1
|
Dumm AJ, Zheng AY, Butler TJ, Kulikowicz T, George JC, Bombard PT, Sommers JA, Ding J, Brosh RM. SARS-CoV-2 point mutations are over-represented in terminal loops of RNA stem-loop structures that can be resolved by Nsp13 helicase in a unique manner with respect to nucleotide dependence. Nucleic Acids Res 2025; 53:gkaf447. [PMID: 40421800 PMCID: PMC12107433 DOI: 10.1093/nar/gkaf447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
To improve health outcomes for COVID-19 (coronavirus disease 2019) patients, the factors that influence coronavirus genome variation need to be ascertained. The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genome is rich in predicted RNA secondary structures, particularly stem-loops (SLs) formed by intramolecular base pairing within palindromic sequences. We analyzed the NCBI Virus collection of SARS-CoV-2 genome sequences from COVID-19 individuals to map variants relative to SL structural elements. Point mutations in the SARS-CoV-2 genome, with a C-to-U transition bias, were over-represented in unpaired nucleotides and, more specifically, within the terminal loops of RNA SL structures. As the sole helicase encoded by SARS-CoV-2, Nsp13 may operate in the timely resolution of secondary RNA structures to facilitate SARS-CoV-2 RNA copying or processing. We characterized Nsp13 to resolve SARS-CoV-2 sequence-derived unimolecular RNA SL substrates and determined that it does so in a functionally cooperative manner. In addition to ATP, Nsp13 resolves the unimolecular RNA SL structure in the absence of nucleotide, in contrast to the strict ATP requirement for a bimolecular RNA forked duplex. We suggest a model in which a series of binary and ternary complex interactions of Nsp13 with nucleotide and/or RNA SL pose mechanistic implications for RNA SL resolution.
Collapse
Affiliation(s)
- Adaira J Dumm
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Andrew Y Zheng
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Thomas J Butler
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Joe C George
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Pierce T Bombard
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| |
Collapse
|
2
|
Modestov A, Buzdin A, Suntsova M. Unveiling RNA Editing by ADAR and APOBEC Protein Gene Families. FRONT BIOSCI-LANDMRK 2025; 30:26298. [PMID: 40302320 DOI: 10.31083/fbl26298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
RNA editing is a crucial post-transcriptional modification that alters the transcriptome and proteome and affects many cellular processes, including splicing, microRNA specificity, stability of RNA molecules, and protein structure. Enzymes from the adenosine deaminase acting on RNA (ADAR) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) protein families mediate RNA editing and can alter a variety of non-coding and coding RNAs, including all regions of mRNA molecules, leading to tumor development and progression. This review provides novel insights into the potential use of RNA editing parameters, such as editing levels, expression of ADAR and APOBEC genes, and specifically edited genes, as biomarkers for cancer progression, distinguishing it from previous studies that focused on isolated aspects of RNA editing mechanisms. The methodological section offers clues to accelerate high-throughput analysis of RNA or DNA sequencing data for the identification of RNA editing events.
Collapse
Affiliation(s)
- Alexander Modestov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
| | - Anton Buzdin
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Xi B, Hua Z, Jiang D, Chen Z, Wei J, Meng Y, Du H. Within-Host Fitness and Antigenicity Shift Are Key Factors Influencing the Prevalence of Within-Host Variations in the SARS-CoV-2 S Gene. Viruses 2025; 17:362. [PMID: 40143291 PMCID: PMC11945823 DOI: 10.3390/v17030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Within-host evolution plays a critical role in shaping the diversity of SARS-CoV-2. However, understanding the primary factors contributing to the prevalence of intra-host single nucleotide variants (iSNVs) in the viral population remains elusive. Here, we conducted a comprehensive analysis of over 556,000 SARS-CoV-2 sequencing data and prevalence data of different SARS-CoV-2 S protein amino acid mutations to elucidate key factors influencing the prevalence of iSNVs in the SARS-CoV-2 S gene. Within-host diversity analysis revealed the presence of mutational hotspots within the S gene, mainly located in NTD, RBD, TM, and CT domains. Additionally, we generated a single amino acid resolution selection status map of the S protein. We observed a significant variance in within-host fitness among iSNVs in the S protein. The majority of iSNVs exhibited low to no within-host fitness and displayed low alternate allele frequency (AAF), suggesting that they will be eliminated due to the narrow transmission bottleneck of SARS-CoV-2. Notably, iSNVs with moderate AAFs (0.06-0.12) were found to be more prevalent than those with high AAFs. Furthermore, iSNVs with the potential to alter antigenicity were more prevalent. These findings underscore the significance of within-host fitness and antigenicity shift as two key factors influencing the prevalence of iSNVs in the SARS-CoV-2 S gene.
Collapse
Affiliation(s)
- Binbin Xi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhihao Hua
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dawei Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Meng
- Guangzhou KingMed Transformative Medicine Institute, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510220, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
5
|
Yang Y, Zhang X, Chen T, Wu F, Huang YS, Qu Y, Xu M, Ma L, Liu M, Zhai W. An Expanding Universe of Mutational Signatures and Its Rapid Evolution in Single-Stranded RNA Viruses. Mol Biol Evol 2025; 42:msaf009. [PMID: 39823310 PMCID: PMC11796089 DOI: 10.1093/molbev/msaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments. We found that mutational spectra in different ssRNA viruses differ significantly and are mainly associated with their genetic divergence. Surprisingly, host environments contribute much less significantly to the mutational spectrum, challenging the prevailing view that the exogenous cellular environment is a major determinant of the mutational spectrum in viruses. To dissect the evolutionary forces shaping viral spectra, we selected two important scenarios, namely the inter-host evolution between different viral strains as well as the intra-host evolution. In both scenarios, we found mutational spectra change significantly through space and time, strongly correlating with levels of natural selection. Combining the mutations across all ssRNA viruses, we identified a suite of mutational signatures with varying degrees of similarity to somatic signatures in humans, indicating universal and divergent mutational processes across the tree of life. Taken together, we unraveled an unprecedented dynamic landscape of mutational processes in ssRNA viruses, pinpointing important evolutionary forces shaping fast evolution of mutational spectra in different species.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyuan Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu S Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Genecast Biotechnology Co., Ltd., Wuxi 214105, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Liu
- School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 511436, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Haddox HK, Angehrn G, Sesta L, Jennings-Shaffer C, Temple SD, Galloway JG, DeWitt WS, Bloom JD, Matsen FA, Neher RA. The mutation rate of SARS-CoV-2 is highly variable between sites and is influenced by sequence context, genomic region, and RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631013. [PMID: 39829847 PMCID: PMC11741320 DOI: 10.1101/2025.01.07.631013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RNA viruses like SARS-CoV-2 have a high mutation rate, which contributes to their rapid evolution. The rate of mutations depends on the mutation type (e.g., A→C, A→G, etc.) and can vary between sites in the viral genome. Understanding this variation can shed light on the mutational processes at play, and is crucial for quantitative modeling of viral evolution. Using the millions of available SARS-CoV-2 full-genome sequences, we estimate rates of synonymous mutations for all 12 possible nucleotide mutation types and examine how much these rates vary between sites. We find a surprisingly high level of variability and several striking patterns: the rates of four mutation types suddenly increase at one of two gene boundaries; the rates of most mutation types strongly depend on a site's local sequence context, with up to 56-fold differences between contexts; consistent with a previous study, the rates of some mutation types are lower at sites engaged in RNA secondary structure. A simple log-linear model of these features explains ~15-60% of the fold-variation of mutation rates between sites, depending on mutation type; more complex models only modestly improve predictive power out of sample. We estimate the fitness effect of each mutation based on the number of times it actually occurs versus the number of times it is expected to occur based on the model. We identify several small regions of the genome where synonymous or noncoding mutations occur much less often than expected, indicative of strong purifying selection on the RNA sequence that is independent of protein sequence. Overall, this work expands our basic understanding of SARS-CoV-2's evolution by characterizing the virus's mutation process at the level of individual sites and uncovering several striking mutational patterns that arise from unknown mechanisms.
