1
|
Ngotho P, Dantzler Press K, Peedell M, Muasya W, Omondi BR, Otoboh SE, Gomez J, Coronado L, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes survival of Plasmodium falciparum gametocytes. PLoS Pathog 2025; 21:e1013110. [PMID: 40354414 DOI: 10.1371/journal.ppat.1013110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., peaking in the immature stages and tapering off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of a proportion of immature gametocyte-infected RBCs (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. Based on these findings we propose that the reversible surface remodelling allows (i) immature gametocyte sequestration in bone marrow followed by (ii) mature gametocyte release into peripheral circulation (and immune evasion due to loss of surface antigens), therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kathleen Dantzler Press
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jahiro Gomez
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Lorena Coronado
- Instituto de Investigaciones Científicas y Servicios de alta Tecnología de Panamá, Panamá City, Panamá
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, Maryland, United States of America
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Guizetti J. Imaging malaria parasites across scales and time. J Microsc 2025. [PMID: 39749880 DOI: 10.1111/jmi.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules. This review explores the expansive field of light microscopy, focusing on its application to malaria research. Imaging technologies have transformed our understanding of biological systems, yet navigating the complex and ever-growing landscape of techniques can be daunting. This review offers a guide for researchers, especially those working on malaria, by providing historical context as well as practical advice on selecting the right imaging approach. The review advocates an integrated methodology that prioritises the research question while considering key factors like sample preparation, fluorophore choice, imaging modality, and data analysis. In addition to presenting seminal studies and innovative applications of microscopy, the review highlights a broad range of topics, from traditional techniques like white light microscopy to advanced methods such as superresolution microscopy and time-lapse imaging. It addresses the emerging challenges of microscopy, including phototoxicity and trade-offs in resolution and speed, and offers insights into future technologies that might impact malaria research. This review offers a mix of historical perspective, technological progress, and practical guidance that appeal to novice and advanced microscopists alike. It aims to inspire malaria researchers to explore imaging techniques that could enrich their studies, thus advancing the field through enhanced visual exploration of the parasite across scales and time.
Collapse
Affiliation(s)
- Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
4
|
Xu L, Feng X, Wang D, Gao F, Feng C, Shan Q, Wang G, Yang F, Zhang J, Hou J, Sun D, Wang T. Improved Liver Intravital Microscopic Imaging Using a Film-Assisted Stabilization Method. ACS Sens 2024; 9:5284-5292. [PMID: 39228132 DOI: 10.1021/acssensors.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Intravital microscopy (IVM) is a valuable method for biomedical characterization of dynamic processes, which has been applied to many fields such as neuroscience, oncology, and immunology. During IVM, vibration suppression is a major challenge due to the inevitable respiration and heartbeat from live animals. In this study, taking liver IVM as an example, we have unraveled the vibration inhibition effect of liquid bridges by studying the friction characteristics of a moist surface on the mouse liver. We confirmed the presence of liquid bridges on the liver through fluorescence imaging, which can provide microscale and nondestructive liquid connections between adjacent surfaces. Liquid bridges were constructed to sufficiently stabilize the liver after abdominal dissection by covering it with a polymer film, taking advantage of the high adhesion properties of liquid bridges. We further prototyped a microscope-integrated vibration-damping device with adjustable film tension to simplify the sample preparation procedure, which remarkably decreased the liver vibration. In practical application scenarios, we observed the process of liposome phagocytosis by liver Kupffer cells with significantly improved image and video quality. Collectively, our method not only provided a feasible solution to vibration suppression in the field of IVM, but also has the potential to be applied to vibration damping of precision instruments or other fields that require nondestructive ″soft″ vibration damping.
Collapse
Affiliation(s)
- Libang Xu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobing Feng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Fang Gao
- Department of No.1 Operating Room, Dalian Municipal Central Hospital Affiliated to Dalian University of Technology, Dalian 116024, China
| | - Chenxu Feng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiji Shan
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfeng Zhang
- Department of Medical Equipment, Ningcheng Traditional Chinese and Mongolian Medicine Hospital, Chifeng 024200, China
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072, Australia
| | - Donglei Sun
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiesheng Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Muchaamba G, Venugopal K, Gächter B, Vogler B, Hetzel U, Albini S, Marti M. Avian malaria in a feral-pet pigeon: a case report. Malar J 2024; 23:294. [PMID: 39358742 PMCID: PMC11446001 DOI: 10.1186/s12936-024-05116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Avian malaria is caused by diverse parasite species of the genus Plasmodium, and it affects various bird species. The occurrence of this disease in some wild bird species is sparsely documented due to the scarce availability of samples. Hence the pathogenicity in some hosts is not completely known. In addition, feral birds may act as reservoirs bridging the transmission cycle from wild migratory birds to domestic and zoo-kept bird species. CASE PRESENTATION An owner of pigeons adopted a feral pigeon (Columba livia forma domestica) and housed it together with his other pet-pigeons. The bird died unexpectedly a few weeks after a surgical procedure and necropsy revealed a severely anaemic carcass, with pale organs and hydropericardium. Histopathologic analysis revealed inflammatory infiltrates in the lung and liver, and monocytes and Kupffer cells contained haemozoin pigment indicative of phagocytosis of Plasmodium-infected erythrocytes. A high erythrocytic infection rate of 18% was evident in tissues and blood vessels in various organs. Furthermore, the thyroid had masses classified as thyroid carcinomas. Immunohistochemistry with anti- Plasmodium falciparum HSP70 antibody revealed positive signals in erythrocytes and intravascular leucocytes. Further microscopy analysis using a Hemacolor-stained impression smear revealed a high parasitaemia with an asynchronous infection showing all erythrocytic stages. Molecular diagnosis by PCR identified Plasmodium relictum, lineage GRW11 as the aetiological agent. The bird presented died most likely due to an acute infection as evidenced by the high blood parasitaemia, leading to major erythrocyte destruction. Further analyses of feral pigeons (n = 22) did not reveal any additional cases of Plasmodium infections. CONCLUSION This study reports the first mortality associated with P. relictum lineage GRW11. The study supports previous studies, suggesting that Plasmodium infections are not frequent in pigeons. Host conditions like immunosuppression due to the tumour may have influenced the infection outcome in this fatal case. Use of anti-P. falciparum HSP70 antibody for detection of P. relictum antigens for immune assays in blood and tissue samples will be a useful tool for future studies.
Collapse
Affiliation(s)
- Gillian Muchaamba
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kannan Venugopal
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Bettina Gächter
- Section for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Vogler
- Section for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- Section for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Matthias Marti
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland.
