1
|
Putri DS, Shepherd FK, Sanders AE, Roach SN, Jay S, Pierson MJ, Wieking G, Anderson JL, Meyerholz DK, Schacker TW, Langlois RA. Naturally transmitted mouse viruses highlight the heterogeneity of virus transmission dynamics in the dirty mouse model. J Virol 2025:e0018725. [PMID: 40434104 DOI: 10.1128/jvi.00187-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Specific-pathogen-free (SPF) mice are widely used in biomedical research to model human infections. However, these animals do not always accurately recapitulate human immune responses. This is due, in part, to their lack of infection history. A growing number of studies show that the host microbiome influences the development, progression, and responses of many diseases. To date, the majority of research on the microbiome has focused on the bacterial populations and less on the eukaryotic virome of the host. Here, we characterize a transmission model where SPF mice are exposed to natural mouse pathogens at physiologic doses and routes. We found that pet store mice acquired from different sources have distinct viromes and infection histories. We also found significant heterogeneity in the kinetics of the transmission of natural mouse viruses. A common virus found in our model was murine Kobuvirus. Surprisingly, murine Kobuvirus infection was found in the glandular stomach epithelia and not intestinal epithelia like other enteric picornaviruses. Together, these data characterize the heterogeneity of the dirty mouse cohousing system and provide a foundation for studying the biology of natural mouse viruses. IMPORTANCE Increasing evidence supports microbial exposure as a critical factor in shaping responses to immune challenges such as infections and vaccinations. However, many experimental models introducing microbial exposure into laboratory animals have confounding factors that may impact phenotypes and are not well characterized. Here, we characterized the pet store reservoir virome diversity, prior infection history, and transmission kinetics. We found significant heterogeneity across these features of the pet store cohousing model. Moreover, we leveraged this model to investigate the tropism of two less characterized viruses-murine Kobuvirus and murine astrovirus 2-in a natural transmission setting. These findings highlight the importance of characterizing the virome of pet store reservoirs to better mimic microbial exposure in humans.
Collapse
Affiliation(s)
- Dira S Putri
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Autumn E Sanders
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanley N Roach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sridevi Jay
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Pierson
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Garritt Wieking
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jodi L Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Timothy W Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Teng JLL, Bopegamage S, Yeung ML. Editorial: Molecular pathogenesis of enteroviruses: insights into viral-host interactions, pathogenic mechanisms, and microbiome dynamics. Front Microbiol 2025; 16:1608481. [PMID: 40406347 PMCID: PMC12096630 DOI: 10.3389/fmicb.2025.1608481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Affiliation(s)
- Jade Lee Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, China
| | - Shubhada Bopegamage
- Faculty of Medicine, Institute of Laboratory Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pokfulam, Hong Kong SAR, China
- Pandemic Research Alliance Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
3
|
Fan Q, Huangfu H, Chen L, Jiao M, Li B, Cao Z, Sun H, Luo X, Xu J. Antiviral Activity of Marine Bacterium Paraliobacillus zengyii Against Enterovirus 71 In Vitro and In Vivo. Int J Mol Sci 2025; 26:3500. [PMID: 40331950 PMCID: PMC12026459 DOI: 10.3390/ijms26083500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD), leading to a serious health threat to young children. Probiotics are effective at treating or preventing gastrointestinal infections, especially viral infections. Probiotics against EV71 are mainly traditional lactic acid-producing bacteria, and most of them have been proven to be effective only in vitro. Here, we report that the marine bacterium Paraliobacillus zengyii X-1125 (P. zengyii) has promising anti-EV71 activity. The antiviral effect of P. zengyii against EV71 was assessed in different cell lines, and the viral RNA levels and titers were obviously reduced after treatment with P. zengyii. Furthermore, we established an EV71-infected mouse model to evaluate its antiviral efficacy in vivo. The oral administration of P. zengyii significantly decreased the viral loads in the hindlimb muscles, spleens, and ileums. Further research revealed that P. zengyii enhances the expression of type I interferon (IFN-I) in EV71-infected cells. Similarly, transcriptome analysis indicated that the expression of interferon-stimulated genes (ISGs) in EV71-infected mice significantly increased after P. zengyii treatment. Taken together, the results of this study indicated that P. zengyii markedly reduces EV71 infection by regulating the IFN response both in vivo and in vitro, providing a potential means to work against EV71 infection.
Collapse
Affiliation(s)
- Qianjin Fan
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haoyue Huangfu
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lan Chen
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Mengqi Jiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Beijie Li
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhijie Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuelian Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jianguo Xu
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Saleem W, Aslam A, Tariq M, Nauwynck H. Intestinal mucus: the unsung hero in the battle against viral gastroenteritis. Gut Pathog 2025; 17:11. [PMID: 39972475 PMCID: PMC11841282 DOI: 10.1186/s13099-025-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant threats to humans and animals. While several studies have examined the interactions between these viruses and intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to stimulate further research in this dynamic and critical area.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium.
| | - Ateeqa Aslam
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| | - Mehlayl Tariq
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 53-114, Poland
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| |
Collapse
|
5
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
6
|
Raya Tonetti F, Eguileor A, Llorente C. Goblet cells: guardians of gut immunity and their role in gastrointestinal diseases. EGASTROENTEROLOGY 2024; 2:e100098. [PMID: 39524932 PMCID: PMC11542612 DOI: 10.1136/egastro-2024-100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Goblet cells (GCs) are specialised guardians lining the intestine. They play a critical role in gut defence and immune regulation. GCs continuously secrete mucus creating a physical barrier to protect from pathogens while harbouring symbiotic gut bacteria adapted to live within the mucus. GCs also form specialised GC-associated passages in a dynamic and regulated manner to deliver luminal antigens to immune cells, promoting gut tolerance and preventing inflammation. The composition of gut bacteria directly influences GC function, highlighting the intricate interplay between these components of a healthy gut. Indeed, imbalances in the gut microbiome can disrupt GC function, contributing to various gastrointestinal diseases like colorectal cancer, inflammatory bowel disease, cystic fibrosis, pathogen infections and liver diseases. This review explores the interplay between GCs and the immune system. We delve into the underlying mechanisms by which GC dysfunction contributes to the development and progression of gastrointestinal diseases. Finally, we examine current and potential treatments that target GCs and represent promising avenues for further investigation.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Dedloff MR, Lazear HM. Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. Annu Rev Virol 2024; 11:363-379. [PMID: 38848605 DOI: 10.1146/annurev-virology-111821-101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and Listeria monocytogenes. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.
