1
|
Tagliaferro M, Albariño R, Giorgi A. Assessment of leaf litter decomposition for biomonitoring in urban watercourses under contrasting thermal conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:549. [PMID: 40229488 DOI: 10.1007/s10661-025-14004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Urbanization affects the structure and function of aquatic ecosystems, and its effect might depend on seasonal conditions. We aim to evaluate the applicability of in situ leaf litter decomposition experiments to assess the ecological integrity of urbanized streams in cool (autumn-winter) and warm (spring-summer) periods. Along these two periods, three reaches were selected in urban and three in reference segments in Pampean streams. In each reach at both periods, 25 bags of 450 μm (FM) and 25 bags of 20 mm (CM) mesh size were placed containing dry leaves of Populus nigra, and five bags of each type were periodically collected up to day 104. Decomposition rates were determined from mass loss by fitting to a negative exponential model against time (kd) and cumulate degree days (kdd). In both periods, kdd were lower in urban than in reference reaches (pcondition = 0.020, df = 1, 137), but a larger difference occurred in the warm period. Even removing the effect of temperature, higher kdd were observed in warm than in cool waters (pperiod = 0.0004, df = 1, 137 for FM and pperiod = 0.002, df = 1, 129 for CM). During the warm period experiment, the kdd reduction due to urbanization was 2.5 times higher than during the cool period. Invertebrates colonizing litter bags differed between stream conditions and between seasons. Tolerant insect larvae were more abundant in the warm period; Gastropods, nematodes, and crabs during the cool period. In conclusion, our experimental methodology was effective to assess the effects of urbanization on stream ecological integrity. As we predicted, season stood out as an important factor in the assessment.
Collapse
Affiliation(s)
- Marina Tagliaferro
- Centro Austral de Investigaciones Científicas (CADIC; CONICET), B. Houssay 200, 9410, Ushuaia, Tierra del Fuego, Argentina.
- Instituto de Ecología y Desarrollo Sustentable (INEDES; UNLu-CONICET), Ruta 5 y 7, 6700, Luján, Buenos Aires, Argentina.
| | - Ricardo Albariño
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA; UNCo-CONICET), San Carlos de Bariloche, 8400, Rio Negro, Argentina
| | - Adonis Giorgi
- Instituto de Ecología y Desarrollo Sustentable (INEDES; UNLu-CONICET), Ruta 5 y 7, 6700, Luján, Buenos Aires, Argentina
- PEPHON (Departamento de Ciencias Básicas-Universidad Nacional de Luján), Luján, 6700, Buenos Aires, Argentina
| |
Collapse
|
2
|
Felippe BM, Dos Santos Luciano AC, Marin FR, Ortega-Rodriguez DR, de Oliveira AQ, de Barros Ferraz SF. Local atmospheric vapor pressure deficit as microclimate index to assess tropical rainforest riparian restoration success. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179146. [PMID: 40107142 DOI: 10.1016/j.scitotenv.2025.179146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Characterizing microclimatic variables, such as vapor pressure deficit (VPD), is crucial for monitoring ecological processes and biodiversity dynamics of forests, among other terrestrial ecosystems. Approaches using technologies such as remotely piloted aircraft (RPA) have demonstrated potential for assessing the biophysical interface between forests and the atmosphere by obtaining high-resolution microclimatic metrics in space and time. In the present study, we developed a microclimatic approach based on VPD modeling to quantify the success of forest restoration in a tropical rainforest landscape. We used the photogrammetric technique Structure from Motion (SfM) with RPA to estimate three-dimensional forest structures and evaluated its influence in obtaining metrics for VPD modeling. A total of 30 plots of 314 m2 were analyzed at five stages of riparian forest development, including areas of early-stage passive restoration (E10, 10 years and E14, 14 years), mid-stage natural forest regeneration (M26, 26 years and M29, 29 years), and an old-growth forest (REF). These plots were used to calibrate and validate the VPD model (∼70 % training data and ∼ 30 % test data, with k = 10). Old-growth forests exhibited an average VPD of 0.19 kPa, lower than younger forests that exceeded the 1.0 kPa threshold. The 50th and 75th percentiles of the height distribution explained 86 % and 83 % of the variance in VPD (RMSE of 0.34 kPa), respectively, and demonstrated the potential use of this metric to predict the effects of forest structure on VPD. Results show that early-stage restoration sites are exposed to higher threshold limits of VPD, which can affect ecosystem functioning. Spatial characterization allows for identifying target areas for interventions, increasing our capacity to support better decisions in forest management.
Collapse
Affiliation(s)
- Bruno Moreira Felippe
- Department of Forest Sciences, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil.
| | - Ana Cláudia Dos Santos Luciano
- Department of Biosystems Engineering, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil
| | - Fábio Ricardo Marin
- Department of Biosystems Engineering, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil
| | - Daigard Ricardo Ortega-Rodriguez
- Department of Forest Sciences, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil
| | - Allison Queiroz de Oliveira
- Department of Exact Sciences, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil
| | - Sílvio Frosini de Barros Ferraz
- Department of Forest Sciences, College of Agriculture "Luiz de Queiroz" (Esalq), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Pérez J, Boyero L, Pearson RG, Gessner MO, Tonin A, López-Rojo N, Rubio-Ríos J, Correa-Araneda F, Alonso A, Cornejo A, Albariño RJ, Anbalagan S, Barmuta LA, Boulton AJ, Burdon FJ, Caliman A, Callisto M, Campbell IC, Cardinale BJ, Carneiro LS, Casas JJ, Chará-Serna AM, Chauvet E, Colón-Gaud C, Davis AM, de Eyto E, Degebrodt M, Díaz ME, Douglas MM, Encalada AC, Figueroa R, Flecker AS, Fleituch T, Frainer A, García EA, García G, García PE, Giller PS, Gómez JE, Gonçalves JF, Graça MAS, Hall RO, Hamada N, Hepp LU, Hui C, Imazawa D, Iwata T, Junior ESA, Landeira-Dabarca A, Leal M, Lehosmaa K, M'Erimba CM, Marchant R, Martins RT, Masese FO, Maul M, McKie BG, Medeiros AO, Middleton JA, Muotka T, Negishi JN, Ramírez A, Rezende RS, Richardson JS, Rincón J, Serrano C, Shaffer AR, Sheldon F, Swan CM, Tenkiano NSD, Tiegs SD, Tolod JR, Vernasky M, Wanderi EW, Watson A, Yule CM. Positive Feedback on Climate Warming by Stream Microbial Decomposers Indicated by a Global Space-For-Time Substitution Study. GLOBAL CHANGE BIOLOGY 2025; 31:e70171. [PMID: 40186595 DOI: 10.1111/gcb.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Decomposition of plant litter is a key ecological process in streams, whose contribution to the global carbon cycle is large relative to their extent on Earth. We examined the mechanisms underlying the temperature sensitivity (TS) of instream decomposition and forecast effects of climate warming on this process. Comparing data from 41 globally distributed sites, we assessed the TS of microbial and total decomposition using litter of nine plant species combined in six mixtures. Microbial decomposition conformed to the metabolic theory of ecology and its TS was consistently higher than that of total decomposition, which was higher than found previously. Litter quality influenced the difference between microbial and total decomposition, with total decomposition of more recalcitrant litter being more sensitive to temperature. Our projections suggest that (i) warming will enhance the microbial contribution to decomposition, increasing CO2 outgassing and intensifying the warming trend, especially in colder regions; and (ii) riparian species composition will have a major influence on this process.
Collapse
Affiliation(s)
- Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Department of Biology and Geology and Andalusian Center ENGLOBA, University of Almería (UAL), Almería, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Richard G Pearson
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Queensland, Australia
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Alan Tonin
- Department of Ecology, Institute of Biology, University of Brasília (UnB), Brasilia, Brazil
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
- RiverLy Research Unit, National Institute for Agriculture, Food, and Environment (INRAE), CenterLyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne, France
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mt-Blanc, CNRS, LECA, Grenoble, France
| | - Juan Rubio-Ríos
- Department of Biology and Geology and Andalusian Center ENGLOBA, University of Almería (UAL), Almería, Spain
| | - Francisco Correa-Araneda
- Unidad de Cambio Climático y Medio Ambiente (UCCMA), Instituto Iberoamericano de Desarrollo Sostenible (IIDS), Universidad Autónoma de Chile, Temuco, Chile
| | - Alberto Alonso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of Basque Country (UPV/EHU), Leioa, Spain
| | - Aydeé Cornejo
- Ecology and Aquatic Ecotoxicology Laboratory, Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Divisa, Panama
- National Research System of Panama, Panama
| | - Ricardo J Albariño
- INIBIOMA (Universidad Nacional del Comahue-CONICET), Bariloche, Argentina
| | | | - Leon A Barmuta
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew J Boulton
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Francis J Burdon
- Department of Aquatic Sciences & Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Adriano Caliman
- Department of Ecology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marcos Callisto
- Laboratório de Ecologia de Bentos, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bradley J Cardinale
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | - Luciana S Carneiro
- Department of Ecology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - J Jesús Casas
- Department of Biology and Geology and Andalusian Center ENGLOBA, University of Almería (UAL), Almería, Spain
| | - Ana M Chará-Serna
- Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Cali, Colombia
- Illinois River Biological Station, Illinois Natural History Survey, Division of the Prairie Research Institute at the University of Illinois Urbana-Champaign, Havana, Illinois, USA
| | - Eric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse CNRS, Toulouse, France
| | - Checo Colón-Gaud
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
| | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Queensland, Australia
| | | | - Monika Degebrodt
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - María E Díaz
- Centro de Recursos Hídricos para la Agricultura y la Minería (CRHIAM), Universidad de Concepción, Concepción, Chile
| | - Michael M Douglas
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Andrea C Encalada
- Instituto BIOSFERA, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Ricardo Figueroa
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Alexander S Flecker
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Tadeusz Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - André Frainer
- Norwegian Institute for Nature Research (NINA), Fram Centre, Tromsø, Norway
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erica A García
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory of Australia, Australia
| | - Gabriela García
- Ecology and Aquatic Ecotoxicology Laboratory, Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Divisa, Panama
| | - Pavel E García
- Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala
- Organismal Biology, Ecology, & Evolution (OBEE) Program at the University of Montana United State of America, Missoula, Montana, USA
| | - Paul S Giller
- School of Biological, Earth and Environmental Sciences, University College Cork, National University of Ireland, Dublin, Ireland
| | - Jesús E Gómez
- Departamento de Ciencias Agroambientales, Universidad de Puerto Rico, Recinto de Mayagüez, Puerto Rico
| | - Jose F Gonçalves
- Departamento de Ecologia-IB, Universidade de Brasília, Brasilia, Brazil
| | - Manuel A S Graça
- Department of Life Sciences & MARE- Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Robert O Hall
- Flathead Lake Biological Station, University of Montana, Missoula, Montana, USA
| | - Neusa Hamada
- Instituto Nacional de Pesquisas da Amazônia-INPA, Coordenação de Biodiversidade-COBIO, Manaus, Brazil
| | - Luiz U Hepp
- Laboratório de Indicadores Ambientais, Universidade Federal de Mato Grosso do Sul, Três Lagoas, Brazil
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Daichi Imazawa
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Tomoya Iwata
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Edson S A Junior
- Laboratório de Microbiologia Ambiental, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Andrea Landeira-Dabarca
- Rhithroecology, Blackburn South, Victoria, Australia
- Department of Life Sciences & MARE- Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - María Leal
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Departamento de Biología, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
| | - Kaisa Lehosmaa
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Richard Marchant
- Museums Victoria Research Institute, Melbourne, Victoria, Australia
| | - Renato T Martins
- Instituto Nacional de Pesquisas da Amazônia-INPA, Coordenação de Biodiversidade-COBIO, Manaus, Brazil
| | - Frank O Masese
- Department of Fisheries & Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Megan Maul
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | - Brendan G McKie
- Department of Aquatic Sciences & Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Adriana O Medeiros
- Laboratório de Microbiologia Ambiental, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Jen A Middleton
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Alonso Ramírez
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Renan S Rezende
- Program of Postgraduate in Environmental Science, Communitarian University of Chapecó Region, Chapecó, Brazil
| | - John S Richardson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - José Rincón
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Departamento de Biología, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela
| | | | - Angela R Shaffer
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
| | - Fran Sheldon
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Christopher M Swan
- Department of Geography & Environmental Systems, University of Maryland, Baltimore, Maryland, USA
| | | | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Janine R Tolod
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michael Vernasky
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Elizabeth W Wanderi
- Department of Fisheries & Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Anne Watson
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine M Yule
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
4
|
Leroux SJ, Schmitz OJ. Integrating Network and Meta-Ecosystem Models for Developing a Zoogeochemical Theory. Ecol Lett 2025; 28:e70076. [PMID: 39964037 DOI: 10.1111/ele.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Human activities have caused significant changes in animal abundance, interactions, movement and diversity at multiple scales. Growing empirical evidence reveals the myriad ways that these changes can alter the control that animals exert over biogeochemical cycling. Yet a theoretical framework to coherently integrate animal abundance, interactions, movement and diversity to predict when and how animal controls over biogeochemical cycling (i.e., zoogeochemistry) change is currently lacking. We present such a general framework that provides guidance on linking mathematical models of species interaction and diversity (network theory) and movement of organisms and non-living materials (meta-ecosystem theory) to account for biotic and abiotic feedback by which animals control biogeochemical cycling. We illustrate how to apply the framework to develop predictive models for specific ecosystem contexts using a case study of a primary producer-herbivore bipartite trait network in a boreal forest ecosystem. We further discuss key priorities for enhancing model development, data-model integration and application. The framework offers an important step to enhance empirical research that can better inform and justify broader conservation efforts aimed at conserving and restoring animal populations, their movement and critical functional roles in support of ecosystem services and nature-based climate solutions.