Collapse
Affiliation(s)
- Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Luca Sesta
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Seth D Temple
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
- Michigan Institute for Data & AI in Society, University of Michigan, Ann Arbor, MI, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William S DeWitt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jesse D Bloom
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
7
|
Rice AM, Troendle EP, Bridgett SJ, Firoozi Nejad B, McKinley JM, Bradley DT, Fairley DJ, Bamford CGG, Skvortsov T, Simpson DA. SARS-CoV-2 introductions to the island of Ireland: a phylogenetic and geospatiotemporal study of infection dynamics. Genome Med 2024; 16:150. [PMID: 39702217 DOI: 10.1186/s13073-024-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ireland's COVID-19 response combined extensive SARS-CoV-2 testing to estimate incidence, with whole genome sequencing (WGS) for genome surveillance. As an island with two political jurisdictions-Northern Ireland (NI) and Republic of Ireland (RoI)-and access to detailed passenger travel data, Ireland provides a unique setting to study virus introductions and evaluate public health measures. Using a substantial Irish genomic dataset alongside global data from GISAID, this study aimed to trace the introduction and spread of SARS-CoV-2 across the island. METHODS We recursively searched for 29,518 SARS-CoV-2 genome sequences collected in Ireland from March 2020 to June 2022 within the global SARS-CoV-2 phylogenetic tree and identified clusters based on shared last common non-Irish ancestors. A maximum parsimony approach was used to assign a likely country of origin to each cluster. The geographic locations and collection dates of the samples in each introduction cluster were used to map the spread of the virus across Ireland. Downsampling was used to model the impact of varying levels of sequencing and normalisation for population permitted comparison between jurisdictions. RESULTS Six periods spanning the early introductions and the emergence of Alpha, Delta, and Omicron variants were studied in detail. Among 4439 SARS-CoV-2 introductions to Ireland, 2535 originated in England, with additional cases largely from the rest of Great Britain, United States of America, and Northwestern Europe. Introduction clusters ranged in size from a single to thousands of cases. Introductions were concentrated in the densely populated Dublin and Belfast areas, with many clusters spreading islandwide. Genetic phylogeny was able to effectively trace localised transmission patterns. Introduction rates were similar in NI and RoI for most variants, except for Delta, which was more frequently introduced to NI. CONCLUSIONS Tracking individual introduction events enables detailed modelling of virus spread patterns and clearer assessment of the effectiveness of control measures. Stricter travel restrictions in RoI likely reduced Delta introductions but not infection rates, which were similar across jurisdictions. Local and global sequencing levels influence the information available from phylogenomic analyses and we describe an approach to assess the ability of a chosen WGS level to detect virus introductions.
Collapse
Affiliation(s)
- Alan M Rice
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
- Current address: UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, D04 E1W1, Ireland
| | - Evan P Troendle
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Stephen J Bridgett
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK
| | - Behnam Firoozi Nejad
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Jennifer M McKinley
- Geography, School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Declan T Bradley
- Public Health Agency, Belfast, Northern Ireland, BT2 8BS, UK
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT12 6BA, UK
| | - Derek J Fairley
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast, Northern Ireland, BT12 6BA, UK
| | - Connor G G Bamford
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 5DL, UK
| | - Timofey Skvortsov
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| | - David A Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
8
|
Pan X, Bruch A, Blango MG. Past, Present, and Future of RNA Modifications in Infectious Disease Research. ACS Infect Dis 2024; 10:4017-4029. [PMID: 39569943 DOI: 10.1021/acsinfecdis.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In early 2024, the National Academies of Sciences, Engineering, and Medicine (NASEM) released a roadmap for the future of research into mapping ribonucleic acid (RNA) modifications, which underscored the importance of better defining these diverse chemical changes to the RNA macromolecule. As nearly all mature RNA molecules harbor some form of modification, we must understand RNA modifications to fully appreciate the functionality of RNA. The NASEM report calls for massive mobilization of resources and investment akin to the transformative Human Genome Project of the early 1990s. Like the Human Genome Project, a concerted effort in improving our ability to assess every single modification on every single RNA molecule in an organism will change the way we approach biological questions, accelerate technological advance, and improve our understanding of the molecular world. Consequently, we are also at the start of a revolution in defining the impact of RNA modifications in the context of host-microbe and even microbe-microbe interactions. In this perspective, we briefly introduce RNA modifications to the infection biologist, highlight key aspects of the NASEM report and exciting examples of RNA modifications contributing to host and pathogen biology, and finally postulate where infectious disease research may benefit from this exciting new endeavor in globally mapping RNA modifications.
Collapse
Affiliation(s)
- Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology: Hans Knöll Institute (HKI), 07745 Jena, Germany
| |
Collapse
|
9
|
Simmonds P. C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic. mBio 2024; 15:e0249324. [PMID: 39475243 PMCID: PMC11633203 DOI: 10.1128/mbio.02493-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has been characterized by rapid adaptive changes that confer immune escape and enhanced human-to-human transmissibility. Sequence change is additionally marked by an excess number of C→U transitions suggested as being due to host-mediated genome editing. To investigate how these influence the evolutionary trajectory of SARS-CoV-2, 2,000 high-quality, coding complete genome sequences of SARS-CoV-2 variants collected pre-September 2020 and from each subsequently appearing alpha, delta, BA.1, BA.2, BA.5, XBB, EG, HK, and JN.1 lineages were downloaded from NCBI Virus in April 2024. C→U transitions were the most common substitution during the diversification of SARS-CoV-2 lineages over the 4-year observation period. A net loss of C bases and accumulation of U's occurred at a constant rate of approximately 0.2%-0.25%/decade. C→U transitions occurred in over a quarter of all sites with a C (26.5%; range 20.0%-37.2%) around five times more than observed for the other transitions (5.3%-6.8%). In contrast to an approximately random distribution of other transitions across the genome, most C→U substitutions occurred at statistically preferred sites in each lineage. However, only the most C→U polymorphic sites showed evidence for a preferred 5'U context previously associated with APOBEC 3A editing. There was a similarly weak preference for unpaired bases suggesting much less stringent targeting of RNA than mediated by A3 deaminases in DNA editing. Future functional studies are required to determine editing preferences, impacts on replication fitness in vivo of SARS-CoV-2 and other RNA viruses, and impact on host tropism. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has shown a remarkable capacity to adapt and evade human immune responses and increase its human-to-human transmissibility. The genome of SARS-CoV-2 is also increasingly scarred by the effects of multiple C→U mutations from host genome editing as a cellular defense mechanism akin to restriction factors for retroviruses. Through the analysis of large data sets of SARS-CoV-2 isolate sequences collected throughout the pandemic period and beyond, we show that C→U transitions have driven a base compositional change over time amounting to a net loss of C bases and accumulation of U's at a rate of approximately 0.2%-0.25%/decade. Most C→U substitutions occurred in the absence of the preferred upstream-base context or targeting of unpaired RNA bases previously associated with the host RNA editing protein, APOBEC 3A. The analyses provide a series of testable hypotheses that can be experimentally investigated in the future.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Li Z, Luo L, Ju X, Huang S, Lei L, Yu Y, Liu J, Zhang P, Chi T, Ma P, Huang C, Huang X, Ding Q, Zhang Y. Viral N protein hijacks deaminase-containing RNA granules to enhance SARS-CoV-2 mutagenesis. EMBO J 2024; 43:6444-6468. [PMID: 39567830 PMCID: PMC11649915 DOI: 10.1038/s44318-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Host cell-encoded deaminases act as antiviral restriction factors to impair viral replication and production through introducing mutations in the viral genome. We sought to understand whether deaminases are involved in SARS-CoV-2 mutation and replication, and how the viral factors interact with deaminases to trigger these processes. Here, we show that APOBEC and ADAR deaminases act as the driving forces for SARS-CoV-2 mutagenesis, thereby blocking viral infection and production. Mechanistically, SARS-CoV-2 nucleocapsid (N) protein, which is responsible for packaging viral genomic RNA, interacts with host deaminases and co-localizes with them at stress granules to facilitate viral RNA mutagenesis. N proteins from several coronaviruses interact with host deaminases at RNA granules in a manner dependent on its F17 residue, suggesting a conserved role in modulation of viral mutagenesis in other coronaviruses. Furthermore, mutant N protein bearing a F17A substitution cannot localize to deaminase-containing RNA granules and leads to reduced mutagenesis of viral RNA, providing support for its function in enhancing deaminase-dependent viral RNA editing. Our study thus provides further insight into virus-host cell interactions mediating SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Zhean Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liqun Lei