Collapse
Affiliation(s)
- Margaret R Dedloff
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
8
|
Nascimento RR, Aquino CC, Sousa JK, Gadelha KL, Cajado AG, Schiebel CS, Dooley SA, Sousa PA, Rocha JA, Medeiros JR, Magalhães PC, Maria-Ferreira D, Gois MB, C P Lima-Junior R, V T Wong D, Lima AM, Engevik AC, Nicolau LD, Vale ML. SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance. Mucosal Immunol 2024; 17:565-583. [PMID: 38555027 DOI: 10.1016/j.mucimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1β, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.
Collapse
Affiliation(s)
- Renata R Nascimento
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristhyane C Aquino
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - José K Sousa
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kalinne L Gadelha
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aurilene G Cajado
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carolina S Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Sarah A Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paulo A Sousa
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jefferson A Rocha
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Jand R Medeiros
- Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil
| | - Pedro C Magalhães
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, Brazil
| | - Marcelo B Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Roberto C P Lima-Junior
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Deysi V T Wong
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aldo M Lima
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Division of Infectious Diseases & International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas D Nicolau
- Institute of Biomedicine for Brazilian Semi-Arid and Clinical Research Unit, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil; Biotechnology and Biodiversity Center Research, Lab of Inflammation and Translational Gastroenterology (LIGAT), Parnaíba Delta Federal University, Parnaíba, Brazil; Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil.
| | - Mariana L Vale
- Post Graduation Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Zhong Z, Su X, Yang K, Huang W, Wang J, Zhuo Z, Xiang J, Lin L, He S, Li T, Zhang J, Ge S, Zhang S, Xia N. Sequence-specific nanoparticle barcode strategy for multiplex human enterovirus typing. Nat Commun 2024; 15:6478. [PMID: 39090126 PMCID: PMC11294541 DOI: 10.1038/s41467-024-50921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Human enteroviruses (HEV) can cause a range of diseases from mild to potentially life-threatening. Identification and genotyping of HEV are crucial for disease management. Existing typing methods, however, have inherent limitations. Developing alternative methods to detect HEV with more virus types, high accuracy, and sensitivity in an accessible manner presents a technological and analytical challenge. Here, a sequence-specific nanoparticle barcode (SSNB) method is presented for simultaneous detection of 10 HEV types. This method significantly increases sensitivity, enhancing detection by 10-106 times over the traditional multiplex hybrid genotyping (MHG) method, by resolving cross-interference between the multiple primer sets. Furthermore, the SSNB method demonstrates a 100% specificity in accurately distinguishing between 10 different HEV types and other prevalent clinical viruses. In an analysis of 70 clinical throat swab samples, the SSNB method shows slightly higher detection rate for positive samples (50%) compared to the RT-PCR method (48.6%). Additionally, further assessment of the typing accuracy for samples identified as positive by SSNB using sequencing method reveals a concordance rate of 100%. The combined high sensitivity and specificity level of the methodology, together with the capability for multiple type analysis and compatibility with clinical workflow, make this approach a promising tool for clinical settings.
Collapse
Affiliation(s)
- Zecheng Zhong
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaosong Su
- Zhongshan Hospital Fudan University Xiamen Branch, Xiamen, 361015, Fujian, China
| | - Kunyu Yang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Weida Huang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhihao Zhuo
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiyu Xiang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lesi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shuizhen He
- Xiamen Haicang Hospital, Haiyu Road, Xiamen, 361026, Fujian, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
- School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
10
|
Bernardi F, Ungaro F, D’Amico F, Zilli A, Parigi TL, Massimino L, Allocca M, Danese S, Furfaro F. The Role of Viruses in the Pathogenesis of Immune-Mediated Gastro-Intestinal Diseases. Int J Mol Sci 2024; 25:8301. [PMID: 39125870 PMCID: PMC11313478 DOI: 10.3390/ijms25158301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Immune-mediated gastrointestinal (GI) diseases, including achalasia, celiac disease, and inflammatory bowel diseases, pose significant challenges in diagnosis and management due to their complex etiology and diverse clinical manifestations. While genetic predispositions and environmental factors have been extensively studied in the context of these conditions, the role of viral infections and virome dysbiosis remains a subject of growing interest. This review aims to elucidate the involvement of viral infections in the pathogenesis of immune-mediated GI diseases, focusing on achalasia and celiac disease, as well as the virome dysbiosis in IBD. Recent evidence suggests that viral pathogens, ranging from common respiratory viruses to enteroviruses and herpesviruses, may trigger or exacerbate achalasia and celiac disease by disrupting immune homeostasis in the GI tract. Furthermore, alterations in the microbiota and, specifically, in the virome composition and viral-host interactions have been implicated in perpetuating chronic intestinal inflammation in IBD. By synthesizing current knowledge on viral contributions to immune-mediated GI diseases, this review aims to provide insights into the complex interplay between viral infections, host genetics, and virome dysbiosis, shedding light on novel therapeutic strategies aimed at mitigating the burden of these debilitating conditions on patients' health and quality of life.
Collapse
Affiliation(s)
- Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Luca Massimino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| |
Collapse
|
11
|
Wei J, Lv L, Wang T, Gu W, Luo Y, Feng H. Recent Progress in Innate Immune Responses to Enterovirus A71 and Viral Evasion Strategies. Int J Mol Sci 2024; 25:5688. [PMID: 38891876 PMCID: PMC11172324 DOI: 10.3390/ijms25115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.
Collapse
Affiliation(s)
- Jialong Wei
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Linxi Lv
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Tian Wang
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| | - Yang Luo
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
- Institute of Precision Medicine, Chongqing University, Chongqing 400044, China
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing 400044, China; (J.W.); (L.L.); (T.W.); (W.G.)
| |
Collapse
|
12
|
Philip DT, Goins NM, Catanzaro NJ, Misumi I, Whitmire JK, Atkins HM, Lazear HM. Interferon lambda restricts herpes simplex virus skin disease by suppressing neutrophil-mediated pathology. mBio 2024; 15:e0262323. [PMID: 38426749 PMCID: PMC11005406 DOI: 10.1128/mbio.02623-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen, herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-α/β receptors (Ifnar1-/-Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions without affecting viral loads. We used RNAseq to define IFN-λ- and IFN-β-induced transcriptional responses in primary mouse keratinocytes. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9 protected against severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.IMPORTANCEType III interferons (IFN-λ) have been shown to have antiviral and immunomodulatory effects at epithelial barriers such as the respiratory and gastrointestinal tracts, but their effects on the skin have not been extensively investigated. We used mice lacking IFN-λ signaling to investigate the skin-specific effects of IFN-λ against the herpes simplex virus (HSV), which targets epithelial tissues to cause cold sores and genital herpes. We found that IFN-λ limited the severity of HSV skin lesions without affecting viral load and that this protective effect required IFN-λ signaling in both keratinocytes and neutrophils. We found that IFN-λ signaling in keratinocytes suppressed neutrophil recruitment to the skin and that depleting neutrophils protected against severe HSV skin lesions in the absence of IFN-λ. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.
