dependent and independent, this may explain why TSHR-Abs are able to have variable influences on thyroid cell biology.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | |
Collapse
|
32
|
Matsuse M, Mitsutake N, Rogounovitch T, Saenko V, Nakazawa Y, Rumyantsev P, Lushnikov E, Suzuki K, Yamashita S. Mutation analysis of RAP1 gene in papillary thyroid carcinomas. Endocr J 2009; 56:161-4. [PMID: 18948674 DOI: 10.1507/endocrj.k08e-244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In human papillary thyroid carcinomas (PTCs), the genetic alterations of RET/PTC, RAS or BRAF account for about 60-70% of cases with practically no overlap, providing strong genetic evidence that constitutive active signaling along MAPK pathway is critical for PTC development. In the remaining 30-40% of the cases, the oncogenes are still unknown. RAP1 is a member of the RAS family of small G proteins transmitting signals from the TSH-R to MAPK pathway using cAMP-dependent mechanism in thyroid cells. RAP1 was shown to have both mitogenic and tumorigenic properties in certain systems; however, the potential role of RAP1 mutation in thyroid carcinogenesis has yet to be elucidated. In this study, we analyzed the mutational status of RAP1 gene in 36 Russian patients with PTCs without RET/PTC rearrangement, BRAF mutation or RAS mutation. No mutations in either RAP1A or RAP1B genes were found. These results suggest that RAP1 mutation does not play an important role in PTC pathogenesis.
Collapse
Affiliation(s)
- Michiko Matsuse
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ugland H, Boquest AC, Naderi S, Collas P, Blomhoff HK. cAMP-mediated induction of cyclin E sensitizes growth-arrested adipose stem cells to DNA damage-induced apoptosis. Mol Biol Cell 2008; 19:5082-92. [PMID: 18799628 DOI: 10.1091/mbc.e08-01-0094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle-related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation. Concomitantly, however, the level of cyclin E markedly increases upon cAMP induction, indicating that cyclin E may have cdk2-independent functions in these cells besides its role as a cdk2 activator. Indeed, we found indications of a cdk2-independent role of cyclin E in DNA damage-induced apoptosis. 8-CPT-cAMP sensitizes ASCs to gamma-irradiation-induced apoptosis, an effect abolished by knockdown of cyclin E. Moreover, cAMP induces early activation of ERK, leading to reduced degradation of cyclin E. The cAMP-mediated up-regulation of cyclin E was blocked by knockdown of ERK or by an inhibitor of the ERK kinase MEK. We conclude that cAMP inhibits cdk2 activity and pRB phosphorylation, leading to reduced ASC proliferation. Concomitant with this growth inhibition, however, cyclin E levels are increased in a MEK/ERK-dependent manner. Our results suggest that cyclin E plays an important, cdk2-independent role in genotoxic stress-induced apoptosis in mesenchymal stem cells.
Collapse
Affiliation(s)
- Hege Ugland
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
34
|
García-Jiménez C, Santisteban P. TSH signalling and cancer. ACTA ACUST UNITED AC 2008; 51:654-71. [PMID: 17891229 DOI: 10.1590/s0004-27302007000500003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 12/20/2022]
Abstract
Thyroid cancers are the most frequent endocrine neoplasms and mutations in the thyrotropin receptor (TSHR) are unusually frequent. Here we present the state-of-the-art concerning the role of TSHR in thyroid cancer and discuss it in light of the cancer stem cell theory or the classical view. We briefly review the gene and protein structure updating the cancer related TSHR mutations database. Intriguingly, hyperfunctioning TSHR mutants characterise differentiated cancers in contrast to undifferentiated thyroid cancers which very often bear silenced TSHR. It remains unclear whether TSHR alterations in thyroid cancers play a role in the onset or they appear as a consequence of genetic instability during evolution, but the presence of functional TSHR is exploited in therapy. We outline the signalling network build up in the thyrocyte between TSHR/PKA and other proliferative pathways such as Wnt, PI3K and MAPK. This networks integrity surely plays a role in the onset/evolution of thyroid cancer and needs further research. Lastly, future investigation of epigenetic events occurring at the TSHR and other loci may give better clues for molecular based therapy of undifferentiated thyroid carcinomas. Targeted demethylating agents, histone deacetylase inhibitors combined with retinoids and specific RNAis may help treatment in the future.