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingxu Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
11
|
Majewska M, Maździarz M, Krawczyk K, Paukszto Ł, Makowczenko KG, Lepiarczyk E, Lipka A, Wiszpolska M, Górska A, Moczulska B, Kocbach P, Sawicki J, Gromadziński L. SARS-CoV-2 disrupts host gene networks: Unveiling key hub genes as potential therapeutic targets for COVID-19 management. Comput Biol Med 2024; 183:109343. [PMID: 39500239 DOI: 10.1016/j.compbiomed.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Although the end of COVID-19 as a public health emergency was declared on May 2023, still new cases of the infection are reported and the risk remains of new variants emerging that may cause new surges in cases and deaths. While clinical symptoms have been rapidly defined worldwide, the basic body responses and pathogenetic mechanisms acting in patients with SARS-CoV-2 infection over time until recovery or death require further investigation. The understanding of the molecular mechanisms underlying the development and course of the disease is essential in designing effective preventive and therapeutic approaches, and ultimately reducing mortality and disease spreading. METHODS The current investigation aimed to identify the key genes engaged in SARS-CoV-2 infection. To achieve this goal high-throughput RNA sequencing of peripheral blood samples collected from healthy donors and COVID-19 patients was performed. The resulting sequence data were processed using a wide range of bioinformatics tools to obtain detailed modifications within five transcriptomic phenomena: expression of genes and long non-coding RNAs, alternative splicing, allel-specific expression and circRNA production. The in silico procedure was completed with a functional analysis of the identified alterations. RESULTS The transcriptomic analysis revealed that SARS-CoV-2 has a significant impact on multiple genes encoding ribosomal proteins (RPs). Results show that these genes differ not only in terms of expression but also manifest biases in alternative splicing and ASE ratios. The integrated functional analysis exposed that RPs mostly affected pathways and processes related to infection-COVID-19 and NOD-like receptor signaling pathway, SARS-CoV-2-host interactions and response to the virus. Furthermore, our results linked the multiple intronic ASE variants and exonic circular RNA differentiations with SARS-CoV-2 infection, suggesting that these molecular events play a crucial role in mRNA maturation and transcription during COVID-19 disease. CONCLUSIONS By elucidating the genetic mechanisms induced by the virus, the current research provides significant information that can be employed to create new targeted therapeutic strategies for future research and treatment related to COVID-19. Moreover, the findings highlight potentially promising therapeutic biomarkers for early risk assessment of critically ill patients.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Mateusz Maździarz
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Anna Górska
- Diagnostyka Medical Laboratories, 10-082, Olsztyn, Poland
| | - Beata Moczulska
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Piotr Kocbach
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| |
Collapse
|
12
|
Kazanov FM, Matveev EV, Ponomarev GV, Ivankov DN, Kazanov MD. Analysis of the abundance and diversity of RNA secondary structure elements in RNA viruses using the RNAsselem Python package. Sci Rep 2024; 14:28587. [PMID: 39562668 PMCID: PMC11577020 DOI: 10.1038/s41598-024-80240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Recent advancements in experimental and computational methods for RNA secondary structure detection have revealed the crucial role of RNA structural elements in diverse molecular processes within living cells. It has been demonstrated that the secondary structure of the entire viral genome is often responsible for performing crucial functions in the viral life cycle and also influences virus evolution. To investigate the role of viral RNA secondary structure, alongside experimental techniques, the use of bioinformatics tools is important for analyzing various secondary structure patterns, including hairpin loops, internal loops, multifurcations, external loops, bulges, stems, and pseudoknots. Here, we have introduced a Python package for analyzing RNA secondary structure elements in viral genomes, which includes the recognition of common secondary structure patterns, the generation of descriptive statistics for these structural elements, and the provision of their basic properties. We applied the developed package to analyze the secondary structures of complete viral genomes collected from the literature, aiming to gain insights into viral function and evolution. Both the package and the collection of secondary structures of viral genomes are available at http://github.com/KazanovLab/RNAsselem .
Collapse
Affiliation(s)
| | - Evgenii V Matveev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia
| | - Gennady V Ponomarev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Dmitry N Ivankov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Marat D Kazanov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia.
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
13
|
Yang HH, Han MR. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Sci Rep 2024; 14:27026. [PMID: 39506033 PMCID: PMC11541563 DOI: 10.1038/s41598-024-77914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
DNA methylation is a molecular process that mediates gene-environment interactions. Epigenome-wide association studies (EWAS) using the Illumina Human Methylation BeadChip are powerful tools for quantifying the relationship between DNA methylation and phenotypes. Recently, the Illumina Methylation EPICv2 BeadChip (EPICv2) was released, which includes new features, such as duplicated probes and changed probe names. Several published algorithms have been updated to address these features in EPICv2. However, appropriate EPICv2 preprocessing and integration with previous microarray versions remain complex. Therefore, MethylCallR, an open-source R package designed to provide standard procedures for performing EWAS using Illumina methylation microarrays including EPICv2, was developed. MethylCallR can be used to control duplicated probes in EPICv2, by using pre-set data implemented in MethylCallR or new customized data. MethylCallR includes a straightforward conversion function between different types of Illumina Human Methylation BeadChips. Using MethylCallR, potential outlier sample detection and statistical power estimation were conducted and used to select meaningful probes. Publicly available data was analyzed using MethylCallR and the findings were compared to that of a previous study.
Collapse
Affiliation(s)
- Hyun-Ho Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea.
| |
Collapse
|
14
|
Hunt M, Hinrichs AS, Anderson D, Karim L, Dearlove BL, Knaggs J, Constantinides B, Fowler PW, Rodger G, Street T, Lumley S, Webster H, Sanderson T, Ruis C, Kotzen B, de Maio N, Amenga-Etego LN, Amuzu DSY, Avaro M, Awandare GA, Ayivor-Djanie R, Barkham T, Bashton M, Batty EM, Bediako Y, De Belder D, Benedetti E, Bergthaler A, Boers SA, Campos J, Carr RAA, Chen YYC, Cuba F, Dattero ME, Dejnirattisai W, Dilthey A, Duedu KO, Endler L, Engelmann I, Francisco NM, Fuchs J, Gnimpieba EZ, Groc S, Gyamfi J, Heemskerk D, Houwaart T, Hsiao NY, Huska M, Hölzer M, Iranzadeh A, Jarva H, Jeewandara C, Jolly B, Joseph R, Kant R, Ki KKK, Kurkela S, Lappalainen M, Lataretu M, Lemieux J, Liu C, Malavige GN, Mashe T, Mongkolsapaya J, Montes B, Mora JAM, Morang'a CM, Mvula B, Nagarajan N, Nelson A, Ngoi JM, da Paixão JP, Panning M, Poklepovich T, Quashie PK, Ranasinghe D, Russo M, San JE, Sanderson ND, Scaria V, Screaton G, Sessions OM, Sironen T, Sisay A, Smith D, Smura T, Supasa P, Suphavilai C, Swann J, Tegally H, Tegomoh B, Vapalahti O, Walker A, Wilkinson RJ, Williamson C, Zair X, de Oliveira T, Peto TE, Crook D, Corbett-Detig R, et alHunt M, Hinrichs AS, Anderson D, Karim L, Dearlove BL, Knaggs J, Constantinides B, Fowler PW, Rodger G, Street T, Lumley S, Webster H, Sanderson T, Ruis C, Kotzen B, de Maio N, Amenga-Etego LN, Amuzu DSY, Avaro M, Awandare GA, Ayivor-Djanie R, Barkham T, Bashton M, Batty EM, Bediako Y, De Belder D, Benedetti E, Bergthaler A, Boers SA, Campos J, Carr RAA, Chen YYC, Cuba F, Dattero ME, Dejnirattisai W, Dilthey A, Duedu KO, Endler L, Engelmann I, Francisco NM, Fuchs J, Gnimpieba EZ, Groc S, Gyamfi J, Heemskerk D, Houwaart T, Hsiao NY, Huska M, Hölzer M, Iranzadeh A, Jarva H, Jeewandara C, Jolly B, Joseph R, Kant R, Ki KKK, Kurkela S, Lappalainen M, Lataretu M, Lemieux J, Liu C, Malavige GN, Mashe T, Mongkolsapaya J, Montes B, Mora JAM, Morang'a CM, Mvula B, Nagarajan N, Nelson A, Ngoi JM, da Paixão JP, Panning M, Poklepovich T, Quashie PK, Ranasinghe D, Russo M, San JE, Sanderson ND, Scaria V, Screaton G, Sessions OM, Sironen T, Sisay A, Smith D, Smura T, Supasa P, Suphavilai C, Swann J, Tegally H, Tegomoh B, Vapalahti O, Walker A, Wilkinson RJ, Williamson C, Zair X, de Oliveira T, Peto TE, Crook D, Corbett-Detig R, Iqbal Z. Addressing pandemic-wide systematic errors in the SARS-CoV-2 phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591666. [PMID: 38746185 PMCID: PMC11092452 DOI: 10.1101/2024.04.29.591666] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 4,471,579 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of June 2024, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.
