1
|
Pringels L, Pieters D, VAN DEN Berghe S, Witvrouw E, Burssens A, Vanden Bossche L, Wezenbeek E. Loading Speed and Intensity in Eccentric Calf Training Impact Acute Changes in Achilles Tendon Thickness and Stiffness: A Randomized Crossover Trial. Med Sci Sports Exerc 2025; 57:895-903. [PMID: 39787521 DOI: 10.1249/mss.0000000000003638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
PURPOSE Eccentric calf training for Achilles tendinopathy shows variable success in athletes. Recent insights suggest a role for tendon fluid flow (exudation or redistribution) during exercise, which explains post-exercise reductions in thickness and increases in stiffness of the tendon. This fluid flow is thought to be beneficial as it may promote tendon remodeling, reduce intratendinous pressure, and alleviate pain. In this perspective, slow, high-load exercises are promoted as they theoretically facilitate tendon fluid flow. However, evidence supporting this assumption is lacking. Therefore, this study aimed to investigate whether loading speed and intensity during eccentric calf training impact acute changes in midportion Achilles tendon thickness and stiffness, reflecting alterations in local tendon fluid content. METHODS A randomized, assessor-blinded, crossover trial was conducted with 34 healthy athletes (17 men, 17 women, age: 23.7 ± 6 yr). Participants underwent three single-leg eccentric heel-drop interventions with 20% additional bodyweight, varying in loading speed (fast: 1 s, slow: 3 s) and loading intensity (low: to plantigrade, high: to maximal dorsiflexion). Achilles tendon anteroposterior diameter, cross-sectional area, and shear wave velocity were assessed in the midportion region using ultrasonography and shear wave elastography pre- and immediately post-intervention. RESULTS The slow, high-load intervention produced greater immediate reductions in tendon anteroposterior diameter and cross-sectional area (8.9% and 10.1%), compared with the slow, low-load (3.8% and 4.7%) and fast, high-load (2.9% and 3.4%) interventions ( P < 0.001). Moreover, only the slow, high-load intervention increased tendon shear wave velocity (54.5%, P < 0.001). CONCLUSIONS These findings provide the first evidence that both loading speed and intensity during eccentric calf training impact acute changes in Achilles tendon thickness and stiffness, likely mediated by changes in fluid flow, which could be relevant for tendinopathy rehabilitation.
Collapse
Affiliation(s)
| | - Dries Pieters
- Department of Rehabilitation Sciences, Ghent University, Ghent, BELGIUM
| | | | - Erik Witvrouw
- Department of Rehabilitation Sciences, Ghent University, Ghent, BELGIUM
| | - Arne Burssens
- Department of Orthopaedic Surgery, Ghent University Hospital, Ghent, BELGIUM
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, BELGIUM
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences, Ghent University, Ghent, BELGIUM
| |
Collapse
|
2
|
Zhou J, Xie L, Zhang J, Deng X, Chen H, Zhu S, Jiang N. Early collagen degeneration in the temporomandibular intradiscal junction portends the onset of discal pathogenesis. Acta Biomater 2025:S1742-7061(25)00194-1. [PMID: 40122361 DOI: 10.1016/j.actbio.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
The temporomandibular intradiscal junction is a structural transition region connecting anteroposterior and circumferential aligned collagens fibers in the temporomandibular joint disc. Despite inherent stiffness, this region is incredibly susceptible to perforation under pathological conditions. This study aimed to determine whether the intradiscal junction was the initiation destructive site for discal degeneration. Utilizing high-resolution microscopy and nanoindentation, we characterized the structural and mechanical properties of the intradiscal junction. In rabbit models of anterior disc displacement-mediated temporomandibular osteoarthritis, we observed a significant reduction in collagen fibril diameter and an increase in denatured procollagen within the intradiscal junction as early as one week post-surgery, further spreading across the whole disc. Mass spectrometry proteomics showed that the alteration of the intradiscal junction was the consequence of mechanical stimuli mediated by tenascin-C and metalloproteinase-3. Notably, these degenerative changes were blocked by early reduction of the discal position. In vitro monotonic loading confirmed the dominant contribution of the intradiscal junction to the overall mechanical function of the disc. The present findings underscore the pivotal role of the intradiscal junction in the pathogenesis of discal degeneration, providing early detection indicators and therapeutics. STATEMENT OF SIGNIFICANCE: Temporomandibular joint osteoarthritis (TMJOA) is a prevalent disorder affecting the structure and mechanics of the TMJ disc, with no effective early detection or treatment strategies. This study identifies the temporomandibular intradiscal junction (IJ) as the site where discal pathogenesis begins. Degeneration at the IJ involves reduced collagen fibril diameter and denatured procollagens, compromising the mechanical properties of the entire disc. Rescuing the IJ's position through TMJ anchorage surgery may restore mechanosensitive homeostasis and prevent further discal degeneration. These findings highlight the importance of the IJ in the discal progression, payving the way for early detection methods and treatment strategies that target aberrant remodeling in this critical region to slow or reverse disease.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
3
|
Shojaeianforoud F, Marin L, Anderl WJ, Marino M, Coats B, Monson KL. Repeated loading and damage progression in cerebral arteries. Acta Biomater 2025:S1742-7061(25)00199-0. [PMID: 40090509 DOI: 10.1016/j.actbio.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Traumatic brain injury poses a major public health challenge with significant immediate and long-term effects. Repetitive head trauma is an ongoing area of research, and little is known about the response of cerebral blood vessels to such loading. This study investigated the mechanical response of cerebral arteries to repetitive overstretch, hypothesizing that repeated overstretch leads to cumulative damage. To test this hypothesis, middle cerebral artery segments from twelve piglets were subjected to sub-yield, high-rate overstretch of varying severities, with up to 10 repetitions. The stress-stretch behavior of the vessels revealed that repetitive overstretch caused progressive softening that increased with both overstretch magnitude and number of exposures. This softening was notably limited to the toe region, with no changes occurring in the higher-stress, linear portion of the repeated overstretch curves. Mild-to-moderate overstretches resulted in gradual softening, while severe overstretches caused dramatic softening with the first exposure and little further change with subsequent overstretches. Mildly damaged vessels displayed a small amount of recovery with time, but the magnitude of this recovery was minimal and declined with increasing repetitions and severity. No clear relationship was observed between collagen denaturation and the magnitude and number of overstretches. These findings provide important insights into the mechanics of cerebral vessels under repetitive loading, suggesting that vascular damage from repeated trauma accumulates, potentially exacerbating existing injury. These results increase understanding of soft tissue damage and inform the development of constitutive damage models for cerebral arteries, a critical tool needed to improve predictions of traumatic brain injury progression. STATEMENT OF SIGNIFICANCE: This study investigates the mechanical response of cerebral arteries to repetitive overstretch, revealing cumulative softening effects. Unlike previous studies focusing on single overstretch events, our research is the first to explore repetitive exposures in cerebral arteries and to report softening as a function of both overstretch magnitude and number of exposures. Given the role of cerebral vessels in maintaining a healthy brain and their contributions to the structural response of the brain in TBI events, progressive vessel softening in repetitive TBI may lead to increased vulnerability with the potential to exacerbate existing injury. These findings enhance understanding of soft tissue damage mechanisms, providing critical insights for developing constitutive damage models and improving injury predictions in repeated TBI.
Collapse
Affiliation(s)
| | - Leonardo Marin
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - William J Anderl
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Michele Marino
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kenneth L Monson
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Xia C, Hu J, Zhou K, Li Y, Yuan S, Li Q. Theoretical and Experimental Studies of the Dynamic Damage of Endothelial Cellular Networks Under Ultrasound Cavitation. Cell Mol Bioeng 2025; 18:15-28. [PMID: 39949493 PMCID: PMC11813858 DOI: 10.1007/s12195-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction The interaction between endothelial cells can regulate hemostasis, vasodilation, as well as immune and inflammatory responses. Excessive loading on the endothelial cells leads to endothelial damage and endothelial barrier dysfunction. Understanding and mastering the dynamic nature of cell-cell rupture plays a crucial role in exploring the practical applications related to tumor destruction, vascular remodeling, and drug delivery by employing cavitation-induced damage to soft tissues. Methods To investigate the damage mechanisms of endothelial cellular networks under ultrasound cavitation, we developed a model of junction rupture in cellular networks based on the assumption that the process of intercellular rupture is irreversible when ultrasound-mediated forces exceed the damage threshold, whereas intercellular junctions have reversible behavior before rupture. Simulations using the strain accumulation method show that stress and strain exhibit complex nonlinear dynamic behavior. Ultrasonic cavitation damage was tested and evaluated on human umbilical vein endothelial cells. Results The results indicated that the cellular network damage was positively correlated with force amplitude and pulse frequency and was negatively correlated with driving frequency. The time lag and the internal force of cellular junctions have an important influence on the resistance to damage of the cellular network due to external forces. The damage experiment based on ultrasonic cavitation confirmed the effectiveness of the proposed model. Conclusions The model provided a platform for understanding the damage mechanism of endothelial tissues and ultimately improving options for their prevention and treatment.
