1
|
Yao S, Cui X, Zhang C, Cui W, Li Z. Force-electric biomaterials and devices for regenerative medicine. Biomaterials 2025; 320:123288. [PMID: 40138962 DOI: 10.1016/j.biomaterials.2025.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
There is a growing recognition that force-electric conversion biomaterials and devices can convert mechanical energy into electrical energy without an external power source, thus potentially revolutionizing the use of electrical stimulation in the biomedical field. Based on this, this review explores the application of force-electric biomaterials and devices in the field of regenerative medicine. The article focuses on piezoelectric biomaterials, piezoelectric devices and triboelectric devices, detailing their categorization, mechanisms of electrical generation and methods of improving electrical output performance. Subsequently, different sources of driving force for electroactive biomaterials and devices are explored. Finally, the biological applications of force-electric biomaterials and devices in regenerative medicine are presented, including tissue regeneration, functional modulation of organisms, and electrical stimulation therapy. The aim of this review is to emphasize the role of electrical stimulation generated by force-electric conversion biomaterials and devices on the regulation of bioactive molecules, ion channels and information transfer in living systems, and thus affects the metabolic processes of organisms. In the future, physiological modulation of electrical stimulation based on force-electric conversion is expected to bring important scientific advances in the field of regenerative medicine.
Collapse
Affiliation(s)
- Shuncheng Yao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China; School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Jiang H, Wang H, Wang W, Li G. Two-dimensional GaN/Si heterojunctions towards high-performance UV-B photodetectors. MATERIALS HORIZONS 2025; 12:4379-4387. [PMID: 40135507 DOI: 10.1039/d4mh01899k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Two-dimensional (2D) GaN with a tunable bandgap, high electron mobility, and high chemical and thermal stabilities is an ideal choice for high-performance UV-B photodetectors (PDs). However, the realization of 2D GaN based UV-B PDs faces the challenge of simultaneously achieving large-scale preparation and band engineering. In this work, novel UV-B PDs based on wafer-scale 2D GaN/Si heterojunctions have been proposed. Wafer-scale synthesis and band engineering of 2D GaN are realized via a two-step method consisting of magnetron sputtering and high temperature ammonolysis. With well-controlled thickness, the bandgap of 2D GaN is regulated to 3.6 and 4.1 eV. Impressively, novel UV-B PDs based on 2D GaN/Si heterojunctions exhibit a photoresponsivity of 2.2 A W-1 at 308 nm at 1 V, and a fast response speed with a rise/decay time of 1.3/1.1 ms, simultaneously. This work provides a resolution for high-performance UV-B PDs through the controllable growth of 2D GaN, and the proposed synthesis strategy significantly broadens the application prospects of 2D GaN in the field of UV optoelectronics.
Collapse
Affiliation(s)
- Hongsheng Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haiyan Wang
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, P. R. China
| | - Wenliang Wang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guoqiang Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- Department of Electronic Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Tran DHD, Nguyen TH, Nguyen CT, Streed EW, Nguyen NT, Dau VT, Dao DV. Photo-Piezojunction Coupling Effect in n-3C-SiC/p-Si Heterojunction - A Platform for Self-Powered Strain-Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25489-25499. [PMID: 40244805 PMCID: PMC12051830 DOI: 10.1021/acsami.5c02290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
It is beneficial to investigate multifunctional self-powered sensors with high sensitivity and energy-scavenging capabilities, which are essential for the development of a smart infrastructure in the era of 5G and Internet of Things (IoT). This paper reports the photo-piezojunction coupling effect, i.e., the coupling of piezojunction effect with photovoltaic effect, in an n-type 3C-SiC/p-type Si heterojunction (n-3C-SiC/p-Si) and demonstrates it through a proof-of-concept self-powered strain-sensing device. The device exhibits superior photon energy-harvesting capability, generating 24.54 mV with a laser power of only 10 μW, approximately five times higher than that of reported devices utilizing the lateral photovoltaic effect, and an exceptionally high strain sensitivity, achieving |(ΔV/V)/ε| ratios of 43.14 and 21.34 for tensile and compressive strain, respectively, which are 4.3 times more than that of devices reported in previous studies. The findings of this study significantly advance the understanding of the photo-piezojunction coupling effect in n-3C-SiC/p-Si heterostructures, laying the foundation for the development of multifunctional sensor systems capable of harvesting photon energy.
Collapse
Affiliation(s)
- D. H. Dang Tran
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Tuan-Hung Nguyen
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Cong Thanh Nguyen
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Erik W. Streed
- Institute
for Glycomics and Centre for Quantum Dynamics, Griffith University, Parklands Drive, Gold Coast, Queensland 4222, Australia
| | - Nam-Trung Nguyen
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
| | - Van Thanh Dau
- School
of Engineering and Built Environment, Griffith
University, Parklands
Drive, Gold Coast, Queensland 4222, Australia
| | - Dzung Viet Dao
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, 170 Kessels Road, Brisbane, Queensland 4111, Australia
- School
of Engineering and Built Environment, Griffith
University, Parklands
Drive, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
4
|
Yang Z, Wu S, Zhao K, Zhao D, Qiu M. Patterning on Living Tardigrades. NANO LETTERS 2025; 25:6168-6175. [PMID: 40165422 DOI: 10.1021/acs.nanolett.5c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Micro/nanofabrication techniques have revolutionized modern photonics and electronics. However, conventional methods remain incompatible with living organisms due to inherent constraints including nonconformal coating, radiation damage, and toxic solvent requirements. Here, we present ice lithography for direct fabrication of micro/nanoscale patterns on the surfaces of tardigrades in their cryptobiotic state. Remarkably, upon rehydration the tardigrades revive, retaining the patterns on their surfaces. By precisely controlling parameters such as ice thickness, beam energy, and substrate properties, this method minimizes sample damage while achieving patterns as small as 72 nm. These patterns remain stable even after stretching, solvent immersion, rinsing, and drying. This approach provides new insights into tardigrades' resilience and has potential applications in cryopreservation, biomedicine, and astrobiology. Furthermore, integrating micro/nanofabrication techniques with living organisms could catalyze advancements in biosensing, biomimetics, and living microrobotics.