Collapse
Affiliation(s)
- Martin Hunt
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Angie S Hinrichs
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA
| | - Daniel Anderson
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Lily Karim
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA
| | - Bethany L Dearlove
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Jeff Knaggs
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Bede Constantinides
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Gillian Rodger
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Teresa Street
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - Sheila Lumley
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Oxford, UK
| | - Hermione Webster
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christopher Ruis
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Benjamin Kotzen
- Department of Infectious Diseases, Massachusetts General Hospital., Boston, Massachusetts, USA
| | - Nicola de Maio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Dominic S Y Amuzu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Martin Avaro
- Servicio de Virus Respiratorios, Instituto Nacional Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- Laboratory for Medical Biotechnology and Biomanufacturing, International Centre for Genetic Engineering and Biotechnology, Tristie, Italy
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Elizabeth M Batty
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Denise De Belder
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Estefania Benedetti
- Servicio de Virus Respiratorios, Instituto Nacional Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Andreas Bergthaler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan A Boers
- Dept. Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Rosina Afua Ampomah Carr
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, Ann Arbor, MI, USA
| | | | - Facundo Cuba
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Maria Elena Dattero
- Servicio de Virus Respiratorios, Instituto Nacional Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- College of Life Sciences, Birmingham City University, Birmingham, UK
| | - Lukas Endler
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Ilka Engelmann
- Pathogenesis and Control of Chronic and Emerging Infections, Univ Montpellier, INSERM, Etablissement Français du Sang, Virology Laboratory, CHU Montpellier, Montpellier, France
| | - Ngiambudulu M Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Etienne Z Gnimpieba
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, SD 57107
| | - Soraya Groc
- Virology Laboratory, CHU Montpellier, Montpellier, France
| | - Jones Gyamfi
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Dennis Heemskerk
- Dept. Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Torsten Houwaart
- Institute of Medical Microbiology and Hospital Hygiene, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nei-Yuan Hsiao
- Divison of Medical Virology, University of Cape Town and National Health Laboratory Service
| | - Matthew Huska
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Martin Hölzer
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | - Hanna Jarva
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Bani Jolly
- Karkinos Healthcare Private Limited (KHPL), Aurbis Business Parks, Bellandur, Bengaluru, Karnataka, 560103, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Ravi Kant
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland
| | | | - Satu Kurkela
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Lappalainen
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marie Lataretu
- Genome Competence Center (MF1), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Jacob Lemieux
- Department of Infectious Diseases, Massachusetts General Hospital., Boston, Massachusetts, USA
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tapfumanei Mashe
- Health System Strengthening Unit, World Health Organisation, Harare, Zimbabwe
| | - Juthathip Mongkolsapaya
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jose Arturo Molina Mora
- Centro de investigación en Enfermedades Tropicales & Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Bernard Mvula
- Public Health Institute of Malawi, Ministry of Health, Malawi
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Joana Paula da Paixão
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomas Poklepovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Diyanath Ranasinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Mara Russo
- Servicio de Virus Respiratorios, Instituto Nacional Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - James Emmanuel San
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710
- University of KwaZulu Natal, Durban, South Africa, 4001
| | - Nicholas D Sanderson
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
| | - Vinod Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Vishwanath Cancer Care Foundation (VCCF), Neelkanth Business Park Kirol Village, West Mumbai, Maharashtra, 400086, India
| | - Gavin Screaton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tarja Sironen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
| | - Abay Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Darren Smith
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Teemu Smura
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jeremy Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
| | - Bryan Tegomoh
- Centre de Coordination des Opérations d'Urgences de Santé Publique, Ministere de Sante Publique, Cameroun
- University of California, Berkeley, Berkeley, California, USA
- Nebraska Department of Health and Human Services, Lincoln, Nebraska, USA
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland
| | - Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert J Wilkinson
- Francis Crick Institute, London, UK
- Centre for Infectious Diseases Research in Africa, University of Cape Town
- Imperial College London, UK
| | | | - Xavier Zair
- Saw Swee Hock School of Public Health, National Univeristy of Singapore
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, South Africa
| | - Timothy Ea Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Russell Corbett-Detig
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA
| | - Zamin Iqbal
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, UK
- Milner Centre for Evolution, University of Bath, UK
| |
Collapse
|
15
|
Chen J, Chen L, Li B, Zhao Q, Cheng Y, Yan D, Liu H, Li F. Mass spectrometry-based metabolomics reveals metabolism of molnupiravir may lead to metabolic disorders and hepatotoxicity. Biomed Chromatogr 2024; 38:e5996. [PMID: 39175367 DOI: 10.1002/bmc.5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Molnupiravir (MO) is a pyrimidine nucleoside anti-SARS-CoV-2 drug. MO treatment could cause mild liver injury. However, the underlying mechanism of MO-induced liver injury and the metabolic pathway of MO in vivo are unclear. In this study, metabolomics analysis and molecular biology methods were used to explore these issues. Through metabolomics analysis, it was found that the homeostasis of pyrimidine, purine, lysophosphatidylcholine (LPC), and amino acids in mice was destroyed after MO treatment. A total of 80 changed metabolites were detected. Among these changed metabolites, 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 was related to the elevation of alkaline phosphatase (ALP), interleukin-6 (IL6), and nuclear factor kappa-B (NF-κB). The levels of 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 in plasma were positively correlated with their levels in the liver, suggesting that these metabolites were associated with MO-induced liver injury. MO treatment could increase NHC and cytidine levels, activate cytidine deaminase (CDA), and increase LPC levels. CDA and LPC could increase the mRNA expression level of toll-like receptor (TLR). The current study indicated that the elevation of hepatic TLR may be an important reason for MO leading to the liver injury.
Collapse
Affiliation(s)
- Jiahui Chen
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiong Chen
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhao
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Cheng
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
17
|
Zhao N, He M, Wang H, Zhu L, Wang N, Yong W, Fan H, Ding S, Ma T, Zhang Z, Dong X, Wang Z, Dong X, Min X, Zhang H, Ding J. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak. Virus Evol 2024; 10:veae085. [PMID: 39493536 PMCID: PMC11529616 DOI: 10.1093/ve/veae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic, which is still a global public health concern. During March 2022, a rapid and confined single-source outbreak of SARS-CoV-2 was identified in a community in Nanjing municipal city. Overall, 95 individuals had laboratory-confirmed SARS-CoV-2 infection. The whole genomes of 61 viral samples were obtained, which were all members of the BA.2.2 lineage and clearly demonstrated the presence of one large clade, and all the infections could be traced back to the original index case. The most distant sequence from the index case presented a difference of 4 SNPs, and 118 intrahost single-nucleotide variants (iSNVs) at 74 genomic sites were identified. Some minor iSNVs can be transmitted and subsequently rapidly fixed in the viral population. The minor iSNVs transmission resulted in at least two nucleotide substitutions among all seven SNPs identified in the outbreak, generating genetically diverse populations. We estimated the overall transmission bottleneck size to be 3 using 11 convincing donor-recipient transmission pairs. Our study provides new insights into genomic epidemiology and viral transmission, revealing how iSNVs become fixed in local clusters, followed by viral transmission across the community, which contributes to population diversity.