Collapse
Affiliation(s)
- Chuangjian Xia
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Kun Zhou
- Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Yingjie Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Sha Yuan
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| | - Qinlin Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| |
Collapse
|
5
|
Salter J. Small-Sided-Game-Induced Mechanical Load in Adolescent Soccer: The Need for Care and Consideration for Athlete Preservation. Sports Health 2025; 17:39-45. [PMID: 39576154 PMCID: PMC11584994 DOI: 10.1177/19417381241296063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
CONTEXT The logistical efficiency and flexibility of small-sided games (SSG) to develop various soccer-specific attributes simultaneously make them a staple component of contemporary training programs in youth soccer. Their high ecological validity and consequential high utilization mean that if not considerately prescribed, players may be exposed to frequent repetitive mechanical stress that may induce maladaptation in skeletally and/or load-naïve or sensitive athletes. The purpose of this clinical review is to summarize mechanical load adaptations associated with the manipulation of area per player in SSG to outline the mechanistic pathway of load-related injuries in skeletally maturing athletes and to offer practical guidelines for coaches for the preservation of athlete health. EVIDENCE ACQUISITION A nonsystematic search of computerized databases of peer-reviewed articles in English between 2010 and the present was used, and a critical appraisal of existing literature was subsequently conducted. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 4. RESULTS The temporary relative strength deficit and inefficiency of the musculotendinous system associated with accelerated growth increase the mechanical cost of activity. As a result, the load tolerance (ie, tolerant, naïve, or sensitive) of athletes is transiently reduced as the musculoskeletal system struggles to attenuate force absorption adequately. Repeated exposure to submaximal mechanical loads that stimulate the accumulation of "microdamage" in structural tissue may lead to aggravation and/or tissue failure at connective sites in skeletally fragile athletes. CONCLUSION Coaches and practitioners need to individualize exposure to mechanical load for load-tolerant, naïve, and sensitive athletes during adolescence. Subtle changes to SSG prescription including modifying the area per player, inclusion of goalkeepers, constrained floaters, and management of work; rest ratios can offer practical and efficient methods to mitigate risk without derailing the development process. This, in turn, should contribute to reducing injury burden in this population and enhance developmental opportunities for young players. STRENGTH OF RECOMMENDATION A. Recommendation based on consistent and good-quality evidence published from 2010 onwards.
Collapse
Affiliation(s)
- Jamie Salter
- InSPIRe Group, School of Science, Technology and Health, York St John University, York, UK
| |
Collapse
|
6
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. J Biomech Eng 2024; 146:121001. [PMID: 39152721 PMCID: PMC11500809 DOI: 10.1115/1.4066219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.
Collapse
Affiliation(s)
- Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
7
|
Rennekamp B, Grubmüller H, Gräter F. Hidden length lets collagen buffer mechanical and chemical stress. Phys Rev E 2024; 110:054408. [PMID: 39690676 DOI: 10.1103/physreve.110.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/27/2024] [Indexed: 12/19/2024]
Abstract
Collagen, the most abundant protein in the human body, must withstand high mechanical loads due to its structural role in tendons, skin, bones, and other connective tissue. It was recently found that tensed collagen creates mechanoradicals by homolytic bond scission. We here employ scale-bridging simulations to determine the influence of collagen's mesoscale fibril structure on molecular breakages, combining atomistic molecular dynamics simulations with a newly developed mesoscopic ultra-coarse-grained description of a collagen fibril. Our simulations identify a conserved structural feature, a length difference of the two helices between pairs of crosslinks, to play a critical role. The release of the extra hidden length enables collagen to buffer mechanical stress. At the same time, this topology funnels ruptures such that the potentially harmful mechanoradicals are readily stabilized, buffering the arising oxidative stress. Our results suggest collagen's hidden length to exploit a sweet spot in the trade-off between breakage specificity and strength.
Collapse
|
8
|
Weidlich K, Domroes T, Bohm S, Arampatzis A, Mersmann F. Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain. Eur J Appl Physiol 2024; 124:3201-3214. [PMID: 38842575 PMCID: PMC11519156 DOI: 10.1007/s00421-024-05525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (εmax) to mitigate musculotendinous imbalances in male adult volleyball athletes. METHODS Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography. Tendon micromorphology was evaluated through an ultrasound peak spatial frequency (PSF) analysis. While a control group (n = 12) continued their regular training, an intervention group (n = 10) performed exercises (3 × /week) with personalized loads to elicit tendon strains that promote tendon adaptation (i.e., 4.5-6.5%). RESULTS Based on a linear mixed model, εmax increased significantly in the control group over the 9 months of observation (pCon = 0.010), while there was no systematic change in the intervention group (pInt = 0.575). The model residuals of εmax, as a measure of imbalances in muscle-tendon adaptation, demonstrated a significant reduction over time exclusively in the intervention group (pInt = 0.007). While knee extensor muscle strength increased in both groups by ~ 8% (pCon < 0.001, pInt = 0.064), only the intervention group showed a trend toward increased normalized tendon stiffness (pCon = 0.824, pInt = 0.051). PSF values did not change significantly in either group (p > 0.05). CONCLUSION These results suggest that personalized exercise prescription can reduce muscle-tendon imbalances in athletes and could provide new opportunities for tendon injury prevention.
Collapse
Affiliation(s)
- Kolja Weidlich
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 11, 10115, Berlin, Germany.
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Haojie D, Mukherjee S, Bhattacharya T. Review perspective on advanced nutrachemicals and anterior cruciate ligament rehabilitation. Z NATURFORSCH C 2024:znc-2024-0169. [PMID: 39438142 DOI: 10.1515/znc-2024-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Anterior cruciate ligament (ACL) injuries are prevalent among athletes, necessitating surgical intervention followed by comprehensive rehabilitation. Recently, the integration of nutraceuticals - bioactive compounds from food sources - into rehabilitation protocols has shown promise in enhancing recovery outcomes. This review explores the potential benefits of various nutraceuticals, including omega-3 fatty acids, collagen supplements, vitamin D, glucosamine and chondroitin, curcumin, and branched-chain amino acids (BCAAs), in ACL rehabilitation. These nutraceuticals offer anti-inflammatory properties, support tissue repair, and improve joint and muscle health, which are critical during the rehabilitation process. Despite encouraging preclinical findings, there is a need for robust clinical trials to confirm their efficacy and establish optimal dosages and formulations. Personalized nutrition plans and interdisciplinary collaboration among healthcare providers are essential for optimizing patient care. This perspective underscores the potential of advanced nutraceuticals to revolutionize ACL rehabilitation, paving the way for faster and more effective recovery pathways.
Collapse
Affiliation(s)
- Dai Haojie
- Faculty of Applied Science, 283706 Lincoln University College , Petaling Jaya, Selangor Darul Ehsan 47301, Malaysia
| | - Sohini Mukherjee
- Department of Environmental Science, University College of Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700003, India
| | - Tanima Bhattacharya
- Faculty of Applied Science, 283706 Lincoln University College , Petaling Jaya, Selangor Darul Ehsan 47301, Malaysia
| |
Collapse
|
10
|
Fang Y, Zhu D, Wei J, Qian L, Qiu R, Jia T, Huang K, Zhao S, Ouyang J, Li M, Li S, Li Y. Collagen denaturation in post-run Achilles tendons and Achilles tendinopathy: In vivo mechanophysiology and magnetic resonance imaging. SCIENCE ADVANCES 2024; 10:eado2015. [PMID: 39356750 PMCID: PMC11446262 DOI: 10.1126/sciadv.ado2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Achilles tendinopathy is often attributed to overuse, but its pathophysiology remains poorly understood. Disruption to the molecular structure of collagen is fundamental for the onset and progression of tendinopathy but has mostly been investigated in vitro. Here, we interrogated the in vivo molecular structure changes of collagen in rat Achilles tendons following treadmill running. Unexpectedly, the tendons' collagen molecules were not mechanically unfolded by running but denatured through proteolysis during physiological post-run remodeling. We further revealed that running induces inflammatory gene expressions in Achilles tendons and that long-term running causes prolonged, elevated collagen degradation, leading to the accumulation of denatured collagen and tendinopathy development. For applications, we demonstrated magnetic resonance imaging of collagenase-induced Achilles tendon injury in vivo using a denatured collagen targeting contrast agent. Our findings may help close the knowledge gaps in the mechanobiology and pathogenesis of Achilles tendinopathy and initiate new strategies for its imaging-based diagnosis.
Collapse
Affiliation(s)
- Yijie Fang
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Dantian Zhu
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jingyue Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Biobank, Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Qian
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology, National Experimental Education Demonstration Center for Basic Medical Sciences, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Rongmao Qiu
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Taoyu Jia
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Kui Huang
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Suwen Zhao
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology, National Experimental Education Demonstration Center for Basic Medical Sciences, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Biobank, Department of Information Technology and Data Center, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Shaolin Li
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yang Li
- Department of Radiology, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
11
|
Zhao J, Shi M, Xie Y, Ning C, Qiao K, Jiang R, Bahatibieke A, Zheng Y. Design and molecular dynamics of biocompatible WPU/PVA composite hydrogels with enhanced fatigue resistance: Energy dissipation of intermolecular clusters for elastomers. APPLIED MATERIALS TODAY 2024; 40:102377. [DOI: 10.1016/j.apmt.2024.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Dhiman MS, Bader TJ, Ponjevic D, Salo PT, Hart DA, Swamy G, Matyas JR, Duncan NA. Collagen integrity of the annulus fibrosus in degenerative disc disease individuals quantified with collagen hybridizing peptide. JOR Spine 2024; 7:e1359. [PMID: 39092166 PMCID: PMC11291301 DOI: 10.1002/jsp2.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Degenerative disc disease (DDD) is accompanied by structural changes in the intervertebral discs (IVD). Extra-cellular matrix degradation of the annulus fibrosus (AF) has been linked with degeneration of the IVD. Collagen is a vital component of the IVD. Collagen hybridizing peptide (CHP) is an engineered protein that binds to degraded collagen, which we used to quantify collagen damage in AF. This method was used to compare AF samples obtained from donors with no DDD to AF samples from patients undergoing surgery for symptomatic DDD. Methods Fresh AF tissue was embedded in an optimal cutting temperature compound and cryosectioned at a thickness of 8 μm. Hematoxylin and Eosin staining was performed on sections for general histomorphological assessment. Serial sections were stained with Cy3-conjugated CHP and the mean fluorescence intensity and areal fraction of Cy3-positive staining were averaged for three regions of interest (ROI) on each CHP-stained section. Results Increases in mean fluorescence intensity (p = 0.0004) and percentage of positively stained area (p = 0.00008) with CHP were detected in DDD samples compared to the non-DDD samples. Significant correlations were observed between mean fluorescence intensity and percentage of positively stained area for both non-DDD (R = 0.98, p = 5E-8) and DDD (R = 0.79, p = 0.0012) samples. No significant differences were detected between sex and the lumbar disc level subgroups of the non-DDD and DDD groups. Only tissue pathology (non-DDD versus DDD) influenced the measured parameters. No three-way interactions between tissue pathology, sex, and lumbar disc level were observed. Discussion and Conclusions These findings suggest that AF collagen degradation is greater in DDD samples compared to non-DDD samples, as evidenced by the increased CHP staining. Strong positive correlations between the two measured parameters suggest that when collagen degradation occurs, it is detected by this technique and is widespread throughout the tissue. This study provides new insights into the structural alterations associated with collagen degradation in the AF that occur during DDD.