Collapse
Affiliation(s)
- Zhirong Yang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Shan Wu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Kang Zhao
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou 311421, China
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou 311421, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou 311421, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
5
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
6
|
Pal K. Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors. J Mater Chem B 2024; 13:37-53. [PMID: 39564891 DOI: 10.1039/d4tb01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Investigations of the biological system have revealed many principles that govern regular life processes. Recently, the analysis of tiny mechanical forces associated with many biological processes revealed their significance in understanding biological functions. Consequently, this piqued the interest of researchers, and a series of technologies have been developed to understand biomechanical cues at the molecular level. Notable techniques include single-molecule force spectroscopy, traction force microscopy, and molecular tension sensors. Well-defined double-stranded DNA structures could possess programmable mechanical characteristics, and hence, they have become one of the central molecules in molecular tension sensor technology. With the advancement of DNA technology, DNA or nucleic acid-based robust tension sensors offer the possibility of understanding mechanobiology in the bulk to single-molecule level range with desired spatiotemporal resolution. This review presents a comprehensive account of molecular tension sensors with a special emphasis on DNA-based fluorogenic tension sensors. Along with a detailed discussion on irreversible and reversible DNA-based tension sensors and their application in super-resolution microscopy, a discussion on biomolecules associated with cellular mechanotransduction and key findings in the field are included. This review ends with an elaborate discussion on the current challenges and future prospects of molecular tension sensors.
Collapse
Affiliation(s)
- Kaushik Pal
- Biophysical Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, AP-517619, India.
| |
Collapse
|
7
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
8
|
Li X, Zhang Z, Zheng Y, Liao J, Peng Z, Li P, Yang X, Yan X, Hong Y, Liu S, Shan Y, Khoo BL, Yang Z. One-step high-speed thermal-electric aerosol printing of piezoelectric bio-organic films for wirelessly powering bioelectronics. SCIENCE ADVANCES 2024; 10:eadq3195. [PMID: 39453993 PMCID: PMC11506135 DOI: 10.1126/sciadv.adq3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Piezoelectric biomaterials hold a pivotal role in the progression of bioelectronics and biomedicine, owing to their remarkable electromechanical properties, biocompatibility, and bioresorbability. However, their technological potential is restrained by certain challenges, including precise manipulation of nanobiomolecules, controlling their growth across nano-to-macro hierarchy, and tuning desirable mechanical properties. We report a high-speed thermal-electric driven aerosol (TEA) printing method capable of fabricating piezoelectric biofilms in a singular step. Electrohydrodynamic aerosolizing and in situ electrical poling allow instantaneous tuning of the spatial organization of biomolecular inks. We demonstrate TEA printing of β-glycine/polyvinylpyrrolidone films, and such films exhibit the piezoelectric voltage coefficient of 190 × 10-3 volt-meters per newton, surpassing that of industry-standard lead zirconate titanate by approximately 10-fold. Furthermore, these films demonstrate nearly two orders of magnitude improvement in mechanical flexibility compared to glycine crystals. We also demonstrate the ultrasonic energy harvesters based on the biofilms, providing the possibility of wirelessly powering bioelectronics.
Collapse
Affiliation(s)
- Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yi Zheng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Junchen Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pengyu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Institute of Electrical and Micro Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
9
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Son C, Kim J, Kang D, Park S, Ryu C, Baek D, Jeong G, Jeong S, Ahn S, Lim C, Jeong Y, Eom J, Park JH, Lee DW, Kim D, Kim J, Ko H, Lee J. Behavioral biometric optical tactile sensor for instantaneous decoupling of dynamic touch signals in real time. Nat Commun 2024; 15:8003. [PMID: 39266523 PMCID: PMC11393463 DOI: 10.1038/s41467-024-52331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Decoupling dynamic touch signals in the optical tactile sensors is highly desired for behavioral tactile applications yet challenging because typical optical sensors mostly measure only static normal force and use imprecise multi-image averaging for dynamic force sensing. Here, we report a highly sensitive upconversion nanocrystals-based behavioral biometric optical tactile sensor that instantaneously and quantitatively decomposes dynamic touch signals into individual components of vertical normal and lateral shear force from a single image in real-time. By mimicking the sensory architecture of human skin, the unique luminescence signal obtained is axisymmetric for static normal forces and non-axisymmetric for dynamic shear forces. Our sensor demonstrates high spatio-temporal screening of small objects and recognizes fingerprints for authentication with high spatial-temporal resolution. Using a dynamic force discrimination machine learning framework, we realized a Braille-to-Speech translation system and a next-generation dynamic biometric recognition system for handwriting.
Collapse
Affiliation(s)
- Changil Son
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Dongwon Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seojoung Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Chaeyeong Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Dahye Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Geonyoung Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Sanggyun Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Seonghyeon Ahn
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Chanoong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Yundon Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Jeongin Eom
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea.
| | - Jungwook Kim
- Department of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea.
| | - Jiseok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea.
| |
Collapse
|
11
|
Ou L, Wu T, Qiu B, Jin H, Xu F, Wu H, Zhang W, Xue M, Zhou Z, Lin B, Sun D, Chen S. Real-Time Wireless Sensing of Cardiomyocyte Contractility by Integrating Magnetic Microbeam and Oriented Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45861-45870. [PMID: 39177826 DOI: 10.1021/acsami.4c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In vitro cardiomyocyte mechano-sensing platform is crucial for evaluating the mechanical performance of cardiac tissues and will be an indispensable tool for application in drug discovery and disease mechanism study. Magnetic sensing offers significant advantages in real-time, in situ wireless monitoring and resistance to ion interference. However, due to the mismatch between the stiffness of traditional rigid magnetic material and myocardial tissue, sensitivity is insufficient and it is difficult to achieve cell structure induction and three-dimensional cultivation. Herein, a magnetic sensing platform that integrates a neodymium-iron-boron/polydimethylsiloxane (NdFeB/PDMS) flexible microbeam with suspended and ordered polycaprolactone (PCL) nanofiber membranes was developed, providing a three-dimensional anisotropic culture environment for cardiomyocyte growth and simultaneously realizing in situ wireless contractility monitoring. The as-prepared sensor presented an ultrahigh sensitivity of 442.2 μV/μm and a deflection resolution of 2 μm. By continuously monitoring the cardiomyocyte growth status and drug stimulation feedback, we verified the capability of the platform to capture dynamic changes in cardiomyocyte contractility. This platform provides a perspective tool for evaluating cardiomyocyte maturity and drug performance.