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Khan SA, Alsulami MN, Alsehimi AA, Alzahrani MS, Mosule DA, Albohiri HH. Beta vulgaris Betalains Mitigate Parasitemia and Brain Oxidative Stress Induced by Plasmodium berghei in Mice. Pharmaceuticals (Basel) 2024; 17:1064. [PMID: 39204168 PMCID: PMC11357596 DOI: 10.3390/ph17081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Although many drugs have been discovered to treat malaria infection, many of them face resistance from the host's body with long-term use. Therefore, this study aimed to evaluate the activity of betalains (from Beta vulgaris) and chloroquine (a reference drug) against brain oxidative stress induced by Plasmodium berghei in male mice. Two protocols were applied in this study: the therapeutic and prophylactic protocols. The results of the therapeutic protocol revealed a significant decrease in the level of parasitemia caused by P. berghei. Additionally, the histopathological changes in various brain regions were markedly improved after treatment with betalains. Regarding the prophylactic protocol, betalains were able to protect the brain tissues from oxidative stress, inflammation, and disrupted neurotransmitters expected to occur as a result of infection by P. berghei. This was demonstrated by modulating the activities of brain antioxidants (SOD and GSH), inflammatory cytokines (IL-6, IL-10, IL-12, TNF-α, and INF-γ), and neurotransmitters (serotonin, epinephrine, and norepinephrine). This study has proven that using betalains as a treatment or as a preventive has a vital and effective role in confronting the brain histopathological, oxidative stress, and inflammatory changes induced by P. berghei infection.
Collapse
Affiliation(s)
- Samar A. Khan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Muslimah N. Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Atif A. Alsehimi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.S.A.)
| | - Majed S. Alzahrani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.S.A.)
| | - Dina A. Mosule
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| | - Haleema H. Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (S.A.K.); (M.N.A.); (D.A.M.)
| |
Collapse
|
7
|
Voss TS, Brancucci NM. Regulation of sexual commitment in malaria parasites - a complex affair. Curr Opin Microbiol 2024; 79:102469. [PMID: 38574448 DOI: 10.1016/j.mib.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Malaria blood stage parasites commit to either one of two distinct cellular fates while developing within erythrocytes of their mammalian host: they either undergo another round of asexual replication or they differentiate into nonreplicative transmissible gametocytes. Depending on the state of infection, either path may support or impair the ultimate goal of human-to-human transmission via the mosquito vector. Malaria parasites therefore evolved strategies to control investments into asexual proliferation versus gametocyte formation. Recent work provided fascinating molecular insight into shared and unique mechanisms underlying the control and environmental modulation of sexual commitment in the two most widely studied malaria parasite species, Plasmodium falciparum and P. berghei. With this review, we aim at placing these findings into a comparative mechanistic context.
Collapse
Affiliation(s)
- Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| | - Nicolas Mb Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
8
|
Ngotho P, Press KD, Peedell M, Muasya W, Omondi BR, Otoboh SE, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes transmission of Plasmodium falciparum gametocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591837. [PMID: 38746342 PMCID: PMC11092622 DOI: 10.1101/2024.04.30.591837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, MD, United States
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
10
|
Moss WJ, Brusini L, Kuehnel R, Brochet M, Brown KM. Apicomplexan phosphodiesterases in cyclic nucleotide turnover: conservation, function, and therapeutic potential. mBio 2024; 15:e0305623. [PMID: 38132724 PMCID: PMC10865986 DOI: 10.1128/mbio.03056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.
Collapse
Affiliation(s)
- William J. Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ronja Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kevin M. Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Bansal GP, Kumar N. Immune mechanisms targeting malaria transmission: opportunities for vaccine development. Expert Rev Vaccines 2024; 23:645-654. [PMID: 38888098 PMCID: PMC11472754 DOI: 10.1080/14760584.2024.2369583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination. AREAS COVERED In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector. EXPERT OPINION To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.
Collapse
Affiliation(s)
- Geetha P. Bansal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70122, USA
| | - Nirbhay Kumar
- Department of Global Health, The Milken Institute School of Public Health, George Washington University, Washington DC, 20052, USA
| |
Collapse
|
12
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
13
|
Machado H, Temudo A, Niz MD. The lymphatic system favours survival of a unique T. brucei population. Biol Open 2023; 12:bio059992. [PMID: 37870927 PMCID: PMC10651106 DOI: 10.1242/bio.059992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Trypanosoma brucei colonise and multiply in the blood vasculature, as well as in various organs of the host's body. Lymph nodes have been previously shown to harbour large numbers of parasites, and the lymphatic system has been proposed as a key site that allows T. brucei distribution through, and colonization of the mammalian body. However, visualization of host-pathogen interactions in the lymphatic system has never captured dynamic events with high spatial and temporal resolution throughout infection. In our work, we used a mixture of tools including intravital microscopy and ex vivo imaging to study T. brucei distribution in 20 sets of lymph nodes. We demonstrate that lymph node colonization by T. brucei is different across lymph node sets, with the most heavily colonised being the draining lymph nodes of main tissue reservoirs: the gonadal white adipose tissue and pancreas. Moreover, we show that the lymphatic vasculature is a pivotal site for parasite dispersal, and altering this colonization by blocking LYVE-1 is detrimental for parasite survival. Additionally, parasites within the lymphatic vasculature have unique morphological and behavioural characteristics, different to those found in the blood, demonstrating that across both types of vasculature, these environments are physically separated. Finally, we demonstrate that the lymph nodes and the lymphatic vasculature undergo significant alterations during T. brucei infection, resulting in oedema throughout the host's body.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - António Temudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
- Bioimaging Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
14
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. Blood Adv 2023; 7:5496-5509. [PMID: 37493969 PMCID: PMC10515311 DOI: 10.1182/bloodadvances.2023010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. Although it has been observed that Plasmodium falciparum infection in late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA sequencing after fluorescence-activated cell sorting of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with P falciparum. Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared with that in uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Although some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Yana Ryan
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
15
|
Quaye IK, Aleksenko L, Paganotti GM, Peloewetse E, Haiyambo DH, Ntebela D, Oeuvray C, Greco B. Malaria Elimination in Africa: Rethinking Strategies for Plasmodium vivax and Lessons from Botswana. Trop Med Infect Dis 2023; 8:392. [PMID: 37624330 PMCID: PMC10458071 DOI: 10.3390/tropicalmed8080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Isaac K. Quaye
- Pan African Vivax and Ovale Network, Faculty of Engineering Computer and Allied Sciences, Regent University College of Science and Technology, #1 Regent Ave, McCarthy Hill, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| | - Larysa Aleksenko
- Department of Health Sciences, School of Public Health, College of Health, Medicine and Life Sciences, Brunel University, Kingston Lane, Uxbridge, Middlesex, London UB8 3PH, UK;
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Riverwalk, Gaborone P.O. Box 45498, Botswana;
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana;
| | - Daniel H. Haiyambo
- Department of Human, Biological and Translational Medical Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia School of Medicine, Hage Geingob Campus, Windhoek Private Bag 13301, Namibia;
| | - Davies Ntebela
- National Malaria Program, Ministry of Health, Gaborone Private Bag 0038, Botswana;
| | - Claude Oeuvray
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - Beatrice Greco
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - the PAVON Consortium
- PAVON, Regent University College of Science and Technology, #1 Regent Avenue, McCarthy Hiil, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| |
Collapse
|
16
|
Feldman TP, Ryan Y, Egan ES. Plasmodium falciparum infection of human erythroblasts induces transcriptional changes associated with dyserythropoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.538003. [PMID: 37398027 PMCID: PMC10312461 DOI: 10.1101/2023.04.23.538003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During development down the erythroid lineage, hematopoietic stem cells undergo dramatic changes to cellular morphology and function in response to a complex and tightly regulated program of gene expression. In malaria infection, Plasmodium spp . parasites accumulate in the bone marrow parenchyma, and emerging evidence suggests erythroblastic islands are a protective site for parasite development into gametocytes. While it has been observed that Plasmodium falciparum infection of late-stage erythroblasts can delay terminal erythroid differentiation and enucleation, the mechanism(s) underlying this phenomenon are unknown. Here, we apply RNA-seq after fluorescence-activated cell sorting (FACS) of infected erythroblasts to identify transcriptional responses to direct and indirect interaction with Plasmodium falciparum . Four developmental stages of erythroid cells were analyzed: proerythroblast, basophilic erythroblast, polychromatic erythroblast, and orthochromatic erythroblast. We found extensive transcriptional changes in infected erythroblasts compared to uninfected cells in the same culture, including dysregulation of genes involved in erythroid proliferation and developmental processes. Whereas some indicators of cellular oxidative and proteotoxic stress were common across all stages of erythropoiesis, many responses were specific to cellular processes associated with developmental stage. Together, our results evidence multiple possible avenues by which parasite infection can induce dyserythropoiesis at specific points along the erythroid continuum, advancing our understanding of the molecular determinants of malaria anemia. Key Points Erythroblasts at different stages of differentiation have distinct responses to infection by Plasmodium falciparum . P. falciparum infection of erythroblasts alters expression of genes related to oxidative and proteotoxic stress and erythroid development.