Collapse
Affiliation(s)
- Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel M. Goins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ichiro Misumi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason K. Whitmire
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hannah M. Atkins
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Jungbauer-Groznica M, Wiese K, Fischer I, Markus J, Chang TH, Gösler I, Kowalski H, Blaas D, Real-Hohn A. Aichivirus A1 replicates in human intestinal epithelium and bronchial tissue: Lung-gut axis? Virus Res 2024; 342:199338. [PMID: 38373599 PMCID: PMC10901855 DOI: 10.1016/j.virusres.2024.199338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.
Collapse
Affiliation(s)
- Martin Jungbauer-Groznica
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria; Virus and Immunity Unit, Institute Pasteur, Université Paris Cité, Paris, France
| | - Konstantin Wiese
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Histology Facility, Vienna Biocenter, Max Perutz Laboratories, Vienna, Austria
| | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | - Tsung-Hsien Chang
- National Defense Medical Center, Department of Microbiology and Immunology, Taipei, Taiwan
| | - Irene Gösler
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | - Dieter Blaas
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Vienna Biocenter, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Capendale PE, García-Rodríguez I, Ambikan AT, Mulder LA, Depla JA, Freeze E, Koen G, Calitz C, Sood V, Vieira de Sá R, Neogi U, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus infection in human brain organoids: host innate inflammatory response and not neuro-infectivity correlates to neurologic disease. Nat Commun 2024; 15:2532. [PMID: 38514653 PMCID: PMC10958052 DOI: 10.1038/s41467-024-46634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.
Collapse
Affiliation(s)
- Pamela E Capendale
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Inés García-Rodríguez
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anoop T Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Lance A Mulder
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Josse A Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, Amsterdam, The Netherlands
| | - Eline Freeze
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carlemi Calitz
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vikas Sood
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Renata Vieira de Sá
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Dasja Pajkrt
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Yang L, Liang P, Yang H, Coyne CB. Trophoblast organoids with physiological polarity model placental structure and function. J Cell Sci 2024; 137:jcs261528. [PMID: 37676312 PMCID: PMC10499031 DOI: 10.1242/jcs.261528] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Human trophoblast organoids (TOs) are a three-dimensional ex vivo culture model that can be used to study various aspects of placental development, physiology and pathology. However, standard culturing of TOs does not recapitulate the cellular orientation of chorionic villi in vivo given that the multi-nucleated syncytiotrophoblast (STB) develops largely within the inner facing surfaces of these organoids (STBin). Here, we developed a method to culture TOs under conditions that recapitulate the cellular orientation of chorionic villi in vivo. We show that culturing STBin TOs in suspension with gentle agitation leads to the development of TOs containing the STB on the outer surface (STBout). Using membrane capacitance measurements, we determined that the outermost surface of STBout organoids contain large syncytia comprising >50 nuclei, whereas STBin organoids contain small syncytia (<10 nuclei) and mononuclear cells. The growth of TOs under conditions that mimic the cellular orientation of chorionic villi in vivo thus allows for the study of a variety of aspects of placental biology under physiological conditions.
Collapse
Affiliation(s)
- Liheng Yang
- Department of Integrative Immunobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Carolyn B. Coyne
- Department of Integrative Immunobiology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
16
|
Wright AP, Nice TJ. Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis. Curr Opin Immunol 2024; 86:102412. [PMID: 38518661 PMCID: PMC11032256 DOI: 10.1016/j.coi.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Chio CC, Chan HW, Chen SH, Huang HI. Enterovirus D68 vRNA induces type III IFN production via MDA5. Virus Res 2024; 339:199284. [PMID: 38040125 PMCID: PMC10704515 DOI: 10.1016/j.virusres.2023.199284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- Division of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan; College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
18
|
Yang L, Liang P, Yang H, Coyne CB. Trophoblast organoids with physiological polarity model placental structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523752. [PMID: 36711688 PMCID: PMC9882188 DOI: 10.1101/2023.01.12.523752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human trophoblast organoids (TOs) are a three-dimensional ex vivo culture model that can be used to study various aspects of placental development, physiology, and pathology. Previously, we showed that TOs derived from full-term human placental tissue could be used as models of trophoblast innate immune signaling and teratogenic virus infections. Here, we developed a method to culture TOs under conditions that recapitulate the cellular orientation of chorionic villi in vivo , with the multi-nucleated syncytiotrophoblast (STB) localized to the outer surface of organoids and the proliferative cytotrophoblasts (CTBs) located on the inner surface. We show that standard TOs containing the STB layer inside the organoid (STB in ) develop into organoids containing the STB on the outer surface (STB out ) when cultured in suspension with gentle agitation. STB out organoids secrete higher levels of select STB-associated hormones and cytokines, including human chorionic gonadotropin (hCG) and interferon (IFN)-λ2. Using membrane capacitance measurements, we also show that the outermost surface of STB out organoids contain large syncytia comprised of >50 nuclei compared to STB in organoids that contain small syncytia (<10 nuclei) and mononuclear cells. The growth of TOs under conditions that mimic the cellular orientation of chorionic villi in vivo thus allows for the study of a variety of aspects of placental biology under physiological conditions.