Collapse
Affiliation(s)
- Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Tianhao Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Huiquan Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wangzihan Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Zhuomin Zhou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co., Ltd., Foshan 528231, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
13
|
Xu F, Jin H, Liu L, Yang Y, Cen J, Wu Y, Chen S, Sun D. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:96. [PMID: 39006908 PMCID: PMC11239895 DOI: 10.1038/s41378-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.
Collapse
Affiliation(s)
- Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Lingling Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Yuanyuan Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Jianzheng Cen
- Guangdong Provincial People’s Hospital, Guangzhou, 510080 China
| | - Yaobin Wu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
14
|
Chen C, Yu Q, Liu S, Qin Y. Piezotronic Transistors Based on GaN Wafer for Highly Sensitive Pressure Sensing with High Linearity and High Stability. ACS NANO 2024; 18:13607-13617. [PMID: 38747681 DOI: 10.1021/acsnano.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Piezotronic effect utilizing strain-induced piezoelectric polarization to achieve interfacial engineering in semiconductor nanodevices exhibits great advantages in applications such as human-machine interfacing, micro/nanoelectromechanical systems, and next-generation sensors and transducers. However, it is a big challenge but highly desired to develop a highly sensitive piezotronic device based on piezoelectric semiconductor wafers and thus to push piezotronics toward wafer-scale applications. Here, we develop a bicrystal barrier-based piezotronic transistor for highly sensitive pressure sensing by p-GaN single-crystal wafers. Its pressure sensitivity can be as high as 19.83 meV/MPa, which is more than 15 times higher than previous bulk-material-based piezotronic transistors and reaches the level of nanomaterial-based piezotronic transistors. Moreover, it can respond to a very small strain of 3.3 × 10-6 to 1.1 × 10-5 with high gauge factors of 1.45 × 105 to 1.38 × 106, which is a very high value among various strain sensors. Additionally, it also exhibits high stability (current stability of 97.32 ± 2.05% and barrier height change stability of 95.85 ± 3.43%) and high linearity (R2 ∼ 0.997 ± 0.002) in pressure sensing. This work proves the possibility of designing a bicrystal barrier as the interface to obtain a strong piezotronic effect and highly sensitive piezotronic devices based on wafers, which contributes to their applications.
Collapse
Affiliation(s)
- Changyu Chen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qiuhong Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong Qin
- MIIT Key Laboratory of Complex-field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Yu Q, Ge R, Wen J, Xu Q, Lu Z, Liu S, Qin Y. Electric pulse-tuned piezotronic effect for interface engineering. Nat Commun 2024; 15:4245. [PMID: 38762580 PMCID: PMC11102472 DOI: 10.1038/s41467-024-48451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
Investigating interface engineering by piezoelectric, flexoelectric and ferroelectric polarizations in semiconductor devices is important for their applications in electronics, optoelectronics, catalysis and many more. The interface engineering by polarizations strongly depends on the property of interface barrier. However, the fixed value and uncontrollability of interface barrier once it is constructed limit the performance and application scenarios of interface engineering by polarizations. Here, we report a strategy of tuning piezotronic effect (interface barrier and transport controlled by piezoelectric polarization) reversibly and accurately by electric pulse. Our results show that for Ag/HfO2/n-ZnO piezotronic tunneling junction, the interface barrier height can be reversibly tuned as high as 168.11 meV by electric pulse, and the strain (0-1.34‰) modulated current range by piezotronic effect can be switched from 0-18 nA to 44-72 nA. Moreover, piezotronic modification on interface barrier tuned by electric pulse can be up to 148.81 meV under a strain of 1.34‰, which can totally switch the piezotronic performance of the electronics. This study provides opportunities to achieve reversible control of piezotronics, and extend them to a wider range of scenarios and be better suitable for micro/nano-electromechanical systems.
Collapse
Affiliation(s)
- Qiuhong Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Rui Ge
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Wen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
| | - Qi Xu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China.
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, China.
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing, China.
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
16
|
He Y, Goay ACY, Yuen ACY, Mishra D, Zhou Y, Lu T, Wang D, Liu Y, Boyer C, Wang CH, Zhang J. Bulk Schottky Junctions-Based Flexible Triboelectric Nanogenerators to Power Backscatter Communications in Green 6G Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305829. [PMID: 38039442 PMCID: PMC10870046 DOI: 10.1002/advs.202305829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Indexed: 12/03/2023]
Abstract
This work introduces a novel method to construct Schottky junctions to boost the output performance of triboelectric nanogenerators (TENGs). Perovskite barium zirconium titanate (BZT) core/metal silver shell nanoparticles are synthesized to be embedded into electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers before they are used as tribo-negative layers. The output power of TENGs with composite fiber mat exhibited >600% increase compared to that with neat polymer fiber mat. The best TENG achieved 1339 V in open-circuit voltage, 40 µA in short-circuit current and 47.9 W m-2 in power density. The Schottky junctions increased charge carrier density in tribo-layers, ensuring a high charge transfer rate while keeping the content of conductive fillers low, thus avoiding charge loss and improving performance. These TENGs are utilized to power radio frequency identification (RFID) tags for backscatter communication (BackCom) systems, enabling ultra-massive connectivity in the 6G wireless networks and reducing information communications technology systems' carbon footprint. Specifically, TENGs are used to provide an additional energy source to the passive tags. Results show that TENGs can boost power for BackCom and increase the communication range by 386%. This timely contribution offers a novel route for sustainable 6G applications by exploiting the expanded communication range of BackCom tags.