Collapse
Affiliation(s)
- Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Oswald J Schmitz
- School of Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Wang X, Li H, Zhang R, Liu X, Nan F, Liu Q, Lv J, Feng J, Xie S, Liu Y. Bacterial community and dissolved organic matter networks in urban river: The role of human influence. ENVIRONMENTAL RESEARCH 2024; 263:120021. [PMID: 39293755 DOI: 10.1016/j.envres.2024.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Human activities have significantly altered the biogeochemical cycles of carbon, nitrogen, and sulfur in aquatic ecosystems, leading to ecological problems.This study utilized 16S rRNA gene high-throughput sequencing and excitation-emission matrix parallel factor analysis (EEM-PARAFAC) to evaluate the bacterial community composition and dissolved organic matter structure in the upstream (less impacted) and downstream (severely impacted) sections of the river, with a focus on the interactions between bacterial diversity and dissolved organic matter (DOM) characteristics.Results indicated significant spatial diversity in bacterial communities, with a higher α-diversity upstream compared to the more polluted downstream sections. Environmental parameters, particularly total phosphorus (TP) and dissolved oxygen (DO), were found to significantly influence the distribution and composition of bacterial phyla through redundancy analysis. The pattern of bacterial community assembly has shifted from predominantly deterministic to predominantly stochastic as a result of human activities. The analysis of DOM through EEM-PARAFAC identified three main fluorescent components, reflecting varied sources and interactions with bacterial communities. Upstream, microbial activities predominantly contributed to autochthonous DOM, while downstream, increased inputs of allochthonous DOM from human activities were evident. Furthermore, the study revealed that through the introduction of various organic pollutants and nutrient loads that shift microbial metabolic functions towards increased degradation and transformation of complex organic compounds downstream. Structural equation modeling (SEM) revealed that upstream human activities primarily affected bacterial communities indirectly by altering DOM properties. In contrast, downstream activities had both direct and indirect effects due to higher pollutant loads and more complex environmental conditions. These interactions underline the profound effect of anthropogenic factors on riverine ecosystems and emphasize the importance of managing human impacts to preserve microbial biodiversity and water quality.
Collapse
Affiliation(s)
- Xiding Wang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Huimin Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ruikai Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Bega JMM, Cunha DGF, López MM, Camacho-Santamans A, von Schiller D. Dam removal effects on carbon processing in a mountainous Mediterranean stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176672. [PMID: 39362551 DOI: 10.1016/j.scitotenv.2024.176672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The global prevalence of obsolete or unsafe old dams necessitates the development of effective restoration approaches and expanded knowledge in this field. This study evaluates the effects of dam removal on carbon processing by measuring key ecosystem functions - organic matter decomposition, whole-reach metabolism, and gaseous carbon fluxes - in a mountainous Mediterranean stream. We compared these functions among three reaches: one where a dam was removed (restored), one with an intact dam (impacted), and one in natural conditions (reference). The measurements were conducted throughout the different seasons over the course of one year. Temperature-corrected organic matter decomposition rates and metabolic parameters in the restored reach showed intermediate values between those in the reference and impacted reaches. Additionally, dam removal resulted in carbon dioxide fluxes similar to those in the reference reach, whereas methane fluxes tended to be higher in the restored reach compared to the other reaches. Seasonal variation was high, and the observed effects were inconsistent across seasons for several functions. This inconsistency is likely due to uneven seasonal changes in the hydromorphological and physicochemical characteristics of the studied reaches. Our results indicate that, despite notable improvements, a longer timeframe is necessary for the restored reach to fully emulate the functional characteristics of the reference reach. While restoration by dam removal positively contributes to certain aspects of carbon processing, a more holistic approach, possibly encompassing broader hydromorphological and habitat enhancements, is needed to fully restore ecological processes in stream ecosystems. These insights are critical for informing future dam removal restoration projects, advocating the use of ecosystem function metrics as comprehensive indicators of ecological recovery and restoration success.
Collapse
Affiliation(s)
- João Miguel Merces Bega
- Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo (USP), São Carlos, Brazil.
| | - Davi Gasparini Fernandes Cunha
- Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo (USP), São Carlos, Brazil
| | - Margarita Menéndez López
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alba Camacho-Santamans
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Daniel von Schiller
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Mustafa G, Hussain S, Liu Y, Ali I, Liu J, Bano H. Microbiology of wetlands and the carbon cycle in coastal wetland mediated by microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175734. [PMID: 39244048 DOI: 10.1016/j.scitotenv.2024.175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Wetlands are highly diverse and productive and are among the three most important natural ecosystems worldwide, among which coastal wetlands are particularly valuable because they have been shown to provide important functions for human populations. They provide a wide variety of ecological services and values that are critical to humans. Their value may increase with increased use or scarcity owing to human progress, such as agriculture and urbanization. The potential assessment for one coastal wetland habitat to be substituted by another landscape depends on analyzing complex microbial communities including fungi, bacteria, viruses, and protozoa common in different wetlands. Moreover, the number and quality of resources in coastal wetlands, including nutrients and energy sources, are also closely related to the size and variety of the microbial communities. In this review, we discussed types of wetlands, how human activities had altered the carbon cycle, how climate change affected wetland services and functions, and identified some ways to promote their conservation and restoration that provide a range of benefits, including carbon sequestration. Current data also indicated that the coastal ocean acted as a net sink for atmospheric carbon dioxide in a post-industrial age and continuous human pressure would make a major impact on the evolution the coastal ocean carbon budget in the future. Coastal wetland ecosystems contain diverse microbial communities, and their composition of microbial communities will tend to change rapidly in response to environmental changes, as can serve as significant markers for identifying these changes in the future.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Sarfraz Hussain
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuhong Liu
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiayuan Liu
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hamida Bano
- Key Laboratory of integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
8
|
Zill J, Perujo N, Fink P, Mallast U, Siebert C, Weitere M. Contribution of groundwater-borne nutrients to eutrophication potential and the share of benthic algae in a large lowland river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175617. [PMID: 39159693 DOI: 10.1016/j.scitotenv.2024.175617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Groundwater inflow can be a significant source of nutrients for riverine ecosystems, which can affect eutrophication i.e., the elevated primary production and the corresponding accumulation of algal biomass. Experimental and modelling work has shown that benthic algae (autotrophic biofilms) in particular benefit, as they have direct access to the inflowing groundwater-borne nutrients. Primarily the supply of phosphorus (P) enhances pelagic algal biomass, as it is the limiting nutrient for primary production in most freshwater systems. In this study, we estimate the effect of groundwater inflow on overall eutrophication of a large, European lowland river and tested its seasonal effect on biofilms in particular. We calculated the effects on overall eutrophication during summer according to the estimated input of groundwater-borne P and the C:P stoichiometry of planktonic algae in the Elbe River. Our model indicated that these diffuse P inputs have the potential to significantly increase eutrophication. Groundwater-P can contribute up to 1.5 t/d PO4 over the investigated 450 km stretch of the Elbe River under low flow conditions. This would result in an additional planktonic load of about 46 t/d of particulate organic carbon, thereby contributing to eutrophication at the regional scale in this river. In contrast, at the local scale, biofilms were collected seasonally from artificial substrata exposed in the river either in hydrogeologically active areas with groundwater inflow, or in areas of varying hydraulic connectivity. Analyses of biofilm macronutrients, structural components and biofilm community composition show distinct effects of season, hydrogeology and groundwater inflow. The dominant predictors were season and the interaction between hydrogeology and groundwater. Benthic eutrophication is most likely to occur in autumn in areas of loose rock with high groundwater inflow. The strong interaction of environmental factors in determining benthic eutrophication highlights the need to assess these factors in combination rather than in isolation.
Collapse
Affiliation(s)
- Julia Zill
- Dept. Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06120, Germany; Dept. River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg 39114, Germany.
| | - Nuria Perujo
- Dept. River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg 39114, Germany
| | - Patrick Fink
- Dept. River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg 39114, Germany; Dept. Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Magdeburg 39114, Germany
| | - Ulf Mallast
- Dept. Monitoring- and Exploration Technologies, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Christian Siebert
- Dept. Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale) 06120, Germany
| | - Markus Weitere
- Dept. River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg 39114, Germany
| |
Collapse
|
9
|
Cummins CS, Rosemond AD, Tomczyk NJ, Wenger SJ, Bumpers PM, Gulis V, Helton AM, Benstead JP. Temperature dependence of leaf breakdown in streams differs between organismal groups and leaf species. Ecology 2024; 105:e4405. [PMID: 39245911 DOI: 10.1002/ecy.4405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
Increased temperatures are altering rates of organic matter (OM) breakdown in stream ecosystems with implications for carbon (C) cycling in the face of global change. The metabolic theory of ecology (MTE) provides a framework for predicting temperature effects on OM breakdown, but differences in the temperature dependence of breakdown driven by different organismal groups (i.e., microorganisms vs. invertebrate detritivores) and litter species remain unresolved. Over two years, we conducted 12 60-day leaf litterbag incubations in 20 headwater streams in the southern Appalachian Mountains (USA). We compared temperature dependence (as activation energy, Ea) between microbial and detritivore-mediated breakdown, and between a highly recalcitrant (Rhododendron maximum) and a relatively labile (Acer rubrum) leaf species. Detritivore-mediated breakdown had a higher Ea than microbial breakdown for both leaf species (Rhododendron: 1.48 > 0.56 eV; Acer: 0.97 > 0.29 eV), and Rhododendron breakdown had a higher Ea than Acer breakdown for both organismal groups. Similarly, the Ea of total (coarse-mesh) Rhododendron breakdown was higher than the Ea of total Acer breakdown (0.89 > 0.52 eV). These effects for total breakdown were large, implying that the number of days to 95% mass loss would decline by 40% for Rhododendron and 26% for Acer between 12°C (our mean temperature value) and 16°C (+4°C, reflecting projected increases in global surface temperature due to climate change). Despite patterns in Ea, overall breakdown rates were higher for microbes than detritivores, and for Acer than Rhododendron over most of our temperature gradient. Additionally, the Ea for a subset of the microbial breakdown data declined from 0.40 to 0.22 eV when fungal biomass was included as a model predictor, highlighting the key role of fungi in determining the temperature dependence of litter breakdown. Our results imply that, as streams warm, routing of leaf litter C to detritivore-mediated fates will increase faster than predicted by previous studies and MTE, especially for labile litter. As temperatures rise, earlier depletion of autumn-shed, labile leaf litter combined with rapid breakdown rates of recalcitrant litter could exacerbate seasonal resource limitation and alter carbon storage and transport dynamics in temperate headwater stream networks.