Collapse
Affiliation(s)
- Ning Zhao
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - Min He
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - HengXue Wang
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - LiGuo Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Road, Nanjing, Jiangsu 210009, China
| | - Nan Wang
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - Wei Yong
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - HuaFeng Fan
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - SongNing Ding
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - Tao Ma
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - Zhong Zhang
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - XiaoXiao Dong
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - ZiYu Wang
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - XiaoQing Dong
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - XiaoYu Min
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - HongBo Zhang
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
| | - Jie Ding
- Microbiology Laboratory, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin Road, Nanjing, Jiangsu 210003, China
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| |
Collapse
|
18
|
Zhang P, Zhang W, Li J, Liu H, Yu Y, Yang X, Jiang W. Host-dependent C-to-U RNA editing in SARS-CoV-2 creates novel viral genes with optimized expressibility. Front Cell Infect Microbiol 2024; 14:1476605. [PMID: 39445213 PMCID: PMC11496155 DOI: 10.3389/fcimb.2024.1476605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Rampant C-to-U RNA editing drives the mutation and evolution of SARS-CoV-2. While much attention has been paid to missense mutations, the C-to-U events leading to AUG and thus creating novel ORFs were uninvestigated. By utilizing the public time-course mutation data from the worldwide SARS-CoV-2 population, we systematically identified the "AUG-gain mutations" caused by C-to-U RNA editing. Synonymous mutations were of special focus. A total of 58 synonymous C-to-U sites are able to create out-of-frame AUG in coding sequence (CDS). These 58 synonymous sites showed significantly higher allele frequency (AF) and increasing rate (dAF/dt) than other C-to-U synonymous sites in the SARS-CoV-2 population, suggesting that these 58 AUG-gain events conferred additional benefits to the virus and are subjected to positive selection. The 58 predicted new ORFs created by AUG-gain events showed the following advantages compared to random expectation: they have longer lengths, higher codon adaptation index (CAI), higher Kozak scores, and higher tRNA adaptation index (tAI). The 58 putatively novel ORFs have high expressibility and are very likely to be functional, providing an explanation for the positive selection on the 58 AUG-gain mutations. Our study proposed a possible mechanism of the emergence of de novo genes in SARS-CoV-2. This idea should be helpful in studying the mutation and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Pirun Zhang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli Zhang
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Jiahuan Li
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong, China
| | - Huiying Liu
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Yantong Yu
- Pulmonary and Critical Care Medicine Department 2, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Xiaoping Yang
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenqing Jiang
- Qingdao Hospital of Traditional Chinese Medicine, Qingdao Haici Hospital, Qingdao, Shandong, China
- Pulmonary and Critical Care Medicine Department 2, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| |
Collapse
|
19
|
Kron NS, Fieber LA, Baker L, Campbell C, Schmale MC. Host response to Aplysia Abyssovirus 1 in nervous system and gill. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105211. [PMID: 38885747 PMCID: PMC11378725 DOI: 10.1016/j.dci.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The California sea hare (Aplysia californica) is a model for age associated cognitive decline. Recent researched identified a novel nidovirus, Aplysia Abyssovirus 1, with broad tropism enriched in the Aplysia nervous system. This virus is ubiquitous in wild and maricultured, young and old animals without obvious pathology. Here we re-evaluated gene expression data from several previous studies to investigate differential expression in the nervous system and gill in response to virus and aging as well as the mutational spectrum observed in the viral sequences obtained from these datasets. Viral load and age were highly correlated, indicating persistent infection. Upregulated genes in response to virus were enriched for immune genes and signatures of ER and proteostatic stress, while downregulated genes were enriched for mitochondrial metabolism. Differential expression with respect to age suggested increased iron accumulation and decreased glycolysis, fatty acid metabolism, and proteasome function. Interaction of gene expression trends associated with viral infection and aging suggest that viral infection likely plays a role in aging in the Aplysia nervous system. Mutation analysis of viral RNA identified signatures suggesting ADAR and AID/APOBEC like deaminase act as part of Aplysia anti-viral defense.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lydia Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | | | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
20
|
Zhao H, Wu Z, Wang Z, Ru J, Wang S, Li Y, Hou S, Zhang Y, Wang X. Genomic Landscape and Regulation of RNA Editing in Pekin Ducks Susceptible to Duck Hepatitis A Virus Genotype 3 Infection. Int J Mol Sci 2024; 25:10413. [PMID: 39408741 PMCID: PMC11476845 DOI: 10.3390/ijms251910413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
RNA editing is increasingly recognized as a post-transcriptional modification that directly affects viral infection by regulating RNA stability and recoding proteins. the duck hepatitis A virus genotype 3 (DHAV-3) infection is seriously detrimental to the Asian duck industry. However, the landscape and roles of RNA editing in the susceptibility and resistance of Pekin ducks to DHAV-3 remain unclear. Here, we profiled dynamic RNA editing events in liver tissue and investigated their potential functions during DHAV-3 infection in Pekin ducks. We identified 11,067 informative RNA editing sites in liver tissue from DHAV-3-susceptible and -resistant ducklings at three time points during virus infection. Differential RNA editing sites (DRESs) between S and R ducks were dynamically changed during infection, which were enriched in genes associated with vesicle-mediated transport and immune-related pathways. Moreover, we predicted and experimentally verified that RNA editing events in 3'-UTR could result in loss or gain of miRNA-mRNA interactions, thereby changing the expression of target genes. We also found a few DRESs in coding sequences (CDSs) that altered the amino acid sequences of several proteins that were vital for viral infection. Taken together, these data suggest that dynamic RNA editing has significant potential to tune physiological processes in response to virus infection in Pekin ducks, thus contributing to host differential susceptibility to DHAV-3.
Collapse
Affiliation(s)
- Haonao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Zezhong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Jinlong Ru
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Shuaiqin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.W.); (S.H.)
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (Z.W.); (Z.W.); (J.R.); (Y.L.)
| |
Collapse
|
21
|
Marques BDC, Banho CA, Sacchetto L, Negri A, Vasilakis N, Nogueira ML. Impact of Vaccination on Intra-Host Genetic Diversity of Patients Infected with SARS-CoV-2 Gamma Lineage. Viruses 2024; 16:1524. [PMID: 39459859 PMCID: PMC11512383 DOI: 10.3390/v16101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high transmissibility, rapid evolution, and immune escape of SARS-CoV-2 variants can influence the course of infection and, in turn, morbidity and mortality in COVID-19, posing a challenge in controlling transmission rates and contributing to the emergence and spread of new variants. Understanding the factors that shape viral genetic variation is essential for comprehending the evolution and transmission of SARS-CoV-2, especially in vaccinated individuals where immune response plays a role in the progression and spread of this disease. In this context, we evaluated the impact of immunity induced by the CoronaVac vaccine (Butantan/Sinovac) on intra-host genetic diversity, analyzing 118 whole-genome sequences of SARS-CoV-2 from unvaccinated and vaccinated patients infected with the Gamma variant. Vaccination with CoronaVac favors negative selection at the intra-host level in different genomic regions. It prevents greater genetic diversity of SARS-CoV-2, reinforcing the importance of vaccination in reducing the emergence of new mutations and virus transmission.
Collapse
Affiliation(s)
- Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Andreia Negri
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
- Vigilância Epidemiológica, Secretaria de Saúde de São José do Rio Preto, São José do Rio Preto 15090-000, São Paulo, Brazil
| |
Collapse
|
22
|
Jin YY, Liang YP, Pan JQ, Huang WH, Feng YM, Sui WJ, Yu H, Tang XD, Zhu L, Chen JH. RNA editing in response to COVID-19 vaccines: unveiling dynamic epigenetic regulation of host immunity. Front Immunol 2024; 15:1413704. [PMID: 39308856 PMCID: PMC11413487 DOI: 10.3389/fimmu.2024.1413704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Background COVID-19 vaccines are crucial for reducing the threat and burden of the pandemic on global public health, yet the epigenetic, especially RNA editing in response to the vaccines remains unelucidated. Results Our current study performed an epitranscriptomic analysis of RNA-Seq data of 260 blood samples from 102 healthy and SARS-CoV-2 naïve individuals receiving different doses of the COVID-19 vaccine and revealed dynamic, transcriptome-wide adenosine to inosine (A-to-I) RNA editing changes in response to COVID-19 vaccines (RNA editing in response to COVID-19 vaccines). 5592 differential RNA editing (DRE) sites in 1820 genes were identified, with most of them showing up-regulated RNA editing and correlated with increased expression of edited genes. These deferentially edited genes were primarily involved in immune- and virus-related gene functions and pathways. Differential ADAR expression probably contributed to RNA editing in response to COVID-19 vaccines. One of the most significant DRE in RNA editing in response to COVID-19 vaccines was in apolipoprotein L6 (APOL6) 3' UTR, which positively correlated with its up-regulated expression. In addition, recoded key antiviral and immune-related proteins such as IFI30 and GBP1 recoded by missense editing was observed as an essential component of RNA editing in response to COVID-19 vaccines. Furthermore, both RNA editing in response to COVID-19 vaccines and its functions dynamically depended on the number of vaccine doses. Conclusion Our results thus underscored the potential impact of blood RNA editing in response to COVID-19 vaccines on the host's molecular immune system.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Qi Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Meng Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Han Yu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dan Tang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
24
|
Mostefai F, Grenier JC, Poujol R, Hussin J. Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data. NAR Genom Bioinform 2024; 6:lqae145. [PMID: 39534500 PMCID: PMC11555433 DOI: 10.1093/nargab/lqae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding viral genome evolution during host infection is crucial for grasping viral diversity and evolution. Analyzing intra-host single nucleotide variants (iSNVs) offers insights into new lineage emergence, which is important for predicting and mitigating future viral threats. Despite next-generation sequencing's potential, challenges persist, notably sequencing artifacts leading to false iSNVs. We developed a workflow to enhance iSNV detection in large NGS libraries, using over 130 000 SARS-CoV-2 libraries to distinguish mutations from errors. Our approach integrates bioinformatics protocols, stringent quality control, and dimensionality reduction to tackle batch effects and improve mutation detection reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are represented within a two-dimensional space, enhancing clustering structure explanation based on genetic similarities. This workflow advances accurate intra-host mutation detection, facilitating a deeper understanding of viral diversity and evolution.