Collapse
Affiliation(s)
- Yilin He
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesBuilding J17, KensingtonSydneyNSW2052Australia
| | - Amus Chee Yuen Goay
- School of Electrical Engineering and TelecommunicationsUniversity of New South Wales330 Anzac Parade, KensingtonSydneyNSW2033Australia
| | - Anthony Chun Yin Yuen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR000China
| | - Deepak Mishra
- School of Electrical Engineering and TelecommunicationsUniversity of New South Wales330 Anzac Parade, KensingtonSydneyNSW2033Australia
| | - Yang Zhou
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesBuilding J17, KensingtonSydneyNSW2052Australia
| | - Teng Lu
- Research School of ChemistryAustralian National UniversityCollege of ScienceBuilding 137, Sullivans Creek RdActonACT2601Australia
| | - Danyang Wang
- School of Materials Science and EngineeringUniversity of New South WalesHilmer Building, KensingtonSydneyNSW2052Australia
| | - Yun Liu
- Research School of ChemistryAustralian National UniversityCollege of ScienceBuilding 137, Sullivans Creek RdActonACT2601Australia
| | - Cyrille Boyer
- School of Chemical EngineeringUniversity of New South WalesBuilding E8, KensingtonSydneyNSW2052Australia
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesBuilding J17, KensingtonSydneyNSW2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesBuilding J17, KensingtonSydneyNSW2052Australia
| |
Collapse
|
17
|
Wang H, Xue J, Li Y, Shi K, Fang J, Zheng J, Lyu X, Gao Z, Xu D, Hu N. Optimizing the Cell-Nanostructure Interface: Nanoconcave/Nanoconvex Device for Intracellular Recording of Cardiomyocytes. NANO LETTERS 2023; 23:11884-11891. [PMID: 38064276 DOI: 10.1021/acs.nanolett.3c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructures are powerful components for the development of high-performance nanodevices. Revealing and understanding the cell-nanostructure interface are essential for improving and guiding nanodevice design for investigations of cell physiology. For intracellular electrophysiological detection, the cell-nanostructure interface significantly affects the quality of recorded intracellular action potentials and the application of nanodevices in cardiology research and pharmacological screening. Most of the current investigations of biointerfaces focus on nanovertical structures, and few involve nanoconcave structures. Here, we design both nanoconvex and nanoconcave devices to perform intracellular electrophysiological recordings. The amplitude, signal-to-noise ratio, duration, and repeatability of the recorded intracellular electrophysiological signals provide a multifaceted characterization of the cell-nanostructure interface. We demonstrate that devices based on both convex and concave nanostructures can create tight coupling, which facilitates high-quality and stable intracellular recordings and paves the way for precise electrophysiological study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
18
|
Park W, Kim EM, Jeon Y, Lee J, Yi J, Jeong J, Kim B, Jeong BG, Kim DR, Kong H, Lee CH. Transparent Intracellular Sensing Platform with Si Needles for Simultaneous Live Imaging. ACS NANO 2023; 17:25014-25026. [PMID: 38059775 DOI: 10.1021/acsnano.3c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junsang Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong Guk Jeong
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Kim MJ, Song Z, Yun TG, Kang MJ, Son DH, Pyun JC. Wearable fabric-based ZnO nanogenerator for biomechanical and biothermal monitoring. Biosens Bioelectron 2023; 242:115739. [PMID: 37826880 DOI: 10.1016/j.bios.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Wearable devices that can mechanically conform to human skin are a necessity for reliable monitoring and decoding of biomechanical activities through skin. Most inorganic piezoelectrics, however, lack deformability and damage tolerance, impeding stable motion monitoring. Here, we present an air-permeable fabric-based ZnO nanogenerator with mechanical adaptivity to diverse deformations for wearable piezoelectric sensors, collecting biomechanical health data. We fabricate ZnO nanorods incorporated throughout the entire nylon fabric, with a strategically positioned neutral mechanical plane, for bending-sensitive electronics (2.59 μA mm). Its hierarchically interlocked geometry also permits sensitive tactile sensing (0.15 nA kPa-1). Various physiological information about activities, including pulse beating, breathing, saliva swallowing, and coughing, is attained using skin-mounted sensors. Further, the pyroelectric sensing capability of a mask-attached device is demonstrated by identifying specific respiratory patterns. Our wearable healthcare sensors hold great promise for real-time monitoring of health-related vital signs, informing individuals' health status without disrupting their daily lives.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
20
|
Yu D, Nie Q, Xue J, Luo R, Xie S, Chao S, Wang E, Xu L, Shan Y, Liu Z, Li Y, Li Z. Direct Mapping of Cytomechanical Homeostasis Destruction in Osteoarthritis Based on Silicon Nanopillar Array. Adv Healthc Mater 2023; 12:e2301126. [PMID: 37747342 DOI: 10.1002/adhm.202301126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease characterized by chronic joint inflammation. The pathogenesis of OA has not been fully elucidated yet. Cartilage erosion is the most significant pathological feature in OA, which is considered the result of cytomechanical homeostasis destruction. The cytomechanical homeostasis is maintained by the dynamic interaction between cells and the extracellular matrix, which can be reflected by cell traction force (CTF). It is critical to assess the CTF to provide a deeper understanding of the cytomechanical homeostasis destruction and progression in OA. In this study, a silicon nanopillar array (Si-NP) with high spatial resolution and aspect ratio is fabricated to investigate the CTF in response to OA. It is discovered that the CTF is degraded in OA, which is attributed to the F-actin reorganization induced by the activation of RhoA/ROCK signaling pathway. Si-NP also shows promising potential as a mechanopharmacological assessment platform for OA drug screening and evaluation.
Collapse
Affiliation(s)
- Dengjie Yu
- Department of Orthopedics, Xiangya hospital, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Qingbin Nie
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Shiwang Xie
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Shengyu Chao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Linlin Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhuo Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya hospital, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Bartlett M, He M, Ranke D, Wang Y, Cohen-Karni T. A snapshot review on materials enabled multimodal bioelectronics for neurological and cardiac research. MRS ADVANCES 2023; 8:1047-1060. [PMID: 38283671 PMCID: PMC10812139 DOI: 10.1557/s43580-023-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024]
Abstract
Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.