Collapse
Affiliation(s)
| | - Amy D Rosemond
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Nathan J Tomczyk
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Seth J Wenger
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Vladislav Gulis
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Ashley M Helton
- Department of Natural Resources and the Environment and the Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
10
|
Tiegs SD, Capps KA, Costello DM, Schmidt JP, Patrick CJ, Follstad Shah JJ, LeRoy CJ. Human activities shape global patterns of decomposition rates in rivers. Science 2024; 384:1191-1195. [PMID: 38815088 DOI: 10.1126/science.adn1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf litter decomposition rates with high accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth and reveals rapid decomposition across continental-scale areas dominated by human activities.
Collapse
Affiliation(s)
- S D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - K A Capps
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - D M Costello
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - J P Schmidt
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - C J Patrick
- Virginia Institute of Marine Science, Coastal Ocean Processes Section, William & Mary, Gloucester Point, VA 23062, USA
| | - J J Follstad Shah
- School of the Environment, Society, and Sustainability, University of Utah, Salt Lake City, UT 84112, USA
| | - C J LeRoy
- Environmental Studies Program, The Evergreen State College, Olympia, WA 98505, USA
| |
Collapse
|
11
|
Lee KH, Kam J. Spatiotemporal patterns of water volume and total organic carbon concentration of agricultural reservoirs over South Korea. WATER RESEARCH 2024; 256:121610. [PMID: 38663212 DOI: 10.1016/j.watres.2024.121610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Lacking of available water quality data causes the limited understanding of the coupled dynamics of hydrologic and nutrient cycles in lakes and reservoirs and along river streams. This study conducts the rotated Principal Component Analysis (rPCA) of water volume and total organic carbon (TOC) concentration data from ∼2200 agricultural reservoirs in South Korea to extract the major modes of their spatiotemporal variability. Over 2020-2022, the total TOC load in the reservoirs ranges between 1,165 and 1,492 tons (289 and 360 Mtons of water storage volume; 3.54 and 4.60 mg/L of TOC concentration). The first rPCA mode is assoicated with a decreasing trend of water level (38 % of the explained variance) and increasing trend of TOC concentration (27 %) over the southern Korea region, where the TOC concentration increased during the 2022 drought. The second rPCA mode is associated with interannual variability of water level (25 %) and TOC concentration (18 %) over the central Korea region. This study found a marginal relationship between paddy field area and TOC concentration and their regime shift to high TOC concentration during the 2022 drought, which was a potential cause of the increased TOC concentration in 2022. This study provided observational evidence of interactions between water volume and TOC concentration during a severe drought, suggesting a possible shift of the role of agricultural reservoirs to carbon source.
Collapse
Affiliation(s)
- Kwang-Hun Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jonghun Kam
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
| |
Collapse
|
12
|
Madge Pimentel I, Baikova D, Buchner D, Burfeid Castellanos A, David GM, Deep A, Doliwa A, Hadžiomerović U, Mayombo NAS, Prati S, Spyra MA, Vermiert AM, Beisser D, Dunthorn M, Piggott JJ, Sures B, Tiegs SD, Leese F, Beermann AJ. Assessing the response of an urban stream ecosystem to salinization under different flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171849. [PMID: 38537828 DOI: 10.1016/j.scitotenv.2024.171849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.
Collapse
Affiliation(s)
- Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Daria Baikova
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline M David
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Stechlin, Germany
| | - Aman Deep
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Una Hadžiomerović
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anna-Maria Vermiert
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jeremy J Piggott
- Zoology and Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Bernd Sures
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Arne J Beermann
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Liu Y, Guo W, Wei C, Huang H, Nan F, Liu X, Liu Q, Lv J, Feng J, Xie S. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: Insight from a Fen river analysis. ENVIRONMENTAL RESEARCH 2024; 246:118107. [PMID: 38181848 DOI: 10.1016/j.envres.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Microbial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations. In contrast, rainfall increased total dissolved solids, salinity, and ammonia-nitrogen concentrations. A detailed microbial community structure analysis revealed that Cyanobacteria was the dominant microbial taxon in the Fen River, accounting for approximately 75% and 25% of the microalgal and bacterial communities, respectively. The abundance of Chlorophyta and Bacillariophyta increased by 47.66% and 29.92%, respectively, whereas the relative abundance of Bacteroidetes decreased by 37.55% under rainfall conditions. Stochastic processes predominantly affected the assembly of the bacterial community on rainy days. Functional gene analysis revealed variations in bacterial functions between sunny (Sun) and rainy (Rain) conditions, particularly in genes associated with the carbon cycle. The 3-oxoacyl-[acyl-carrier-protein] reductase gene was more abundant in the Fen River bacterial community. Particular genes involved in metabolism and environmental information processing, including the acetyl-CoA C-acetyltransferase (atoB), enoyl-CoA hydratase (paaF), and branched-chain amino acid transport system gene (livK), which are integral to environmental information processing, were more abundant in Sun than the Rain conditions. In contrast, the phosphate transport system gene, the galactose metabolic gene, and the pyruvate metabolic gene were more abundant in Rain. The excitation-emission matrix analysis with parallel factor analysis identified four fluorescence components (C1-C4) in the river, which were predominantly protein- (C1) and humic-like (C2-C4) substances. Rainfall affected organic matter production and transport, leading to changes in the degradation and stability of dissolved organic matter. Overall, this study offers insight into how rainfall affects aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weinan Guo
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caihua Wei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hanjie Huang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
Qiu J, Zhang Y, Ma J. Wetland habitats supporting waterbird diversity: Conservation perspective on biodiversity-ecosystem functioning relationship. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120663. [PMID: 38552509 DOI: 10.1016/j.jenvman.2024.120663] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Wetlands, as core habitats for supporting waterbird diversity, provide a variety of ecosystem services through diverse ecosystem functioning. Wetland degradation and wetland-habitat loss undermine the relationship between biodiversity-ecosystem functioning (BEF), affecting the diversity of habitats and waterbirds. The conservation of waterbird diversity is closely linked to the proper functioning of wetland ecosystems (nutrient cycling, energy storage, and productivity). Waterbirds have complex habitat preferences and sensitivities, which affect biotic interactions. By highlighting the importance of temporal and spatial scales guided by BEF, a habitat-waterbird conservation framework is presented (BEF relationships are described at three levels: habitat, primary producers, and waterbird diversity). We present a novel perspective on habitat conservation for waterbirds by incorporating research on the effects of biodiversity and ecosystem functioning to address the crucial challenges in global waterbird diversity loss, ecosystem degradation, and habitat conservation. Last, it is imperative to prioritize strategies of habitat protection with the incorporation of BEF for future waterbird conservation.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, 215123, China.
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, 215123, China; Sino-Portugal Joint Laboratory of Cultural Heritage Conservation Science, Soochow University, Suzhou, 215123, China.
| | - Jianwu Ma
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Jackson MC, Friberg N, Moliner Cachazo L, Clark DR, Mutinova PT, O'Gorman EJ, Kordas RL, Gallo B, Pichler DE, Bespalaya Y, Aksenova OV, Milner A, Brooks SJ, Dunn N, Lee KWK, Ólafsson JS, Gíslason GM, Millan L, Bell T, Dumbrell AJ, Woodward G. Regional impacts of warming on biodiversity and biomass in high latitude stream ecosystems across the Northern Hemisphere. Commun Biol 2024; 7:316. [PMID: 38480906 PMCID: PMC10937648 DOI: 10.1038/s42003-024-05936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships.
Collapse
Affiliation(s)
- Michelle C Jackson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| | - Nikolai Friberg
- Norwegian Institute for Nature Research (NINA) Sognsveien 68, Oslo, 0855, Norway
- Freshwater Biological Section, University of Copenhagen, Copenhagen, Denmark
- Water@Leeds, University of Leeds, School of Geography, Leeds, UK
| | - Luis Moliner Cachazo
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- Department of Geography, King's College London, The Strand, London, WC2R 2LS, UK
| | - David R Clark
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
- Institute for Analytics and Data Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Petra Thea Mutinova
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo, 0579, Norway
| | - Eoin J O'Gorman
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Rebecca L Kordas
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Bruno Gallo
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Doris E Pichler
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Yulia Bespalaya
- N. Laverov Federal Centre for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Olga V Aksenova
- N. Laverov Federal Centre for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia
| | - Alexander Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J Brooks
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Nicholas Dunn
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - K W K Lee
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, Tsuen, Hong Kong
| | - Jón S Ólafsson
- Institute of Marine and Freshwater Research, Hafnafjordur, 220, Hafnarfjörður, Iceland
| | - Gísli M Gíslason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, 102, Iceland
| | - Lucia Millan
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Alex J Dumbrell
- School of Life Science, University of Essex, Colchester, CO4 3SQ, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
16
|
Bansal S, Creed IF, Tangen BA, Bridgham SD, Desai AR, Krauss KW, Neubauer SC, Noe GB, Rosenberry DO, Trettin C, Wickland KP, Allen ST, Arias-Ortiz A, Armitage AR, Baldocchi D, Banerjee K, Bastviken D, Berg P, Bogard MJ, Chow AT, Conner WH, Craft C, Creamer C, DelSontro T, Duberstein JA, Eagle M, Fennessy MS, Finkelstein SA, Göckede M, Grunwald S, Halabisky M, Herbert E, Jahangir MMR, Johnson OF, Jones MC, Kelleway JJ, Knox S, Kroeger KD, Kuehn KA, Lobb D, Loder AL, Ma S, Maher DT, McNicol G, Meier J, Middleton BA, Mills C, Mistry P, Mitra A, Mobilian C, Nahlik AM, Newman S, O’Connell JL, Oikawa P, van der Burg MP, Schutte CA, Song C, Stagg CL, Turner J, Vargas R, Waldrop MP, Wallin MB, Wang ZA, Ward EJ, Willard DA, Yarwood S, Zhu X. Practical Guide to Measuring Wetland Carbon Pools and Fluxes. WETLANDS (WILMINGTON, N.C.) 2023; 43:105. [PMID: 38037553 PMCID: PMC10684704 DOI: 10.1007/s13157-023-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 12/02/2023]
Abstract
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01722-2.