Collapse
Affiliation(s)
- Liheng Yang
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Carolyn B. Coyne
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
19
|
Zhang S, Zhang S, Hou Y, Huang Y, Cai J, Wang G, Cao Y, Chen Z, Fang X, Bao W. Porcine Deltacoronavirus Infection Disrupts the Intestinal Mucosal Barrier and Inhibits Intestinal Stem Cell Differentiation to Goblet Cells via the Notch Signaling Pathway. J Virol 2023; 97:e0068923. [PMID: 37289083 PMCID: PMC10308910 DOI: 10.1128/jvi.00689-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuoshuo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuchen Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiajia Cai
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of MOE, Yangzhou University, Yangzhou, China
| | - Guangzheng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Masmoudi F, Santos-Ferreira N, Pajkrt D, Wolthers KC, DeGroot J, Vlaming MLH, Rocha-Pereira J, Buti L. Evaluation of 3D Human Intestinal Organoids as a Platform for EV-A71 Antiviral Drug Discovery. Cells 2023; 12:cells12081138. [PMID: 37190047 DOI: 10.3390/cells12081138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Enteroviruses are a leading cause of upper respiratory tract, gastrointestinal, and neurological infections. Management of enterovirus-related diseases has been hindered by the lack of specific antiviral treatment. The pre-clinical and clinical development of such antivirals has been challenging, calling for novel model systems and strategies to identify suitable pre-clinical candidates. Organoids represent a new and outstanding opportunity to test antiviral agents in a more physiologically relevant system. However, dedicated studies addressing the validation and direct comparison of organoids versus commonly used cell lines are lacking. Here, we described the use of human small intestinal organoids (HIOs) as a model to study antiviral treatment against human enterovirus 71 (EV-A71) infection and compared this model to EV-A71-infected RD cells. We used reference antiviral compounds such as enviroxime, rupintrivir, and 2'-C-methylcytidine (2'CMC) to assess their effects on cell viability, virus-induced cytopathic effect, and viral RNA yield in EV-A71-infected HIOs and cell line. The results indicated a difference in the activity of the tested compounds between the two models, with HIOs being more sensitive to infection and drug treatment. In conclusion, the outcome reveals the value added by using the organoid model in virus and antiviral studies.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nanci Santos-Ferreira
- Laboratory of Virology and Chemotherapy, KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium
| | - Dasja Pajkrt
- OrganoVIR Labs, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen DeGroot
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
| | | | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium
| | - Ludovico Buti
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
| |
Collapse
|
21
|
Moshiri J, Craven AR, Mixon SB, Amieva MR, Kirkegaard K. Mechanosensitive extrusion of Enterovirus A71-infected cells from colonic organoids. Nat Microbiol 2023; 8:629-639. [PMID: 36914754 PMCID: PMC10066035 DOI: 10.1038/s41564-023-01339-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Enterovirus A71 causes severe disease upon systemic infection, sometimes leading to life-threatening neurological dysfunction. However, in most cases infection is asymptomatic and limited to the gastrointestinal tract, where virus is amplified for transmission. Picornaviruses have previously been shown to exit infected cells via either cell lysis or secretion of vesicles. Here we report that entire Enterovirus A71-infected cells are specifically extruded from the apical surface of differentiated human colon organoids, as observed by confocal microscopy. Differential sensitivity to chemical and peptide inhibitors demonstrated that extrusion of virus-infected cells is dependent on force sensing via mechanosensitive ion channels rather than apoptotic cell death. When isolated and used as inoculum, intact virus-containing extruded cells can initiate new infections. In contrast, when mechanical force sensing is inhibited, large amounts of free virus are released. Thus, extrusion of live, virus-infected cells from intact epithelial tissue is likely to benefit both the integrity of host tissues and the protected spread of this faecal-oral pathogen within and between hosts.
Collapse
Affiliation(s)
- Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Ailsa R Craven
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Sara B Mixon
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
23
|
Zhang N, Mou D, Li T, Chen Z, Ma C, Liang L, He Q. Integrated analysis reveals important differences in the gut and oropharyngeal microbiota between children with mild and severe hand, foot and mouth disease. Emerg Microbes Infect 2023; 12:2192819. [PMID: 36927539 PMCID: PMC10071984 DOI: 10.1080/22221751.2023.2192819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Little is known about alternation and difference in gut microbiota between patients with mild and severe hand, foot and mouth disease (HFMD). We investigated the differences in gut and oropharynx microbiotas between mild and severe HFMD in young children and changes in bacterial profiles as the disease progresses from acute to convalescent phase. Forty-two patients with confirmed HFMD were studied, among which thirty-two had severe HFMD and ten had mild HFMD. First rectal swabs were collected from all patients at an average of 2 days (acute phase) after the onset of symptoms, and second rectal swabs were collected from 8 severe patients at day 9 (convalescent phase) after the onset. Oropharyngeal swabs were obtained from 10 patients in the acute phase and 6 in the convalescent phase. 16S rRNA sequencing was performed for all 70 samples. Compared with mild HFMD, severe HFMD exhibited significantly decreased diversity and richness of gut microbiota. Gut microbiota bacterial profiles observed in the acute and convalescent phases resembled each other, but differed from those in mild cases. Additionally, 50% of patients with severe HFMD in the acute phase harbored a dominant pathobiontic bacterial genus. However, none of patients with mild HFMD had such bacteria. Similar bacterial compositions in oropharynx microbiota were detected between mild and severe cases. Our findings indicate that severe HFMD exhibits significantly impaired diversity of gut microbiota and frequent gut and oropharyngeal inflammation-inducing bacteria. However, the results should be interpreted with caution as the number of the subjects was limited.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: )
| | - Danlei Mou
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Tongzeng Li
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: )
| | - Chunhua Ma
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Lianchun Liang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: ).,Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland (Q.H.: )
| |
Collapse
|
24
|
Zhu G, Wu C, Wang Q, Deng D, Lin B, Hu X, Qiu F, Li Z, Huang C, Yang Q, Zhang D. Antiviral activity of the HSP90 inhibitor VER-50589 against enterovirus 71. Antiviral Res 2023; 211:105553. [PMID: 36737007 DOI: 10.1016/j.antiviral.2023.105553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Enterovirus 71 (EV71) is the major pathogen responsible for hand, foot, and mouth disease (HFMD) outbreaks; to date, there is no specific anti-EV71 agent. HSP90 is a crucial host factor for the viral life cycle and an ideal therapeutic target for limiting viral proliferation. However, the specific role of HSP90 in EV71-related signaling pathways and anti-EV71 agents targeting HSP90 remains unclear. This study aimed to verify the role of HSP90 in signaling pathways involved in EV71 replication and investigate the antiviral effects of a small molecule of VER-50589, a potent HSP90 inhibitor, against EV71 both in vitro and in vivo. Viral plaque assay, western blotting, and qPCR results showed that VER-50589 diminished the plaque formation induced by EV71 and inhibited EV71 mRNA and protein synthesis. A single daily dose of VER-50589 treatment significantly improved the survival rate of EV71-infected mice (p < 0.005). Interestingly, VER-50589 also exhibits activities against a series of human enteroviruses, including Coxsackievirus B3 (CVB3), Coxsackievirus B4-5 (CVB4-5), Coxsackievirus B4-7 (CVB4-7), and Echovirus 11 (Echo11). EV71 infection activated the AKT and ERK signaling pathways, and phosphorylation of AKT and RAF/MEK/ERK was weakened by VER-50589 administration. Thus, VER-50589 exhibits robust antiviral activity by inhibiting HSP90 and mediating the AKT and RAF/MEK/ERK signaling pathways. Considering that there are no effective antivirals or vaccines for the prevention and cure of HFMD in a clinical setting, the development of an anti-EV71 agent would be a straightforward and feasible therapeutic approach.