Collapse
|
17
|
Muema JM, Mutunga JM, Obonyo MA, Getahun MN, Mwakubambanya RS, Akala HM, Cheruiyot AC, Yeda RA, Juma DW, Andagalu B, Johnson JL, Roth AL, Bargul JL. Isoliensinine from Cissampelos pariera rhizomes exhibits potential gametocytocidal and anti-malarial activities against Plasmodium falciparum clinical isolates. Malar J 2023; 22:161. [PMID: 37208735 DOI: 10.1186/s12936-023-04590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The unmet demand for effective malaria transmission-blocking agents targeting the transmissible stages of Plasmodium necessitates intensive discovery efforts. In this study, a bioactive bisbenzylisoquinoline (BBIQ), isoliensinine, from Cissampelos pariera (Menispermaceae) rhizomes was identified and characterized for its anti-malarial activity. METHODS Malaria SYBR Green I fluorescence assay was performed to evaluate the in vitro antimalarial activity against D6, Dd2, and F32-ART5 clones, and immediate ex vivo (IEV) susceptibility for 10 freshly collected P. falciparum isolates. To determine the speed- and stage-of-action of isoliensinine, an IC50 speed assay and morphological analyses were performed using synchronized Dd2 asexuals. Gametocytocidal activity against two culture-adapted gametocyte-producing clinical isolates was determined using microscopy readouts, with possible molecular targets and their binding affinities deduced in silico. RESULTS Isoliensinine displayed a potent in vitro gametocytocidal activity at mean IC50gam values ranging between 0.41 and 0.69 µM for Plasmodium falciparum clinical isolates. The BBIQ compound also inhibited asexual replication at mean IC50Asexual of 2.17 µM, 2.22 µM, and 2.39 µM for D6, Dd2 and F32-ART5 respectively, targeting the late-trophozoite to schizont transition. Further characterization demonstrated a considerable immediate ex vivo potency against human clinical isolates at a geometric mean IC50IEV = 1.433 µM (95% CI 0.917-2.242). In silico analyses postulated a probable anti-malarial mechanism of action by high binding affinities for four mitotic division protein kinases; Pfnek1, Pfmap2, Pfclk1, and Pfclk4. Additionally, isoliensinine was predicted to possess an optimal pharmacokinetics profile and drug-likeness properties. CONCLUSION These findings highlight considerable grounds for further exploration of isoliensinine as an amenable scaffold for malaria transmission-blocking chemistry and target validation.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya.
| | - James M Mutunga
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- Department of Biological Sciences, School of Pure and Applied Sciences, Mount Kenya University, Thika, Kenya
- School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya
| | | | - Hoseah M Akala
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Agnes C Cheruiyot
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Redemptah A Yeda
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis W Juma
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Ben Andagalu
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Jaree L Johnson
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Amanda L Roth
- U.S. Army Medical Research Directorate-Africa (USAMRD-A), Centre for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya.
- International Centre of Insect Physiology and Ecology (Icipe), Nairobi, Kenya.
| |
Collapse
|
18
|
Wichers-Misterek JS, Binder AM, Mesén-Ramírez P, Dorner LP, Safavi S, Fuchs G, Lenz TL, Bachmann A, Wilson D, Frischknecht F, Gilberger TW. A Microtubule-Associated Protein Is Essential for Malaria Parasite Transmission. mBio 2023; 14:e0331822. [PMID: 36625655 PMCID: PMC9973338 DOI: 10.1128/mbio.03318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Annika M. Binder
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Paolo Mesén-Ramírez
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Lilian Patrick Dorner
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Soraya Safavi
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Tobias L. Lenz
- Biology Department, University of Hamburg, Hamburg, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Xu Y, Dong Y, Deng Y, Huang H, Chen M, Liu Y, Wu J, Zhang C, Zheng W. Molecular identification of vivax malaria relapse patients in the Yunnan Province based on homology analysis of the Plasmodium vivax circumsporozoite protein gene. Parasitol Res 2023; 122:85-96. [PMID: 36334150 PMCID: PMC9816221 DOI: 10.1007/s00436-022-07700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
More than 85% of the malaria burden in the Yunnan Province is caused by imported vivax malaria, and Yunnan is also where the majority of vivax malaria patients are diagnosed in China. Timely removal of the infection sources of Plasmodium vivax and its breeding environment remains the key to eliminating the secondary transmission of imported malaria. To that end, blood samples were collected from cases diagnosed and revalidated as single species infection with P. vivax in the Yunnan Province from 2013 to 2020. Specifically, samples from vivax malaria patients with suspected relapses episodes were subjected to PCR amplification, product sequencing, and analysis of the P. vivax circumsporozoite protein (pvcsp) gene. In total, 77 suspected relapse patients were identified out of 2484 cases infected with P. vivax, with a total of 81 recurrent episodes. A total of 156 CDS (coding DNA sequence) chains were obtained through PCR amplification and sequencing of the pvcsp gene from 159 blood samples, 121 of which can be matched to the paired sequences of 59 vivax malaria patients with both primary attack and recurrent experience. Of the 59 pairs of pvcsp gene sequences, every one of 31 pairs showed only one haplotype and no variant sites (VS), meaning every two paired sequence was completely homologous. Every one of the remaining 28 paired sequences had two haplotypes but no length polymorphism, indicating that the paired sequences was "weakly heterologous" with no fragment insertions (or deletions). All 59 vivax malaria patients with recurrences were caused by the activation of P. vivax hypnozoites originated from the same population as the primary infection. The paired analysis of the similarity between high variant genes allowed the identification of relapse episodes caused by P. vivax homologous hypnozoites and also demonstrated pvcsp gene as one of the candidate molecular markers for tracing infection origin.