Collapse
Affiliation(s)
- Manmeet S. Dhiman
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Taylor J. Bader
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Medical SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Dragana Ponjevic
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Paul T. Salo
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - David A. Hart
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Ganesh Swamy
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Surgery, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - John R. Matyas
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint HealthUniversity of CalgaryCalgaryAlbertaCanada
- Department of Civil EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
13
|
Bousso I, Genin G, Thomopoulos S. Achieving tendon enthesis regeneration across length scales. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100547. [PMID: 39219714 PMCID: PMC11364215 DOI: 10.1016/j.cobme.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Surgical reattachment of tendon to bone is a clinical challenge, with unacceptably high retear rates in the early period after repair. A primary reason for these repeated tears is that the multiscale toughening mechanisms found at the healthy tendon enthesis are not regenerated during tendon-to-bone healing. The need for technologies to improve these outcomes is pressing, and the tissue engineering community has responded with many advances that hold promise for eventually regenerating the multiscale tissue interface that transfers loads between the two dissimilar materials, tendon, and bone. This review provides an assessment of the state of these approaches, with the aim of identifying a critical agenda for future progress.
Collapse
Affiliation(s)
- Ismael Bousso
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Guy Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Orthopaedic Surgery, Columbia University, New York, NY USA
| |
Collapse
|
14
|
Nyland J, Sirignano MN, Richards J, Krupp RJ. Regenerative Anterior Cruciate Ligament Healing in Youth and Adolescent Athletes: The Emerging Age of Recovery Science. J Funct Morphol Kinesiol 2024; 9:80. [PMID: 38804446 PMCID: PMC11130880 DOI: 10.3390/jfmk9020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Anterior cruciate ligament (ACL) injuries mainly arise from non-contact mechanisms during sport performance, with most injuries occurring among youth or adolescent-age athletes, particularly females. The growing popularity of elite-level sport training has increased the total volume, intensity and frequency of exercise and competition loading to levels that may exceed natural healing capacity. Growing evidence suggests that the prevailing mechanism that leads to non-contact ACL injury from sudden mechanical fatigue failure may be accumulated microtrauma. Given the consequences of primary ACL injury on the future health and quality of life of youth and adolescent athletes, the objective of this review is to identify key "recovery science" factors that can help prevent these injuries. Recovery science is any aspect of sports training (type, volume, intensity, frequency), nutrition, and sleep/rest or other therapeutic modalities that may prevent the accumulated microtrauma that precedes non-contact ACL injury from sudden mechanical fatigue failure. This review discusses ACL injury epidemiology, current surgical efficacy, the native ACL vascular network, regional ACL histological complexities such as the entheses and crimp patterns, extracellular matrix remodeling, the concept of causal histogenesis, exercise dosage and ligament metabolism, central nervous system reorganization post-ACL rupture, homeostasis regulation, nutrition, sleep and the autonomic nervous system. Based on this information, now may be a good time to re-think primary ACL injury prevention strategies with greater use of modified sport training, improved active recovery that includes well-planned nutrition, and healthy sleep patterns. The scientific rationale behind the efficacy of regenerative orthobiologics and concomitant therapies for primary ACL injury prevention in youth and adolescent athletes are also discussed.
Collapse
Affiliation(s)
- John Nyland
- Norton Orthopedic Institute, 9880 Angie’s Way, Suite 250, Louisville, KY 40241, USA (J.R.); (R.J.K.)
| | | | | | | |
Collapse
|
15
|
Pineda Guzman RA, Naughton N, Majumdar S, Damon B, Kersh ME. Assessment of Mechanically Induced Changes in Helical Fiber Microstructure Using Diffusion Tensor Imaging. Ann Biomed Eng 2024; 52:832-844. [PMID: 38151645 DOI: 10.1007/s10439-023-03420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Noninvasive methods to detect microstructural changes in collagen-based fibrous tissues are necessary to differentiate healthy from damaged tissues in vivo but are sparse. Diffusion Tensor Imaging (DTI) is a noninvasive imaging technique used to quantitatively infer tissue microstructure with previous work primarily focused in neuroimaging applications. Yet, it is still unclear how DTI metrics relate to fiber microstructure and function in musculoskeletal tissues such as ligament and tendon, in part because of the high heterogeneity inherent to such tissues. To address this limitation, we assessed the ability of DTI to detect microstructural changes caused by mechanical loading in tissue-mimicking helical fiber constructs of known structure. Using high-resolution optical and micro-computed tomography imaging, we found that static and fatigue loading resulted in decreased sample diameter and a re-alignment of the macro-scale fiber twist angle similar with the direction of loading. However, DTI and micro-computed tomography measurements suggest microstructural differences in the effect of static versus fatigue loading that were not apparent at the bulk level. Specifically, static load resulted in an increase in diffusion anisotropy and a decrease in radial diffusivity suggesting radially uniform fiber compaction. In contrast, fatigue loads resulted in increased diffusivity in all directions and a change in the alignment of the principal diffusion direction away from the constructs' main axis suggesting fiber compaction and microstructural disruptions in fiber architecture. These results provide quantitative evidence of the ability of DTI to detect mechanically induced changes in tissue microstructure that are not apparent at the bulk level, thus confirming its potential as a noninvasive measure of microstructure in helically architected collagen-based tissues, such as ligaments and tendons.
Collapse
Affiliation(s)
| | - Noel Naughton
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shreyan Majumdar
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bruce Damon
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Science, Vanderbilt University, Nashville, TN, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mariana E Kersh
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Guo X, Yang L, Deng C, Ren L, Li S, Zhang X, Zhao J, Yue T. Nanoparticles traversing the extracellular matrix induce biophysical perturbation of fibronectin depicted by surface chemistry. NANOSCALE 2024; 16:6199-6214. [PMID: 38446101 DOI: 10.1039/d3nr06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for in vivo molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH3+ exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH3 and NP-COO- selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.
Collapse
Affiliation(s)
- Xing Guo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Luyao Ren
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
17
|
Van den Berghe P, Derie R, Gerlo J, Bonnaerens S, Fiers P, Van Caekenberghe I, De Clercq D, Segers V. Learning effects in over-ground running gait retraining: A six-month follow-up of a quasi-randomized controlled trial. J Sports Sci 2024; 42:475-482. [PMID: 38678312 DOI: 10.1080/02640414.2024.2323849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 04/29/2024]
Abstract
This study evaluated learning and recall effects following a feedback-based retraining program. A 6-month follow-up of a quasi-randomized controlled trial was performed with and without recall. Twenty runners were assigned to experimental or control groups and completed a 3-week running program. A body-worn system collected axial tibial acceleration and provided real-time feedback on peak tibial acceleration for six running sessions in an athletic training facility. The experimental group received music-based biofeedback in a faded feedback scheme. The controls received tempo-synchronized music as a placebo for blinding purposes. The peak tibial acceleration and vertical loading rate of the ground reaction force were determined in a lab at baseline and six months following the intervention to assess retention and recall. The impacts of the experimental group substantially decreased at follow-up following a simple verbal recall (i.e., run as at the end of the program): peak tibial acceleration:-32%, p = 0.018; vertical loading rate:-34%, p = 0.006. No statistically significant changes were found regarding the retention of the impact variables. The impact magnitudes did not change over time in the control group. The biofeedback-based intervention did not induce clear learning at follow-up, however, a substantial impact reduction was recallable through simple cueing in the absence of biofeedback.
Collapse
Affiliation(s)
- Pieter Van den Berghe
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Rud Derie
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Joeri Gerlo
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Senne Bonnaerens
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Pieter Fiers
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Ine Van Caekenberghe
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Dirk De Clercq
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Veerle Segers
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Ajdaroski M, Baek SY, Ashton-Miller JA, Esquivel AO. Predicting Leg Forces and Knee Moments Using Inertial Measurement Units: An In Vitro Study. J Biomech Eng 2024; 146:021006. [PMID: 38019183 PMCID: PMC10750790 DOI: 10.1115/1.4064145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
We compared the ability of seven machine learning algorithms to use wearable inertial measurement unit (IMU) data to identify the severe knee loading cycles known to induce microdamage associated with anterior cruciate ligament rupture. Sixteen cadaveric knee specimens, dissected free of skin and muscle, were mounted in a rig simulating standardized jump landings. One IMU was located above and the other below the knee, the applied three-dimensional action and reaction loads were measured via six-axis load cells, and the three-dimensional knee kinematics were also recorded by a laboratory motion capture system. Machine learning algorithms were used to predict the knee moments and the tibial and femur vertical forces; 13 knees were utilized for training each model, while three were used for testing its accuracy (i.e., normalized root-mean-square error) and reliability (Bland-Altman limits of agreement). The results showed the models predicted force and knee moment values with acceptable levels of error and, although several models exhibited some form of bias, acceptable reliability. Further research will be needed to determine whether these types of models can be modified to attenuate the inevitable in vivo soft tissue motion artifact associated with highly dynamic activities like jump landings.