Collapse
|
35
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
36
|
Büch TR, Biebermann H, Kalwa H, Pinkenburg O, Hager D, Barth H, Aktories K, Breit A, Gudermann T. G13-dependent Activation of MAPK by Thyrotropin. J Biol Chem 2008; 283:20330-41. [DOI: 10.1074/jbc.m800211200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Kogai T, Ohashi E, Jacobs MS, Sajid-Crockett S, Fisher ML, Kanamoto Y, Brent GA. Retinoic acid stimulation of the sodium/iodide symporter in MCF-7 breast cancer cells is mediated by the insulin growth factor-I/phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 2008; 93:1884-92. [PMID: 18319322 PMCID: PMC2386284 DOI: 10.1210/jc.2007-1627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Roscioni SS, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:345-57. [PMID: 18176800 DOI: 10.1007/s00210-007-0246-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022]
Abstract
Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II) are cyclic AMP-activated guanine nucleotide exchange factors for Ras-like GTPases. Since their discovery about 10 years ago, it is now accepted that Epac proteins are novel cAMP sensors that regulate several pivotal cellular processes, including calcium handling, cell proliferation, cell survival, cell differentiation, cell polarization, cell-cell adhesion events, gene transcription, secretion, ion transport, and neuronal signaling. Recent studies even indicated that Epac proteins might play a role in the regulation of inflammation and the development of cardiac hypertrophy. Meanwhile, a plethora of diverse effectors of Epac proteins have been assigned, such as Ras and Rho GTPases, phospholiase C-epsilon, phospholipase D, mitogen-activated protein kinases, protein kinase B/Akt, ion channels, secretory-granule associated proteins and regulators of the actin-microtubule network, the latter probably involved in the spatiotemporal dynamics of Epac-related signaling. This review highlights multi-faceted effectors and diverse biological functions driven by Epac proteins that might explain certain controversial signaling properties of cAMP.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | |
Collapse
|
39
|
Hochbaum D, Hong K, Barila G, Ribeiro-Neto F, Altschuler DL. Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J Biol Chem 2007; 283:4464-8. [PMID: 18063584 DOI: 10.1074/jbc.c700171200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.
Collapse
Affiliation(s)
- Daniel Hochbaum
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Ishida M, Mitsui T, Yamakawa K, Sugiyama N, Takahashi W, Shimura H, Endo T, Kobayashi T, Arita J. Involvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture. Am J Physiol Endocrinol Metab 2007; 293:E1529-37. [PMID: 17925456 DOI: 10.1152/ajpendo.00028.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic hormones, including dopamine, regulate critical functions of pituitary cells via the cAMP-protein kinase A (PKA) pathway. The PKA-downstream transcription factor cAMP response element (CRE)-binding protein (CREB) is an integrating molecule that is also activated by many other protein kinase pathways. We investigated the involvement of CREB in the regulation of cell proliferation and the PRL promoter of rat lactotrophs in primary cell culture. Recombinant adenoviruses were used for efficient gene delivery into pituitary cells. Bromocriptine, a dopaminergic agonist known to decrease intracellular cAMP concentrations, caused inhibition of PRL promoter activity and lactotroph proliferation, which was accompanied by decreases in CRE-mediated transcription and CREB phosphorylation in lactotrophs. Expression of a dominant-negative form of CREB (MCREB), which was effective in suppressing CRE-mediated transcription induced by the adenylate cyclase activator forskolin, inhibited basal and forskolin-induced PRL promoter activity and PRL mRNA expression. MCREB expression lowered basal proliferative levels and blocked forskolin-induced proliferation of lactotrophs. Insulin-like growth factor I (IGF-I), a potent mitogen in lactotrophs, did not affect intracellular cAMP concentrations but transiently increased lactotroph CREB phosphorylation. MCREB expression also inhibited IGF-I-induced lactotroph proliferation. These results suggest that CREB is involved in the regulation of cell proliferation and the PRL promoter in normal lactotrophs and that dopamine inhibition of these lactotroph functions is at least in part due to inhibition of the cAMP-PKA-CREB pathway.