Collapse
Affiliation(s)
- Mabel Bartlett
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mengdi He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Ranke
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Xi K, Hou Y, Yu X, Zheng M, Zhu M. Optimizing Output Power Density in Lead-Free Energy-Harvesting Piezoceramics with an Entropy-Increasing Polymorphic Phase Transition Structure. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37879080 DOI: 10.1021/acsami.3c10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
It is an urgent need to develop lead-free piezoelectric energy harvesters (PEHs) to address the energy dilemma and meet environmental protection requirements. However, the low output power densities limit further promotion of lead-free PEHs for use in daily life. Here, an entropy-increasing strategy is proposed to achieve an increased output power density of 819 μW/cm3 in lead-free potassium sodium niobate (KNN)-based piezoceramics by increasing the configuration entropy and realizing nearly two times the growth compared with low-entropy counterparts. Evolution of the energy-harvesting performance with increasing configuration entropy is demonstrated systematically, and the excellent energy-harvesting properties achieved are attributed to the enhanced lattice distortion, the flexible polarization configuration, and the high-density randomly distributed nanodomains with the entropy-increasing effect. Moreover, excellent vibration fatigue resistance and variable temperature output power characteristics were also realized in the PEH prepared by the proposed entropy-increasing material. The significant enhancement of the comprehensive energy-harvesting performance demonstrates that the construction of KNN-based ceramics with high configuration entropy represents an effective and convenient strategy to enable design of high-performance piezoceramics and thus promotes the development of advanced PEHs.
Collapse
Affiliation(s)
- Kaibiao Xi
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yudong Hou
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xiaole Yu
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mupeng Zheng
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mankang Zhu
- Key Laboratory of Advanced Functional Materials, Education Ministry of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Ge R, Yu Q, Zhou F, Liu S, Qin Y. Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing. Nat Commun 2023; 14:6315. [PMID: 37813847 PMCID: PMC10562489 DOI: 10.1038/s41467-023-41983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Mechanical sensors are mainly divided into two types (vertical force sensing and lateral strain sensing). Up to now, one sensor with two working modes is still a challenge. Here, we demonstrate a structural design concept combing a piezoelectric nano/microwire with a flexible polymer with protrusions that enables a dual-modal piezotronic transistor (DPT) with two working modes for highly sensitive vertical force sensing and lateral strain sensing. For vertical force sensing, DPT exhibits a force sensitivity up to 221.5 N-1 and a minimum identifiable force down to 21 mN, corresponding to a pressure sensitivity of 1.759 eV/MPa. For lateral strain sensing, DPT can respond to a large compression strain (~5.8%) with an on/off ratio up to 386.57 and a gauge factor up to 8988.6. It is a universal design that can integrate vertical force sensing and lateral strain sensing into only one nanodevice, providing a feasible strategy for multimodal devices.
Collapse
Affiliation(s)
- Rui Ge
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710071, China
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qiuhong Yu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
- Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuhai Liu
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
24
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Dvořák N, Fazeli N, Ku PC. Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. MICROMACHINES 2023; 14:mi14050916. [PMID: 37241540 DOI: 10.3390/mi14050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
An experiment was performed to calibrate the capability of a tactile sensor, which is based on gallium nitride (GaN) nanopillars, to measure the absolute magnitude and direction of an applied shear force without the need for any post-processing of data. The force's magnitude was deduced from monitoring the nanopillars' light emission intensity. Calibration of the tactile sensor used a commercial force/torque (F/T) sensor. Numerical simulations were carried out to translate the F/T sensor's reading to the shear force applied to each nanopillar's tip. The results confirmed the direct measurement of shear stress from 3.71 to 50 kPa, which is in the range of interest for completing robotic tasks such as grasping, pose estimation, and item discovery.
Collapse
Affiliation(s)
- Nathan Dvořák
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
| | - Nima Fazeli
- Department of Robotics, University of Michigan, 2505 Hayward St., Ann Arbor, MI 48109-2122, USA
| | - Pei-Cheng Ku
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
| |
Collapse
|
26
|
Wang J, Zhou Y, Wang Z, Wang B, Li Y, Wu B, Hao C, Zhang Y, Zheng H. Piezo-phototronic effect regulated broadband photoresponse of a-Ga 2O 3/ZnO heterojunction. NANOSCALE 2023; 15:7068-7076. [PMID: 36974995 DOI: 10.1039/d3nr00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amorphous Ga2O3 (a-Ga2O3) films have attracted considerable attention in the field of photodetectors due to their excellent optical absorption response and photoelectric properties. However, there are few studies that have utilized the piezo-phototronic effect to regulate the broadband photoresponse of Ga2O3-based photodetectors. Here, a flexible a-Ga2O3/ZnO heterojunction was constructed, which demonstrated a broadband response range from deep ultraviolet (265 nm) to the near-infrared (1060 nm) and realized a bidirectional adjustable photocurrent response via the piezo-phototronic effect. Under 265 nm illumination and 0.5 V bias, the responsivity and detectivity of the a-Ga2O3/ZnO heterojunction reached up to 12.19 A W-1 and 4.71 × 1011 Jones under 0.164% compressive strain, corresponding to enhancements of 67.7% and 66.8% compared to those under a strain-free state, respectively. Moreover, the broadband photoresponse of the a-Ga2O3/ZnO heterojunction beyond the bandgap limit was tunable under bidirectional strain. The working mechanism of photoresponse performance for the a-Ga2O3/ZnO heterojunction at different wavelengths was elucidated in detail. Oxygen vacancy-assisted carrier generation was found to be influenced by the wavelength of incident light, which mainly determined the broadband photoresponse of the heterojunction. The modulation of the a-Ga2O3/ZnO heterojunction photodetector was interpreted in light of the strain-induced regulation of the barrier height. This work represents an important step toward the development of adjustable broadband photodetectors based on a-Ga2O3 films.