Collapse
Affiliation(s)
- Mirel Ajdaroski
- Department of Mechanical Engineering, University of Michigan – Dearborn, 4901 Evergreen Road, Dearborn, MI 48128
| | - So Young Baek
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | | | - Amanda O. Esquivel
- Department of Mechanical Engineering, University of Michigan – Dearborn, 4901 Evergreen Road, Dearborn, MI 48128
| |
Collapse
|
19
|
Satkunskiene D, Skarbalius A, Kniubaite A, Mickevicius M, Snieckus A, Rutkauskas S, Kamandulis S. Hamstring stiffness and injury risk factors during the handball season in female players. Appl Physiol Nutr Metab 2024; 49:190-198. [PMID: 37820386 DOI: 10.1139/apnm-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Monitoring the muscle mechanical properties and functions of female athletes throughout their training season is relevant to understand the relationships between these factors and to predict noncontact injuries, which are prevalent among female athletes. The first aim of this study was to determine whether female handball players' passive stiffness of the hamstring muscles is associated with hamstring extensibility, strength of knee flexors and extensors, and lower limb stiffness. Additionally, the study monitored fluctuations in these factors over 25 weeks. The study utilized an isokinetic dynamometer to record hamstring passive stiffness, extensibility, and hamstring and quadriceps strength of 18 young handball players. Lower limb stiffness was determined from a countermovement vertical jump conducted on a force plate. The countermovement jump involved the calculation of the peak force during the eccentric phase and the mean force during the concentric phase. The results showed a positive correlation between hamstring passive stiffness and lower limb stiffness (r = 0.660, p < 0.01), knee flexion and extension strength (r = 0.592, p < 0.01 and r = 0.497, p < 0.05, respectively), and eccentric peak force (r = 0.587, p < 0.01) during jumping. The strength of knee extensors increased significantly after 6 weeks, and hamstring stiffness after 12 weeks of training. In conclusion, the increased hamstring stiffness following training did not match other factors associated with injury risk. Therefore, preventing multifactorial injury risk requires a comprehensive approach, and monitoring one factor alone is insufficient to predict noncontact injuries in female handball players.
Collapse
Affiliation(s)
- Danguole Satkunskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Antanas Skarbalius
- Department of Coaching ScienceLithuanian Sports University, Kaunas, Lithuania
| | - Audinga Kniubaite
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Mantas Mickevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Saulius Rutkauskas
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
20
|
Suhail A, Banerjee A, Rajesh R. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study. Phys Rev E 2024; 109:024411. [PMID: 38491641 DOI: 10.1103/physreve.109.024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
The hysteretic behavior exhibited by collagen fibrils, when subjected to cyclic loading, is known to result in both dissipation as well as accumulation of residual strain. On subsequent relaxation, partial recovery has also been reported. Cross-links have been considered to play a key role in overall mechanical properties. Here, we modify an existing coarse-grained molecular dynamics model for collagen fibril with initially cross-linked collagen molecules, which is known to reproduce the response to uniaxial strain, by incorporating reformation of cross-links to allow for possible recovery of the fibril. Using molecular dynamics simulations, we show that our model successfully replicates the key features observed in experimental data, including the movement of hysteresis loops, the time evolution of residual strains and energy dissipation, as well as the recovery observed during relaxation. We also show that the characteristic cycle number, describing the approach toward steady state, has a value similar to that in experiments. We also emphasize the vital role of the degree of cross-linking on the key features of the macroscopic response to cyclic loading.
Collapse
Affiliation(s)
- Amir Suhail
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
21
|
Luke EN, Bhuket PRN, Yu SM, Weiss JA. Targeting damaged collagen for intra-articular delivery of therapeutics using collagen hybridizing peptides. J Orthop Res 2023; 41:2424-2432. [PMID: 37087677 PMCID: PMC10590823 DOI: 10.1002/jor.25577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The objective of this study was to investigate the potential of collagen hybridizing peptides (CHPs), which bind to denatured collagen, to extend the retention time of near-infrared fluorophores (NIRF) following intra-articular (IA) injection in rat knee joints. CHPs were synthesized with a NIRF conjugated to the N-terminus. Male Sprague-Dawley rats were assigned to one of four experimental groups: healthy, CHP; osteoarthritis (OA), CHP; healthy, scrambled-sequence CHP (sCHP), which has no collagen binding affinity; or OA, sCHP. Animals in the OA groups received an IA injection of monosodium iodoacetate to induce OA. All animals then received the corresponding CHP injection. Animals were imaged repeatedly over 2 weeks using an in vivo fluorescence imaging system. Joint components were isolated and imaged to determine CHP binding distribution. Safranin-O and Fast Green histological staining was performed to confirm the development of OA. CHPs were found to be retained within the joint following IA injection in both healthy and OA animals for the full study period. In contrast, sCHP signal was negligible by 24-48 h. CHP signal was significantly greater (p < 0.05) in OA joints when compared to healthy joints. At the 2-week end point, multiple joint components retained CHPs, including cartilage, meniscus, and synovium. CHPs dramatically extended the retention time of NIRFs following IA injection in healthy and OA knee joints by binding to multiple collagenous tissues in the joint. These results support the pursuit of further research to develop CHP based therapeutics for IA treatment of OA.
Collapse
Affiliation(s)
- E. N. Luke
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | | | - S. M. Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - J. A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Mersmann F, Domroes T, Tsai MS, Pentidis N, Schroll A, Bohm S, Arampatzis A. Longitudinal Evidence for High-Level Patellar Tendon Strain as a Risk Factor for Tendinopathy in Adolescent Athletes. SPORTS MEDICINE - OPEN 2023; 9:83. [PMID: 37673828 PMCID: PMC10482817 DOI: 10.1186/s40798-023-00627-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND High tendon strain leads to sub-rupture fatigue damage and net-catabolic signaling upon repetitive loading. While high levels of tendon strain occur in adolescent athletes at risk for tendinopathy, a direct association has not yet been established. Therefore, in this prospective longitudinal study, we examined the hypothesis that adolescent athletes who develop patellar tendon pain have shown increased levels of strain in advance. METHODS In 44 adolescent athletes (12-17 years old), patellar tendon mechanical properties were measured using ultrasonography and inverse dynamics at four time points during a season. Fourteen athletes developed clinically relevant tendon pain (SYM; i.e., reduction of the VISA-P score of at least 13 points), while 23 remained asymptomatic (ASYM; VISA-P score of > 87 points). Seven cases did not fall into one of these categories and were excluded. Tendon mechanical properties of SYM in the session before the development of symptoms were compared to a randomly selected session in ASYM. RESULTS Tendon strain was significantly higher in SYM compared to ASYM (p = 0.03). The risk ratio for developing symptoms was 2.3-fold higher in athletes with tendon strain ≥9% (p = 0.026). While there was no clear evidence for systematic differences of the force applied to the tendon or tendon stiffness between SYM and ASYM (p > 0.05), subgroup analysis indicated that tendon force increased prior to the development of symptoms only in SYM (p = 0.034). DISCUSSIO The study provides novel longitudinal evidence that high tendon strain could be an important risk factor for patellar tendinopathy in adolescent athletes. We suggest that inadequate adaptation of tendon stiffness to increases in muscle strength may occur if adolescent athletes are subject to mechanical loading which does not provide effective tendon stimulation.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany.
- Berlin School of Movement Science, Berlin, Germany.
| | - Theresa Domroes
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Meng-Shiuan Tsai
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität Zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
- Berlin School of Movement Science, Berlin, Germany
| |
Collapse
|
23
|
Liu D, Feng S, Huang Q, Sun S, Dong G, Long F, Milazzo M, Wang M. Soft, strong, tough, and durable bio-hydrogels via maximizing elastic entropy. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300426. [PMID: 39399778 PMCID: PMC11469578 DOI: 10.1002/adfm.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 10/15/2024]
Abstract
Load-bearing soft tissues are soft but strong, strong yet tough. These properties can only be replicated in synthetic hydrogels, which do not have the biocomplexity required by many biomedical applications. By contrast, natural hydrogels, although retaining the native complexity, are weak and fragile. Here we present a thermomechanical casting method to achieve the mechanical capabilities of synthetic materials in biopolymer hydrogels. The thermomechanical cast and chemically crosslinked biopolymer chains form a short-range disordered but long-range ordered structure in water. Upon stretch, the disordered structure transforms to a hierarchically ordered structure. This disorder-order transformation resembles the synergy of the disordered elastin and ordered collagen in load-bearing soft tissues. As entropy drives a reverse order-disorder transformation, the hydrogels can resist repeated cycles of loads without deterioration in mechanical properties. Gelatin hydrogels produced by this method combine tissue-like tunable mechanical properties that outperform the gelatin prepared by synthetic approaches, and in vivo biocomplexity beyond current natural systems. Unlike polymer engineering approaches, which rely on specific crosslinks provided by special polymers, this strategy utilizes the entropy of swollen chains and is generalizable to many other biopolymers. It could thus significantly accelerate translational success of biomaterials.
Collapse
Affiliation(s)
- Dani Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Shuofei Sun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Gening Dong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Feifei Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122 Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mingkun Wang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
24
|
Loflin BE, Ahn T, Colglazier KA, Banaszak Holl MM, Ashton-Miller JA, Wojtys EM, Schlecht SH. An Adolescent Murine In Vivo Anterior Cruciate Ligament Overuse Injury Model. Am J Sports Med 2023; 51:1721-1732. [PMID: 37092727 PMCID: PMC10348391 DOI: 10.1177/03635465231165753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Overuse ligament and tendon injuries are prevalent among recreational and competitive adolescent athletes. In vitro studies of the ligament and tendon suggest that mechanical overuse musculoskeletal injuries begin with collagen triple-helix unraveling, leading to collagen laxity and matrix damage. However, there are little in vivo data concerning this mechanism or the physiomechanical response to collagen disruption, particularly regarding the anterior cruciate ligament (ACL). PURPOSE To develop and validate a novel in vivo animal model for investigating the physiomechanical response to ACL collagen matrix damage accumulation and propagation in the ACL midsubstance, fibrocartilaginous entheses, and subchondral bone. STUDY DESIGN Controlled laboratory study. METHODS C57BL/6J adolescent inbred mice underwent 3 moderate to strenuous ACL fatigue loading sessions with a 72-hour recovery between sessions. Before each session, randomly selected subsets of mice (n = 12) were euthanized for quantifying collagen matrix damage (percent collagen unraveling) and ACL mechanics (strength and stiffness). This enabled the quasi-longitudinal assessment of collagen matrix damage accrual and whole tissue mechanical property changes across fatigue sessions. Additionally, all cyclic loading data were quantified to evaluate changes in knee mechanics (stiffness and hysteresis) across fatigue sessions. RESULTS Moderate to strenuous fatigue loading across 3 sessions led to a 24% weaker (P = .07) and 35% less stiff (P < .01) ACL compared with nonloaded controls. The unraveled collagen densities within the fatigued ACL and entheseal matrices after the second and third sessions were 38% (P < .01) and 15% (P = .02) higher compared with the nonloaded controls. CONCLUSION This study confirmed the hypothesis that in vivo ACL collagen matrix damage increases with tissue fatigue sessions, adversely impacting ACL mechanical properties. Moreover, the in vivo ACL findings were consistent with in vitro overloading research in humans. CLINICAL RELEVANCE The outcomes from this study support the use of this model for investigating ACL overuse injuries.