Collapse
Affiliation(s)
- Fatima Mostefai
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
| | | | - Raphaël Poujol
- Research Center, Montreal Heart Institute, Québec, Canada
| | - Julie Hussin
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Québec, Canada
- Research Center, Montreal Heart Institute, Québec, Canada
- Mila - Quebec AI Institute, Université de Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
25
|
Huang M, Mark A, Pham J, Vera K, Saravia-Butler AM, Beheshti A, Jiang Q, Fisch KM. RNA editing regulates host immune response and T cell homeostasis in SARS-CoV-2 infection. PLoS One 2024; 19:e0307450. [PMID: 39178184 PMCID: PMC11343423 DOI: 10.1371/journal.pone.0307450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/04/2024] [Indexed: 08/25/2024] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing by ADAR1 has been implicated in maintaining self-tolerance, preventing autoimmunity, and mediating antiviral immunity. Foreign viral double-stranded RNA triggers rapid interferon response and activates ADAR1 in the host immune system. Emerging data points to a role of ADAR1 A-to-I editing in the inflammatory response associated with severe COVID-19 disease. We identify A-to-I editing events within human whole transcriptome data from SARS-CoV-2 infected individuals, non-infected individuals, and individuals with other viral illnesses from nasopharyngeal swabs. High levels of RNA editing in host cells are associated with low SARS-CoV-2 viral load (p = 9.27 E-06), suggesting an inhibitory effect of ADAR1 on viral infection. Additionally, we find differentially expressed genes associated with RNA-modifications and interferon response. Single cell RNA-sequencing analysis of SARS-CoV-2 infected nasopharyngeal swabs reveals that cytotoxic CD8 T cells upregulate ADAR1 in COVID-19 positive samples (p = 0.0269). We further reveal ADAR1 expression increases with CD4 and CD8 T cell activation, and knockdown of ADAR1 leads to apoptosis and aberrant IL-2 secretion. Together, our data suggests A-to-I RNA editing is required to maintain healthy homeostasis of activated T cells to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Molly Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Adam Mark
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Jessica Pham
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karina Vera
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Amanda M. Saravia-Butler
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- COVID-19 International Research Team, Medford, Massachusetts, United States of America
| | - Qingfei Jiang
- Division of Regenerative Medicine and Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
26
|
Snyder LR, Koutmou KS. Studying the intersection of nucleoside modifications and SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted system. Methods Enzymol 2024; 705:81-109. [PMID: 39389674 PMCID: PMC11849750 DOI: 10.1016/bs.mie.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
There is growing recognition that viral RNA genomes possess enzymatically incorporated modified nucleosides. These small chemical changes are analogous to epigenomic modifications in DNA and have the potential to be similarly important modulators of viral transcription and evolution. However, the molecular level consequences of individual sites of modification remain to be broadly explored. Here we describe an in vitro assay to examine the impact of nucleoside modifications on the rate and fidelity of SARS-CoV-2 RNA transcription. Establishing the role of modified nucleotides in SARS-CoV-2 is of interest both for advancing fundamental knowledge of RNA modifications in viruses, and because modulating the modification-landscape of SARS-CoV-2 may represent a therapeutic strategy to interfere with viral RNA replication. Our approach can be used to assess the influence both of modifications present in a template RNA, as well nucleotide analog inhibitors. These methods provide a reproducible guide for generating active SARS-CoV-2 replication/transcription complexes capable of establishing how RNA modifications influence the pre-steady state rate constants of nucleotide addition by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
27
|
Snyder LR, Kilde I, Nemudryi A, Wiedenheft B, Koutmos M, Koutmou KS. Adenosine modifications impede SARS-CoV-2 RNA-dependent RNA transcription. RNA (NEW YORK, N.Y.) 2024; 30:1141-1150. [PMID: 38942480 PMCID: PMC11331411 DOI: 10.1261/rna.079991.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA life cycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or antiviral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N 6-methyladenosine and 2'-O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ingrid Kilde
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
28
|
Begum MSTM, Bokani A, Rajib SA, Soleimanpour M, Maeda Y, Yoshimura K, Satou Y, Ebrahimi D, Ikeda T. Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication. Viruses 2024; 16:1141. [PMID: 39066304 PMCID: PMC11281575 DOI: 10.3390/v16071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear. To address this question, we investigated the effect of A3 family proteins on SARS-CoV-2 replication in the myeloid leukemia cell line THP-1 lacking A3A to A3G genes. The Wuhan, BA.1, and BA.5 variants had comparable viral replication in parent and A3A-to-A3G-null THP-1 cells stably expressing angiotensin-converting enzyme 2 (ACE2) protein. On the other hand, the replication and infectivity of these variants were abolished in A3A-to-A3G-null THP-1-ACE2 cells in a series of passage experiments over 20 days. In contrast to previous reports, we observed no evidence of A3-induced SARS-CoV-2 mutagenesis in the passage experiments. Furthermore, our analysis of a large number of publicly available SARS-CoV-2 genomes did not reveal conclusive evidence for A3-induced mutagenesis. Our studies suggest that A3 family proteins can positively contribute to SARS-CoV-2 replication; however, this effect is deaminase-independent.
Collapse
Affiliation(s)
- MST Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayub Bokani
- School of Engineering and Technology, CQ University, Sydney, NSW 2000, Australia
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | | | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nursing, Kibi International University, Takahashi 716-8508, Japan
| | | | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
29
|
Chattopadhyay P, Mehta P, Kanika, Mishra P, Chen Liu CS, Tarai B, Budhiraja S, Pandey R. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants-host immune response dynamics. iScience 2024; 27:109846. [PMID: 38770134 PMCID: PMC11103575 DOI: 10.1016/j.isci.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Both host and viral RNA editing plays a crucial role in host's response to infection, yet our understanding of host RNA editing remains limited. In this study of in-house generated RNA sequencing (RNA-seq) data of 211 hospitalized COVID-19 patients with PreVOC, Delta, and Omicron variants, we observed a significant differential editing frequency and patterns in long non-coding RNAs (lncRNAs), with Delta group displaying lower RNA editing compared to PreVOC/Omicron patients. Notably, multiple transcripts of UGDH-AS1 and NEAT1 exhibited high editing frequencies. Expression of ADAR1/APOBEC3A/APOBEC3G and differential abundance of repeats were possible modulators of differential editing across patient groups. We observed a shift in crucial infection-related pathways wherein the pathways were downregulated in Delta compared to PreVOC and Omicron. Our genomics-based evidence suggests that lncRNA editing influences stability, miRNA binding, and expression of both lncRNA and target genes. Overall, the study highlights the role of lncRNAs and how editing within host lncRNAs modulates the disease severity.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Kozłowski P, Leszczyńska A, Ciepiela O. Long COVID Definition, Symptoms, Risk Factors, Epidemiology and Autoimmunity: A Narrative Review. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 11:100068. [PMID: 39034937 PMCID: PMC11256271 DOI: 10.1016/j.ajmo.2024.100068] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 07/23/2024]
Abstract
The virus called SARS-CoV-2 emerged in 2019 and quickly spread worldwide, causing COVID-19. It has greatly impacted on everyday life, healthcare systems, and the global economy. In order to save as many lives as possible, precautions such as social distancing, quarantine, and testing policies were implemented, and effective vaccines were developed. A growing amount of data collected worldwide allowed the characterization of this new disease, which turned out to be more complex than other common respiratory tract infections. An increasing number of convalescents presented with a variety of nonspecific symptoms emerging after the acute infection. This possible new global health problem was identified and labelled as long COVID. Since then, a great effort has been made by clinicians and the scientific community to understand the underlying mechanisms and to develop preventive measures and effective treatment. The role of autoimmunity induced by SARS-CoV-2 infection in the development of long COVID is discussed in this review. We aim to deliver a description of several conditions with an autoimmune background observed in COVID-19 convalescents, including Guillain-Barré syndrome, antiphospholipid syndrome and related thrombosis, and Kawasaki disease highlighting a relationship between SARS-CoV-2 infection and the development of autoimmunity. However, further studies are required to determine its true clinical significance.