Collapse
Affiliation(s)
- Jiantao Wang
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Yan Zhou
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Zihan Wang
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Boying Wang
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Yongqiu Li
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Banghao Wu
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Chunlin Hao
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Yaju Zhang
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| | - Haiwu Zheng
- Henan Province Engineering Research Center of Smart Micro-nano Sensing Technology and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China.
| |
Collapse
|
27
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
28
|
Zhang H, Tian G, Xiong D, Yang T, Wang S, Sun Y, Jin L, Lan B, Deng L, Yang W, Deng W. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device. J Colloid Interface Sci 2023; 629:534-540. [DOI: 10.1016/j.jcis.2022.08.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
|
29
|
Xia J, Luo X, Li J, Zhu L, Wang ZL. Wear-Resisting and Stable 4H-SiC/Cu-Based Tribovoltaic Nanogenerators for Self-Powered Sensing in a Harsh Environment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55192-55200. [PMID: 36461926 DOI: 10.1021/acsami.2c15781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tribovoltaic nanogenerators (TVNGs) are an emerging class of devices for high-entropy energy conversion and mechanical sensing that benefit from their outstanding real-time direct current output characteristics. Here, a self-powered TVNG was fabricated using a small-area 4H-SiC semiconductor wafer and a large-area copper foil. Thus, the cost of materials remains low compared to devices employing large-scale semiconductors. The 4H-SiC/metal-TVNGs (SM-TVNGs) presented here are sensitive to vertical force and sliding velocity, making them appropriate for mechanical sensing. Notably, owing to the modulated bindingtons and surface states, these SM-TVNGs performed well in a harsh environment, namely, in high-temperature and high-humidity conditions. In addition, the SM-TVNGs exhibited an excellent wear-resisting property. On these bases, we designed a self-powered and real-time monitoring device able to estimate the number of staff present in various areas of a deep mining site, a high-temperature and high-humidity environment. This work not only discloses basic physics behind the tribovoltaic effect but also sheds light on possible applications of SM-TVNGs for wear-resisting and stable mechanical sensors in harsh environments.
Collapse
Affiliation(s)
- Jinchao Xia
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (CAS), Beijing101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Xiongxin Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (CAS), Beijing101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jiayu Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (CAS), Beijing101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (CAS), Beijing101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences (CAS), Beijing101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
30
|
Ji J, Yang C, Shan Y, Sun M, Cui X, Xu L, Liang S, Li T, Fan Y, Luo D, Li Z. Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jianying Ji
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Chunyu Yang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Yizhu Shan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Mingjun Sun
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Xi Cui
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Lingling Xu
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
| | - Shiyuan Liang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Tong Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Yijie Fan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Dan Luo
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhou Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
The continuous evolution of 2D cell-traction forces quantification technology. Innovation (N Y) 2022; 3:100313. [PMID: 36160940 PMCID: PMC9494227 DOI: 10.1016/j.xinn.2022.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cells generate traction forces by interacting with the extracellular matrix (ECM) during migration, contraction, invasion, and spreading. Cell-traction forces (CTFs) are extremely small but have enormous biological effects. It has been discovered that CTFs serve a crucial role in regulating proliferation, differentiation, wound healing, morphogenesis, angiogenesis, inflammation, and tumor genesis by working together with biochemical signals to maintain a coherent framework for these processes. For the study of cell biology, it is essential to understand the possible effect of CTFs on the various cellular functions and the amount of traction forces that can be generated by cells in their various states. Currently, CTF quantification approaches are either confined to detecting numerous scattered places on the surface of cells or are severely limited in temporal and spatial resolution, both of which are critical for living cells. Obtaining a highly accurate and dynamic mapping of the force distribution across living cells in real time via a simple mathematical technique remains a significant difficulty. This perspective provides a brief overview of recent landmark advances in the measurement of two-dimensional (2D) CTFs, as well as unique ideas for future improvement.
Collapse
|
32
|
Wang Y, Tan P, Wu Y, Luo D, Li Z. Artificial intelligence‐enhanced skin‐like sensors based on flexible nanogenerators. VIEW 2022. [DOI: 10.1002/viw.20220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yiqian Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University Nanning China
| | - Puchuan Tan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education Jianghan University Wuhan Hubei China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University Nanning China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
- Institute for Stem Cell and Regeneration Chinese Academy of Sciences Beijing China
| |
Collapse
|
33
|
Mondal B, Mishra HK, Sengupta D, Kumar A, Babu A, Saini D, Gupta V, Mandal D. Lead-Free Perovskite Cs 3Bi 2I 9-Derived Electroactive PVDF Composite-Based Piezoelectric Nanogenerators for Physiological Signal Monitoring and Piezo-Phototronic-Aided Strain Modulated Photodetectors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12157-12172. [PMID: 36154054 DOI: 10.1021/acs.langmuir.2c01686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, lead-free perovskite materials are exponentially emerging in photovoltaic and optoelectronic applications due to their low toxicity and superior optical properties. On the other hand, the demand for flexible, wearable, and lightweight optoelectronic devices is significantly growing in sensor and actuator technologies. In this scenario, lead-free perovskite-based flexible piezoelectric polymer composites have sparked considerable attention in this field due to their excellent piezo-, pyro-, ferroelectric, and photovoltaic properties. Thus, in this work, a long-term stable lead-free Cs3Bi2I9-PVDF composite is introduced. The in situ growth of the Cs3Bi2I9 perovskite induces 92% yield of the electroactive phase in the PVDF matrix. The possible mechanism behind the electroactive β-phase transformation is presented via interfacial interactions of PVDF moieties with the Cs3Bi2I9 (CBI) perovskite, which also give rise to long-term environmental stability. Next, a piezoelectric nanogenerator (PNG) has been fabricated with the Cs3Bi2I9-PVDF composite for mechanical energy harvesting, biophysiological motion monitoring, and voice recognitions that have potential utility in the health-care sector. Furthermore, a photodetector is developed to realize the piezo-phototronic effect. It exhibits a fast photoswitching behavior with rise and decay times of 141 and 278 ms, respectively. Thus, it is confirmed that the flexible Cs3Bi2I9-PVDF composite has shown tremendous potential to be used as an optical signal-modulated piezo-responsive wearable sensor.