Collapse
Affiliation(s)
- Maho Ishida
- Dept. of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, Univ. of Yamanashi, 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dremier S, Milenkovic M, Blancquaert S, Dumont JE, Døskeland SO, Maenhaut C, Roger PP. Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells. Endocrinology 2007; 148:4612-22. [PMID: 17584967 DOI: 10.1210/en.2007-0540] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TSH, mainly acting through cAMP, is the principal physiological regulator of thyroid gland function, differentiation expression, and cell proliferation. Both cAMP-dependent protein kinases [protein kinase A (PKA)] and the guanine-nucleotide-exchange factors for Rap proteins, exchange proteins directly activated by cAMP (Epac) 1 and Epac2, are known to mediate a broad range of effects of cAMP in various cell systems. In the present study, we found a high expression of Epac1 in dog thyrocytes, which was further increased in response to TSH stimulation. Epac1 was localized in the perinuclear region. Epac2 showed little or no expression. The TSH-induced activation of Rap1 was presumably mediated by Epac1 because it was mimicked by the Epac-selective cAMP analog (8-p-chloro-phenyl-thio-2'-O-methyl-cAMP) and not by PKA-selective cAMP analogs. Surprisingly, in view of the high Epac1 expression and its TSH responsiveness, all the cAMP-dependent functions of TSH in cultures or tissue incubations of dog thyroid, including acute stimulation of thyroid hormone secretion, H(2)O(2) generation, actin cytoskeleton reorganization, p70(S6K1) activity, delayed stimulation of differentiation expression, and mitogenesis, were induced only by PKA-selective cAMP analogs. The Epac activator 8-p-chloro-phenyl-thio-2'-O-methyl-cAMP, used alone or combined with PKA-selective cAMP analogs, had no measurable effect on any of these TSH targets. Therefore, PKA activation seems to mediate all the recognized cAMP-dependent effects of TSH and is thus presumably responsible for the pathological consequences of its deregulation. The role of Epac1 and TSH-stimulated Rap1 activation in thyrocytes is still elusive.
Collapse
Affiliation(s)
- Sarah Dremier
- Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Fang Y, Olah ME. Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 2007; 322:1189-200. [PMID: 17565009 DOI: 10.1124/jpet.107.119933] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A critical process in angiogenesis is endothelial cell proliferation, which requires activation of extracellular signal-regulated kinase (ERK)1/2. This study analyzed the pathway responsible for adenosine-induced ERK1/2 phosphorylation in human umbilical vein endothelial cells (HUVEC). Characterization with adenosine receptor (AR) agonists and antagonists and the AR mRNA profile demonstrated that stimulation of the A(2B)AR can mediate ERK1/2 phosphorylation in HUVEC. The lack of sensitivity of A(2B)AR-mediated ERK1/2 phosphorylation to 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X) and 3-[1-[3-(amidinothio)propyl]-1H-in-dol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (bisindolylmaleimide IX) (Ro31-8220) indicated that protein kinase C stimulation is not required. The response did not involve transactivation of receptors for epidermal growth factor or vascular endothelial growth factor (VEGF). The A(2B)AR-mediated response required functional G(alphas) and was mimicked by forskolin and 8-bromoadenosine 3',5'-cyclic monophosphate. However, ERK1/2 phosphorylation induced by A(2B)AR stimulation and forskolin was insensitive to protein kinase A inhibitors. It was hypothesized that the A(2B)AR-mediated ERK1/2 activation may involve exchange protein activated by cAMP (Epac), a cAMP-activated guanine nucleotide exchange factor for Rap GTPases. Reverse Transcription-polymerase chain reaction analysis detected Epac1 but not Epac2 in HUVEC. 8-(p-Chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP), an Epac activator, stimulated ERK1/2 phosphorylation. Overexpression of Epac1 enhanced A(2B)AR-mediated and forskolin-induced ERK1/2 phosphorylation, whereas response to VEGF was unaffected. Inhibition of Epac1 expression with small interfering RNA substantially reduced A(2B)AR-mediated and forskolin-induced ERK1/2 phosphorylation and abolished that by 8CPT-2Me-cAMP. A(2B)AR stimulation and forskolin activated Rap1. Expression of a dominant-negative Ras protein did not affect either forskolin-induced or A(2B)AR-mediated ERK1/2 phosphorylation. In summary, Epac1 activation in HUVEC results in ERK1/2 activation, and this protein, at least in part, mediates response to the physiologically relevant event of A(2B)AR stimulation.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Ohio, USA