Collapse
Affiliation(s)
- Paweł Kozłowski
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Leszczyńska
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Ayubov MS, Mirzakhmedov MK, Yusupov AN, Asrorov AM, Nosirov BV, Usmanov DE, Shermatov SE, Ubaydullaeva KA, Abdukarimov A, Buriev ZT, Abdurakhmonov IY. Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes. Front Med (Lausanne) 2024; 11:1401655. [PMID: 38882660 PMCID: PMC11176497 DOI: 10.3389/fmed.2024.1401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
PURPOSE The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. DESIGN We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. METHODS Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. RESULTS Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. CONCLUSION The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Mirzakamol S. Ayubov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | | | - Abdurakhmon N. Yusupov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Akmal M. Asrorov
- Department of Chemistry for Natural Substances, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Dilshod E. Usmanov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Khurshida A. Ubaydullaeva
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| |
Collapse
|
32
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
33
|
Bradley CC, Wang C, Gordon AJE, Wen AX, Luna PN, Cooke MB, Kohrn BF, Kennedy SR, Avadhanula V, Piedra PA, Lichtarge O, Shaw CA, Ronca SE, Herman C. Targeted accurate RNA consensus sequencing (tARC-seq) reveals mechanisms of replication error affecting SARS-CoV-2 divergence. Nat Microbiol 2024; 9:1382-1392. [PMID: 38649410 PMCID: PMC11384275 DOI: 10.1038/s41564-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
RNA viruses, like SARS-CoV-2, depend on their RNA-dependent RNA polymerases (RdRp) for replication, which is error prone. Monitoring replication errors is crucial for understanding the virus's evolution. Current methods lack the precision to detect rare de novo RNA mutations, particularly in low-input samples such as those from patients. Here we introduce a targeted accurate RNA consensus sequencing method (tARC-seq) to accurately determine the mutation frequency and types in SARS-CoV-2, both in cell culture and clinical samples. Our findings show an average of 2.68 × 10-5 de novo errors per cycle with a C > T bias that cannot be solely attributed to APOBEC editing. We identified hotspots and cold spots throughout the genome, correlating with high or low GC content, and pinpointed transcription regulatory sites as regions more susceptible to errors. tARC-seq captured template switching events including insertions, deletions and complex mutations. These insights shed light on the genetic diversity generation and evolutionary dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Chen Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX, USA
- Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX, USA
| | - Pamela N Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shannon E Ronca
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Feigin Biosafety Level 3 Facility, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Department of Pediatrics Tropical Medicine, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Jin YY, Liang YP, Huang WH, Guo L, Cheng LL, Ran TT, Yao JP, Zhu L, Chen JH. Ocular A-to-I RNA editing signatures associated with SARS-CoV-2 infection. BMC Genomics 2024; 25:431. [PMID: 38693480 PMCID: PMC11061923 DOI: 10.1186/s12864-024-10324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Wen-Hao Huang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Liang Guo
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Li-Li Cheng
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Tian-Tian Ran
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jin-Ping Yao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
- Jiangnan University-Xinshijie Eye Hospital Joint Ophthalmic Research Center, Wuxi, Jiangsu, China.
| |
Collapse
|
35
|
Gruber CEM, Tucci FG, Giombini E, Mazzotta V, Spezia PG, Rueca M, Mastrorosa I, Fabeni L, Berno G, Butera O, Rosati S, Specchiarello E, Carletti F, Focosi D, Nicastri E, Girardi E, Antinori A, Maggi F. Molnupiravir increases SARS-CoV-2 genome diversity and complexity: A case-control cohort study. J Med Virol 2024; 96:e29642. [PMID: 38708812 DOI: 10.1002/jmv.29642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Molnupiravir, an oral direct-acting antiviral effective in vitro against SARS-CoV-2, has been largely employed during the COVID-19 pandemic, since December 2021. After marketing and widespread usage, a progressive increase in SARS-CoV-2 lineages characterized by a higher transition/transversion ratio, a characteristic signature of molnupiravir action, appeared in the Global Initiative on Sharing All Influenza Data (GISAID) and International Nucleotide Sequence Database Collaboration (INSDC) databases. Here, we assessed the drug effects by SARS-CoV-2 whole-genome sequencing on 38 molnupiravir-treated persistently positive COVID-19 outpatients tested before and after treatment. Seventeen tixagevimab/cilgavimab-treated outpatients served as controls. Mutational analyses confirmed that SARS-CoV-2 exhibits an increased transition/transversion ratio seven days after initiation of molnupiravir. Moreover we observed an increased G->A ratio compared to controls, which was not related to apolipoprotein B mRNAediting enzyme, catalytic polypeptide-like (APOBEC) activity. In addition, we demonstrated for the first time an increased diversity and complexity of the viral quasispecies.
Collapse
Affiliation(s)
| | | | - Emanuela Giombini
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Martina Rueca
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Berno
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ornella Butera
- Laboratory of Microbiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Silvia Rosati
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Emanuele Nicastri
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases "L. Spallanzani"-IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
36
|
Dash M, Meher P, Aditya Kumar, Satapathy SS, Namsa ND. High frequency of transition to transversion ratio in the stem region of RNA secondary structure of untranslated region of SARS-CoV-2. PeerJ 2024; 12:e16962. [PMID: 38666080 PMCID: PMC11044879 DOI: 10.7717/peerj.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction The propensity of nucleotide bases to form pairs, causes folding and the formation of secondary structure in the RNA. Therefore, purine (R): pyrimidine (Y) base-pairing is vital to maintain uniform lateral dimension in RNA secondary structure. Transversions or base substitutions between R and Y bases, are more detrimental to the stability of RNA secondary structure, than transitions derived from substitutions between A and G or C and T. The study of transversion and transition base substitutions is important to understand evolutionary mechanisms of RNA secondary structure in the 5' and 3' untranslated (UTR) regions of SARS-CoV-2. In this work, we carried out comparative analysis of transition and transversion base substitutions in the stem and loop regions of RNA secondary structure of SARS-CoV-2. Methods We have considered the experimentally determined and well documented stem and loop regions of 5' and 3' UTR regions of SARS-CoV-2 for base substitution analysis. The secondary structure comprising of stem and loop regions were visualized using the RNAfold web server. The GISAID repository was used to extract base sequence alignment of the UTR regions. Python scripts were developed for comparative analysis of transversion and transition frequencies in the stem and the loop regions. Results The results of base substitution analysis revealed a higher transition (ti) to transversion (tv) ratio (ti/tv) in the stem region of UTR of RNA secondary structure of SARS-CoV-2 reported during the early stage of the pandemic. The higher ti/tv ratio in the stem region suggested the influence of secondary structure in selecting the pattern of base substitutions. This differential pattern of ti/tv values between stem and loop regions was not observed among the Delta and Omicron variants that dominated the later stage of the pandemic. It is noteworthy that the ti/tv values in the stem and loop regions were similar among the later dominant Delta and Omicron variant strains which is to be investigated to understand the rapid evolution and global adaptation of SARS-CoV-2. Conclusion Our findings implicate the lower frequency of transversions than the transitions in the stem regions of UTRs of SARS-CoV-2. The RNA secondary structures are associated with replication, translation, and packaging, further investigations are needed to understand these base substitutions across different variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Madhusmita Dash
- Department of Electronics and Communication Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
| | - Preetisudha Meher
- Department of Electronics and Communication Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | | | - Nima D. Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
37
|
Xu C, Li J, Song LY, Guo ZJ, Song SW, Zhang LD, Zheng HL. PlantC2U: deep learning of cross-species sequence landscapes predicts plastid C-to-U RNA editing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2266-2279. [PMID: 38190348 DOI: 10.1093/jxb/erae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
38
|
Rogozin IB, Saura A, Poliakov E, Bykova A, Roche-Lima A, Pavlov YI, Yurchenko V. Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. Int J Mol Sci 2024; 25:3696. [PMID: 38612505 PMCID: PMC11011937 DOI: 10.3390/ijms25073696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
Collapse
Affiliation(s)
- Igor B. Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities—RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
39
|