Collapse
Affiliation(s)
- Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Hari Krishna Mishra
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Ajay Kumar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Anand Babu
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Dalip Saini
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Varun Gupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, India
| |
Collapse
|
34
|
Bai Y, Guo X, Tian B, Liang Y, Peng D, Wang Z. Self-Charging Persistent Mechanoluminescence with Mechanics Storage and Visualization Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203249. [PMID: 35975462 PMCID: PMC9534939 DOI: 10.1002/advs.202203249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/16/2022] [Indexed: 05/29/2023]
Abstract
Persistent mechanoluminescence (ML) with long lifetime is highly required to break the limits of the transient emitting behavior under mechanics stimuli. However, the existing materials with persistent ML are completely trap-controlled, and a pre-irradiation is required, which severely hinders the practical applications. In this work, a novel type of ML, self-charging persistent ML, is created by compositing the Sr3 Al2 O5 Cl2 :Dy3+ (SAOCD) powders into flexible polydimethylsiloxane (PDMS) matrix. With no need for any pre-irradiation, the as-fabricated SAOCD/PDMS elastomer could exhibit intense and persistent ML under mechanics stimuli directly, which greatly facilitates its applications in mechanics lighting, displaying, imaging, and visualization. By investigating the matrix effects as well as the thermoluminescence, cathodoluminescence, and triboelectricity properties, the interfacial triboelectrification-induced electron bombardment processes are demonstrated to be responsible for the self-charged energy in SAOCD under mechanics stimuli. Based on the unique self-charging processes, the SAOCD/PDMS further exhibits mechanics storage and visualized reading activities, which brings novel ideas and approaches to deal with the mechanics-related problems in the fields of mechanical engineering, bioengineering, and artificial intelligence.
Collapse
Affiliation(s)
- Yongqing Bai
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouGansu730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiuping Guo
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Birong Tian
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic ChemistryCollege of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouGansu730000China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zhaofeng Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
35
|
Xu D, Xiao H, Wang S, Li H, Chen HJ, Liu C, Hu N. Universal and Sensitive Drug Assessment Biosensing Platform Using Optimal Mechanical Beating Detection of Single Cardiomyocyte. ACS NANO 2022; 16:15484-15494. [PMID: 36094397 DOI: 10.1021/acsnano.2c08049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The preclinical assessment of efficacy and safety is essential for cardiovascular drug development in order to guarantee effective prevention and treatment of cardiovascular disease and avoid human health endangerment and a huge waste of resources. Rhythmic mechanical beating as one of the crucial cardiomyocyte properties has been exploited to establish a drug assessment biosensing platform. However, the conventional label-free biosensing platforms are difficult to perform high-throughput and high-resolution mechanical beating detection for a single cardiomyocyte, while label-based strategies are limited by pharmacologically adverse effects and phototoxicity. Herein, we propose a biosensing platform involving the multichannel electrode array device and the universal mechanical beating detection system. The platform can determine the optimal characteristic working frequency of different devices and dynamically interrogate the viability of multisite single cardiomyocytes to establish the optimized cell-based model for sensitive drug assessment. The subtle changes of mechanical beating signals induced by cardiovascular drugs can be detected by the platform, thereby demonstrating its high performance in pharmacological assessment. The universal and sensitive drug assessment biosensing platform is believed to be widely applied in cardiology investigating and preclinical drug screening.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuzhe Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
36
|
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Jiangsu Key Laboratory for Biosensors Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Jiangsu Key Laboratory for Biosensors Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM) Jiangsu Key Laboratory for Biosensors Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications Nanjing China
| |
Collapse
|
37
|
Ranjan A, Hsiao KY, Lin CY, Tseng YH, Lu MY. Enhanced Piezocatalytic Activity in Bi 1/2Na 1/2TiO 3 for Water Splitting by Oxygen Vacancy Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35635-35644. [PMID: 35905439 DOI: 10.1021/acsami.2c07817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Piezoelectric materials have demonstrated applicability in clean energy production and environmental wastewater remediation through their ability to initiate a number of catalytic reactions. In this study, we used a conventional sol-gel method to synthesize lead-free rhombohedral R3c bismuth sodium titanate (BNT) particles of various sizes. When used as a piezocatalyst to generate H2 through water splitting, the BNT samples provided high production rates (up to 506.70 μmol g-1 h-1). These piezocatalysts also degraded the organic pollutant methylene blue (MB, 20 mg L-1) with high efficiency (up to k = 0.039 min-1), suggesting their potential to treat polluted water. Finally, we found that the piezopotential caused band tilting in the semiconductor and aided charge transfer such that recombination was suppressed and the rate of H2 production increased. The mechanism of piezoelectric catalysis involved oxygen vacancies, the size of the catalyst, and the internal electric field playing important roles to enhance electron-hole separation, which further enhanced the catalysis reactions.
Collapse
Affiliation(s)
- Ashok Ranjan
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Cheng-Yi Lin
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Yu-Han Tseng
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
- High Entropy Materials Center, National Tsing Hua University, 101, Sec. 2 Kuang Fu Road, Hsinchu 300, Taiwan
| |
Collapse
|
38
|
Guo H, Li L, Wang F, Kim SW, Sun H. Mitigating the Negative Piezoelectricity in Organic/Inorganic Hybrid Materials for High-performance Piezoelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34733-34741. [PMID: 35867959 DOI: 10.1021/acsami.2c08162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conversion of ecofriendly waste energy into useable electrical energy is of significant interest for energy harvesting technologies. Piezoelectric nanogenerators based on organic/inorganic hybrid materials are a key promising technology for harvesting mechanical energy due to their high piezoelectric coefficient and good mechanical flexibility. However, the negative piezoelectric effect of the polymer component in composite devices severely undermines its overall piezoelectricity, compromising the output performance of PVDF-based piezoelectric hybrid nanogenerators. Here, to conquer this, we report a two-step poling schedule to orient the dipoles of organic and inorganic components in the same direction. The optimized nanogenerator delivers a combination of high piezoelectric coefficient, great output performance, and remarkable stability. The isotropic piezoelectricity in the composite device collaborates to output a maximum voltage of 110 V and a power density of 7.8 μW cm-2. This strategy is also applied to elevate the piezoelectricity of other organic/inorganic-hybrid-based nanogenerators, substantiating its universal applicability for composite piezoelectric nanogenerators. This study presents a feasible strategy for enhancing the effective output capability of composite nanogenerator technologies.