Collapse
Affiliation(s)
- Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei, 230031, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Jing Wu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Webi Zheng
- Center for Disease Control and Prevention, Baoshan, 678000, China.
| |
Collapse
|
20
|
Donsante S, Siciliano G, Ciardo M, Palmisano B, Messina V, de Turris V, Farinacci G, Serafini M, Silvestrini F, Corsi A, Riminucci M, Alano P. An in vivo humanized model to study homing and sequestration of Plasmodium falciparum transmission stages in the bone marrow. Front Cell Infect Microbiol 2023; 13:1161669. [PMID: 37153157 PMCID: PMC10154621 DOI: 10.3389/fcimb.2023.1161669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Siciliano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Messina
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | | | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| | - Pietro Alano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| |
Collapse
|
21
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Dumarchey A, Lavazec C, Verdier F. Erythropoiesis and Malaria, a Multifaceted Interplay. Int J Mol Sci 2022; 23:ijms232112762. [PMID: 36361552 PMCID: PMC9657351 DOI: 10.3390/ijms232112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
One of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.
Collapse
Affiliation(s)
- Aurélie Dumarchey
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, 75014 Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Correspondence:
| |
Collapse
|
23
|
Abstract
Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine; and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
24
|
de Jong RM, Alkema M, Oulton T, Dumont E, Teelen K, Nakajima R, de Assis RR, Press KWD, Ngotho P, Tetteh KK, Felgner P, Marti M, Collins KA, Drakeley C, Bousema T, Stone WJ. The acquisition of humoral immune responses targeting Plasmodium falciparum sexual stages in controlled human malaria infections. Front Immunol 2022; 13:930956. [PMID: 35924245 PMCID: PMC9339717 DOI: 10.3389/fimmu.2022.930956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals infected with P. falciparum develop antibody responses to intra-erythrocytic gametocyte proteins and exported gametocyte proteins present on the surface of infected erythrocytes. However, there is currently limited knowledge on the immunogenicity of gametocyte antigens and the specificity of gametocyte-induced antibody responses. In this study, we assessed antibody responses in participants of two controlled human malaria infection (CHMI) studies by ELISA, multiplexed bead-based antibody assays and protein microarray. By comparing antibody responses in participants with and without gametocyte exposure, we aimed to disentangle the antibody response induced by asexual and sexual stage parasites. We showed that after a single malaria infection, a significant anti-sexual stage humoral response is induced in malaria-naïve individuals, even after exposure to relatively low gametocyte densities (up to ~1,600 gametocytes/mL). In contrast to antibody responses to well-characterised asexual blood stage antigens that were detectable by day 21 after infection, responses to sexual stage antigens (including transmission blocking vaccine candidates Pfs48/45 and Pfs230) were only apparent at 51 days after infection. We found antigens previously associated with early gametocyte or anti-gamete immunity were highly represented among responses linked with gametocyte exposure. Our data provide detailed insights on the induction and kinetics of antibody responses to gametocytes and identify novel antigens that elicit antibody responses exclusively in individuals with gametocyte exposure. Our findings provide target identification for serological assays for surveillance of the malaria infectious reservoir, and support vaccine development by describing the antibody response to leading vaccine antigens after primary infection.
Collapse
Affiliation(s)
- Roos M. de Jong
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Manon Alkema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elin Dumont
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Karina Teelen
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | | | - Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kevin K.A. Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Katharine A. Collins
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Centre of Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J.R. Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,*Correspondence: Will J.R. Stone,
| |
Collapse
|
25
|
Aaron TS, Fooksman DR. Dynamic organization of the bone marrow plasma cell niche. FEBS J 2022; 289:4228-4239. [PMID: 35114061 DOI: 10.1111/febs.16385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023]
Abstract
Prophylactic, serological memory relies on maintaining stable reservoirs of plasma cells, capable of constitutively-secreting high-affinity, anti-pathogen antibody for a lifetime. Although antibody titers generated by some vaccines (e.g. measles) can last a lifetime, other vaccinations (e.g. tetanus) need repeated boosting because long-lived plasma cells are not produced or maintained. Moreover, in old age, the ability to generate long-lived humoral responses diminishes. Despite their importance to health, it is unknown how long-lived plasma cells survive over years, whereas most antibody secreting cells die off within weeks after vaccination. In this review, we focus on how known factors regulate the longevity of plasma cell fitness and survival, and how that landscape is shaped by environmental influences, such as inflammation, infection and aging. In addition, we highlight newly discovered cellular dynamics in the bone marrow that may reframe the mechanisms supporting long-lived plasma cell survival and function.
Collapse
Affiliation(s)
- Tonya S Aaron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
28
|
Feldman TP, Egan ES. Uncovering a Cryptic Site of Malaria Pathogenesis: Models to Study Interactions Between Plasmodium and the Bone Marrow. Front Cell Infect Microbiol 2022; 12:917267. [PMID: 35719356 PMCID: PMC9201243 DOI: 10.3389/fcimb.2022.917267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
The bone marrow is a critical site of host-pathogen interactions in malaria infection. The discovery of Plasmodium asexual and transmission stages in the bone marrow has renewed interest in the tissue as a niche for cellular development of both host and parasite. Despite its importance, bone marrow in malaria infection remains largely unexplored due to the challenge of modeling the complex hematopoietic environment in vitro. Advancements in modeling human erythropoiesis ex-vivo from primary human hematopoietic stem and progenitor cells provide a foothold to study the host-parasite interactions occurring in this understudied site of malaria pathogenesis. This review focuses on current in vitro methods to recapitulate and assess bone marrow erythropoiesis and their potential applications in the malaria field. We summarize recent studies that leveraged ex-vivo erythropoiesis to shed light on gametocyte development in nucleated erythroid stem cells and begin to characterize host cell responses to Plasmodium infection in the hematopoietic niche. Such models hold potential to elucidate mechanisms of disordered erythropoiesis, an underlying contributor to malaria anemia, as well as understand the biological determinants of parasite sexual conversion. This review compares the advantages and limitations of the ex-vivo erythropoiesis approach with those of in vivo human and animal studies of the hematopoietic niche in malaria infection. We highlight the need for studies that apply single cell analyses to this complex system and incorporate physical and cellular components of the bone marrow that may influence erythropoiesis and parasite development.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Elizabeth S. Egan,
| |
Collapse
|
29
|
Single-cell views of the Plasmodium life cycle. Trends Parasitol 2022; 38:748-757. [DOI: 10.1016/j.pt.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
|
30
|
Barbieri D, Gomez L, Royer L, Dupuy F, Franetich JF, Tefit M, N’Dri ME, Mazier D, Silvie O, Moreno-Sabater A, Lavazec C. The Phosphodiesterase Inhibitor Tadalafil Promotes Splenic Retention of Plasmodium falciparum Gametocytes in Humanized Mice. Front Cell Infect Microbiol 2022; 12:883759. [PMID: 35694548 PMCID: PMC9174641 DOI: 10.3389/fcimb.2022.883759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of erythrocytes infected with Plasmodium falciparum gametocytes in the bloodstream is closely related to the modulation of their mechanical properties. New drugs that increase the stiffness of infected erythrocytes may thus represent a novel approach to block malaria parasite transmission. The phosphodiesterase inhibitor tadalafil has been shown to impair the ability of infected erythrocytes to circulate in an in vitro model for splenic retention. Here, we used a humanized mouse model to address in vivo the effect of tadalafil on the circulation kinetics of mature gametocyte-infected erythrocytes. We show that stiff immature gametocyte-infected erythrocytes are retained in the spleen of humanized mice at rates comparable to that of the in vitro model. Accordingly, tadalafil-induced stiffening of mature gametocyte-infected erythrocytes impairs their circulation in the bloodstream and triggers their retention by the spleen. These in vivo results validate that tadalafil is a novel drug lead potentially capable of blocking malaria parasite transmission by targeting GIE mechanical properties.