Collapse
Affiliation(s)
- Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Irena F. Creed
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada
| | - Brian A. Tangen
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Scott D. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Ankur R. Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Scott C. Neubauer
- Department of Biology, Virginia Commonwealth University, Richmond, VA USA
| | - Gregory B. Noe
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | | | - Carl Trettin
- U.S. Forest Service, Pacific Southwest Research Station, Davis, CA USA
| | - Kimberly P. Wickland
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO USA
| | - Scott T. Allen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV USA
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Anna R. Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Kakoli Banerjee
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Odisha India
| | - David Bastviken
- Department of Thematic Studies – Environmental Change, Linköping University, Linköping, Sweden
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA
| | - Matthew J. Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Alex T. Chow
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - William H. Conner
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Christopher Craft
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Courtney Creamer
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Tonya DelSontro
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON Canada
| | - Jamie A. Duberstein
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Meagan Eagle
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | | | | | - Mathias Göckede
- Department for Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL USA
| | - Meghan Halabisky
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA USA
| | | | | | - Olivia F. Johnson
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
- Departments of Biology and Environmental Studies, Kent State University, Kent, OH USA
| | - Miriam C. Jones
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Jeffrey J. Kelleway
- School of Earth, Atmospheric and Life Sciences and Environmental Futures Research Centre, University of Wollongong, Wollongong, NSW Australia
| | - Sara Knox
- Department of Geography, McGill University, Montreal, Canada
| | - Kevin D. Kroeger
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | - Kevin A. Kuehn
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS USA
| | - David Lobb
- Department of Soil Science, University of Manitoba, Winnipeg, MB Canada
| | - Amanda L. Loder
- Department of Geography, University of Toronto, Toronto, ON Canada
| | - Shizhou Ma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Damien T. Maher
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW Australia
| | - Gavin McNicol
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL USA
| | - Jacob Meier
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Beth A. Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Christopher Mills
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO USA
| | - Purbasha Mistry
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, Kolkata, West Bengal India
| | - Courtney Mobilian
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Amanda M. Nahlik
- Office of Research and Development, Center for Public Health and Environmental Assessments, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR USA
| | - Sue Newman
- South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL USA
| | - Jessica L. O’Connell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO USA
| | - Patty Oikawa
- Department of Earth and Environmental Sciences, California State University, East Bay, Hayward, CA USA
| | - Max Post van der Burg
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Charles A. Schutte
- Department of Environmental Science, Rowan University, Glassboro, NJ USA
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Camille L. Stagg
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Jessica Turner
- Freshwater and Marine Science, University of Wisconsin-Madison, Madison, WI USA
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Marcus B. Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhaohui Aleck Wang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Eric J. Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Debra A. Willard
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Stephanie Yarwood
- Environmental Science and Technology, University of Maryland, College Park, MD USA
| | - Xiaoyan Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China
| |
Collapse
|
17
|
Matiatos I, Lazogiannis K, Papadopoulos A, Skoulikidis NT, Boeckx P, Dimitriou E. Stable isotopes reveal organic nitrogen pollution and cycling from point and non-point sources in a heavily cultivated (agricultural) Mediterranean river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166455. [PMID: 37607634 DOI: 10.1016/j.scitotenv.2023.166455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
The Pinios River Basin (PRB) is the most intensively cultivated area in Greece, which hosts numerous industries and other anthropogenic activities. The analysis of water samples collected monthly for ∼1 ½ years in eight monitoring sites in the PRB revealed nitrate pollution of organic origin extending from upstream to downstream and occurring throughout the year, masking the signal from the application of synthetic fertilizers. Nitrate concentrations reached up to 3.6 mg/l as NO3--N, without exceeding the drinking water threshold of ∼11.0 mg/l (as NO3--N). However, the water quality status was "poor" or "bad" in ∼50 % of the samples based on a local index, which considers the potential impact of nitrate on aquatic biological communities. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +4.4 ‰ to +20.3 ‰ and from -0.5 ‰ to +14.4 ‰, respectively. The application of a Bayesian model showed that the proportional contribution of organic pollution from industries, animal breeding facilities and manure fertilizers exceeded 70 % in most river sites with an overall uncertainty of ∼0.3 (UI90 index). The δ18O-NO3- and its relationship with δ18O-H2O revealed N-cycling and mixing processes, which were difficult to identify apart from the uptake of nutrients by phytoplankton during the growing season and metabolic activities. The strong correlation of δ15Ν-ΝΟ3- values with a Land Use Index (LUI) and a Point Source Index (PSI) highlighted not only the role of non-point nitrate sources but also of point sources of nitrate pollution on water quality degradation, which are usually overlooked. The nitrification of organic wastes is the dominant nitrate source in most rivers in Europe. The systematic monitoring of rivers for nitrate isotopes will help improve the understanding of N-cycling and the impact of these pollutants on ecosystems and better inform policies for protection measures so to achieve good ecological status.
Collapse
Affiliation(s)
- Ioannis Matiatos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece.
| | - Konstantinos Lazogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Anastasios Papadopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Nikolaos Th Skoulikidis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Department of Green Chemistry and Technology, Ghent University, Belgium
| | - Elias Dimitriou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 19013 Anavissos Attikis, Greece
| |
Collapse
|
18
|
Schreiner VC, Liebmann L, Feckler A, Liess M, Link M, Schneeweiss A, Truchy A, von Tümpling W, Vormeier P, Weisner O, Schäfer RB, Bundschuh M. Standard Versus Natural: Assessing the Impact of Environmental Variables on Organic Matter Decomposition in Streams Using Three Substrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2007-2018. [PMID: 36718721 DOI: 10.1002/etc.5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low-order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter. Studying the relationship between environmental variables and decomposition has mainly been realized using leaves, with the drawbacks of differing substrate composition and consequently between-study variability. To overcome these drawbacks, artificial substrates have been developed, serving as standardizable surrogates. In the present study, we compared microbial and total decomposition of leaves with the standardized substrates of decotabs and, only for microbial decomposition, of cotton strips, across 70 stream sites in a Germany-wide study. Furthermore, we identified the most influential environmental variables for the decomposition of each substrate from a range of 26 variables, including pesticide toxicity, concentrations of nutrients, and trace elements, using stability selection. The microbial as well as total decomposition of the standardized substrates (i.e., cotton strips and decotabs) were weak or not associated with that of the natural substrate (i.e., leaves, r² < 0.01 to r² = 0.04). The decomposition of the two standardized substrates, however, showed a moderate association (r² = 0.21), which is probably driven by their similar composition, with both being made of cellulose. Different environmental variables were identified as the most influential for each of the substrates and the directions of these relationships contrasted between the substrates. Our results imply that these standardized substrates are unsuitable surrogates when investigating the decomposition of allochthonous organic matter in streams. Environ Toxicol Chem 2023;42:2007-2018. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Liana Liebmann
- Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department Evolutionary Ecology & Environmental Toxicology, Faculty of Biological Sciences, Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Feckler
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Eusserthal Ecosystem Research Station, RPTU Kaisterslautern-Landau, Eusserthal, Germany
| | - Matthias Liess
- Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Moritz Link
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Anke Schneeweiss
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Amélie Truchy
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- INRAE, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne, France
| | | | - Philipp Vormeier
- Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Oliver Weisner
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Wang L, Liu H, Carvalho F, Chen Y, Lai L, Ge J, Tian X, Luo Y. Top-Down Effect of Arthropod Predator Chinese Mitten Crab on Freshwater Nutrient Cycling. Animals (Basel) 2023; 13:2342. [PMID: 37508124 PMCID: PMC10376719 DOI: 10.3390/ani13142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Aquatic litter decomposition is highly dependent on contributions and interactions at different trophic levels. The invasion of alien aquatic organisms like the channeled apple snail (Pomacea canaliculata) might lead to changes in the decomposition process through new species interactions in the invaded wetland. However, it is not clear how aquatic macroinvertebrate predators like the Chinese mitten crab (Eriocheir sinensis) will affect the nutrient cycle in freshwater ecosystems in the face of new benthic invasion. We used the litter bag method to explore the top-down effect of crabs on the freshwater nutrient cycle with the help of soil zymography (a technology previously used in terrestrial ecosystems). The results showed significant feeding effects of crabs and snails on lotus leaf litter and cotton strips. Crabs significantly inhibited the intake of lotus litter and cotton strips and the ability to transform the environment of snails by predation. Crabs promoted the decomposition of various litter substrates by affecting the microbial community structure in the sediment. These results suggest that arthropod predators increase the complexity of detrital food webs through direct and indirect interactions, and consequently have an important impact on the material cycle and stability of freshwater ecosystems. This top-down effect makes macrobenthos play a key role in the biological control and engineering construction of freshwater ecosystems.
Collapse
Affiliation(s)
- Lin Wang
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Hongjun Liu
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Francisco Carvalho
- CBMA-Center of Molecular and Environmental Biology, Biology Department, University of Minho, 4710-057 Braga, Portugal
| | - Yunru Chen
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Beijing Municipal Ecological and Environmental Monitoring Center, 14 Chegongzhuangxi Road, Beijing 100048, China
| | - Linshiyu Lai
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jiachun Ge
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Freshwater Fishery Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yunchao Luo
- School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
20
|
de Melo ML, Teodoru CR, Del Giorgio PA. Catchment-scale carbon fluxes and processes in major rivers of northern Québec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162308. [PMID: 36801415 DOI: 10.1016/j.scitotenv.2023.162308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Boreal rivers transport and process large amounts of organic and inorganic materials derived from their catchments, yet quantitative estimates and patterns of carbon (C) transport and emissions in these large rivers are scarce relative to those of high-latitude lakes and headwater streams. Here, we present the results of a large-scale survey of 23 major rivers in northern Québec sampled during the summer period of 2010, which aimed to determine the magnitude and spatial variability of different C species (carbon dioxide - CO2, methane - CH4, total carbon - TC, dissolved organic carbon - DOC and inorganic carbon - DIC), as well as to identify their main drivers. In addition, we constructed a first order mass balance of total riverine C emissions to the atmosphere (outgassing from the main river channel) and export to the ocean over summer. All rivers were supersaturated in pCO2 and pCH4 (partial pressure of CO2 and CH4), and the resulting fluxes varied widely among rivers, especially the CH4. There was a positive relationship between DOC and gas concentrations, suggesting a common watershed source of these C species. DOC concentrations declined as a function of % land surface covered by water (lentic + lotic systems) in the watershed, suggesting that lentic systems may act as a net sink of organic matter in the landscape. The C balance suggests that the export component is higher than atmospheric C emissions in the river channel. However, for heavily dammed rivers, C emissions to the atmosphere approaches the C export component. Such studies are highly important for the overall efforts to effectively quantify and incorporate major boreal rivers into whole-landscape C budgets, to determine the net role of these ecosystems as C sinks or sources, and to predict how these might shift under anthropogenic pressures and dynamic climate conditions.
Collapse
Affiliation(s)
- Michaela L de Melo
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Cristian R Teodoru
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada; National Institute for Research and Development on Marine Geology and Geo-Ecology, Bucharest, Romania
| | - Paul A Del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Liu Y, Zhang B, Zhang Y, Shen Y, Cheng C, Yuan W, Guo P. Organic Matter Decomposition in River Ecosystems: Microbial Interactions Influenced by Total Nitrogen and Temperature in River Water. MICROBIAL ECOLOGY 2023; 85:1236-1252. [PMID: 35501499 DOI: 10.1007/s00248-022-02013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/11/2022] [Indexed: 05/10/2023]
Abstract
Microbes contribute to the organic matter decomposition (OMD) in river ecosystems. This study considers two aspects of OMD in river ecosystems which have not been examined in scientific studies previously, and these are the microbial interactions in OMD and the influence of environmental factors on microbial interactions. Cotton strip (CS), as a substitute for organic matter, was introduced to Luanhe River Basin in China. The results of CS assay, microbial sequencing, and redundancy analysis (RDA) showed that CS selectively enriched bacterial and fungal groups related to cellulose decomposition, achieving cotton strip decomposition (CSD). Bacterial phylum Proteobacteria and fungal phyla Rozellomycota and Ascomycota were the dominant groups associated with CSD. Network analysis and Mantel test results indicated that bacteria and fungi on CS cooperatively formed an interaction network to achieve the CSD. In the network, modules 2 and 4 were significantly positively associated with CSD, which were considered as the key modules in this study. The key modules were mainly composed of phyla Proteobacteria and Ascomycota, indicating that microbes in key modules were the effective decomposers of CS. Although keystone taxa were not directly associated with CSD, they may regulate the genera in key modules to achieve the CSD, since some keystone taxa were linked with the microbial genera associated with CSD in the key modules. Total nitrogen (TN) and temperature in water were the dominant environmental factors positively influenced CSD. The key modules 2 and 4 were positively influenced by water temperature and TN in water, respectively, and two keystone taxa were positively associated with TN. This profoundly revealed that water temperature and TN influenced the OMD through acting on the keystone taxa and key modules in microbial interactions. The research findings help us to understand the microbial interactions influenced by environmental factors in OMD in river ecosystems.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John' s, NL, A1B 3X5, Canada
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, Soochow University, Suzhou, China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Cheng Cheng
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Weilin Yuan
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130012, People's Republic of China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
22
|
Robbins CJ, Manning DWP, Halvorson HM, Norman BC, Eckert RA, Pastor A, Dodd AK, Jabiol J, Bastias E, Gossiaux A, Mehring AS. Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems: A global synthesis. Ecology 2023:e4060. [PMID: 37186091 DOI: 10.1002/ecy.4060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Decomposing organic matter forms a substantial resource base fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by initial P content, where P-poor litters were sinks of nutrients until shifting to net P mineralization after ~40% mass loss. However, large variation surrounded both N and P predictions, suggesting the importance of non-microbial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. Explorations of environmental covariate effects were frequently limited by few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate existing ontogenetic patterns in C:N. Our analysis helps unite organic matter decomposition across aquatic-terrestrial boundaries by describing basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Caleb J Robbins
- Department of Biology, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - David W P Manning
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | | | - Beth C Norman
- Lacawac Sanctuary Field Station and Environmental Education Center, Lake Ariel, PA, USA
| | - Rebecca A Eckert
- Biology Department, Environmental Studies Department, Gettysburg College, Gettysburg, PA, USA
| | - Ada Pastor
- Group of Continental Aquatic Ecology Research (GRECO), Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Allyn K Dodd
- Arkansas School for Math, Sciences, and the Arts, Hot Springs, AR, USA
| | - Jérémy Jabiol
- HYFE - Hydrobiologie et Fonctionnement des Ecosystèmes, Elven, France
| | - Elliot Bastias
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Andrew S Mehring
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
23
|
Monroy S, Larrañaga A, Martínez A, Pérez J, Molinero J, Basaguren A, Pozo J. Temperature Sensitivity of Microbial Litter Decomposition in Freshwaters: Role of Leaf Litter Quality and Environmental Characteristics. MICROBIAL ECOLOGY 2023; 85:839-852. [PMID: 35654854 PMCID: PMC10156624 DOI: 10.1007/s00248-022-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/10/2022] [Indexed: 05/04/2023]
Abstract
Ongoing global warming is expected to alter temperature-dependent processes. Nevertheless, how co-occurring local drivers will influence temperature sensitivity of plant litter decomposition in lotic ecosystems remains uncertain. Here, we examined the temperature sensitivity of microbial-mediated decomposition, microbial respiration, fungal biomass and leaf nutrients of two plant species varying in litter quality. We also assessed whether the type of microbial community and stream water characteristics influence such responses to temperature. We incubated alder (Alnus glutinosa) and eucalypt (Eucalyptus globulus) litter discs in three streams differing in autumn-winter water temperature (range 4.6-8.9 °C). Simultaneously, in laboratory microcosms, litter discs microbially conditioned in these streams were incubated at 5, 10 and 15 °C with water from the conditioning stream and with a water control from an additional stream. Both in the field and in the laboratory, higher temperatures enhanced litter decomposition rates, except for eucalypt in the field. Leaf quality modified the response of decomposition to temperature in the field, with eucalypt leaf litter showing a lower increase, whereas it did not in the laboratory. The origin of microbial community only affected the decomposition rates in the laboratory, but it did not modify the response to temperature. Water quality only defined the phosphorus content of the leaf litter or the fungal biomass, but it did not modify the response to temperature. Our results suggest that the acceleration in decomposition by global warming will be shaped by local factors, mainly by leaf litter quality, in headwater streams.