Collapse
Affiliation(s)
- Benjamin E. Loflin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Taeyong Ahn
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kaitlyn A. Colglazier
- Purdue School of Engineering and Technology, Purdue University–Indianapolis, Indianapolis, Indiana, USA
| | - Mark M. Banaszak Holl
- Department of Orthopaedic Surgery, Heersink School of Medicine, University of Alabama–Birmingham, Birmingham, Alabama, USA
| | | | - Edward M. Wojtys
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Stephen H. Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Purdue School of Engineering and Technology, Purdue University–Indianapolis, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Gallate ZS, D'Erminio DN, Nasser P, Laudier DM, Iatridis JC. Galectin-3 and RAGE differentially control advanced glycation endproduct-induced collagen damage in murine intervertebral disc organ culture. JOR Spine 2023; 6:e1254. [PMID: 37361328 PMCID: PMC10285763 DOI: 10.1002/jsp2.1254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background Back and neck pain are leading causes of global disability that are associated with intervertebral disc (IVD) degeneration. Causes of IVD degeneration are multifactorial, and diet, age, and diabetes have all been linked to IVD degeneration. Advanced glycation endproducts (AGEs) accumulate in the IVD as a result of aging, diet, and diabetes, and AGE accumulation in the IVD has been shown to induce oxidative stress and catabolic activity that result in collagen damage. An association between AGE accumulation and IVD degeneration is emerging, yet mechanism behind this association remains unclear. The Receptor for AGEs (RAGE) is thought to induce catabolic responses in the IVD, and the AGE receptor Galectin 3 (Gal3) had a protective effect in other tissue systems but has not been evaluated in the IVD. Methods This study used an IVD organ culture model with genetically modified mice to analyze the roles of RAGE and Gal3 in an AGE challenge. Results Gal3 was protective against an AGE challenge in the murine IVD ex vivo, limiting collagen damage and biomechanical property changes. Gal3 receptor levels in the AF significantly decreased upon an AGE challenge. RAGE was necessary for AGE-induced collagen damage in the IVD, and RAGE receptor levels in the AF significantly increased upon AGE challenge. Discussion These findings suggest both RAGE and Gal3 are important in the IVD response to AGEs and highlight Gal3 as an important receptor with protective effects on collagen damage. This research improves understanding the mechanisms of AGE-induced IVD degeneration and suggests Gal3 receptor modulation as a potential target for preventative and therapeutic treatment for IVD degeneration.
Collapse
Affiliation(s)
- Zachary S. Gallate
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Danielle N. D'Erminio
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Philip Nasser
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Damien M. Laudier
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
26
|
Putera KH, Kim J, Baek SY, Schlecht SH, Beaulieu ML, Haritos V, Arruda EM, Ashton-Miller JA, Wojtys EM, Banaszak Holl MM. Fatigue-driven compliance increase and collagen unravelling in mechanically tested anterior cruciate ligament. Commun Biol 2023; 6:564. [PMID: 37237052 PMCID: PMC10219950 DOI: 10.1038/s42003-023-04948-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Approximately 300,000 anterior cruciate ligament (ACL) tears occur annually in the United States, half of which lead to the onset of knee osteoarthritis within 10 years of injury. Repetitive loading is known to result in fatigue damage of both ligament and tendon in the form of collagen unravelling, which can lead to structural failure. However, the relationship between tissue's structural, compositional, and mechanical changes are poorly understood. Herein we show that repetitive submaximal loading of cadaver knees causes an increase in co-localised induction of collagen unravelling and tissue compliance, especially in regions of greater mineralisation at the ACL femoral enthesis. Upon 100 cycles of 4× bodyweight knee loading, the ACL exhibited greater unravelled collagen in highly mineralized regions across varying levels of stiffness domains as compared to unloaded controls. A decrease in the total area of the most rigid domain, and an increase in the total area of the most compliant domain was also found. The results highlight fatigue-driven changes in both protein structure and mechanics in the more mineralized regions of the ACL enthesis, a known site of clinical ACL failure. The results provide a starting point for designing studies to limit ligament overuse injury.
Collapse
Affiliation(s)
- Kevin H Putera
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jinhee Kim
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - So Young Baek
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mélanie L Beaulieu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Ashton-Miller
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia.
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Orthopaedic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
27
|
Abstract
Collagen provides mechanical and biological support for virtually all human tissues in the extracellular matrix (ECM). Its defining molecular structure, the triple-helix, could be damaged and denatured in disease and injuries. To probe collagen damage, the concept of collagen hybridization has been proposed, revised, and validated through a series of investigations reported as early as 1973: a collagen-mimicking peptide strand may form a hybrid triple-helix with the denatured chains of natural collagen but not the intact triple-helical collagen proteins, enabling assessment of proteolytic degradation or mechanical disruption to collagen within a tissue-of-interest. Here we describe the concept and development of collagen hybridization, summarize the decades of chemical investigations on rules underlying the collagen triple-helix folding, and discuss the growing biomedical evidence on collagen denaturation as a previously overlooked ECM signature for an array of conditions involving pathological tissue remodeling and mechanical injuries. Finally, we propose a series of emerging questions regarding the chemical and biological nature of collagen denaturation and highlight the diagnostic and therapeutic opportunities from its targeting.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
28
|
Anderl WJ, Pearson N, Converse MI, Yu SM, Monson KL. Strain-induced collagen denaturation is rate dependent in failure of cerebral arteries. Acta Biomater 2023; 164:282-292. [PMID: 37116635 DOI: 10.1016/j.actbio.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
While soft tissues are commonly damaged by mechanical loading, the manifestation of this damage at the microstructural level is not fully understood. Specifically, while rate-induced stiffening has been previously observed in cerebral arteries, associated changes in microstructural damage patterns following high-rate loading are largely undefined. In this study, we stretched porcine middle cerebral arteries to failure at 0.01 and >150 s-1, both axially and circumferentially, followed by probing for denatured tropocollagen using collagen hybridizing peptide (CHP). We found that collagen fibrils aligned with the loading direction experienced less denaturation following failure tests at high than low rates. Others have demonstrated similar rate dependence in tropocollagen denaturation during soft tissue failure, but this is the first study to quantify this behavior using CHP and to report it for cerebral arteries. These findings may have significant implications for traumatic brain injury and intracranial balloon angioplasty. We additionally observed possible tropocollagen denaturation in vessel layers primarily composed of fibrils transversely aligned to the loading axis. To our knowledge, this is the first observation of collagen denaturation due to transverse loading, but further research is needed to confirm this finding. STATEMENT OF SIGNIFICANCE: Previous work shows that collagen hybridizing peptide (CHP) can be used to identify collagen molecule unfolding and denaturation in mechanically overloaded soft tissues, including the cerebral arteries. But experiments have not explored collagen damage at rates relevant to traumatic brain injury. In this work, we quantified collagen damage in cerebral arteries stretched to failure at both high and low rates. We found that the collagen molecule is less damaged at high than at low rates, suggesting that damage mechanisms of either the collagen molecule or other elements of the collagen superstructure are rate dependent. This work implies that arteries failed at high rates, such as in traumatic brain injury, will have different molecular-level damage patterns than arteries failed at low rates. Consequently, improved understanding of damage characteristics may be expanded in the future to better inform clinically relevant cases of collagen damage such as angioplasty and injury healing.
Collapse
Affiliation(s)
| | - Noah Pearson
- DepSSSartment of Mechanical Engineering, University of Utah
| | | | - S Michael Yu
- Department of Biomedical Engineering, University of Utah; Department of Molecular Pharmaceutics, University of Utah
| | - Kenneth L Monson
- DepSSSartment of Mechanical Engineering, University of Utah; Department of Biomedical Engineering, University of Utah.