Collapse
Affiliation(s)
- Guangyan Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Chengyuan Wu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Danchun Deng
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Binbin Lin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xujuan Hu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Fang Qiu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Zhengnan Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
| | - Qingyu Yang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, China.
| |
Collapse
|
25
|
Boroojerdi MH, Al Jabry T, Mirarefin SMJ, Albalushi H. Insights into organoid-based modeling of COVID-19 pathology. Virol J 2023; 20:37. [PMID: 36841795 PMCID: PMC9959938 DOI: 10.1186/s12985-023-01996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Since December 2019, various types of strategies have been applied due to the emergent need to investigate the biology and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to discover a functional treatment. Different disease modeling systems, such as mini-organ technology, have been used to improve our understanding of SARS-CoV-2 physiology and pathology. During the past 2 years, regenerative medicine research has shown the supportive role of organoid modeling in controlling coronavirus disease 2019 (COVID-19) through optimal drug and therapeutic approach improvement. Here, we overview some efforts that have been made to study SARS-CoV-2 by mimicking COVID-19 using stem cells. In addition, we summarize a perspective of drug development in COVID-19 treatment via organoid-based studies.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Tariq Al Jabry
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Halima Albalushi
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
26
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Aknouch I, García-Rodríguez I, Giugliano FP, Calitz C, Koen G, van Eijk H, Johannessson N, Rebers S, Brouwer L, Muncan V, Stittelaar KJ, Pajkrt D, Wolthers KC, Sridhar A. Amino acid variation at VP1-145 of enterovirus A71 determines the viral infectivity and receptor usage in a primary human intestinal model. Front Microbiol 2023; 14:1045587. [PMID: 37138595 PMCID: PMC10149690 DOI: 10.3389/fmicb.2023.1045587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.
Collapse
Affiliation(s)
- Ikrame Aknouch
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Viroclinics Xplore, Schaijk, Netherlands
- *Correspondence: Ikrame Aknouch,
| | - Inés García-Rodríguez
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Paola Giugliano
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Carlemi Calitz
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Johannessson
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sjoerd Rebers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lieke Brouwer
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Koert J. Stittelaar
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University, Wageningen, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Adithya Sridhar,
| |
Collapse
|
28
|
Analogous comparison unravels heightened antiviral defense and boosted viral infection upon immunosuppression in bat organoids. Signal Transduct Target Ther 2022; 7:392. [PMID: 36529763 PMCID: PMC9760641 DOI: 10.1038/s41392-022-01247-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Horseshoe bats host numerous SARS-related coronaviruses without overt disease signs. Bat intestinal organoids, a unique model of bat intestinal epithelium, allow direct comparison with human intestinal organoids. We sought to unravel the cellular mechanism(s) underlying bat tolerance of coronaviruses by comparing the innate immunity in bat and human organoids. We optimized the culture medium, which enabled a consecutive passage of bat intestinal organoids for over one year. Basal expression levels of IFNs and IFN-stimulated genes were higher in bat organoids than in their human counterparts. Notably, bat organoids mounted a more rapid, robust and prolonged antiviral defense than human organoids upon Poly(I:C) stimulation. TLR3 and RLR might be the conserved pathways mediating antiviral response in bat and human intestinal organoids. The susceptibility of bat organoids to a bat coronavirus CoV-HKU4, but resistance to EV-71, an enterovirus of exclusive human origin, indicated that bat organoids adequately recapitulated the authentic susceptibility of bats to certain viruses. Importantly, TLR3/RLR inhibition in bat organoids significantly boosted viral growth in the early phase after SARS-CoV-2 or CoV-HKU4 infection. Collectively, the higher basal expression of antiviral genes, especially more rapid and robust induction of innate immune response, empowered bat cells to curtail virus propagation in the early phase of infection.
Collapse
|
29
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
30
|
Chen Z, Ye SY. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action. PHARMACEUTICAL BIOLOGY 2022; 60:1063-1076. [PMID: 35634712 PMCID: PMC9154771 DOI: 10.1080/13880209.2022.2074053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Viruses have the characteristics of rapid transmission and high mortality. At present, western medicines still lack an ideal antiviral. As natural products, many traditional Chinese medicines (TCM) have certain inhibitory effects on viruses, which has become the hotspot of medical research in recent years. OBJECTIVE The antiviral active ingredients and mechanisms of TCM against viral diseases was studied in combination with the pathogenesis of viral diseases and antiviral effects. MATERIALS AND METHODS English and Chinese literature from 1999 to 2021 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Traditional Chinese medicines (TCM), active ingredients, antiviral, mechanism of action, and anti-inflammatory effect were used as the key words. RESULTS The antiviral activity of TCM is clarified to put forward a strategy for discovering active compounds against viruses, and provide reference for screening antivirus drugs from TCM. TCM can not only directly kill viruses and inhibit the proliferation of viruses in cells, but also prevent viruses from infecting cells and causing cytophilia. It can also regulate the human immune system, enhance human immunity, and play an indirect antiviral role. DISCUSSION AND CONCLUSION Based on the experimental study and antiviral mechanism of TCM, this paper can provide analytical evidence that supports the effectiveness of TCM in treating virus infections, as well as their mechanisms against viruses. It could be helpful to provide reference for the research and development of innovative TCMs with multiple components, multiple targets and low toxicity.