Collapse
Affiliation(s)
- Daniela Barbieri
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Lina Gomez
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Ludivine Royer
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Florian Dupuy
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Maurel Tefit
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Marie-Esther N’Dri
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
| | - Alicia Moreno-Sabater
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Paris, France
- Service de Parasitologie-Mycologie Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France
| | - Catherine Lavazec
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
- *Correspondence: Catherine Lavazec,
| |
Collapse
|
31
|
Hentzschel F, Gibbins MP, Attipa C, Beraldi D, Moxon CA, Otto TD, Marti M. Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. SCIENCE ADVANCES 2022; 8:eabm7348. [PMID: 35476438 PMCID: PMC9045723 DOI: 10.1126/sciadv.abm7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthew P. Gibbins
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Charalampos Attipa
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dario Beraldi
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Christopher A. Moxon
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
32
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
33
|
Abstract
Plasmodium malaria parasites use a unique substrate-dependent locomotion, termed gliding motility, to migrate through tissues and invade cells. Previously, it was thought that the small labile invasive stages that invade erythrocytes, merozoites, use this motility solely to penetrate target erythrocytes. Here we reveal that merozoites use gliding motility for translocation across host cells prior to invasion. This forms an important preinvasion step that is powered by a conserved actomyosin motor and is regulated by a complex signaling pathway. This work broadens our understanding of the role of gliding motility and invasion in the blood and will have a significant impact on our understanding of blood stage host–pathogen interactions and parasite biology, with implications for interventions targeting erythrocyte invasion. Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.
Collapse
|
34
|
Little TS, Cunningham DA, Vandomme A, Lopez CT, Amis S, Alder C, Addy JWG, McLaughlin S, Hosking C, Christophides G, Reid AJ, Langhorne J. Analysis of pir gene expression across the Plasmodium life cycle. Malar J 2021; 20:445. [PMID: 34823519 PMCID: PMC8614022 DOI: 10.1186/s12936-021-03979-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium interspersed repeat (pir) is the largest multigene family in the genomes of most Plasmodium species. A variety of functions for the PIR proteins which they encode have been proposed, including antigenic variation, immune evasion, sequestration and rosetting. However, direct evidence for these is lacking. The repetitive nature of the family has made it difficult to determine function experimentally. However, there has been some success in using gene expression studies to suggest roles for some members in virulence and chronic infection. Methods Here pir gene expression was examined across the life cycle of Plasmodium berghei using publicly available RNAseq data-sets, and at high resolution in the intraerythrocytic development cycle using new data from Plasmodium chabaudi. Results Expression of pir genes is greatest in stages of the parasite which invade and reside in red blood cells. The marked exception is that liver merozoites and male gametocytes produce a very large number of pir gene transcripts, notably compared to female gametocytes, which produce relatively few. Within the asexual blood stages different subfamilies peak at different times, suggesting further functional distinctions. Representing a subfamily of its own, the highly conserved ancestral pir gene warrants further investigation due to its potential tractability for functional investigation. It is highly transcribed in multiple life cycle stages and across most studied Plasmodium species and thus is likely to play an important role in parasite biology. Conclusions The identification of distinct expression patterns for different pir genes and subfamilies is likely to provide a basis for the design of future experiments to uncover their function. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03979-6.
Collapse
Affiliation(s)
| | | | | | - Carlos Talavera Lopez
- The Francis Crick Institute, London, UK.,Institute of Computational Biology, Helmholtz Zentrum für Gesundheit und Umwelt, Munich, Germany
| | | | | | | | | | | | | | - Adam J Reid
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
35
|
Leong YW, Lee EQH, Rénia L, Malleret B. Rodent Malaria Erythrocyte Preference Assessment by an Ex Vivo Tropism Assay. Front Cell Infect Microbiol 2021; 11:680136. [PMID: 34322397 PMCID: PMC8311856 DOI: 10.3389/fcimb.2021.680136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating red blood cells consist of young erythrocytes (early and late reticulocytes) and mature erythrocytes (normocytes). The human malaria parasites, Plasmodium falciparum and P. vivax, have a preference to invade reticulocytes during blood-stage infection. Rodent malaria parasites that also prefer reticulocytes could be useful tools to study human malaria reticulocyte invasion. However, previous tropism studies of rodent malaria are inconsistent from one another, making it difficult to compare cell preference of different parasite species and strains. In vivo measurements of cell tropism are also subjected to many confounding factors. Here we developed an ex vivo tropism assay for rodent malaria with highly purified fractions of murine reticulocytes and normocytes. We measured invasion into the different erythrocyte populations using flow cytometry and evaluated the tropism index of the parasite strains. We found that P. berghei ANKA displayed the strongest reticulocyte preference, followed by P. yoelii 17X1.1, whereas P. chabaudi AS and P. vinckei S67 showed mixed tropism. These preferences are intrinsic and were maintained at different reticulocyte and normocyte availabilities. Our study shed light on the true erythrocyte preference of the parasites and paves the way for future investigations on the receptor-ligand interactions mediating erythrocyte tropism.