Colson P, Delerce J, Pontarotti P, Devaux C, La Scola B, Fantini J, Raoult D. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. J Med Virol 2024; 96:e29462. [PMID: 38363015 DOI: 10.1002/jmv.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | | | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
| |
Collapse
|
40
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
42
|
Li J, Li C, Xu W. Liver cancer-specific mutations in functional domains of ADAR2 lead to the elevation of coding and non-coding RNA editing in multiple tumor-related genes. Mol Genet Genomics 2024; 299:1. [PMID: 38170228 DOI: 10.1007/s00438-023-02091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024]
Abstract
Mutation is the major cause of phenotypic innovations. Apart from DNA mutations, the alteration on RNA such as the ADAR-mediated A-to-I RNA editing could also shape the phenotype. These two layers of variations have not been systematically combined to study their collective roles in cancers. We collected the high-quality transcriptomes of ten hepatocellular carcinoma (HCC) and the matched control samples. We systematically identified HCC-specific mutations in the exonic regions and profiled the A-to-I RNA editome in each sample. All ten HCC samples had mutations in the CDS of ADAR2 gene (dsRNA-binding domain or catalytic domain). The consequence of these mutations converged to the elevation of ADAR2 efficiency as reflected by the global increase of RNA editing levels in HCC. The up-regulated editing sites (UES) were enriched in the CDS and UTR of oncogenes and tumor suppressor genes (TSG), indicating the possible roles of these target genes in HCC oncogenesis. We present the mutation-ADAR2-UES-oncogene/TSG-HCC axis that explains how mutations at different layers would finally lead to abnormal phenotype. In the light of central dogma, our work provides novel insights into how to fully take advantage of the transcriptome data to decipher the consequence of mutations.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chaowei Li
- Department of PET/CT, The Second Clinical Medical College of Qingdao University (Qingdao Center Hospital), Qingdao, 266042, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
43
|
Wei L. In silico and experimental approaches for validating RNA editing events in transcriptomes. RNA Biol 2024; 21:31-36. [PMID: 39582096 PMCID: PMC11591476 DOI: 10.1080/15476286.2024.2432729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional in silico and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2. These approaches include requiring strand-specific sequencing, analysis of hyperedited reads, linkage analysis, orthogonal methods like mass spectrometry, and the use of ADAR-deficient host cells. These findings may improve future analyses on the identification of RNA editing, especially in RNA viruses.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
44
|
Mattiuz G, Di Giorgio S, Conticello SG. An elusive debate on the evidence for RNA editing in SARS-CoV-2. RNA Biol 2024; 21:1-2. [PMID: 38426405 PMCID: PMC10913694 DOI: 10.1080/15476286.2024.2321032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Salvatore Di Giorgio
- German Cancer Research Center (DKFZ) - Division of Immune Diversity, Foundation under Public Law, Heidelberg, Germany
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, Firenze, Italy
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
45
|
Lamb KD, Luka MM, Saathoff M, Orton RJ, Phan MVT, Cotten M, Yuan K, Robertson DL. Mutational signature dynamics indicate SARS-CoV-2's evolutionary capacity is driven by host antiviral molecules. PLoS Comput Biol 2024; 20:e1011795. [PMID: 38271457 PMCID: PMC10868779 DOI: 10.1371/journal.pcbi.1011795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/15/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has been characterised by sequential variant-specific waves shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined by their unique combinations of mutations and there has been a clear adaptation to more efficient human infection since the emergence of this new human coronavirus in late 2019. Here, we use machine learning models to identify shared signatures, i.e., common underlying mutational processes and link these to the subset of mutations that define the variants of concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated metadata to determine how viral properties and public health measures have influenced the magnitude of waves, as measured by the number of infection cases, in different geographic locations using regression models. This analysis showed that, as expected, both public health measures and virus properties were associated with the waves of regional SARS-CoV-2 reported infection numbers and this impact varies geographically. We attribute this to intrinsic differences such as vaccine coverage, testing and sequencing capacity and the effectiveness of government stringency. To assess underlying evolutionary change, we used non-negative matrix factorisation and observed three distinct mutational signatures, unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signatures 1, 2 and 3 were biased to C→T, T→C/A→G and G→T point mutations. We hypothesise assignments of these mutational signatures to the host antiviral molecules APOBEC, ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational signature activity from predominantly Signature 1 changes to an increasingly high proportion of changes consistent with Signature 2. This could represent changes in how the virus and the host immune response interact and indicates how SARS-CoV-2 may continue to generate variation in the future. Linkage of the detected mutational signatures to the VOC-defining amino acids substitutions indicates the majority of SARS-CoV-2's evolutionary capacity is likely to be associated with the action of host antiviral molecules rather than virus replication errors.
Collapse
Affiliation(s)
- Kieran D. Lamb
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Martha M. Luka
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Megan Saathoff
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - Richard J. Orton
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - My V. T. Phan
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Matthew Cotten
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
- Complex Adaptive Systems Initiative, Arizona State University, Scottsdale, Arizona, United States of America
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Cancer Research UK Scotland Institute, Glasgow, Scotland, United Kingdom
| | - David L. Robertson
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| |
Collapse
|
46
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Liu J, Zhao T, Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. An orthology-based methodology as a complementary approach to retrieve evolutionarily conserved A-to-I RNA editing sites. RNA Biol 2024; 21:29-45. [PMID: 39256954 PMCID: PMC11404581 DOI: 10.1080/15476286.2024.2397757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.
Collapse
Affiliation(s)
- Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Merdler-Rabinowicz R, Gorelik D, Park J, Meydan C, Foox J, Karmon M, Roth H, Cohen-Fultheim R, Shohat-ophir G, Eisenberg E, Ruppin E, Mason C, Levanon E. Elevated A-to-I RNA editing in COVID-19 infected individuals. NAR Genom Bioinform 2023; 5:lqad092. [PMID: 37859800 PMCID: PMC10583280 DOI: 10.1093/nargab/lqad092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing activity. We further show that the increment in editing activity during the disease is temporary and returns to baseline shortly after the symptomatic period. These significant epigenetic changes may contribute to the immune system response and affect adverse outcomes seen in post-viral cases.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - David Gorelik
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Hillel S Roth
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Roni Cohen-Fultheim
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| | - Galit Shohat-ophir
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Leslie and Susan Gonda Multidisciplinary Brain Research Center and The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, Israel
| |
Collapse
|
49
|
Kurkowiak M, Fletcher S, Daniels A, Mozolewski P, Silvestris DA, Król E, Marek-Trzonkowska N, Hupp T, Tait-Burkard C. Differential RNA editing landscapes in host cell versus the SARS-CoV-2 genome. iScience 2023; 26:108031. [PMID: 37876814 PMCID: PMC10590966 DOI: 10.1016/j.isci.2023.108031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Infection Medicine, University of Edinburgh, Little France Crescent, UK
| | - Paweł Mozolewski
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Cell Signalling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
50
|
Wang X, Chang Z, Zhao T, Zhong W, Shi J, Wang G, Xu X. The role of post-transcriptional regulation in SARS-CoV-2 infection and pathogenicity. Front Immunol 2023; 14:1256574. [PMID: 38035086 PMCID: PMC10684767 DOI: 10.3389/fimmu.2023.1256574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has had a significant impact on global social and economic stability. To combat this, researchers have turned to omics approaches, particularly epitranscriptomics, to limit infection and develop effective therapeutic strategies. Multi-omics can provide the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes. Epitranscriptomics focuses on the mechanisms of gene transcription in cells and tissues and the relationship between genetic material and epigenetic regulation. This review highlights the role of post-transcriptional regulation in SARS-CoV-2, which affect various processes such as virus infection, replication, immunogenicity, and pathogenicity. The review also explains the formation mechanism of post-transcriptional modifications and how they can be regulated to combat viral infection and pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuesong Xu
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|