Collapse
Affiliation(s)
- Silvia Monroy
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| | - Aingeru Martínez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| | - Jon Molinero
- Escuela de Gestión Ambiental, Pontificia Universidad Católica del Ecuador Sede Esmeraldas, Esmeraldas, 080150, Ecuador
| | - Ana Basaguren
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| | - Jesús Pozo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| |
Collapse
|
24
|
Qiao X, Lamy T, Wang S, Hautier Y, Geng Y, White HJ, Zhang N, Zhang Z, Zhang C, Zhao X, von Gadow K. Latitudinal patterns of forest ecosystem stability across spatial scales as affected by biodiversity and environmental heterogeneity. GLOBAL CHANGE BIOLOGY 2023; 29:2242-2255. [PMID: 36630490 DOI: 10.1111/gcb.16593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 05/28/2023]
Abstract
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.
Collapse
Affiliation(s)
- Xuetao Qiao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Yan Geng
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hannah J White
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Zhonghui Zhang
- Jilin Provincial Academy of Forestry Sciences, Changchun, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Klaus von Gadow
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
25
|
Luo Y, Wang L, Cao T, Chen J, Lv M, Wei S, Lu S, Tian X. Microplastics are transferred by soil fauna and regulate soil function as material carriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159690. [PMID: 36302410 DOI: 10.1016/j.scitotenv.2022.159690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The ecotoxicological effects of microplastics, a new and widespread ecosystem pollutant, have been extensively reported. However, it remains unclear whether soil fauna transfer microplastics and whether migration behaviours influence subsequent ecological functions in terrestrial ecosystems. We investigated the transfer patterns of microplastics and their adsorbed substances by soil animals (the springtail, Folsomia candida) and the effect of the transfer on the decomposition of soil organic matter through a standardized cotton strip assay. The results showed that springtails had a strong ability to transfer microplastics into the soil. The adsorbed nutrient (nitrogen; N), pollutant (cadmium; Cd), and green fluorescent Escherichia coli (GFP-E. coli) were also transferred with the microplastics. In addition, cotton strip decomposition was accelerated when the microplastics adsorbed N, but the adsorption of Cd decreased decomposition. These ecological effects were particularly strong for small microplastics. Microplastic transfer regulated soil bacterial communities, promoting the growth of Ascomycota fungi and inhibiting that of Basidiomycota, leading to cotton strip decomposition. Thus, microplastic pollution may occur at one site, but microplastics can be transferred anywhere in terrestrial ecosystems by soil animals and adsorb other substances, including nutrients and pollutants, that affect ecosystem function. Therefore, more studies on the migration behaviour of microplastics are necessary.
Collapse
Affiliation(s)
- Yunchao Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tingting Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junxiu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meiqi Lv
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Sijie Wei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shangxian Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xingjun Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China; College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, China.
| |
Collapse
|
26
|
Swan CM, Sparkman A. The role of functional and phylogenetic diversity in riparian tree vegetation on leaf litter breakdown in rivers. OIKOS 2023. [DOI: 10.1111/oik.09361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher M. Swan
- Dept of Geography & Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
- Center for Urban Environmental Research and Education, Univ. of Maryland, Baltimore County Baltimore MD USA
| | - April Sparkman
- Dept of Geography & Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
| |
Collapse
|
27
|
Rialli Santos Brandão HC, Andrade Coqueiro Moraes C, Silva AP, Gonçalves Júnior JF, de Souza Rezende R, Mariano Lopes da Silva D. Litter inputs and standing stocks in riparian zones and streams under secondary forest and managed and abandoned cocoa agroforestry systems. PeerJ 2022; 10:e13787. [PMID: 36518290 PMCID: PMC9744167 DOI: 10.7717/peerj.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cocoa is an important tropical tree crop that is mainly cultivated in agroforestry systems (AFS). This system, known as cabruca in northeastern Brazil, holds promise to reconcile biodiversity conservation and economic development. However, since cocoa AFS alters forest structure composition, it can affect litter dynamics in riparian zones and streams. Thus, our objective was to determine litter inputs and standing stocks in riparian zones and streams under three types of forest: managed cocoa AFS, abandoned cocoa AFS, and secondary forest. Methods We determined terrestrial litter fall (TI), vertical (VI) and lateral (LI) litter inputs to streams, and litter standing stocks on streambeds (BS) in the Atlantic Forest of northeastern Brazil. Litter was collected every 30 days from August 2018 to July 2019 using custom-made traps. The litter was dried, separated into four fractions (leaves, branches, reproductive organs, and miscellaneous material) and weighed. Results Terrestrial litter fall was similar in all forests, ranging from 89 g m-2 month-1 in secondary forest (SF) to 96 g m-2 month-1 in abandoned cocoa AFS (AC). Vertical input were higher in AC (82 g m-2 month-1) and MC (69 g m-2 month-1) than in SF (40 g m-2 month-1), whereas lateral input were higher in MC (43 g m-2 month-1) than in AC (15 g m-2 month-1) and SF (24 g m-2 month-1). Standing stocks followed the order SF > AC > MC, corresponding to 425, 299 and 152 g m-2. Leaves contributed most to all litter fractions in all forests. Reproductive plant parts accounted for a larger proportion in managed AFS. Branches and miscellaneous litter were also similar in all forests, except for higher benthic standing stocks of miscellaneous litter in the SF. Despite differences in the amounts of litter inputs and standing stocks among the forests, seasonal patterns in the abandoned AFS (AC) were more similar to those of the secondary forest (SF) than the managed AFS, suggesting potential of abandoned AFS to restore litter dynamics resembling those of secondary forests.
Collapse
|
28
|
Werry LP, Bundschuh M, Mitrovic SM, Lim R, Kefford BJ. Leaf litter breakdown along an elevational gradient in Australian alpine streams. Ecol Evol 2022; 12:e9433. [PMID: 36311402 PMCID: PMC9596332 DOI: 10.1002/ece3.9433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
The breakdown of allochthonous organic matter, is a central step in nutrient cycling in stream ecosystems. There is concern that increased temperatures from climate change will alter the breakdown rate of organic matter, with important consequences for the ecosystem functioning of alpine streams. This study investigated the rate of leaf litter breakdown and how temperature and other factors such as microbial and invertebrate activities influenced this over elevational and temporal gradients. Dried leaves of Snow Gum (Eucalyptus pauciflora) and cotton strips were deployed in coarse (6 mm), and fine (50 μm) mesh size bags along an 820 m elevation gradient. Loss of mass in leaf litter and cotton tensile strength per day (k per day), fungal biomass measured as ergosterol concentration, invertebrate colonization of leaf litter, and benthic organic matter (mass and composition) were determined. Both microbial and macroinvertebrate activities were equally important in leaf litter breakdown with the abundance of shredder invertebrate taxa. The overall leaf litter breakdown rate and loss of tensile strength in cotton strips (both k per day) were greater during warmer deployment periods and at lower elevations, with significant positive relationships between mean water temperature and leaf breakdown and loss of tensile strength rate, but no differences between sites, after accounting for the effects of temperature. Despite considerably lower amounts of benthic organic matter in streams above the tree line relative to those below, shredders were present in coarse mesh bags at all sites. Ergosterol concentration was greater on leaves in coarse mesh bags than in fine mesh bags, implying differences in the microbial communities. The importance of water temperatures on the rate of leaf litter breakdown suggests the potential effects of climate change-induced temperature increases on ecological processes in such streams.
Collapse
Affiliation(s)
- Lloyd P. Werry
- School of Natural ResourcesPNG University of Natural Resources and EnvironmentKokopoPapua New Guinea
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental SciencesUniversität Koblenz‐LandauLandauGermany
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon M. Mitrovic
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Richard P. Lim
- School of Life Sciences, Faculty of ScienceUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Ben J. Kefford
- Centre for Applied Water Science, Institute of Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
29
|
Poisson R, Yates AG. Impaired cellulose decomposition in a headwater stream receiving subsurface agricultural drainage. ECOLOGICAL PROCESSES 2022; 11:60. [PMID: 36188026 PMCID: PMC9512754 DOI: 10.1186/s13717-022-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Agricultural development of former wetlands has resulted in many headwater streams being sourced by subsurface agricultural drainage systems. Subsurface drainage inputs can significantly influence stream environmental conditions, such as temperature, hydrology, and water chemistry, that drive ecological function. However, ecological assessments of subsurface drainage impacts are rare. We assessed the impact of an agricultural drainage system on cellulose decomposition and benthic respiration using a paired stream study in a headwater branch of Nissouri Creek, in Ontario, Canada. Adjacent first order segments sourced by a spring-fed marsh and a cropped field with subsurface drainage, as well as the adjoining trunk segment, were sampled over a year using the cotton strip assay to measure cellulose decomposition and benthic respiration. RESULTS Assessments of cellulose decomposition revealed a one-third reduction in the drainage-sourced segment compared to marsh-sourced segment. Between segment differences in cellulose decomposition were associated with reduced summer temperatures in the drainage-sourced segment. Impacts of stream cooling from the drainage-sourced segment were transmitted downstream as cellulose decomposition was slower than expected throughout the drainage-sourced segment and for several hundred meters down the adjoining trunk segment. Benthic respiration only differed between the drainage- and marsh-sourced segments in spring, when stream temperatures were similar. CONCLUSIONS Our findings suggest there may be a widespread reduction in cellulose decomposition in streams across similar agricultural regions where subsurface drainage is prevalent. However, cooling of streams receiving significant amounts of water inputs from subsurface drainage systems may impart increased resiliency to future climate warming.