Collapse
Affiliation(s)
- Yew Wai Leong
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Laurent Rénia
- Agency for Science, Technology and Research Infectious Diseases Laboratories (A*STAR ID Labs), Immunos, Biopolis, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Immunos, Biopolis, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
36
|
Meibalan E, Barry A, Gibbins MP, Awandu S, Meerstein-Kessel L, Achcar F, Bopp S, Moxon C, Diarra A, Debe S, Ouédraogo N, Barry-Some I, Badoum ES, Fagnima T, Lanke K, Gonçalves BP, Bradley J, Wirth D, Drakeley C, Guelbeogo WM, Tiono AB, Marti M, Bousema T. Plasmodium falciparum Gametocyte Density and Infectivity in Peripheral Blood and Skin Tissue of Naturally Infected Parasite Carriers in Burkina Faso. J Infect Dis 2021; 223:1822-1830. [PMID: 31875909 PMCID: PMC8161640 DOI: 10.1093/infdis/jiz680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Plasmodium falciparum transmission depends on mature gametocytes that can be ingested by mosquitoes taking a blood meal on human skin. Although gametocyte skin sequestration has long been hypothesized as important contributor to efficient malaria transmission, this has never been formally tested. METHODS In naturally infected gametocyte carriers from Burkina Faso, we assessed infectivity to mosquitoes by direct skin feeding and membrane feeding. We directly quantified male and female gametocytes and asexual parasites in finger-prick and venous blood samples, skin biopsy samples, and in of mosquitoes that fed on venous blood or directly on skin. Gametocytes were visualized in skin tissue with confocal microscopy. RESULTS Although more mosquitoes became infected when feeding directly on skin then when feeding on venous blood (odds ratio, 2.01; 95% confidence interval, 1.21-3.33; P = .007), concentrations of gametocytes were not higher in the subdermal skin vasculature than in other blood compartments; only sparse gametocytes were observed in skin tissue. DISCUSSION Our data strongly suggest that there is no significant skin sequestration of P. falciparum gametocytes. Gametocyte densities in peripheral blood are thus informative for predicting onward transmission potential to mosquitoes and can be used to target and monitor malaria elimination initiatives.
Collapse
Affiliation(s)
- Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Shehu Awandu
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | | | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christopher Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Siaka Debe
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ines Barry-Some
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Emilie S Badoum
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Traoré Fagnima
- Centre Hospitalier Universitaire Régional de Ouahigoua, Université de Ouahigouya, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | - Bronner P Gonçalves
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dyann Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Drakeley
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Malaria is a mosquito-borne disease caused by apicomplexan parasites of the genus Plasmodium. Completion of the parasite’s life cycle depends on the transmission of sexual stages, the gametocytes, from an infected human host to the mosquito vector. Sexual commitment occurs in only a small fraction of asexual blood-stage parasites and is initiated by external cues. The gametocyte development protein 1 (GDV1) has been described as a key facilitator to trigger sexual commitment. GDV1 interacts with the silencing factor heterochromatin protein 1 (HP1), leading to its dissociation from heterochromatic DNA at the genomic locus encoding AP2-G, the master transcription factor of gametocytogenesis. How this process is regulated is not known. In this study, we have addressed the role of protein kinases implicated in gametocyte development. From a pool of available protein kinase knockout (KO) lines, we identified two kinase knockout lines which fail to produce gametocytes. However, independent genetic verification revealed that both kinases are not required for gametocytogenesis but that both lines harbor the same mutation that leads to a truncation in the extreme C terminus of GDV1. Introduction of the identified nonsense mutation into the genome of wild-type parasite lines replicates the observed phenotype. Using a GDV1 overexpression line, we show that the truncation in the GDV1 C terminus does not interfere with the nuclear import of GDV1 or its interaction with HP1 in vitro but appears to be important to sustain GDV1 protein levels and thereby sexual commitment. IMPORTANCE Transmission of malaria-causing Plasmodium species by mosquitos requires the parasite to change from a continuously growing asexual parasite form growing in the blood to a sexually differentiated form, the gametocyte. Only a small subset of asexual parasites differentiates into gametocytes that are taken up by the mosquito. Transmission represents a bottleneck in the life cycle of the parasite, so a molecular understanding of the events that lead to stage conversion may identify novel intervention points. Here, we screened a subset of kinases we hypothesized to play a role in this process. While we did not identify kinases required for sexual conversion, we identified a mutation in the C terminus of the gametocyte development 1 protein (GDV1), which abrogates sexual development. The mutation destabilizes the protein but not its interaction with its cognate binding partner HP1. This suggests an important role for the GDV1 C terminus beyond trafficking and protein stability.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The current review outlines recent discoveries on the infection of erythroid cells by Plasmodium parasites, focusing on the molecular interactions governing the tropism of parasites for their host cell and the implications of this tropism for parasite biology and erythroid cell maturation. RECENT FINDINGS Although most studies about the interactions of Plasmodium parasites and their host cell focused on the deadliest human malaria parasite, Plasmodium falciparum, and the erythrocyte, there is increasing evidence that several Plasmodium species, including P. falciparum, also develop within erythroid precursors. These interactions likely modify the remodeling of the host cell by the parasite and affect the maturation of erythroblast and reticulocytes. SUMMARY A better understanding of the remodeling of immature erythroid cells by Plasmodium parasites will have important implications for the development of antimalarial drugs or vaccines. In addition, deciphering how Plasmodium parasites interfere with erythropoiesis will provide new insights on how these parasites contribute to anemia in malaria patients.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université de Paris, Institut Cochin
- Laboratoire d'excellence GR-Ex, Paris, France
| |
Collapse
|
39
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
40
|
Corbett Y, Parapini S, Perego F, Messina V, Delbue S, Misiano P, Falchi M, Silvestrini F, Taramelli D, Basilico N, D'Alessandro S. Phagocytosis and activation of bone marrow-derived macrophages by Plasmodium falciparum gametocytes. Malar J 2021; 20:81. [PMID: 33568138 PMCID: PMC7874634 DOI: 10.1186/s12936-021-03589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Background The innate immune response against various life cycle stages of the malaria parasite plays an important role in protection against the disease and regulation of its severity. Phagocytosis of asexual erythrocytic stages is well documented, but little and contrasting results are available about phagocytic clearance of sexual stages, the gametocytes, which are responsible for the transmission of the parasites from humans to mosquitoes. Similarly, activation of host macrophages by gametocytes has not yet been carefully addressed. Methods Phagocytosis of early or late Plasmodium falciparum gametocytes was evaluated through methanol fixed cytospin preparations of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated for 2 h with P. falciparum and stained with Giemsa, and it was confirmed through a standardized bioluminescent method using the transgenic P. falciparum 3D7elo1-pfs16-CBG99 strain. Activation was evaluated by measuring nitric oxide or cytokine levels in the supernatants of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated with early or late gametocytes. Results The results showed that murine bone marrow-derived macrophages can phagocytose both early and late gametocytes, but only the latter were able to induce the production of inflammatory mediators, specifically nitric oxide and the cytokines tumour necrosis factor and macrophage inflammatory protein 2. Conclusions These results support the hypothesis that developing gametocytes interact in different ways with innate immune cells of the host. Moreover, the present study proposes that early and late gametocytes act differently as targets for innate immune responses.
Collapse
Affiliation(s)
- Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy.