| | | |
Collapse
|
43
|
Xie Y, Wolff DW, Lin MF, Tu Y. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Mol Pharmacol 2007; 72:73-85. [PMID: 17430995 DOI: 10.1124/mol.107.033894] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acquisition of androgen independence by prostate cancer is the key problem of prostate cancer progression. Vasoactive intestinal peptide (VIP), a neuropeptide, may act as a survival factor for prostate cancer cells under androgen deprivation. However, the molecular mechanisms by which VIP promotes the androgen-independent growth of androgen-sensitive prostate cancer cells have not been addressed. We therefore investigated the biological effect and signal pathway of VIP in LNCaP cells, a prostate cancer cell line that requires androgens for growth. We showed that low nanomolar concentrations of VIP, acting through G(s)-protein-coupled VIP receptors, can induce LNCaP cell growth in the absence of androgen. Blockade of androgen-receptor (AR) in these cells by AR antagonist bicalutamide or by anti-AR small interfering RNA, inhibited the proliferative effect of VIP. In addition, VIP stimulated androgen-independent activation of AR with an EC(50) of 3.0 +/- 0.8 nM. We then investigated VIP-stimulated signaling events that may interact with the AR pathway in prostate cancer cells. VIP regulation of AR activation, mediated by VIP receptors, was protein kinase A (PKA)-dependent, and extracellular signal-regulated kinase 1/2 (ERK1/2) activation contributes to VIP-mediated AR activation. Furthermore, PKA-dependent Rap1 activation is required for both ERK1/2 activation and androgen-independent AR activation in LNCaP cells upon VIP stimulation. Finally, we showed that VIP-induced AR activation was also present in prostate cancer CWR22Rv1 and PC3 cells transfected with the wild-type AR. Altogether, we demonstrate that VIP acting through its G(s)-protein-coupled receptors can cause androgen-independent transactivation of AR through a PKA/Rap1/ERK1/2 pathway, thus promoting androgen-independent proliferation of androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
44
|
Leal ALRC, Pantaleão TU, Moreira DG, Marassi MP, Pereira VS, Rosenthal D, Corrêa da Costa VM. Hypothyroidism and hyperthyroidism modulates Ras-MAPK intracellular pathway in rat thyroids. Endocrine 2007; 31:174-8. [PMID: 17873330 DOI: 10.1007/s12020-007-0029-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/04/2007] [Accepted: 05/14/2007] [Indexed: 11/30/2022]
Abstract
Thyrotrophin induces proliferation and function in thyroid cells acting through a seven transmembrane G protein-coupled receptor. The proliferative pathways induced by thyrotropin (TSH) in thyrocytes in vivo are not completely understood yet. The aim of this work is to evaluate if Ras can be induced by TSH in rat thyroids, and whether extracellular regulated kinase (ERK) may be involved in the subsequent intracellular signalling cascade. We induced hypothyroidism in Wistar rats by methimazole (MMI) treatment (0.03% in the drinking water for 21 days). A subset of the hypothyroid rats received T4 (1 microg/100 g bw) during the last 10 days of MMI treatment. Hyperthyroidism was induced by subcutaneous injections of T4 (10 microg/100 g bw) during 10 days in another group of rats. Our data show that in the hypothyroid rats there is a clear positive Ras modulation, but a decrease in pERK. In contrast, thyroidal pERK increases in T4-induced hyperthyroidism, but without any change in RAS, although these changes did not reach statistical significance. Thus, while the rat thyroid proliferation induced by TSH may involve an increase in RAS signalling, the subsequent cascade does not involve ERK phosphorilation, which in fact, increases during T4-induced hyperthyroidism.