Collapse
Affiliation(s)
- Rebecca Poisson
- Department of Geography, Western University, London, ON Canada
| | - Adam G. Yates
- Department of Biology, University of Waterloo, Waterloo University, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
30
|
Cavallet BV, Silva ER, Baretta CRDM, Rezende RDS. Effect of agriculture land use on standard cellulosic substrates breakdown and invertebrates’ community. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Filbee-Dexter K, Feehan CJ, Smale DA, Krumhansl KA, Augustine S, de Bettignies F, Burrows MT, Byrnes JEK, Campbell J, Davoult D, Dunton KH, Franco JN, Garrido I, Grace SP, Hancke K, Johnson LE, Konar B, Moore PJ, Norderhaug KM, O’Dell A, Pedersen MF, Salomon AK, Sousa-Pinto I, Tiegs S, Yiu D, Wernberg T. Kelp carbon sink potential decreases with warming due to accelerating decomposition. PLoS Biol 2022; 20:e3001702. [PMID: 35925899 PMCID: PMC9352061 DOI: 10.1371/journal.pbio.3001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- Institute of Marine Research, His, Norway
- UWA Oceans Institute & School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Colette J. Feehan
- Department of Biology, Montclair State University, Montclair, New Jersey, United States of America
| | - Dan A. Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, United Kingdom
| | - Kira A. Krumhansl
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Skye Augustine
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Florian de Bettignies
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | | | - Jarrett E. K. Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Jillian Campbell
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Dominique Davoult
- Sorbonne Université, CNRS, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Kenneth H. Dunton
- Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas, United States of America
| | - João N. Franco
- Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Peniche, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, and Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ignacio Garrido
- Department of Biology and Québec-Océan, Laval University, Québec, Québec, Canada
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile (UACh), Valdivia, Chile
| | - Sean P. Grace
- Department of Biology, Werth Center for Coastal and Marine Studies, Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Kasper Hancke
- Norwegian Institute for Water Research (NIVA), Section for Marine Biology, Oslo, Norway
| | - Ladd E. Johnson
- Department of Biology and Québec-Océan, Laval University, Québec, Québec, Canada
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Pippa J. Moore
- The Dove Marine Laboratory, School of Natural and Environmental Science, Newcastle University, Newcastle, United Kingdom
| | | | - Alasdair O’Dell
- Scottish Association for Marine Science, Oban, Argyll, Scotland
| | - Morten F. Pedersen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anne K. Salomon
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Isabel Sousa-Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, and Faculty of Sciences, University of Porto, Porto, Portugal
| | - Scott Tiegs
- Oakland University, Department of Biological Sciences, Michigan, United States of America
| | - Dara Yiu
- Department of Biology, Montclair State University, Montclair, New Jersey, United States of America
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, United States of America
| | - Thomas Wernberg
- Institute of Marine Research, His, Norway
- UWA Oceans Institute & School of Biological Sciences, The University of Western Australia, Perth, Australia
- The Dove Marine Laboratory, School of Natural and Environmental Science, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
32
|
Brauns M, Allen DC, Boëchat IG, Cross WF, Ferreira V, Graeber D, Patrick CJ, Peipoch M, von Schiller D, Gücker B. A global synthesis of human impacts on the multifunctionality of streams and rivers. GLOBAL CHANGE BIOLOGY 2022; 28:4783-4793. [PMID: 35579172 DOI: 10.1111/gcb.16210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Human impacts, particularly nutrient pollution and land-use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor-function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor-function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function-based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.
Collapse
Affiliation(s)
- Mario Brauns
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Daniel C Allen
- Department of Ecosystem Science and Management, Pennsylvania State University, State College, Pennsylvania, USA
| | - Iola G Boëchat
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Verónica Ferreira
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Daniel Graeber
- Department of Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Christopher J Patrick
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, Virginia, USA
| | - Marc Peipoch
- Ecosystem Ecology Group, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Daniel von Schiller
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Björn Gücker
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
33
|
Lind L, Harbicht A, Bergman E, Edwartz J, Eckstein RL. Effects of initial leaching for estimates of mass loss and microbial decomposition-Call for an increased nuance. Ecol Evol 2022; 12:e9118. [PMID: 35923944 PMCID: PMC9339754 DOI: 10.1002/ece3.9118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Decomposition is essential to carbon, nutrient, and energy cycling among and within ecosystems. Several methods have been proposed for studying litter decomposition by using a standardized and commercially available substrate. One of these methods is the Tea Bag Index (TBI) which uses tea bags (green and rooibos tea) incubated for ~90 days. The TBI is now applied all over the globe, but despite its usefulness and wide application, the TBI (as well as other methods) does not explicitly account for the differences in potential loss of litter mass due to initial leaching in habitats with large differences in moisture. We, therefore, studied the short-term mass losses (3-4 h) due to initial leaching under field and laboratory conditions for green and rooibos tea using the TBI and contextualized our findings using existing long-term mass loss (90 days) in the field for both aquatic and terrestrial environments. For both tea litter types, we found a fast initial leaching rate, which could be mistaken for decomposition through microbial activity. This initial leaching was higher than the hydrolyzable fraction given in the description of the TBI. We also found that leaching increased with increasing temperature and that leaching in terrestrial environments with high soil moisture (>90%) is almost as large as in aquatic environments. When comparing our findings to long-term studies, we found that up to 30-50% of the mass loss of green tea reported as decomposition could be lost through leaching alone in high moisture environments (>90% soil moisture and submerged). Not accounting for such differences in initial leaching across habitats may lead to a systematic overestimation of the microbial decomposition in wet habitats. Future studies of microbial decomposition should adjust their methods depending on the habitat, and clearly specify the type of decomposition that the study focuses on.
Collapse
Affiliation(s)
- Lovisa Lind
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityKarlstadSweden
| | - Andrew Harbicht
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityKarlstadSweden
- Fisheries and Ecosystem Sciences, Fisheries and Oceans Canada, Gulf Fisheries CentreMonctonNew BrunswickCanada
- Population Ecology DivisionFisheries and Oceans Canada, Bedford Institute of OceanographyDartmouthCanada
| | - Eva Bergman
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityKarlstadSweden
| | - Johannes Edwartz
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityKarlstadSweden
| | - Rolf Lutz Eckstein
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityKarlstadSweden
| |
Collapse
|
34
|
Mancuso J, Messick E, Tiegs SD. Parsing spatial and temporal variation in stream ecosystem functioning. Ecosphere 2022. [DOI: 10.1002/ecs2.4202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jasmine Mancuso
- Department of Biological Sciences Oakland University Rochester Michigan USA
| | - Emily Messick
- Department of Biological Sciences Oakland University Rochester Michigan USA
| | - Scott D. Tiegs
- Department of Biological Sciences Oakland University Rochester Michigan USA
| |
Collapse
|
35
|
Xiang H, Li K, Cao L, Zhang Z, Yang H. Global patterns and drivers of coniferous leaf-litter decomposition in streams and rivers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.940254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many streams and rivers are heterotrophic ecosystems that are highly dependent on cross-ecosystem subsidies such as leaf litter (LL). Terrestrial LL can be consumed by macroinvertebrates and microbes to fuel the detrital-based food webs in freshwaters. To date, our knowledge of LL decomposition in freshwaters is largely based on broadleaved LL, while the patterns and drivers of coniferous leaf-litter (CLL) decomposition in streams and rivers remain poorly understood. Here, we present a global investigation of CLL decomposition in streams and rivers by collecting data from 35 publications. We compared LL breakdown rates in this study with other global-scale studies (including conifers and broadleaved species), between evergreen and deciduous conifers, and between native and invasive conifers. We also investigated the climatic, geographic (latitude and altitude), stream physicochemical characteristics, and experimental factors (e.g., mesh size and experimental duration) in influencing CLL decomposition. We found that the following: (1) LL breakdown rates in this study were 18.5–28.8 and 4.9–16.8% slower than those in other global-scale studies when expressed as per day and per degree day, respectively. Conifer LL in coarse mesh bags, for evergreen and invasive conifers, decomposed 13.6, 10.3, and 10.8% faster than in fine mesh bags, for deciduous and native conifers, respectively; (2) CLL traits, stream physicochemical characteristics, and experimental factors explained higher variations in CLL decomposition than climatic and geographic factors; (3) CLL nutritional quality (N and P), water temperature, and experimental duration were better predictors of CLL decomposition than other predictors in categories of LL traits, stream physicochemical characteristics, and experimental factors, respectively; and (4) total and microbial-mediated CLL breakdown rates showed linear relationships with latitude, altitude, mean annual temperature, and mean annual precipitation. Our results imply that the replacement of native forests by conifer plantation would impose great impacts on adjacent freshwaters by retarding the LL processing rate. Moreover, future climate warming which is very likely to happen in mid- and high-latitude areas according to the IPCC 6th report would accelerate LL decomposition, with a potential consequence of food depletion for detritivores in freshwaters during hot summers.
Collapse
|
36
|
Yue K, De Frenne P, Van Meerbeek K, Ferreira V, Fornara DA, Wu Q, Ni X, Peng Y, Wang D, Heděnec P, Yang Y, Wu F, Peñuelas J. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biol Rev Camb Philos Soc 2022; 97:2023-2038. [PMID: 35811333 DOI: 10.1111/brv.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.
Collapse
Affiliation(s)
- Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Belgium
| | - Koenraad Van Meerbeek
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Verónica Ferreira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Dario A Fornara
- Davines Group-Rodale Institute European Regenerative Organic Center (EROC), Via Don Angelo Calzolari 55/a, 43126, Parma, Italy
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Dingyi Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Agritec Plant Research Ltd., Zemědělská 16, Šumperk, 78701, Czech Republic
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Josep Peñuelas
- CREAF, E08193, Cerdanyola del Vallès, Catalonia, Spain.,CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
37
|
Kohler TJ, Fodelianakis S, Michoud G, Ezzat L, Bourquin M, Peter H, Busi SB, Pramateftaki P, Deluigi N, Styllas M, Tolosano M, de Staercke V, Schön M, Brandani J, Marasco R, Daffonchio D, Wilmes P, Battin TJ. Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. GLOBAL CHANGE BIOLOGY 2022; 28:3846-3859. [PMID: 35320603 PMCID: PMC9323552 DOI: 10.1111/gcb.16169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/06/2022] [Indexed: 05/22/2023]
Abstract
The shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish.
Collapse
Affiliation(s)
- Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research GroupLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nicola Deluigi
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Michail Styllas
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Vincent de Staercke
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Jade Brandani
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Paul Wilmes
- Systems Ecology Research GroupLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
38
|
Liu Y, Shen Y, Cheng C, Yuan W, Gao H, Guo P. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152999. [PMID: 35031368 DOI: 10.1016/j.scitotenv.2022.152999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Organic matter decomposition (OMD) is one of the important river ecosystem functions. Changes in land use and landscape pattern (LULP) have a serious influence on the OMD in neighboring river ecosystems. However, there is limited information on the influence paths of LULP on organic matter decomposition in river ecosystems. In this study, cotton strip (CS) as a substitute for investigating OMD, was introduced to the delineated catchments in Luanhe River Basin in China, meanwhile combining with remote sensing interpretation, water quality analysis, microbial sequencing, and redundancy analysis (RDA) to identify the dominant LULP metrics, water quality parameters, and microbial groups controlling the OMD. Then the structural equation models (SEMs) were used to connect these dominant controlling factors to track the influence paths of LULP on OMD in river ecosystems. RDA results indicated that construction land (CON), farmland (FAR) and landscape shape index (LSI) in LULP, total nitrogen (TN), chemical oxygen demand (COD) and pH in water quality, bacterial phyla Planctomycetes and Firmicutes, as well as fungal phyla Chytridiomycota and Basidiomycota were the dominant factors controlling the OMD (quantified by tensile strength loss (TSL) and respiration (RES)). These four microbial phyla contributed significantly to OMD. SEMs further proposed three paths to explain the mechanism of LULP influencing on OMD, which were CON - TN - Firmicutes - TSL, CON - TN - Chytridiomycota - RES, and FAR - COD - Chytridiomycota - TSL. CON promoted OMD mainly through enhancing TN content in river water to increase Firmicutes and Chytridiomycota. FAR increased Chytridiomycota by decreasing COD in river water, promoting OMD. These results will deepen our understanding of the influence of LULP on river ecosystem functions and provide valuable information for policymakers and managers to carry out watershed land planning and river management in the future.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China; Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Cheng Cheng
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Weilin Yuan
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Hongjie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
39
|
Witing F, Forio MAE, Burdon FJ, Mckie B, Goethals P, Strauch M, Volk M. Riparian reforestation on the landscape scale – Navigating trade‐offs among agricultural production, ecosystem functioning and biodiversity. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Felix Witing
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research GmbH ‐ UFZ, 04318 Leipzig Germany
| | - Marie Anne Eurie Forio
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology Ghent University 9000 Ghent Belgium
| | - Francis J. Burdon
- Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences 75007 Uppsala Sweden
- Te Aka Mātuatua ‐ School of Science University of Waikato Hamilton New Zealand
| | - Brendan Mckie
- Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences 75007 Uppsala Sweden
| | - Peter Goethals
- Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology Ghent University 9000 Ghent Belgium
| | - Michael Strauch
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research GmbH ‐ UFZ, 04318 Leipzig Germany
| | - Martin Volk
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research GmbH ‐ UFZ, 04318 Leipzig Germany
| |
Collapse
|
40
|
Iñiguez-Armijos C, Tapia-Armijos MF, Wilhelm F, Breuer L. Urbanisation process generates more independently-acting stressors and ecosystem functioning impairment in tropical Andean streams. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114211. [PMID: 34864418 DOI: 10.1016/j.jenvman.2021.114211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
The tropical Andes are experiencing rapid population growth and urbanisation has become a major driver impairing stream ecosystems. However, knowledge about multiple-stressors effects on urbanised Andean streams is lacking. In southern Ecuador, we assessed how multiple stressors determine the structural (aquatic invertebrate metrics) and functional (organic matter breakdown and delta N of primary consumers) attributes of streams in a densely populated watershed without wastewater treatment and with contrasting land uses. We found that urbanised streams exhibited individual-stressor effects and that stressor interactions were rare. While structural and function attributes responded negatively to urbanisation, ecosystem functioning metrics were influenced most. Stream ecosystem functions were influenced by water-chemistry stressors, whereas aquatic invertebrate metrics were influenced by physical-habitat stressors. We suggest that managers of urbanised streams in the Andes immediately focus on the most important stressors by reducing inputs of inorganic N and P, re-establishing stream flow and substrate heterogeneity, and restoring riparian vegetation instead of attempting to elucidate intricate interactions among stressors. Our result also demonstrate that stream biomonitoring programs would benefit from a combination of structural and functional indicators to assess anthropogenic effects in a multiple-stressors scenario.