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Federica Perego
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Valeria Messina
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Paola Misiano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Mario Falchi
- AIDS-Ricerca e sviluppo, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Silvestrini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy. .,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.
| |
Collapse
|
41
|
Omondi BR, Muthui MK, Muasya WI, Orindi B, Mwakubambanya RS, Bousema T, Drakeley C, Marsh K, Bejon P, Kapulu MC. Antibody Responses to Crude Gametocyte Extract Predict Plasmodium falciparum Gametocyte Carriage in Kenya. Front Immunol 2021; 11:609474. [PMID: 33633729 PMCID: PMC7902058 DOI: 10.3389/fimmu.2020.609474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Malaria caused by Plasmodium falciparum remains a serious global public health challenge especially in Africa. Interventions that aim to reduce malaria transmission by targeting the gametocyte reservoir are key to malaria elimination and/or eradication. However, factors that are associated with gametocyte carriage have not been fully explored. Consequently, identifying predictors of the infectious reservoir is fundamental in the elimination campaign. Methods We cultured P. falciparum NF54 gametocytes (to stage V) and prepared crude gametocyte extract. Samples from a total of 687 participants (aged 6 months to 67 years) representing two cross-sectional study cohorts in Kilifi, Kenya were used to assess IgG antibody responses by ELISA. We also analyzed IgG antibody responses to the blood-stage antigen AMA1 as a marker of asexual parasite exposure. Gametocytemia and asexual parasitemia data quantified by microscopy and molecular detection (QT-NASBA) were used to determine the relationship with antibody responses, season, age, and transmission setting. Multivariable logistic regression models were used to study the association between antibody responses and gametocyte carriage. The predictive power of the models was tested using the receiver operating characteristic (ROC) curve. Results Multivariable logistic regression analysis showed that IgG antibody response to crude gametocyte extract predicted both microscopic (OR=1.81 95% CI: 1.06-3.07, p=0.028) and molecular (OR=1.91, 95% CI: 1.11-3.29, p=0.019) P. falciparum gametocyte carriage. Antibody responses to AMA1 were also associated with both microscopic (OR=1.61 95% CI: 1.08-2.42, p=0.020) and molecular (OR=3.73 95% CI: 2.03-6.74, p<0.001) gametocytemia. ROC analysis showed that molecular (AUC=0.897, 95% CI: 0.868-0.926) and microscopic (AUC=0.812, 95% CI: 0.758-0.865) multivariable models adjusted for gametocyte extract showed very high predictive power. Molecular (AUC=0.917, 95% CI: 0.891-0.943) and microscopic (AUC=0.806, 95% CI: 0.755-0.858) multivariable models adjusted for AMA1 were equally highly predictive. Conclusion In our study, it appears that IgG responses to crude gametocyte extract are not an independent predictor of gametocyte carriage after adjusting for AMA1 responses but may predict gametocyte carriage as a proxy marker of exposure to parasites. Serological responses to AMA1 or to gametocyte extract may facilitate identification of individuals within populations who contribute to malaria transmission and support implementation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Brian R. Omondi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William I. Muasya
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benedict Orindi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
43
|
Lactic Acid Supplementation Increases Quantity and Quality of Gametocytes in Plasmodium falciparum Culture. Infect Immun 2020; 89:IAI.00635-20. [PMID: 33077626 DOI: 10.1128/iai.00635-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria infection by Plasmodium falciparum continues to afflict millions of people worldwide, with transmission being dependent upon mosquito ingestion of the parasite gametocyte stage. These sexually committed stages develop from the asexual stages, yet the factors behind this transition are not completely understood. Here, we found that lactic acid increases gametocyte quantity and quality in P. falciparum culture. Low-passage-number NF54 parasites exposed to 8.2 mM lactic acid for various times were monitored using blood film gametocyte counts and RNA analysis throughout 2 weeks of gametocyte development in vitro for a total of 5 biological cohorts. We found that daily continuous medium exchange and 8.2 mM lactic acid supplementation increased gametocytemia approximately 2- to 6-fold relative to controls after 5 days. In membrane feeding mosquito infection experiments, we found that gametocytes continuously exposed to 8.2 mM lactic acid supplementations were more infectious to Anopheles stephensi mosquitoes, essentially doubling prevalence of infected midguts and oocyst density. Supplementation on days 9 to 16 did not increase the quantity of gametocytes but did increase quality, as measured by oocyst density, by 2.4-fold. Lactic acid did not impact asexual growth, as measured by blood film counts and luciferase quantification, as well as radioactive hypoxanthine incorporation assays. These data indicate a novel role for lactic acid in sexual development of the parasite.
Collapse
|
44
|
Haltalli MLR, Watcham S, Wilson NK, Eilers K, Lipien A, Ang H, Birch F, Anton SG, Pirillo C, Ruivo N, Vainieri ML, Pospori C, Sinden RE, Luis TC, Langhorne J, Duffy KR, Göttgens B, Blagborough AM, Lo Celso C. Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection. Nat Cell Biol 2020; 22:1399-1410. [PMID: 33230302 PMCID: PMC7611033 DOI: 10.1038/s41556-020-00601-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and-coupled with reactive oxygen species quenching-enables partial rescuing of HSC function.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Samuel Watcham
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Kira Eilers
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Lipien
- Department of Life Sciences, Imperial College London, London, UK
| | - Heather Ang
- Department of Life Sciences, Imperial College London, London, UK
| | - Flora Birch
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Chiara Pirillo
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Nicola Ruivo
- Department of Life Sciences, Imperial College London, London, UK
| | - Maria L Vainieri
- Department of Life Sciences, Imperial College London, London, UK
- AO Research Institute, Davos Platz, Switzerland
| | - Constandina Pospori
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Tiago C Luis
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | | | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
45
|
Jennison C, Lucantoni L, O'Neill MT, McConville R, Erickson SM, Cowman AF, Sleebs BE, Avery VM, Boddey JA. Inhibition of Plasmepsin V Activity Blocks Plasmodium falciparum Gametocytogenesis and Transmission to Mosquitoes. Cell Rep 2020; 29:3796-3806.e4. [PMID: 31851913 DOI: 10.1016/j.celrep.2019.11.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum gametocytes infect mosquitoes and are responsible for malaria transmission. New interventions that block transmission could accelerate malaria elimination. Gametocytes develop within erythrocytes and activate protein export pathways that remodel the host cell. Plasmepsin V (PMV) is an aspartyl protease that is required for protein export in asexual parasites, but its function and essentiality in gametocytes has not been definitively proven, nor has PMV been assessed as a transmission-blocking drug target. Here, we show that PMV is expressed and can be inhibited specifically in P. falciparum stage I-II gametocytes. PMV inhibitors block processing and export of gametocyte effector proteins and inhibit development of stage II-V gametocytes. Gametocytogenesis in the presence of sublethal inhibitor concentrations results in stage V gametocytes that fail to infect mosquitoes. Therefore, PMV primes gametocyte effectors for export, which is essential for the development and fitness of gametocytes for transmission to mosquitoes.