| |
Collapse
|
29
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
30
|
Smith KA, Lin AH, Stevens AH, Yu SM, Weiss JA, Timmins LH. Collagen Molecular Damage is a Hallmark of Early Atherosclerosis Development. J Cardiovasc Transl Res 2023; 16:463-472. [PMID: 36097314 DOI: 10.1007/s12265-022-10316-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Remodeling of extracellular matrix proteins underlies the development of cardiovascular disease. Herein, we utilized a novel molecular probe, collagen hybridizing peptide (CHP), to target collagen molecular damage during atherogenesis. The thoracic aorta was dissected from ApoE-/- mice that had been on a high-fat diet for 0-18 weeks. Using an optimized protocol, tissues were stained with Cy3-CHP and digested to quantify CHP with a microplate assay. Results demonstrated collagen molecular damage, inferred from Cy3-CHP fluorescence, was a function of location and time on the high-fat diet. Tissue from the aortic arch showed a significant increase in collagen molecular damage after 18 weeks, while no change was observed in tissue from the descending aorta. No spatial differences in fluorescence were observed between the superior and inferior arch tissue. Our results provide insight into the early changes in collagen during atherogenesis and present a new opportunity in the subclinical diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Kelly A Smith
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Allen H Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Alexander H Stevens
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lucas H Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
31
|
Gains CC, Giannapoulos A, Zamboulis DE, Lopez-Tremoleda J, Screen HRC. Development and application of a novel in vivo overload model of the Achilles tendon in rat. J Biomech 2023; 151:111546. [PMID: 36958089 DOI: 10.1016/j.jbiomech.2023.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Repetitive overload is a primary factor in tendon injury, causing progressive accumulation of matrix damage concurrent with a cellular response. However, it remains unclear how these events occur at the initial stages of the disease, making it difficult to identify appropriate treatment approaches. Here, we describe the development of a new model to cyclically load the Achilles tendon (AT) of rats in vivo and investigate the initial structural and cellular responses. The model utilizes controlled dorsiflexion of the ankle joint applied near maximal dorsiflexion, for 10,000 cycles at 3 Hz. Animals were subjected to a single bout of in vivo loading under anaesthesia, and either culled immediately (without recovery from anaesthesia), or 48 h or 4-weeks post-loading. Macro strains were assessed in cadavers, whilst tendon specific microdamage was assessed through collagen-hybridizing peptide (CHP) immunohistochemistry which highlighted a significant rise in CHP staining in loaded ATs compared to contralateral controls, indicating an accumulation of overload-induced damage. Staining for pro-inflammatory mediators (IL-6 and COX-2) and matrix degradation markers (MMP-3 and -13) also suggests an initial cellular response to overload. Model validation confirmed our approach was able to explore early overload-induced damage within the AT, with microdamage present and no evidence of broader musculoskeletal damage. The new model may be implemented to map the progression of tendinopathy in the AT, and thus study potential therapeutic interventions.
Collapse
Affiliation(s)
- Connor Charles Gains
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Antonios Giannapoulos
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Danae Emilie Zamboulis
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jordi Lopez-Tremoleda
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Hazel R C Screen
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
32
|
Nyland J. Overuse Noncontact ACL Injury in Young Athletes: Since We Can't Completely Fix It, Why Not Prevent It? Sports Health 2023; 15:162-164. [PMID: 36811881 PMCID: PMC9950994 DOI: 10.1177/19417381231152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
33
|
Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2023; 7:5-16. [PMID: 36776717 PMCID: PMC9912297 DOI: 10.26502/fccm.92920302] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structure of connective tissues including cartilage, tendons, and ligaments as well as many organs, like the skin, heart, liver, kidney, lungs, blood vessels, and bones, depend on collagen. The bulk of the network of structural proteins that make up the extracellular matrix of the heart is composed of collagen type I and type III, which provide structural support for the muscle cells and are crucial for cardiac function. The prognosis and progression of a disease or diseased state may be significantly impacted by the upregulation or downregulation of the collagen types, particularly Col I and Col III. For example, increasing Col I protein levels may impose increasing myocardial stiffness, impairing the diastolic and systolic function of the myocardium. Collagen I is a stiff fibrillar protein that gives tensile strength, whereas Col III produces an elastic network that stores kinetic energy as an elastic rebound. These two collagen proteins have distinct physical properties in nature. Therefore, the control of Col I and Col III as well as the potential relevance of the Col I/Col III ratio in many biological processes serve as the foundation for this comprehensive review article.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
34
|
Lin AH, Slater CA, Martinez CJ, Eppell SJ, Yu SM, Weiss JA. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point. Acta Biomater 2023; 155:461-470. [PMID: 36400348 PMCID: PMC9805521 DOI: 10.1016/j.actbio.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Collagen molecules are the base structural unit of tendons, which become denatured during mechanical overload. We recently demonstrated that during tendon stretch, collagen denaturation occurs at the yield point of the stress-strain curve in both positional and energy-storing tendons. We were interested in investigating how this load is transferred throughout the collagen hierarchy, and sought to determine the onset of collagen denaturation when collagen fibrils are stretched. Fibrils are one level above the collagen molecule in the collagen hierarchy, allowing more direct probing of the effect of strain on collagen molecules. We isolated collagen fibrils from both positional and energy-storing tendon types and stretched them using a microelectromechanical system device to various levels of strain. We stained the fibrils with fluorescently labeled collagen hybridizing peptides that specifically bind to denatured collagen, and examined whether samples stretched beyond the yield point of the stress-strain curve exhibited increased amounts of denatured collagen. We found that collagen denaturation in collagen fibrils from both tendon types occurs at the yield point. Greater amounts of denatured collagen were found in post-yield positional fibrils than in energy-storing fibrils. This is despite a greater yield strain and yield stress in fibrils from energy-storing tendons compared to positional tendons. Interestingly, the peak modulus of collagen fibrils from both tendon types was the same. These results are likely explained by the greater crosslink density found in energy-storing tendons compared to positional tendons. The insights gained from this study could help management of tendon and other musculoskeletal injuries by targeting collagen molecular damage at the fibril level. STATEMENT OF SIGNIFICANCE: When tendons are stretched or torn, this can lead to collagen denaturation (damage). Depending on their biomechanical function, tendons are considered positional or energy-storing with different crosslink profiles. By stretching collagen fibrils instead of fascicles from both tendon types, we can more directly examine the effect of tensile stretch on the collagen molecule in tendons. We found that regardless of tendon type, collagen denaturation in fibrils occurs when they are stretched beyond the yield point of the stress-strain curve. This provides insight into how load affects different tendon sub-structures during tendon injuries and failure, which will help clinicians and researchers understand mechanisms of injuries and potentially target collagen molecular damage as a treatment strategy, leading to improved clinical outcomes following injury.
Collapse
Affiliation(s)
- Allen H Lin
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Christopher A Slater
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - Callie-Jo Martinez
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States; Department of Orthopaedics, University of Utah, United States.
| |
Collapse
|
35
|
Chen W, Tang J, Shen W, Zhou Q. Influence of walking on knee ligament response in car-to-pedestrian collisions. Front Bioeng Biotechnol 2023; 11:1141390. [PMID: 37122854 PMCID: PMC10140625 DOI: 10.3389/fbioe.2023.1141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Pedestrians are likely to experience walking before accidents. The walking process imposes cyclic loading on knee ligaments and increases knee joint temperature. Both cyclic loading and temperature affect the material properties of ligaments, which further influence the risk of ligament injury. However, the effect of such walking-induced material property changes on pedestrian ligament response has not been considered. Therefore, in this study, we investigated the influence of walking on ligament response in car-to-pedestrian collisions. Using Total Human Model for Safety (THUMS) model, knee ligament responses (i.e., cross-sectional force and local strain) were evaluated under several crash scenarios (i.e., two impact speeds, two knee contact heights, and three pedestrian postures). In worst case scenarios, walking-induced changes in ligament material properties led to a 10% difference in maximum local strain and a 6% difference in maximum cross-sectional force. Further considering the material uncertainty caused by experimental dispersion, the ligament material property changes due to walking resulted in a 28% difference in maximum local strain and a 26% difference in maximum cross-sectional force. This study demonstrates the importance of accounting for walking-induced material property changes for the reliability of safety assessments and injury analysis.
Collapse
|
36
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
37
|
Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods 2022; 28:646-655. [PMID: 36326204 PMCID: PMC9807253 DOI: 10.1089/ten.tec.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue decellularization has demonstrated widespread applications across numerous organ systems for tissue engineering and regenerative medicine applications. Decellularized tissues are expected to retain structural and/or compositional features of the natural extracellular matrix (ECM), enabling investigation of biochemical factors and cell-ECM interactions that drive tissue homeostasis, healing, and disease. However, the dense collagenous tendon matrix has limited the efficacy of traditional decellularization strategies without the aid of harsh chemical detergents and/or physical agitation that disrupt tissue integrity and denature proteins involved in regulating cell behavior. In this study, we adapted and established the advantages of a detergent-free decellularization method that relies on latrunculin B actin destabilization, alternating hypertonic-hypotonic salt and water incubations, nuclease-assisted elimination of cellular material, and protease inhibitor supplementation under aseptic conditions. Our method maintained the collagen molecular structure (i.e., minimal extent of denaturation), while adequately removing cells and preserving bulk mechanical properties. Furthermore, we demonstrated that decellularized tendon ECM-derived coatings isolated from different mouse strains, injury states (i.e., naive and acutely injured/"provisional"), and anatomical sites harness distinct biochemical cues and robustly maintain tendon cell viability in vitro. Together, our work provides a simple and scalable decellularization method to facilitate mechanistic studies that will expand our fundamental understanding of tendon ECM and cell biology. Impact statement In this study, we present a decellularization method for tendon that does not rely on any detergent or physical processing techniques. We assessed the impact of detergent-free decellularization using tissue, cellular, and molecular level analyses and validated the preservation of gross fiber architecture, collagen molecular structure, and extracellular matrix (ECM)-associated biological cues that are essential for studying physiological cell-ECM interactions. Finally, we demonstrated the applicability of this method for healthy and injured tendon environments, across mouse strains, and for different types of tendons, illustrating the utility of this approach for isolating the contributions of biochemical cues within unique tendon ECM microenvironments.
Collapse
Affiliation(s)
- Jason C. Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ai Mochida
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
38
|
Design, Synthesis, and Photo-Responsive Properties of a Collagen Model Peptide Bearing an Azobenzene. ORGANICS 2022. [DOI: 10.3390/org3040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Collagen is a vital component of the extracellular matrix in animals. Collagen forms a characteristic triple helical structure and plays a key role in supporting connective tissues and cell adhesion. The ability to control the collagen triple helix structure is useful for medical and conformational studies because the physicochemical properties of the collagen rely on its conformation. Although some photo-controllable collagen model peptides (CMPs) have been reported, satisfactory photo-control has not yet been achieved. To achieve this objective, detailed investigation of the isomerization behavior of the azobenzene moiety in CMPs is required. Herein, two CMPs were attached via an azobenzene linker to control collagen triple helix formation by light irradiation. Azo-(PPG)10 with two (Pro-Pro-Gly)10 CMPs linked via a photo-responsive azobenzene moiety was designed and synthesized. Conformational changes were evaluated by circular dichroism and the cis-to-trans isomerization rate calculated from the absorption of the azobenzene moiety indicated that the collagen triple helix structure was partially disrupted by isomerization of the internal azobenzene.