Collapse
Affiliation(s)
- Anna Lúcia R C Leal
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS-bloco G, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Obara Y, Horgan AM, Stork PJS. The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. J Neurochem 2007; 101:470-82. [PMID: 17254020 DOI: 10.1111/j.1471-4159.2006.04390.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cerebellar granule cells, the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) cascade mediates multiple functions, including proliferation, differentiation, and survival. In these cells, ERKs are activated by diverse stimuli, including cyclic adenosine monophosphate (cAMP), pituitary adenylate cyclase activating protein (PACAP), depolarization induced by elevated extracellular potassium (KCl), and the neurotrophin brain-derived neurotrophic factor. Extensive studies in neuronal cell lines have implicated the small G proteins Ras and Rap1 in the activation of ERKs by cAMP, PACAP, and KCl. However, the requirement of Ras and Rap1 in these pathways in cerebellar granule cells has not been addressed. In this study, we utilize multiple biochemical assays to determine the mechanisms of action and requirement of Ras and Rap1 in cultured cerebellar granule cells. We show that both Ras and Rap1 can be activated by cAMP or PACAP via protein kinase (PKA)-dependent mechanisms. KCl activation of Ras also required PKA. Using both adenoviral and transgenic approaches, we show that Ras plays a major role in ERK activation by cAMP, PACAP, and KCl, while Rap1 also mediates activation of a selective membrane-associated pool of ERKs. Furthermore, Rap1, but not Ras, activation by PKA appears to require the action of Src family kinases.
Collapse
Affiliation(s)
- Yutaro Obara
- Vollum Institute, L474, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
46
|
Sebolt-Leopold JS, Herrera R, Ohren JF. The mitogen-activated protein kinase pathway for molecular-targeted cancer treatment. Recent Results Cancer Res 2007; 172:155-67. [PMID: 17607940 DOI: 10.1007/978-3-540-31209-3_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
47
|
Cormaci G, Mori T, Hayashi T, Su TP. Protein kinase A activation down-regulates, whereas extracellular signal-regulated kinase activation up-regulates sigma-1 receptors in B-104 cells: Implication for neuroplasticity. J Pharmacol Exp Ther 2007; 320:202-10. [PMID: 17050780 DOI: 10.1124/jpet.106.108415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) can bind psychostimulants and was shown to be up-regulated in the brain of methamphetamine self-administering rats. Up-regulation of Sig-1Rs has been implicated in neuroplasticity. However, the mechanism(s) whereby Sig-1Rs are up-regulated by psychostimulants is unknown. Here, we employed a neuroblastoma cell line B-104, devoid of dopamine receptors and transporter, and examined the effects of psychostimulants as well as cAMP on the expression of Sig-1Rs in this cell line, with a specific goal to identify signal transduction pathway(s) that may regulate Sig-1R expression. Chronic treatments of B-104 cells with physiological concentrations of cocaine or methamphetamine failed to alter the expression of Sig-1Rs. N6,2'-O-Dibutyryl-cAMP (dB-cAMP), when used at 0.5 mM, caused a down-regulation of Sig-1Rs that could be blocked by a protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89). However, dB-cAMP, when used at 2 mM, caused an up-regulation of Sig-1Rs that was insensitive to the H-89 blockade but was partially blocked by an extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone). Furthermore, 2 mM dB-cAMP induced an ERK phosphorylation lasting at least 90 min, at which time the phosphorylation caused by 0.5 mM dB-cAMP had already diminished. PD98059, applied 90 min after addition of 2 mM dB-cAMP, attenuated the Sig-1R up-regulation. Our results indicate that cAMP is bimodal in regulating Sig-1R expression: a down-regulation via PKA and an up-regulation via ERK. Results also suggest that psychostimulants may manipulate the cAMP-PKA-Sig-1R and/or the cAMP-ERK-Sig-1R pathways to achieve a neuroplasticity that favors addictive behaviors.