Collapse
Affiliation(s)
- Charlie Jennison
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Robyn McConville
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, QLD, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
46
|
Hojo-Souza NS, de Azevedo PO, de Castro JT, Teixeira-Carvalho A, Lieberman J, Junqueira C, Gazzinelli RT. Contributions of IFN-γ and granulysin to the clearance of Plasmodium yoelii blood stage. PLoS Pathog 2020; 16:e1008840. [PMID: 32913355 PMCID: PMC7482970 DOI: 10.1371/journal.ppat.1008840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/24/2020] [Indexed: 11/18/2022] Open
Abstract
P. vivax-infected Retics (iRetics) express human leukocyte antigen class I (HLA-I), are recognized by CD8+ T cells and killed by granulysin (GNLY) and granzymes. However, how Plasmodium infection induces MHC-I expression on Retics is unknown. In addition, whether GNLY helps control Plasmodium infection in vivo has not been studied. Here, we examine these questions using rodent infection with the P. yoelii 17XNL strain, which has tropism for Retics. Infection with P. yoelii caused extramedullary erythropoiesis, reticulocytosis and expansion of CD8+CD44+CD62L- IFN-γ-producing T cells that form immune synapses with iRetics. We now provide evidence that MHC-I expression by iRetic is dependent on IFN-γ-induced transcription of IRF-1, MHC-I and β2-microglobulin (β2-m) in erythroblasts. Consistently, CTLs from infected wild type (WT) mice formed immune synapses with iRetics in an IFN-γ- and MHC-I-dependent manner. When challenged with P. yoelii 17XNL, WT mice cleared parasitemia and survived, while IFN-γ KO mice remained parasitemic and all died. β2-m KO mice that do not express MHC-I and have virtually no CD8+ T cells had prolonged parasitemia, and 80% survived. Because mice do not express GNLY, GNLY-transgenic mice can be used to assess the in vivo importance of GNLY. Parasite clearance was accelerated in GNLY-transgenic mice and depletion of CD8+ T cells ablated the GNLY-mediated resistance to P. yoelii. Altogether, our results indicate that in addition to previously described mechanisms, IFN-γ promotes host resistance to the Retic-tropic P. yoelii 17XNL strain by promoting MHC-I expression on iRetics that become targets for CD8+ cytotoxic T lymphocytes and GNLY. CD8+ cytotoxic T lymphocytes (CTLs) are important for immune defense against intracellular pathogens, such as viruses, bacteria and parasites, and tumor surveillance. CTLs, which recognize peptide epitopes presented by MHC-I molecules expressed in nucleated cells, become activated and kill infected target cells by releasing the contents of cytotoxic granules into the immunological synapse. Since most Plasmodium spp. infect erythrocytes that are enucleated and do not express MHC-I, the role of CD8+ T cells in the blood-stage of malaria has been neglected. We recently showed that P. vivax-infected reticulocytes express MHC-I and are killed in a manner dependent on granulysin (GNLY), a cytotoxic granule effector protein. However, the protective role of CD8+ T cells is controversial and the role of GNLY in vivo remains to be demonstrated. Here, we show that CTLs and GNLY mediate mouse resistance to blood-stage infection with P. yoelii, a rodent malaria parasite that preferably infects reticulocytes.
Collapse
Affiliation(s)
| | | | - Júlia Teixeira de Castro
- Laboratório de Imunopatologia, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (RTG); (CJ); (JL)
| | - Caroline Junqueira
- Laboratório de Imunopatologia, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (RTG); (CJ); (JL)
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil
- * E-mail: (RTG); (CJ); (JL)
| |
Collapse
|
47
|
PfMAP-2 is essential for male gametogenesis in the malaria parasite Plasmodium falciparum. Sci Rep 2020; 10:11930. [PMID: 32681115 PMCID: PMC7368081 DOI: 10.1038/s41598-020-68717-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
In malaria parasites, male gametogenesis is a proliferative stage essential for parasite transmission to the mosquito vector. It is a rapid process involving three rounds of genome replication alternating with closed endomitoses, and assembly of axonemes to produce eight flagellated motile microgametes. Studies in Plasmodium berghei have highlighted tight regulation of gametogenesis by a network of kinases. The P. berghei MAPK homologue PbMAP-2 is dispensable for asexual development but important at the induction of axoneme motility. However, in P. falciparum, causing the most severe form of human malaria, PfMAP-2 was suggested to be essential for asexual proliferation indicating distinct functions for MAP-2 in these two Plasmodium species. We here show that PfMAP-2 is dispensable for asexual growth but important for male gametogenesis in vitro. Similar to PbMAP-2, PfMAP-2 is required for initiating axonemal beating but not for prior DNA replication or axoneme formation. In addition, single and double null mutants of PfMAP-2 and the second P. falciparum MAPK homologue PfMAP-1 show no defect in asexual proliferation, sexual commitment or gametocytogenesis. Our results suggest that MAPK activity plays no major role in the biology of both asexual and sexual blood stage parasites up until the point of male gametogenesis.
Collapse
|
48
|
Silva-Filho JL, Lacerda MVG, Recker M, Wassmer SC, Marti M, Costa FTM. Plasmodium vivax in Hematopoietic Niches: Hidden and Dangerous. Trends Parasitol 2020; 36:447-458. [PMID: 32298632 DOI: 10.1016/j.pt.2020.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Estimation of Plasmodium vivax biomass based on circulating biomarkers indicates the existence of a predominant biomass outside of the circulation that is not captured by peripheral parasitemia, in particular in patients with complicated outcomes. A series of recent studies have suggested that the hematopoietic niche of the bone marrow (BM) is a major reservoir for parasite replication and the development of transmission stages. However, significant knowledge gaps remain in our understanding of host-parasite interactions, pathophysiology, and the implications for treatment and diagnosis of such a reservoir. Here, we discuss the current status of this emerging research field in the context of P. vivax.
Collapse
Affiliation(s)
- João Luiz Silva-Filho
- Laboratório de Doenças Tropicais - Prof Luiz Jacintho da Silva Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil; Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas and Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Fabio T M Costa
- Laboratório de Doenças Tropicais - Prof Luiz Jacintho da Silva Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
49
|
Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun 2020; 11:1503. [PMID: 32198457 PMCID: PMC7083873 DOI: 10.1038/s41467-020-15026-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
In the malaria parasite Plasmodium falciparum, the switch from asexual multiplication to sexual differentiation into gametocytes is essential for transmission to mosquitos. The transcription factor PfAP2-G is a key determinant of sexual commitment that orchestrates this crucial cell fate decision. Here we identify the direct targets of PfAP2-G and demonstrate that it dynamically binds hundreds of sites across the genome. We find that PfAP2-G is a transcriptional activator of early gametocyte genes, and identify differences in PfAP2-G occupancy between gametocytes derived via next-cycle and same-cycle conversion. Our data implicate PfAP2-G not only as a transcriptional activator of gametocyte genes, but also as a potential regulator of genes important for red blood cell invasion. We also find that regulation by PfAP2-G requires interaction with a second transcription factor, PfAP2-I. These results clarify the functional role of PfAP2-G during sexual commitment and early gametocytogenesis. The transcription factor PfAP2-G is a key determinant of sexual commitment in Plasmodium falciparum. Here, Josling et al. define the transcriptional regulatory network of PfAP2-G by identifying its DNA binding sites genome-wide, which vary depending on the route of sexual conversion and rely on interactions with the PfAP2-I transcription factor.
Collapse
|
50
|
Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189. [PMID: 31919479 PMCID: PMC7223625 DOI: 10.1038/s41579-019-0306-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood-feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood-stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions.
Collapse
Affiliation(s)
- Kannan Venugopal
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Franziska Hentzschel
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|