Collapse
|
39
|
Huang H, Kiick KL. Peptide-based assembled nanostructures that can direct cellular responses. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac92b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Natural originated materials have been well-studied over the past several decades owing to their higher biocompatibility compared to the traditional polymers. Peptides, consisting of amino acids, are among the most popular programable building blocks, which is becoming a growing interest in nanobiotechnology. Structures assembled using those biomimetic peptides allow the exploration of chemical sequences beyond those been routinely used in biology. In this Review, we discussed the most recent experimental discoveries on the peptide-based assembled nanostructures and their potential application at the cellular level such as drug delivery. In particular, we explored the fundamental principles of peptide self-assembly and the most recent development in improving their interactions with biological systems. We believe that as the fundamental knowledge of the peptide assemblies evolves, the more sophisticated and versatile nanostructures can be built, with promising biomedical applications.
Collapse
|
40
|
Kim J, Baek SY, Schlecht SH, Beaulieu ML, Bussau L, Chen J, Ashton-Miller JA, Wojtys EM, Banaszak Holl MM. Anterior cruciate ligament microfatigue damage detected by collagen autofluorescence in situ. J Exp Orthop 2022; 9:74. [PMID: 35907038 PMCID: PMC9339057 DOI: 10.1186/s40634-022-00507-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Certain types of repetitive sub-maximal knee loading cause microfatigue damage in the human anterior cruciate ligament (ACL) that can accumulate to produce macroscopic tissue failure. However, monitoring the progression of that ACL microfatigue damage as a function of loading cycles has not been reported. To explore the fatigue process, a confocal laser endomicroscope (CLEM) was employed to capture sub-micron resolution fluorescence images of the tissue in situ. The goal of this study was to quantify the in situ changes in ACL autofluorescence (AF) signal intensity and collagen microstructure as a function of the number of loading cycles. METHODS Three paired and four single cadaveric knees were subjected to a repeated 4 times bodyweight landing maneuver known to strain the ACL. The paired knees were used to compare the development of ACL microfatigue damage on the loaded knee after 100 consecutive loading cycles, relative to the contralateral unloaded control knee, through second harmonic generation (SHG) and AF imaging using confocal microscopy (CM). The four single knees were used for monitoring progressive ACL microfatigue damage development by AF imaging using CLEM. RESULTS The loaded knees from each pair exhibited a statistically significant increase in AF signal intensity and decrease in SHG signal intensity as compared to the contralateral control knees. Additionally, the anisotropy of the collagen fibers in the loaded knees increased as indicated by the reduced coherency coefficient. Two out of the four single knee ACLs failed during fatigue loading, and they exhibited an order of magnitude higher increase in autofluorescence intensity per loading cycle as compared to the intact knees. Of the three regions of the ACL - proximal, midsubstance and distal - the proximal region of ACL fibers exhibited the highest AF intensity change and anisotropy of fibers. CONCLUSIONS CLEM can capture changes in ACL AF and collagen microstructures in situ during and after microfatigue damage development. Results suggest a large increase in AF may occur in the final few cycles immediately prior to or at failure, representing a greater plastic deformation of the tissue. This reinforces the argument that existing microfatigue damage can accumulate to induce bulk mechanical failure in ACL injuries. The variation in fiber organization changes in the ACL regions with application of load is consistent with the known differences in loading distribution at the ACL femoral enthesis.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Chemical & Biological Engineering, Monash University, Melbourne, Australia
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - So Young Baek
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mélanie L Beaulieu
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Edward M Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - Mark M Banaszak Holl
- Department of Chemical & Biological Engineering, Monash University, Melbourne, Australia.
| |
Collapse
|
41
|
Fontenele FF, Bouklas N. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model. Acta Biomater 2022; 163:78-90. [PMID: 35835288 DOI: 10.1016/j.actbio.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Collagen fibrils, which are the lowest level fibrillar unit of organization of collagen, are thus of primary interest towards understanding the mechanical behavior of load-bearing soft tissues. The deformation of collagen fibrils shows unique mechanical features; namely, their high energy dissipation is even superior compared to most engineering materials. Additionally, there are indications that cyclic loading can further improve the toughness of collagen fibrils. Recent experiments from Liu at al. (2018) focused on the response of type I collagen fibrils to uniaxial cyclic loading, revealing some interesting results regarding their rate-dependent and inelastic response. In this work, we aim to develop a model that allows interpreting the complex nonlinear and inelastic response of collagen fibrils under cyclic loading. We propose a constitutive model that accounts for viscoelastic deformations through a decoupled strain-energy density function (into an elastic and a viscous parts), and for plastic deformations through plastic evolution laws. The stress-stretch response results obtained using this constitutive law showed good agreement with experimental data over complex loading paths. Ultimately we use the model to gain more insights on how cyclic loading and rate effects control the interplay between viscoelastic and plastic deformation in collagen fibrils, and to extrapolate the results from experimental data, analyzing how complex cyclic load influences energy dissipation and deformation mechanisms. STATEMENT OF SIGNIFICANCE: In this work, we develop a viscoelastic-plastic constitutive model for collagen fibrils with the aim of analyzing the effects of inelasticity and energy dissipation in this material, and more specifically the competition between viscoelasticity and plasticity in the context of cyclic loading and overload. Experimental and theoretical approaches so far have not fully clarified the interplay between viscous and plastic deformations during cyclic loading of collagen fibrils. Here, we aim to interpret the complex nonlinear response of collagen fibrils and, ultimately, suggest predictive capabilities that can inform tissue-level response and injury. To validate our model, we compare our results against the stress-stretch data obtained from experiments of cyclic loaded single fibrils performed by Liu et al. (2018).
Collapse
Affiliation(s)
- Fernanda F Fontenele
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA.
| |
Collapse
|
42
|
Chen W, Zhou Q. Opposite Effect of Cyclic Loading on the Material Properties of Medial Collateral Ligament at Different Temperatures: An Animal Study. Front Bioeng Biotechnol 2022; 10:925033. [PMID: 35774057 PMCID: PMC9237215 DOI: 10.3389/fbioe.2022.925033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In traffic accidents, the medial collateral ligament (MCL) injury of the knee joint of pedestrians is common. Biofidelic material is important to realize MCL's native biomechanics in simulations to clarify the injury mechanisms of pedestrians. Pedestrians' MCLs usually experience cyclic loading at the intra-articular temperature of the knee joint before accidents. Temperature influences the material behaviors of ligaments. However, the mechanical properties of ligaments under cyclic loading have been widely evaluated only at room temperature rather than physiological temperature. Therefore, this study aimed to determine whether the difference between room and intra-articular temperatures influences the effect of cyclic loading on the mechanical properties of MCL. We measured the tensile properties of 34 porcine MCLs at room temperature (21-23°C) and intra-articular temperature (35-37°C), with either 10 cycles or 240 cycles of cyclic loading, a total of four different conditions. The structural responses and geometric data were recorded. After 240 cycles of cyclic loading, stiffness increased by 29.0% (p < 0.01) at room temperature and decreased by 11.5% (p = 0.106) at intra-articular temperature. Material properties were further compared because the geometric differences between samples were inevitable. At room temperature, after 240 cycles of cyclic loading, elastic modulus increased by 29.6% (p < 0.001), and failure strain decreased by 20.4% (p < 0.05). By contrast, at intra-articular temperature, after 240 cycles of cyclic loading, modulus decreased by 27.4% (p < 0.001), and failure strain increased by 17.5% (p = 0.193), insignificant though. In addition, there were no significant differences between the four groups in other structural or material properties. The results showed that temperature reversed the effect of cyclic loading on the mechanical properties of MCL, which may be caused by the high strength and thermally stable crosslinks of MCL. Therefore, for improving the fidelity of knee joint simulations and elucidating the injury mechanism of pedestrians, it is better to measure the mechanical properties of MCL at intra-articular temperature rather than room temperature.
Collapse
Affiliation(s)
| | - Qing Zhou
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Allan AN, Zitnay JL, Maas SA, Weiss JA. Development of a continuum damage model to Predict accumulation of sub-failure damage in tendons. J Mech Behav Biomed Mater 2022; 135:105342. [DOI: 10.1016/j.jmbbm.2022.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
|
44
|
Eisner LE, Rosario R, Andarawis-Puri N, Arruda EM. The Role of the Non-Collagenous Extracellular Matrix in Tendon and Ligament Mechanical Behavior: A Review. J Biomech Eng 2022; 144:1128818. [PMID: 34802057 PMCID: PMC8719050 DOI: 10.1115/1.4053086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Tendon is a connective tissue that transmits loads from muscle to bone, while ligament is a similar tissue that stabilizes joint articulation by connecting bone to bone. The 70-90% of tendon and ligament's extracellular matrix (ECM) is composed of a hierarchical collagen structure that provides resistance to deformation primarily in the fiber direction, and the remaining fraction consists of a variety of non-collagenous proteins, proteoglycans, and glycosaminoglycans (GAGs) whose mechanical roles are not well characterized. ECM constituents such as elastin, the proteoglycans decorin, biglycan, lumican, fibromodulin, lubricin, and aggrecan and their associated GAGs, and cartilage oligomeric matrix protein (COMP) have been suggested to contribute to tendon and ligament's characteristic quasi-static and viscoelastic mechanical behavior in tension, shear, and compression. The purpose of this review is to summarize existing literature regarding the contribution of the non-collagenous ECM to tendon and ligament mechanics, and to highlight key gaps in knowledge that future studies may address. Using insights from theoretical mechanics and biology, we discuss the role of the non-collagenous ECM in quasi-static and viscoelastic tensile, compressive, and shear behavior in the fiber direction and orthogonal to the fiber direction. We also address the efficacy of tools that are commonly used to assess these relationships, including enzymatic degradation, mouse knockout models, and computational models. Further work in this field will foster a better understanding of tendon and ligament damage and healing as well as inform strategies for tissue repair and regeneration.