Collapse
Affiliation(s)
- Gianfrancesco Cormaci
- Development and Plasticity Section/Cellular Neurobiology Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
48
|
Laezza C, Mazziotti G, Fiorentino L, Gazzerro P, Portella G, Gerbasio D, Carella C, Matarese G, Bifulco M. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway. J Mol Med (Berl) 2006; 84:967-73. [PMID: 16947002 DOI: 10.1007/s00109-006-0079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to evaluate in vivo the antiproliferative effect of an inhibitor of isoprenoids metabolism, lovastatin, in an experimental model of propylthiouracil-induced goiter. In thyroid cells, thyrotropin (TSH)-induced proliferation requires active isoprenoid synthesis, and the HMG-CoA reductase inhibitors have antiproliferative effects in vitro. Propylthiouracil treatment (PTU) of rats led to thyroid hypertrophy and hyperplasia by TSH-induced activation of the mitogen-activated protein kinase (MAPK) pathway. Immunohistochemistry showed an increased number of proliferating cell nuclear antigen (PCNA)-positive cells in the thyroid gland of PTU-treated rats. Moreover, the phosphorylation of ERK1 and ERK2 was increased in the extract from goiter tissue as compared with the thyroid tissue of untreated rats. To determine whether the inhibition of selected pro-survival pathways (i.e., p21ras-MAPK) was sufficient to affect goitrogenesis, thyroids from 12 PTU-treated rats were injected in vivo with an adenovirus transducing a dominant-negative ras gene (Rad-L61.S186) and another set of 12 rats were injected with a pharmacological inhibitor of MAPK (PD98059). Both Rad-L61.S186 and PD98059 were able to inhibit the PTU-induced goiter. It is interesting to note that lovastatin, when administered in drinking water, significantly prevented the thyroid gland enlargement. Therefore, lovastatin-treated thyroid glands were significantly smaller than those treated with PTU alone. In addition, the lovastatin-treated glands also showed a decreased expression of phosphorylated ERK1/2 and a number of PCNA-positive cells. Our data suggest that lovastatin is an efficient inhibitor of goitrogenesis and provide a rationale for innovative therapeutic strategies employing statins in the treatment of nodular goiter in humans.
Collapse
Affiliation(s)
- Chiara Laezza
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, 84084, Fisciano, Salerno, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gilbert JA, Gianoukakis AG, Salehi S, Moorhead J, Rao PV, Khan MZ, McGregor AM, Smith TJ, Banga JP. Monoclonal pathogenic antibodies to the thyroid-stimulating hormone receptor in Graves' disease with potent thyroid-stimulating activity but differential blocking activity activate multiple signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 176:5084-92. [PMID: 16585606 DOI: 10.4049/jimmunol.176.8.5084] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thyroid target Ag for disease-inducing autoantibodies in Graves' disease is the receptor for thyroid-stimulating hormone (TSH), but little is known about the molecular basis of this pathogenic Ab response. We describe the characteristics of two high- affinity mAbs developed from an experimental murine model of hyperthyroid Graves' disease that exhibit potent thyroid-stimulating activity. Nanogram concentrations of the IgG mAbs KSAb1 and KSAb2 and their Fab induce full stimulation of the TSH receptor that is matched by the ligand TSH and, thus, act as full agonists for the receptor. However, KSAb1 and KSAb2 display differential activities in their ability to block TSH-mediated stimulation of the receptor, indicating subtle differences in their biological properties. In displacement studies, IgG and Fabs of KSAb1 and KSAb2 compete with Graves' disease autoantibodies as well as thyroid-blocking Abs present in some hypothyroid patients, indicating a close relationship between these autoimmune determinants on the receptor. In passive transfer studies, single injections of microgram quantities of KSAb1 or KSAb2 IgG led to rapid elevation of serum thyroxine and a hyperthyroid state that was maintained for a number of days. The thyroid glands showed evidence of cell necrosis, but there was no accompanying mononuclear cell infiltrate. In studying their receptor activation pathways, both KSAb1 and KSAb2 provoked phosphorylation of the intracellular ERK1/2 pathway in primary thyrocytes, indicating that multiple signaling pathways may participate in the pathogenesis of Graves' disease. In summary, our findings emphasize the similarities of the experimental mouse model in reproducing the human disorder and provide improved means for characterizing the molecular basis of this pathogenic response.
Collapse
Affiliation(s)
- Jacqueline A Gilbert
- King's College London, Division of Gene and Cell Based Therapy, King's College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B, Stork PJS. Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 2006; 26:2130-45. [PMID: 16507992 PMCID: PMC1430276 DOI: 10.1128/mcb.26.6.2130-2145.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/07/2005] [Accepted: 12/23/2005] [Indexed: 11/20/2022] Open
Abstract
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.
Collapse
Affiliation(s)
- Zhiping Wang
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|