Collapse
Affiliation(s)
- Carlos Iñiguez-Armijos
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto S/n, 1101608, Loja, Ecuador.
| | - María Fernanda Tapia-Armijos
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto S/n, 1101608, Loja, Ecuador
| | - Frank Wilhelm
- Department of Fish and Wildlife Sciences. University of Idaho, 83843, Moscow, ID, USA
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany
| |
Collapse
|
41
|
Li F, Zhang Y, Altermatt F, Zhang X. Consideration of Multitrophic Biodiversity and Ecosystem Functions Improves Indices on River Ecological Status. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16434-16444. [PMID: 34882399 DOI: 10.1021/acs.est.1c05899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biological quality elements have been developed worldwide to assess whether a water body is in a good status or not. However, current studies mainly focus on a single taxonomic group or a small set of species, often limited by methods of morphological identification, and lack further aspects of biodiversity (e.g., across taxa and multiple attributes) and ecosystem functions. Here, we advance a framework for assessing the river's ecological status based on complete biodiversity data measured by environmental DNA (eDNA) metabarcoding and measurements of ecosystem functions in addition to physicochemical elements across a large riverine system in China. We identified 40 indicators of biodiversity and ecosystem functions, covering five taxonomic groups from bacteria to invertebrates, and associated with multiple attributes of biodiversity and ecosystem functions. Our data show that human impact on ecosystems could be accurately predicted by these eDNA-based indicators and ecosystem functions, using cross-validation with a known stressor gradient. Moreover, indices based on these indicators of biodiversity and ecosystem functions not only distinguish the physicochemical characteristics of the sites but also improve the assessment accuracy of 20-30% for the river's ecological status. Overall, by incorporating eDNA-based biodiversity with physicochemical and ecosystem functional elements, the multidimensional perspectives of ecosystem states provide additional information to protect and maintain a good ecological status of rivers.
Collapse
Affiliation(s)
- Feilong Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Hill MJ, Greaves HM, Sayer CD, Hassall C, Milin M, Milner VS, Marazzi L, Hall R, Harper LR, Thornhill I, Walton R, Biggs J, Ewald N, Law A, Willby N, White JC, Briers RA, Mathers KL, Jeffries MJ, Wood PJ. Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere 2021. [DOI: 10.1002/ecs2.3853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Matthew J. Hill
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Helen M. Greaves
- Pond Restoration Group Environmental Change Research Centre Department of Geography University College London Gower Street London WC1E 6BT UK
| | - Carl D. Sayer
- Pond Restoration Group Environmental Change Research Centre Department of Geography University College London Gower Street London WC1E 6BT UK
| | - Christopher Hassall
- School of Biology Faculty of Biological Sciences University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Mélanie Milin
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Victoria S. Milner
- School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Luca Marazzi
- Institute of Environment Florida International University Miami FL 33199 USA
| | - Ruth Hall
- Natural England Mail Hub, Natural England Worcester County Hall Spetchley Road Worcester WR5 2NP UK
| | - Lynsey R. Harper
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool L3 3AF UK
| | - Ian Thornhill
- School of Sciences Bath Spa University Newton St. Loe Bath BA2 9BN UK
| | - Richard Walton
- School of Geography, Politics and Sociology Newcastle University King’s Gate Newcastle upon Tyne NE1 7RU UK
| | - Jeremy Biggs
- Freshwater Habitats Trust Bury Knowle House Headington, Oxford OX3 9HY UK
| | - Naomi Ewald
- Freshwater Habitats Trust Bury Knowle House Headington, Oxford OX3 9HY UK
| | - Alan Law
- Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
| | - Nigel Willby
- Biological and Environmental Sciences University of Stirling Stirling FK9 4LA UK
| | - James C. White
- River Restoration Centre Cranfield University Cranfield Bedfordshire MK43 0AL UK
| | - Robert A. Briers
- School of Applied Sciences Edinburgh Napier University Edinburgh EH11 4BN UK
| | - Kate L. Mathers
- Department of Surface Waters Research and Management Kastanienbaum 6047 Switzerland
- Centre for Hydrological and Ecosystem Science Department of Geography Loughborough University Loughborough Leicestershire LE11 3TU UK
| | - Michael J. Jeffries
- Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Paul J. Wood
- Centre for Hydrological and Ecosystem Science Department of Geography Loughborough University Loughborough Leicestershire LE11 3TU UK
| |
Collapse
|
43
|
Ferreira V, Silva J, Cornut J, Sobral O, Bachelet Q, Bouquerel J, Danger M. Organic-matter decomposition as a bioassessment tool of stream functioning: A comparison of eight decomposition-based indicators exposed to different environmental changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118111. [PMID: 34523529 DOI: 10.1016/j.envpol.2021.118111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Organic-matter decomposition has long been proposed as a tool to assess stream functional integrity, but this indicator largely depends on organic-matter selection. We assessed eight decomposition-based indicators along two well-known environmental gradients, a nutrient-enrichment gradient (0.2-1.4 mg DIN/L) in central Portugal and an acidification gradient (pH: 4.69-7.33) in north-eastern France to identify the most effective organic-matter indicator for assessing stream functional integrity. Functional indicators included natural leaf litter (alder and oak) in 10-mm and 0.5-mm mesh bags, commercial tea (Lipton green and rooibos teas in 0.25-mm mesh bags), wood sticks (wood tongue depressors) and cotton strips. Biotic indices based on benthic macroinvertebrates (IPtIN for Portugal and IBGN for France) were calculated to compare the effectiveness of structural and functional indicators in detecting stream impairment and to assess the relationship between both types of indicators. The effectiveness of organic-matter decomposition rates as a functional indicator depended on the stressor considered and the substrate used. Decomposition rates generally identified nutrient enrichment and acidification in the most acidic streams. Decomposition rates of alder and oak leaves in coarse-mesh bags, green and rooibos teas and wood sticks were positively related with pH. Only decomposition rates of rooibos tea and wood sticks were related with DIN concentration; decomposition rates along the nutrient-enrichment gradient were confounded by differences in shredder abundance and temperature among streams. Stream structural integrity was good to excellent across streams; the IPtIN index was unrelated to DIN concentration, while the IBGN index was positively related with pH. The relationships between decomposition rates and biotic indices were loose in most cases, and only decomposition rates of alder leaves in coarse-mesh bags and green tea were positively related with the IBGN. Commercial substrates may be a good alternative to leaf litter to assess stream functional integrity, especially in the case of nutrient enrichment.
Collapse
Affiliation(s)
- Verónica Ferreira
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - João Silva
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Julien Cornut
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olímpia Sobral
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Quentin Bachelet
- LIEC - Laboratoire Interdisciplinaire des Environnements Continentaux, University of Lorraine, Metz, France
| | - Jonathan Bouquerel
- LIEC - Laboratoire Interdisciplinaire des Environnements Continentaux, University of Lorraine, Metz, France
| | | |
Collapse
|
44
|
Madaschi C, Díaz-Villanueva V. A Warm Tea: The Role of Temperature and Hydroperiod on Litter Decomposition in Temporary Wetlands. Ecosystems 2021. [DOI: 10.1007/s10021-021-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Pérez J, Ferreira V, Graça MAS, Boyero L. Litter Quality Is a Stronger Driver than Temperature of Early Microbial Decomposition in Oligotrophic Streams: a Microcosm Study. MICROBIAL ECOLOGY 2021; 82:897-908. [PMID: 34570249 PMCID: PMC8551116 DOI: 10.1007/s00248-021-01858-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 05/14/2023]
Abstract
Litter decomposition is an ecological process of key importance for forest headwater stream functioning, with repercussions for the global carbon cycle. The process is directly and indirectly mediated by microbial decomposers, mostly aquatic hyphomycetes, and influenced by environmental and biological factors such as water temperature and litter quality. These two factors are forecasted to change globally within the next few decades, in ways that may have contrasting effects on microbial-induced litter decomposition: while warming is expected to enhance microbial performance, the reduction in litter quality due to increased atmospheric carbon dioxide and community composition alteration may have the opposite outcome. We explored this issue through a microcosm experiment focused on early microbial-mediated litter decomposition under stream oligotrophic conditions, by simultaneously manipulating water temperature (10 °C and 15 °C) and litter quality (12 broadleaf plant species classified into 4 categories based on initial concentrations of nitrogen and tannins). We assessed potential changes in microbial-mediated litter decomposition and the performance of fungal decomposers (i.e., microbial respiration, biomass accrual, and sporulation rate) and species richness. We found stronger effects of litter quality, which enhanced the performance of microbial decomposers and decomposition rates, than temperature, which barely influenced any of the studied variables. Our results suggest that poorer litter quality associated with global change will have a major repercussion on stream ecosystem functioning.
Collapse
Affiliation(s)
- Javier Pérez
- Stream Ecology Laboratory, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Bilbao, Spain.
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Verónica Ferreira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Manuel A S Graça
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Luz Boyero
- Stream Ecology Laboratory, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
46
|
Zhang W, Shen J, Wang J. Linking pollution to biodiversity and ecosystem multifunctionality across benthic-pelagic habitats of a large eutrophic lake: A whole-ecosystem perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117501. [PMID: 34380215 DOI: 10.1016/j.envpol.2021.117501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 05/27/2023]
Abstract
Biodiversity loss is often an important driver of the deterioration of ecosystem functioning in freshwater ecosystems. However, it is far from clear how multiple ecosystem functions (i.e., ecosystem multifunctionality, EMF) relate to biodiversity across the benthic-pelagic habitats of entire ecosystems or how environmental stress such as eutrophication and heavy metals enrichment might regulate the biodiversity-EMF relationships. Here, we explored the biodiversity and EMF across benthic-pelagic habitats of the large eutrophic Lake Taihu in China, and further examined abiotic factors underlying the spatial variations in EMF and its relationships with biodiversity. In our results, EMF consistently showed positive relationships to the biodiversity of multiple taxonomic groups, such as benthic bacteria, bacterioplankton and phytoplankton. Both sediment heavy metals and total phosphorus significantly explained the spatial variations in the EMF, whereas the former were more important than the latter. Further, sediment heavy metals mediated EMF through the diversity of benthic bacteria and bacterioplankton, while nutrients such as phosphorus in both the sediments and overlaying water altered EMF via phytoplankton diversity. This indicates the importance of pollution in regulating the relationships between biodiversity and EMF in freshwater environments. Our findings provide evidence that freshwater biodiversity loss among phytoplankton and bacteria will likely weaken ecosystem functioning. Our results further suggest that abiotic factors such as heavy metals, beyond nutrient enrichment, may provide relatively earlier signals of impaired ecosystem functioning during eutrophication process.