Collapse
Affiliation(s)
- Lainie E Eisner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Ryan Rosario
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109; Professor Program in Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
45
|
Gallagher S, Barbe MF. The impaired healing hypothesis: a mechanism by which psychosocial stress and personal characteristics increase MSD risk? ERGONOMICS 2022; 65:573-586. [PMID: 34463204 PMCID: PMC9847256 DOI: 10.1080/00140139.2021.1974103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 05/09/2023]
Abstract
While the effects of physical risk factors on MSD development have been a primary focus of musculoskeletal research, psychological stressors, and certain personal characteristics (e.g. ageing, sex, and obesity) are also associated with increased MSD risk. The psychological and personal characteristics listed above share a common characteristic: all are associated with disruption of the body's neuroendocrine and immune responses resulting in an impaired healing process. An impaired healing response may result in reduced fatigue life of musculoskeletal tissues due to a diminished ability to keep pace with accumulating damage (perhaps reparable under normal circumstances), and an increased vulnerability of damaged tissue to further trauma owing to the prolonged healing process. Research in engineered self-healing materials suggests that decreased healing kinetics in the presence of mechanical loading can substantially reduce the fatigue life of materials. A model of factors influencing damage accrual and healing will be presented. Practitioner summary: This article provides a potential reason why musculoskeletal disorder risk is affected by psychosocial stress, age, sex, and obesity. The reason is that these factors are all associated with a slower than normal healing response. This may lead to faster damage development in musculoskeletal tissues resulting in higher MSD risk.
Collapse
Affiliation(s)
- Sean Gallagher
- Industrial and Systems Engineering Department, Auburn University, Auburn, AL, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Chatterjee M, Muljadi PM, Andarawis-Puri N. The role of the tendon ECM in mechanotransduction: disruption and repair following overuse. Connect Tissue Res 2022; 63:28-42. [PMID: 34030531 DOI: 10.1080/03008207.2021.1925663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Tendon overuse injuries are prevalent conditions with limited therapeutic options to halt disease progression. The specialized extracellular matrix (ECM) both enables joint function and mediates mechanical signals to tendon cells, driving biological responses to exercise or injury. With overuse, tendon ECM composition and structure changes at multiple scales, disrupting mechanotransduction and resulting in inadequate repair and disease progression. This review highlights the multiscale ECM changes that occur with tendon overuse and corresponding effects on cell-matrix interactions and cellular response to load.Results: Different functional joint requirements and tendon types experience a wide range of loading profiles, creating varied downstream mechanical stimuli. Distinct ECM structure and mechanical properties within the fascicle matrix, interfascicle matrix, and enthesis and their varied disruption with overuse are considered. The pericellular matrix (PCM) comprising the microscale tendon cell environment has a unique composition that changes with overuse injury and exercise, suggesting an important role in mechanotransduction and promoting repair. Cell-matrix interactions are mediated by structures including cilia, integrins, connexins and cytoskeleton that signal downstream homeostasis, adaptation, or repair. ECM disruption with tendon overuse may cause altered mechanical loading and cell-matrix interactions, resulting in mechanobiological understimulation, apoptosis, and ineffective repair. Current interventions to promote repair of tendon overuse injuries including exercise, targeting cell signaling, and modulating inflammation are considered.Conclusion: Future therapeutics should be assessed with regard of their effects on multiscale mechanotransduction in addition to joint function, with consideration of the central role of ECM.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Patrick M Muljadi
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Nancy E. And Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.,Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
47
|
Liu L, Huang K, Li W, Qiu R, Fang Y, Huang Y, Zhao S, Lv H, Zhang K, Shan H, Li Y. Molecular Imaging of Collagen Destruction of the Spine. ACS NANO 2021; 15:19138-19149. [PMID: 34738460 DOI: 10.1021/acsnano.1c07112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the leading cause of disability worldwide, low back pain is commonly caused by biomechanical and catabolic disruptions to key structures of the spine, such as intervertebral discs and facet joints. To date, accurate, noninvasive detection of microdestruction within these tissues remains an elusive goal. Here, we report an in vivo imaging approach based on a collagen hybridizing peptide (CHP) that specifically targets disruption to the extracellular matrix architecture at the molecular scale─the denatured collagen molecules. Utilizing fluorescently labeled CHPs, live animal imaging, and light sheet fluorescence microscopy, we mapped collagen destruction in the lumbar spines in 3D, revealing that under normal conditions collagen destruction was localized to load-bearing anatomical structures including annulus fibrosus of the disc and the facet joints, where aging, tensile force (hindlimb suspension), and disc degeneration (needle puncture) escalated the CHP-binding in specific mouse models. We showed that targeting denatured collagen molecules allowed for an accurate, quantifiable interrogation of the structural integrity of these spinal matrixes with a greater sensitivity than anatomical imaging and histology. Finally, we demonstrated CHP's binding to degenerated human discs, suggesting exciting potentials for applying CHP for diagnosing, monitoring, and treating various spinal disorders, including intervertebral disc degeneration, facet joint osteoarthritis, and ankylosing spondylitis.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kui Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Li
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yijie Fang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongjie Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hai Lv
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kuibo Zhang
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
48
|
Golman M, Abraham AC, Kurtaliaj I, Marshall BP, Hu YJ, Schwartz AG, Guo XE, Birman V, Thurner PJ, Genin GM, Thomopoulos S. Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. SCIENCE ADVANCES 2021; 7:eabi5584. [PMID: 34826240 PMCID: PMC8626067 DOI: 10.1126/sciadv.abi5584] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/06/2021] [Indexed: 05/09/2023]
Abstract
Architectured materials offer tailored mechanical properties but are limited in engineering applications due to challenges in maintaining toughness across their attachments. The enthesis connects tendon and bone, two vastly different architectured materials, and exhibits toughness across a wide range of loadings. Understanding the mechanisms by which this is achieved could inform the development of engineered attachments. Integrating experiments, simulations, and previously unexplored imaging that enabled simultaneous observation of mineralized and unmineralized tissues, we identified putative mechanisms of enthesis toughening in a mouse model and then manipulated these mechanisms via in vivo control of mineralization and architecture. Imaging uncovered a fibrous architecture within the enthesis that controls trade-offs between strength and toughness. In vivo models of pathology revealed architectural adaptations that optimize these trade-offs through cross-scale mechanisms including nanoscale protein denaturation, milliscale load-sharing, and macroscale energy absorption. Results suggest strategies for optimizing architecture for tough bimaterial attachments in medicine and engineering.
Collapse
Affiliation(s)
- Mikhail Golman
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Adam C. Abraham
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Iden Kurtaliaj
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brittany P. Marshall
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yizhong Jenny Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrea G. Schwartz
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Victor Birman
- Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Philipp J. Thurner
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
49
|
Pelvic floor muscle injury during a difficult labor. Can tissue fatigue damage play a role? Int Urogynecol J 2021; 33:211-220. [PMID: 34783861 DOI: 10.1007/s00192-021-05012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Pubovisceral muscle (PVM) injury during a difficult vaginal delivery leads to pelvic organ prolapse later in life. If one could address how and why the muscle injury originates, one might be able to better prevent these injuries in the future. In a recent review we concluded that many atraumatic injuries of the muscle-tendon unit are consistent with it being weakened by an accumulation of passive tissue damage during repetitive loading. While the PVM can tear due to a single overstretch at the end of the second stage of labor we hypothesize that it can also be weakened by an accumulation of microdamage and then tear after a series of submaximal loading cycles. We conclude that there is strong indirect evidence that low cycle fatigue of PVM passive tissue is a possible mechanism of its proximal failure. This has implications for finding new ways to better prevent PVM injury in the future.
Collapse
|
50
|
Zitnay JL, Lin AH, Weiss JA. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue. Acta Biomater 2021; 134:435-442. [PMID: 34314889 DOI: 10.1016/j.actbio.2021.07.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Musculoskeletal soft connective tissues are commonly injured due to repetitive use, but the evolution of mechanical damage to the tissue structure during repeated loading is poorly understood. We investigated the strain-rate dependence of mechanical denaturation of collagen as a form of structural microdamage accumulation during creep fatigue loading of rat tail tendon fascicles. We cycled tendons at three strain rates to the same maximum stress relative to their rate-dependent tensile strength. Collagen denaturation at distinct points during the fatigue process was measured by fluorescence quantification of collagen hybridizing peptide binding. The amount of collagen denaturation was significantly correlated with fascicle creep strain, independent of the cyclic strain rate, supporting our hypothesis that tissue level creep is caused by collagen triple-helix unfolding. Samples that were loaded faster experienced more creep strain and denaturation as a function of the number of loading cycles relative to failure. Although this increased damage capacity at faster rates may serve as a protective measure during high-rate loading events, it may also predispose these tissues to subsequent injury and indicate a mechanism of overuse injury development. These results build on evidence that molecular-level collagen denaturation is the fundamental mechanism of structural damage to tendons during tensile loading. STATEMENT OF SIGNIFICANCE: This study is the first to investigate the accumulation of denatured collagen in tendons throughout fatigue loading when the maximum stress is scaled with the applied strain rate. The amount of denatured collagen was correlated with creep strain, independent of strain rate, but samples that were cycled faster withstood greater amounts of denaturation before failure. Differential accumulation of collagen damage between fast and slow repetitive loading has relevance toward understanding the prevalence of overuse musculoskeletal injuries following sudden changes in activity level. Since collagen is a ubiquitous biological structural component, the basic patterns and mechanisms of loading-induced collagen damage in connective tissues are relevant for understanding injury and disease in other tissues, including those from the cardiovascular and pulmonary systems.
Collapse
Affiliation(s)
- Jared L Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Allen H Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; School of Computing, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|