Collapse
Affiliation(s)
- Zhi Chen
- Pharmaceutical College, Shandong University of TCM, Jinan, People’s Republic of China
| | - Si-yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, People’s Republic of China
| |
Collapse
|
31
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
32
|
Nolan LS, Baldridge MT. Advances in understanding interferon-mediated immune responses to enteric viruses in intestinal organoids. Front Immunol 2022; 13:943334. [PMID: 35935957 PMCID: PMC9354881 DOI: 10.3389/fimmu.2022.943334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Interferons (IFN) are antiviral cytokines with critical roles in regulating pathogens at epithelial barriers, but their capacity to restrict human enteric viruses has been incompletely characterized in part due to challenges in cultivating some viruses in vitro, particularly human norovirus. Accordingly, advancements in the development of antiviral therapies and vaccine strategies for enteric viral infections have been similarly constrained. Currently emerging is the use of human intestinal enteroids (HIEs) to investigate mechanisms of human enteric viral pathogenesis. HIEs provide a unique opportunity to investigate host-virus interactions using an in vitro system that recapitulates the cellular complexity of the in vivo gastrointestinal epithelium. This approach permits the exploration of intestinal epithelial cell interactions with enteric viruses as well as the innate immune responses mediated by IFNs and IFN-stimulated genes. Here, we describe recent findings related to the production, signaling, and function of IFNs in the response to enteric viral infections, which will ultimately help to reveal important aspects of pathogenesis and facilitate the future development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Lila S. Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, United States
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan T. Baldridge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
33
|
Wells AI, Coyne CB. An In Vivo Model of Echovirus-Induced Meningitis Defines the Differential Roles of Type I and Type III Interferon Signaling in Central Nervous System Infection. J Virol 2022; 96:e0033022. [PMID: 35699446 PMCID: PMC9278148 DOI: 10.1128/jvi.00330-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae and death, particularly in neonates. However, the mechanisms by which these viruses induce meningeal inflammation are poorly understood, owing at least in part to the lack of in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we developed an in vivo neonatal mouse model that recapitulates key aspects of echovirus-induced meningitis. We show that expression of the human homologue of the primary echovirus receptor, the neonatal Fc receptor (FcRn), is not sufficient for infection of the brains of neonatal mice. However, ablation of type I, but not III, interferon (IFN) signaling in mice expressing human FcRn permitted high levels of echovirus replication in the brain, with corresponding clinical symptoms, including delayed motor skills and hind-limb weakness. Using this model, we defined the immunological response of the brain to echovirus infection and identified key cytokines, such as granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6), that were induced by this infection. Lastly, we showed that echoviruses specifically replicate in the leptomeninges, where they induce profound inflammation and cell death. Together, this work establishes an in vivo model of aseptic meningitis associated with echovirus infections that delineates the differential roles of type I and type III IFNs in echovirus-associated neuronal disease and defines the specificity of echoviral infections within the meninges. IMPORTANCE Echoviruses are among the most common worldwide causes of aseptic meningitis, which can cause long-term sequelae or even death. The mechanisms by which echoviruses infect the brain are poorly understood, largely owing to the lack of robust in vivo models that recapitulate this aspect of echovirus pathogenesis. Here, we establish a neonatal mouse model of echovirus-induced aseptic meningitis and show that expression of the human homologue of the FcRn, the primary receptor for echoviruses, and ablation of type I IFN signaling are required to recapitulate echovirus-induced meningitis and clinical disease. These findings provide key insights into the host factors that control echovirus-induced meningitis and a model that could be used to test anti-echovirus therapeutics.
Collapse
Affiliation(s)
- Alexandra I. Wells
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
34
|
Filipe IC, Tee HK, Prados J, Piuz I, Constant S, Huang S, Tapparel C. Comparison of tissue tropism and host response to enteric and respiratory enteroviruses. PLoS Pathog 2022; 18:e1010632. [PMID: 35789345 PMCID: PMC9286751 DOI: 10.1371/journal.ppat.1010632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/15/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Enteroviruses (EVs) are among the most prevalent viruses worldwide. They are characterized by a high genetic and phenotypic diversity, being able to cause a plethora of symptoms. EV-D68, a respiratory EV, and EV-D94, an enteric EV, represent an interesting paradigm of EV tropism heterogeneity. They belong to the same species, but display distinct phenotypic characteristics and in vivo tropism. Here, we used these two viruses as well as relevant 3D respiratory, intestinal and neural tissue culture models, to highlight key distinctive features of enteric and respiratory EVs. We emphasize the critical role of temperature in restricting EV-D68 tissue tropism. Using transcriptomic analysis, we underscore fundamental differences between intestinal and respiratory tissues, both in the steady-state and in response to infection. Intestinal tissues present higher cell proliferation rate and are more immunotolerant than respiratory tissues. Importantly, we highlight the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response of intestinal and respiratory tissues. EV-D68 strongly activates antiviral pathways while EV-D94, on the contrary, barely induces any host defense mechanisms. In summary, our study provides an insightful characterization of the differential pathogenesis of EV-D68 and EV-D94 and the interplay with their main target tissues. Enteroviruses (EVs) are important human pathogens, associated with more than 20 clinical presentations. They replicate predominantly in the intestinal and/or respiratory mucosae. The respiratory EV-D68 can be considered an emerging virus because it caused an unprecedent outbreak in 2014, and contemporary isolates display increased virulence and novel neurotropic potential. The genetically related enteric EV-D94 is less common and its pathogenesis remains poorly defined, however, its infection has also been associated with neurological symptoms such as acute flaccid paralysis. To decipher the pathogenic mechanisms of these two viruses, we investigated their tropism and innate immunity induction in relevant human respiratory, intestinal and neural tissue culture models. Our results highlight the critical role of temperature in restricting EV-D68 tropism. Furthermore, using transcriptomic analysis, we identified key differences between respiratory and intestinal tissues, with the latter exhibiting higher cell proliferation and being more immunotolerant. More importantly, we could demonstrate the different strategies applied by EV-D94 and EV-D68 towards the host antiviral response, with EV-D68 strongly activating antiviral pathways and EV-D94, in contrast, inducing few host antiviral transcripts. This work identifies key differences in the pathogenesis of these representative respiratory and enteric EVs, which may contribute to the development of targeted antiviral therapies.
Collapse
Affiliation(s)
- Ines Cordeiro Filipe
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, University of Geneva, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Song Huang
- Epithelix SAS Geneva, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L. The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 2022; 46:6608358. [PMID: 35700129 PMCID: PMC9629487 DOI: 10.1093/femsre/fuac027] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/11/2023] Open
Abstract
The human gut virome is comprised of diverse commensal and pathogenic viruses. The colonization by these viruses begins right after birth through vaginal delivery, then continues through breastfeeding, and broader environmental exposure. Their constant interaction with their bacterial hosts in the body shapes not only our microbiomes but us. In addition, these viruses interact with the immune cells, trigger a broad range of immune responses, and influence different metabolic pathways. Besides its key role in regulating the human gut homeostasis, the intestinal virome contributes to disease development in distant organs, both directly and indirectly. In this review, we will describe the changes in the gut virome through life, health, and disease, followed by discussing the interactions between the virome, the microbiome, and the human host as well as providing an overview of their contribution to gut disease and disease of distant organs.
Collapse
Affiliation(s)
| | | | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Corresponding author: Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany; Chair of Prevention of Microbial Diseases, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. E-mail:
| |
Collapse
|
36
|
Enterovirus Replication and Dissemination Are Differentially Controlled by Type I and III Interferons in the Gastrointestinal Tract. mBio 2022; 13:e0044322. [PMID: 35604122 PMCID: PMC9239134 DOI: 10.1128/mbio.00443-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Echovirus infections are associated with a broad spectrum of illness, particularly in neonates, and are primarily transmitted through the fecal-oral route. Little is known regarding how echoviruses infect the gastrointestinal tract and how the intestinal epithelium controls echoviral replication.