Collapse
Affiliation(s)
- Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Wilmot OJ, Hood JM, Huryn AD, Benstead JP. Decomposing decomposition: isolating direct effects of temperature from other drivers of detrital processing. Ecology 2021; 102:e03467. [PMID: 34236706 DOI: 10.1002/ecy.3467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
Understanding the observed temperature dependence of decomposition (i.e., its "apparent" activation energy) requires separation of direct effects of temperature on consumer metabolism (i.e., the "inherent" activation energy) from those driven by indirect seasonal patterns in phenology and biomass, and by longer-term, climate-driven shifts in acclimation, adaptation, and community assembly. Such parsing is important because studies that relate temperature to decomposition usually involve multi-season data and/or spatial proxies for long-term shifts, and so incorporate these indirect factors. The various effects of such factors can obscure the inherent temperature dependence of detrital processing. Separating the inherent temperature dependence of decomposition from other drivers is important for accurate prediction of the contribution of detritus-sourced greenhouse gases to climate warming and requires novel approaches to data collection and analysis. Here, we present breakdown rates of red maple litter incubated in coarse- and fine-mesh litterbags (the latter excluding macroinvertebrates) for serial approximately one-month increments over one year in nine streams along a natural temperature gradient (mean annual: 12.8°-16.4°C) from north Georgia to central Alabama, USA. We analyzed these data using distance-based redundancy analysis and generalized additive mixed models to parse the dependence of decomposition rates on temperature, seasonality, and shredding macroinvertebrate biomass. Microbial decomposition in fine-mesh bags was significantly influenced by both temperature and seasonality. Accounting for seasonality corrected the temperature dependence of decomposition rate from 0.25 to 0.08 eV. Shredder assemblage structure in coarse-mesh bags was related to temperature across both sites and seasons, shifting from "cold" stonefly-dominated communities to "warm" communities dominated by snails or crayfish. Shredder biomass was not a significant predictor of either coarse-mesh or macroinvertebrate-mediated (i.e., coarse- minus fine-mesh) breakdown rates, which were also jointly influenced by temperature and seasonality. Unlike fine-mesh bags, however, temperature dependence of litter breakdown did not differ between models with and without seasonality for either coarse-mesh (0.36 eV) or macroinvertebrate-mediated (0.13 eV) rates. We conclude that indirect (non-thermal) seasonal and site-level effects play a variable and potentially strong role in shaping the apparent temperature dependence of detrital breakdown. Such effects should be incorporated into studies designed to estimate inherent temperature dependence of slow ecological processes.
Collapse
Affiliation(s)
- Oliver J Wilmot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43212, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| |
Collapse
|
48
|
Peralta-Maraver I, Stubbington R, Arnon S, Kratina P, Krause S, de Mello Cionek V, Leite NK, da Silva ALL, Thomaz SM, Posselt M, Milner VS, Momblanch A, Moretti MS, Nóbrega RLB, Perkins DM, Petrucio MM, Reche I, Saito V, Sarmento H, Strange E, Taniwaki RH, White J, Alves GHZ, Robertson AL. The riverine bioreactor: An integrative perspective on biological decomposition of organic matter across riverine habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145494. [PMID: 33581537 DOI: 10.1016/j.scitotenv.2021.145494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
Collapse
Affiliation(s)
- Ignacio Peralta-Maraver
- Departamento de Ecología, Universidad de Granada, Granada, Spain; Department of Life Sciences, Roehampton University, London, UK.
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vivian de Mello Cionek
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nei Kavaguichi Leite
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aurea Luiza Lemes da Silva
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Andrea Momblanch
- Cranfield Water Science Institute, Cranfield University, Cranfield, UK
| | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, Universidade Vila Velha, Vila Velha, Espírito Santo, Brazil
| | - Rodolfo L B Nóbrega
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | | | - Mauricio M Petrucio
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Isabel Reche
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - Victor Saito
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Emily Strange
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Ricardo Hideo Taniwaki
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - James White
- River Restoration Centre, Cranfield University, Cranfield, Bedfordshire, UK
| | | | | |
Collapse
|
49
|
Boyero L, Pérez J, López-Rojo N, Tonin AM, Correa-Araneda F, Pearson RG, Bosch J, Albariño RJ, Anbalagan S, Barmuta LA, Beesley L, Burdon FJ, Caliman A, Callisto M, Campbell IC, Cardinale BJ, Casas JJ, Chará-Serna AM, Ciapała S, Chauvet E, Colón-Gaud C, Cornejo A, Davis AM, Degebrodt M, Dias ES, Díaz ME, Douglas MM, Elosegi A, Encalada AC, de Eyto E, Figueroa R, Flecker AS, Fleituch T, Frainer A, França JS, García EA, García G, García P, Gessner MO, Giller PS, Gómez JE, Gómez S, Gonçalves JF, Graça MAS, Hall RO, Hamada N, Hepp LU, Hui C, Imazawa D, Iwata T, Junior ESA, Kariuki S, Landeira-Dabarca A, Leal M, Lehosmaa K, M'Erimba C, Marchant R, Martins RT, Masese FO, Camden M, McKie BG, Medeiros AO, Middleton JA, Muotka T, Negishi JN, Pozo J, Ramírez A, Rezende RS, Richardson JS, Rincón J, Rubio-Ríos J, Serrano C, Shaffer AR, Sheldon F, Swan CM, Tenkiano NSD, Tiegs SD, Tolod JR, Vernasky M, Watson A, Yegon MJ, Yule CM. Latitude dictates plant diversity effects on instream decomposition. SCIENCE ADVANCES 2021; 7:eabe7860. [PMID: 33771867 PMCID: PMC7997509 DOI: 10.1126/sciadv.abe7860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.
Collapse
Affiliation(s)
- Luz Boyero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, Bilbao, Spain
| | - Javier Pérez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alan M Tonin
- Limnology-Aquaripária Lab, University of Brasília (UnB), Brasília, Brazil
| | | | - Richard G Pearson
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
| | - Jaime Bosch
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University, Mieres, Spain
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Ricardo J Albariño
- INIBIOMA, Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | | | - Leon A Barmuta
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Leah Beesley
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Francis J Burdon
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Adriano Caliman
- Department of Ecology, Federal University of Rio Grande do Norte, Brazil
| | - Marcos Callisto
- Laboratório de Ecologia de Bentos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Bradley J Cardinale
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, USA
| | - J Jesús Casas
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Ana M Chará-Serna
- Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Cali, Colombia
- Illinois River Biological Station, University of Illinois Urbana-Champaign, Havana, IL, USA
| | - Szymon Ciapała
- Faculty of Tourism and Leisure, University of Physical Education, Kraków, Poland
| | - Eric Chauvet
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse-CNRS, Toulouse, France
| | - Checo Colón-Gaud
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory, Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Panama City, Panama
| | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
| | - Monika Degebrodt
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Emerson S Dias
- Department of Ecology, Federal University of Rio Grande do Norte, Brazil
| | - María E Díaz
- Laboratorio de Limnología y Recursos Hídricos, Universidad Católica de Temuco, Temuco, Chile
| | - Michael M Douglas
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andrea C Encalada
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Ricardo Figueroa
- Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción, Chile
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tadeusz Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - André Frainer
- Norwegian Institute for Nature Research (NINA), Tromsø, Norway
- Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Juliana S França
- Programa de Capacitação Institucional (PCI/INMA), National Institute of the Atlantic Forest, Santa Teresa, Espírito Santo, Brazil
| | - Erica A García
- Research Institute for the Environment and Livelihoods, Charles Darwin University, NT, Australia
| | - Gabriela García
- Water Laboratory and Physicochemical Services (LASEF), Autonomous University of Chiriqui, David City, Panama
| | - Pavel García
- Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala
- Organismal Biology, Ecology and Evolution (OBEE) program, University of Montana, MO, USA
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Paul S Giller
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Jesús E Gómez
- Departamento de Ciencias Ambientales, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Sergio Gómez
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jose F Gonçalves
- Limnology-Aquaripária Lab, University of Brasília (UnB), Brasília, Brazil
| | - Manuel A S Graça
- Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
| | - Robert O Hall
- Flathead Lake Biological Station, University of Montana, MO, USA
| | - Neusa Hamada
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Luiz U Hepp
- Universidade Federal de Mato Grosso do Sul, Campus Três Lagoas, Mato Grosso do Sul, Brazil
| | - Cang Hui
- Department of Mathematical Sciences, Stellenbosch University, Matieland, South Africa
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Daichi Imazawa
- Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tomoya Iwata
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Edson S A Junior
- Instituto de Biologia, Universidade Federal da Bahia, Bahia, Brazil
| | | | - Andrea Landeira-Dabarca
- Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
- Instituto BIOSFERA-USFQ, Universidad San Francisco de Quito, Quito, Ecuador
| | - María Leal
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Venezuela
| | - Kaisa Lehosmaa
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Richard Marchant
- Department of Entomology, Museums Victoria, Melbourne, VIC, Australia
| | - Renato T Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Frank O Masese
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Megan Camden
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jen A Middleton
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Jesús Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alonso Ramírez
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Renan S Rezende
- Program of Postgraduate in Environmental Science, Communitarian University of Chapecó Region, Santa Catarina, Brazil
| | - John S Richardson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - José Rincón
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Venezuela
| | - Juan Rubio-Ríos
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Claudia Serrano
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Angela R Shaffer
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Fran Sheldon
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Christopher M Swan
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Janine R Tolod
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Michael Vernasky
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Anne Watson
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mourine J Yegon
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Catherine M Yule
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
50
|
Pin L, Eiler A, Fazi S, Friberg N. Two different approaches of microbial community structure characterization in riverine epilithic biofilms under multiple stressors conditions: Developing molecular indicators. Mol Ecol Resour 2021; 21:1200-1215. [PMID: 33529477 DOI: 10.1111/1755-0998.13341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
Microbial communities are major players in the biogeochemical processes and ecosystem functioning of river networks. Despite their importance in the ecosystem, biomonitoring tools relying on prokaryotes are still lacking. Only a few studies have employed both metabarcoding and quantitative techniques such as catalysed reported deposition fluorescence in situ hybridization (CARD-FISH) to analyse prokaryotic communities of epilithic biofilms in river ecosystems. We intended to investigate the efficacy of both techniques in detecting changes in microbial community structure associated with environmental drivers. We report a significant correlation between the prokaryotic community composition and pH in rivers from two different geographical areas in Norway. Both CARD-FISH and metabarcoding data were following the pattern of the environmental variables, but the main feature distinguishing the community composition was the regional difference itself. Beta-dispersion analyses on both CARD-FISH abundance and metabarcoding data revealed higher accuracy of metabarcoding to differentiate regions and river systems. The CARD-FISH results showed high variability, even for samples within the same river, probably due to some unmeasured microscale ecological variability which we could not resolve. We also present a statistical method, which uses variation coefficient and overall prevalence of taxonomic groups, to detect possible biological indicators among prokaryotes using metabarcoding data. The development of new prokaryotic bioindicators would benefit from both techniques used in this study, but metabarcoding seems to be faster and more reliable than CARD-FISH for large scale bio-assessment.
Collapse
Affiliation(s)
- Lorenzo Pin
- Norsk Institutt for Vannforskning (NIVA), Oslo, Norway.,Section for Aquatic Biology and Toxicology, Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, Norway
| | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, Norway.,eDNA solutions AB, Mölndal, Sweden
| | - Stefano Fazi
- Water Research Institute, IRSA-CNR, Monterotondo, Roma, Italy
| | - Nikolai Friberg
- Norsk Institutt for Vannforskning (NIVA), Oslo, Norway.,Freshwater Biological Section, University of Copenhagen, Copenhagen, Denmark.,School of Geography, University of Leeds, Leeds, UK
| |
Collapse
|