Collapse
|
37
|
IL-28B reprograms tumor-associated macrophages to promote anti-tumor effects in colon cancer. Int Immunopharmacol 2022; 109:108799. [PMID: 35525232 DOI: 10.1016/j.intimp.2022.108799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
The type III interferon family (IFN-III), including IFN-λ3 [interleukin (IL)-28B], has antiviral, anti-tumor, and immunomodulatory activities. Although the IL-28B anti-tumor effect has been extensively explored, its underlying mechanism remains unclear. Here, we explored IL-28B effects on colon cancer. Our results show that IL-28B significantly inhibits colon cancer progression in a mouse MC38 tumor cell colonization model and colitis-associated colorectal tumor model. Interestingly, IL-28B does not directly promote apoptosis or inhibit MC38 tumor cell proliferation in vitro. Rather, IL-28B treatment has indirect anti-tumor activity by downregulating tumor-associated macrophages. Furthermore, IL-28B inhibits M2 macrophage polarization in vitro, while also halting M2 macrophage differentiation predominantly via inhibition of the signal transducer and activator of transcription (STAT)3 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings revealed that IL-28B inhibits M2 macrophages in the tumor microenvironment to delay colon cancer progression. These findings provide novel evidence of IL-28B anti-tumor and immunomodulatory activities.
Collapse
|
38
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
39
|
Constant DA, Nice TJ, Rauch I. Innate immune sensing by epithelial barriers. Curr Opin Immunol 2021; 73:1-8. [PMID: 34392232 PMCID: PMC8648961 DOI: 10.1016/j.coi.2021.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
Abstract
Epithelial cells in barrier tissues perform a critical immune function by detecting, restricting, and often directly eliminating extrinsic pathogens. Membrane-bound and cytosolic pattern recognition receptors in epithelial cells bind to diverse ligands, detecting pathogen components and behaviors and stimulating cell-autonomous immunity. In addition to directly acting as first-responders to pathogens, epithelial cells detect commensal-derived and diet-derived products to promote homeostasis. Recent advances have clarified the array of molecular sensors expressed by epithelial cells, and how epithelial cells responses are wired to promote homeostatic balance while simultaneously allowing elimination of pathogens. These new studies emphatically position epithelial cells as central to an effective innate immune response.
Collapse
Affiliation(s)
- David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
40
|
García-Rodríguez I, van Eijk H, Koen G, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus A Infection of the Intestinal Epithelium: Differences Between Genotypes A1 and A3. Front Cell Infect Microbiol 2021; 11:740662. [PMID: 34790587 PMCID: PMC8591172 DOI: 10.3389/fcimb.2021.740662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus (PeV-A), one of the species within the Picornaviridae family, is known to cause disease in humans. The most commonly detected genotypes are PeV-A1, associated with mild gastrointestinal disease in young children, and PeV-A3, linked to severe disease with neurological symptoms in neonates. As PeV-A are detectable in stool and nasopharyngeal samples, entry is speculated to occur via the respiratory and gastro-intestinal routes. In this study, we characterized PeV-A1 and PeV-A3 replication and tropism in the intestinal epithelium using a primary 2D model based on human fetal enteroids. This model was permissive to infection with lab-adapted strains and clinical isolates of PeV-A1, but for PeV-A3, infection could only be established with clinical isolates. Replication was highest with infection established from the basolateral side with apical shedding for both genotypes. Compared to PeV-A1, replication kinetics of PeV-A3 were slower. Interestingly, there was a difference in cell tropism with PeV-A1 infecting both Paneth cells and enterocytes, while PeV-A3 infected mainly goblet cells. This difference in cell tropism may explain the difference in replication kinetics and associated disease in humans.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
41
|
Bruland T, Østvik AE, Sandvik AK, Hansen MD. Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms221910851. [PMID: 34639191 PMCID: PMC8509287 DOI: 10.3390/ijms221910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence:
| |
Collapse
|
42
|
Guo X, Lan Z, Wen Y, Zheng C, Rong Z, Liu T, Chen S, Yang X, Zheng H, Wu W. Synbiotics Supplements Lower the Risk of Hand, Foot, and Mouth Disease in Children, Potentially by Providing Resistance to Gut Microbiota Dysbiosis. Front Cell Infect Microbiol 2021; 11:729756. [PMID: 34660342 PMCID: PMC8515124 DOI: 10.3389/fcimb.2021.729756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is an acute enterovirus-induced disease. Gut microbiota dysbiosis has been identified as a factor that plays an important role in enteral virus infection, but the gut microbiota profile in hand, foot and mouth disease has rarely been studied in a large population. Methods A total of 749 children (HFMD: n = 262, healthy control: n = 487) aged 2 to 7 years were recruited from hospitals and communities in the period from May to July, 2017. Clinical and demographical information was collected by trained personnel, and fecal samples were collected and processed for 16S ribosomal RNA(rRNA) gene sequencing. Results We observed a significant alteration in the microbiota profile of children with HFMD compared with that of control children. Patients with enteroviruses A71(EV71) positive had more dysbiotic gut microbiota than those with coxsackievirus A16 (CAV16) positive. We found that Prevotella and Streptococcus were enriched in children with HFMD, whereas beneficial bacteria, including Bifidobacterium and Faecalibacterium, were depleted. Children with synbiotics supplements had lower risk of HFMD and we observed that the gut microbiota of HFMD patients who were administered synbiotics exhibited potential resistance to the dysbiosis detected in HFMD. Conclusions This study suggested that the gut microbiota of patients with hand, foot and mouth disease exhibits dysbiosis and that synbiotics supplements potentially helps maintain the homeostasis of the gut flora.
Collapse
Affiliation(s)
- Xiaoying Guo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lan
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yaling Wen
- School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guangxi, China
| | - Chanjiao Zheng
- Modern Service Industry Department, Guangzhou Technician College, Guangzhou, China
| | - Zuhua Rong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Siyi Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Huimin Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Vanderboom PM, Mun DG, Madugundu AK, Mangalaparthi KK, Saraswat M, Garapati K, Chakraborty R, Ebihara H, Sun J, Pandey A. Proteomic Signature of Host Response to SARS-CoV-2 Infection in the Nasopharynx. Mol Cell Proteomics 2021; 20:100134. [PMID: 34400346 PMCID: PMC8363427 DOI: 10.1016/j.mcpro.2021.100134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.
Collapse
Affiliation(s)
- Patrick M Vanderboom
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anil K Madugundu
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rana Chakraborty
- Division of Pediatric Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Sun
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA; Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA; Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota, USA; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
44
|
Johnson SD, Olwenyi OA, Bhyravbhatla N, Thurman M, Pandey K, Klug EA, Johnston M, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Mohan M, Singh K, Byrareddy SN. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol 2021; 27:4763-4783. [PMID: 34447225 PMCID: PMC8371510 DOI: 10.3748/wjg.v27.i29.4763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence and rapid spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases resulting in over 4 million deaths worldwide with no clear end in sight for the coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed individuals experience mild to moderate symptoms, including fever, cough, fatigue, and loss of smell and taste. However, many individuals develop pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 can also infiltrate the central nervous system, which may damage the blood-brain barrier and the neuron's synapses. Resultant inflammation and neurodegeneration in the brain stem can further prevent efferent signaling to cranial nerves, leading to the loss of anti-inflammatory signaling and normal respiratory and gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes resulting in gut damage followed by microbial dysbiosis and translocation of bacteria and their byproducts across the damaged epithelial barrier. As a result, this exacerbates pro-inflammatory responses both locally and systemically, resulting in impaired clinical outcomes. Recent evidence has highlighted the complex interactions that mutually modulate respiratory, neurological, and gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 potentially disrupts the gut-brain-lung axis. We further highlight targeting specific responses to SARS-CoV-2 for the development of novel, urgently needed therapeutic interventions. Finally, we propose a prospective related to the individuals from Low- and Middle-Income countries. Here, the underlying propensity for heightened gut damage/microbial translocation is likely to result in worse clinical outcomes during this COVID-19 pandemic.
Collapse
Affiliation(s)
- Samuel D Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Omalla A Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Namita Bhyravbhatla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kabita Pandey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Elizabeth A Klug
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Morgan Johnston
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, United States
| | - Kamal Singh
- Department of Molecular Microbiology and Immunology and Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
45
|
Yu PL, Cao SJ, Wu R, Zhao Q, Yan QG. Regulatory effect of m 6 A modification on different viruses. J Med Virol 2021; 93:6100-6115. [PMID: 34329499 DOI: 10.1002/jmv.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
N6 -methyladenosine (m6 A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m6 A modification. In different kinds of viruses, m6 A modification has two completely opposite regulatory functions. This paper reviews the regulatory effects of m6 A modification on different viruses and provides a reference for studying the regulatory effects of RNA epitranscriptomic modification.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
46
|
Freeman MC, Wells AI, Ciomperlik-Patton J, Myerburg MM, Yang L, Konopka-Anstadt J, Coyne CB. Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to contemporary EV-D68 isolates. eLife 2021; 10:e66687. [PMID: 34196272 PMCID: PMC8285104 DOI: 10.7554/elife.66687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.
Collapse
Affiliation(s)
- Megan Culler Freeman
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | - Alexandra I Wells
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | | | - Michael M Myerburg
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Liheng Yang
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| | | | - Carolyn B Coyne
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children’s Hospital of PittsburghPittsburghUnited States
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of PittsburghPittsburghUnited States
| |
Collapse
|
47
|
Yokota J, Yamashita T, Inui T, Nomoto R, Kishimoto W, Nakase H, Mizuguchi H. Comparison of culture media for human intestinal organoids from the viewpoint of pharmacokinetic studies. Biochem Biophys Res Commun 2021; 566:115-122. [PMID: 34119823 DOI: 10.1016/j.bbrc.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Human intestinal organoids are expected to be applied in pharmaceutical research. Various culture media for human intestinal organoids have been developed, but it remains unclear which media are preferable for pharmacokinetic studies. Here, we cultured human intestinal organoids with three major culture media that are already used widely around the world: the medium of Sato et al. (S-medium; reported in 2011), Fujii et al. (F-medium; 2018), and Miyoshi et al. (M-medium; 2013). The growth of human intestinal organoids cultured in S-medium was faster than that in F- or M-medium. The gene expression levels of most pharmacokinetic-related enzymes or transporters in human intestinal organoids cultured in M-medium were higher than those in S- or F-medium, and comparable to those in the adult human small intestine. The level of cytochrome P450 (CYP) 3A4 activity was also highest in human intestinal organoids cultured in M-medium. Collectively, the results underscored the importance of selection and optimization of culture medium for various applications using human intestinal organoids, including pharmacokinetic studies.
Collapse
Affiliation(s)
- Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ryuga Nomoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co Ltd, Kobe, Hyogo, 650-0047, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
48
|
Crawford SE, Ramani S, Blutt SE, Estes MK. Organoids to Dissect Gastrointestinal Virus-Host Interactions: What Have We Learned? Viruses 2021; 13:999. [PMID: 34071878 PMCID: PMC8230193 DOI: 10.3390/v13060999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, knowledge of human host-enteric pathogen interactions has been elucidated from studies using cancer cells, animal models, clinical data, and occasionally, controlled human infection models. Although much has been learned from these studies, an understanding of the complex interactions between human viruses and the human intestinal epithelium was initially limited by the lack of nontransformed culture systems, which recapitulate the relevant heterogenous cell types that comprise the intestinal villus epithelium. New investigations using multicellular, physiologically active, organotypic cultures produced from intestinal stem cells isolated from biopsies or surgical specimens provide an exciting new avenue for understanding human specific pathogens and revealing previously unknown host-microbe interactions that affect replication and outcomes of human infections. Here, we summarize recent biologic discoveries using human intestinal organoids and human enteric viral pathogens.
Collapse
Affiliation(s)
- Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (S.E.C.); (S.R.); (S.E.B.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
49
|
Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol 2021; 14:751-761. [PMID: 33674763 PMCID: PMC8085034 DOI: 10.1038/s41385-021-00387-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Although they globally cause viral gastroenteritis in children, astroviruses are understudied due to the lack of well-defined animal models. While murine astroviruses (muAstVs) chronically infect immunodeficient mice, a culture system and understanding of their pathogenesis is lacking. Here, we describe a platform to cultivate muAstV using air-liquid interface (ALI) cultures derived from mouse enteroids, which support apical infection and release. Chronic muAstV infection occurs predominantly in the small intestine and correlates with higher interferon-lambda (IFN-λ) expression. MuAstV stimulates IFN-λ production in ALI, recapitulating our in vivo findings. We demonstrate that goblet cells and enterocytes are targets for chronic muAstV infection in vivo, and that infection is enhanced by parasite co-infection or type 2 cytokine signaling. Depletion of goblet cells from ALI limits muAstV infection in vitro. During chronic infection, muAstV stimulates IFN-λ production in infected cells and induces ISGs throughout the intestinal epithelium in an IFN-λ-receptor-dependent manner. Collectively, our study provides insights into the cellular tropism and innate immune responses to muAstV and establishes an enteroid-based culture system to propagate muAstV in vitro.
Collapse
|
50
|
Kuo RL, Chen YT, Li HA, Wu CC, Chiang HC, Lin JY, Huang HI, Shih SR, Chin-Ming Tan B. Molecular determinants and heterogeneity underlying host response to EV-A71 infection at single-cell resolution. RNA Biol 2021; 18:796-808. [PMID: 33406999 DOI: 10.1080/15476286.2021.1872976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Tung Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huai-An Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Linkou Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hsiao-Chu Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Bertrand Chin-Ming Tan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|