Collapse
Affiliation(s)
- Huiling Guo
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Liang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fang Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Huajun Sun
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, China
| |
Collapse
|
39
|
Zhang J, Xu Q, Li H, Zhang S, Hong A, Jiang Y, Hu N, Chen G, Fu H, Yuan M, Dai B, Chu L, Yang D, Xie Y. Self-Powered Electrodeposition System for Sub-10-nm Silver Nanoparticles with High-Efficiency Antibacterial Activity. J Phys Chem Lett 2022; 13:6721-6730. [PMID: 35849530 DOI: 10.1021/acs.jpclett.2c01737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, silver nanoparticles (AgNPs) have been widely applied in sterilization due to their excellent antibacterial properties. However, AgNPs require rigorous storage conditions because their antibacterial performances are significantly affected by environmental conditions. Instant fabrication provides a remedy for this drawback. In this study, we propose a self-powered electrodeposition system to synthesize sub-10-nm AgNPs, consisting of a triboelectric nanogenerator (TENG) as the self-powered source, a capacitor for storing electrical energy from the TENG, and an electrochemical component for electrodeposition. The self-powered system with larger capacitance and discharging voltage tends to deliver smaller AgNPs due to the nucleation mechanism dominated by current density. Furthermore, antibacterial tests reveal that compared to direct current (DC) electrodeposition, the TENG-based electrodeposition can synthesize finer-sized AgNPs (<10 nm) with overwhelming antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (with 100% efficiency at 2 h). This work provides a new strategy for the self-powered, instant, and controllable electrodeposition of nanoparticles.
Collapse
Affiliation(s)
- Jianghong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qinghao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Hang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Siyuan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yawei Jiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Ning Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ming Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Liang Chu
- Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongliang Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| |
Collapse
|
40
|
Gao X, Liu P, Yin Q, Wang H, Fu J, Hu F, Jiang Y, Zhu H, Wang Y. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system. COMMUNICATIONS ENGINEERING 2022; 1:16. [PMCID: PMC10956059 DOI: 10.1038/s44172-022-00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 10/20/2024]
Abstract
Wireless technologies can be used to track and observe freely moving animals. InGaN/GaN light-emitting diodes (LEDs) allow for underwater optical wireless communication due to the small water attenuation in the blue-green spectrum region. GaN-based quantum well diodes can also harvest and detect light. Here, we report a monolithic GaN optoelectronic system (MGOS) that integrates an energy harvester, LED and SiO2/TiO2 distributed Bragg reflector (DBR) into a single chip. The DBR serves as waterproof layer as well as optical filter. The waterproof MGOS can operate in boiling water and ice without external interconnect circuits. The units transform coded information from an external light source into electrical energy and directly activate the LEDs for illumination and relaying light information. We demonstrate that our MGOS chips, when attached to Carassius auratus fish freely swimming in a water tank, simultaneously conduct wireless energy harvesting and light communication. Our devices could be useful for tracking, observation and interacting with aquatic animals. Xumin Gao and colleagues report a robust and waterproof monolithic GaN optoelectronic chip that integrates an energy harvester, light emitting diode and Bragg reflector. The units transform external light into electrical energy and directly activate the integrated LEDs even when attached to freely swimming Carassius auratus fish.
Collapse
Affiliation(s)
- Xumin Gao
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Pengzhan Liu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Qingxi Yin
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hao Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Jianwei Fu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Fangren Hu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yuan Jiang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hongbo Zhu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yongjin Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| |
Collapse
|
41
|
Hou Y, Jing J, Luo Y, Xu F, Xie W, Ma L, Xia X, Wei Q, Lin Y, Li KH, Chu Z. A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities. ADVANCED SCIENCE 2022; 9:e2200910. [PMID: 35404518 PMCID: PMC9189681 DOI: 10.1002/advs.202200910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The ability to quantitatively monitor various cellular activities is critical for understanding their biological functions and the therapeutic response of cells to drugs. Unfortunately, existing approaches such as fluorescent staining and impedance-based methods are often hindered by their multiple time-consuming preparation steps, sophisticated labeling procedures, and complicated apparatus. The cost-effective, monolithic gallium nitride (GaN) photonic chip has been demonstrated as an ultrasensitive and ultracompact optical refractometer in a previous work, but it has never been applied to cell studies. Here, for the first time, the so-called GaN chipscope is proposed to quantitatively monitor the progression of different intracellular processes in a label-free manner. Specifically, the GaN-based monolithic chip enables not only a photoelectric readout of cellular/subcellular refractive index changes but also the direct imaging of cellular/subcellular ultrastructural features using a customized differential interference contrast (DIC) microscope. The miniaturized chipscope adopts an ultracompact design, which can be readily mounted with conventional cell culture dishes and placed inside standard cell incubators for real-time observation of cell activities. As a proof-of-concept demonstration, its applications are explored in 1) cell adhesion dynamics monitoring, 2) drug screening, and 3) cell differentiation studies, highlighting its potential in broad fundamental cell biology studies as well as in clinical applications.
Collapse
Affiliation(s)
- Yong Hou
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Yumeng Luo
- School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China
| | - Feng Xu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Wenyan Xie
- Department of Biotherapy State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610065 China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Xingyu Xia
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
| | - Qiang Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials and Engineering Sichuan University Chengdu 610065 China
| | - Yuan Lin
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin New Territories Hong Kong
| | - Kwai Hei Li
- School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
- School of Biomedical Sciences The University of Hong Kong Hong Kong China
| |
Collapse
|
42
|
Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, Tajvidi Safa B, Brooks J, Yang R. Microfabricated platforms to investigate cell mechanical properties. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. MICROSYSTEMS & NANOENGINEERING 2022; 8:26. [PMID: 35299653 PMCID: PMC8882466 DOI: 10.1038/s41378-021-00344-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350 China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| |
Collapse
|
44
|
Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021; 194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Wearable and implantable medical devices are playing more and more key roles in disease diagnosis and health management. Various biosensors and systems have been used for respiration monitoring. Among them, self-powered sensors have some special characteristics such as low-cost, easy preparation, highly designable, and diversified. The respiratory airflow can drive the self-powered sensors directly to convert mechanical energy of the airflow into electricity. One of the major goals of the self-powered sensors and systems is realizing health monitoring and diagnosis. The relationship between the output signals and the models of respiratory diseases has not been studied deeply and clearly. Therefore, how to find an accurate relationship between them is a challenging and significant research topic. This review summarized the recent progress of the self-powered respiratory sensors and systems from aspects of device principle, output property, detecting index and so on. The challenges and perspectives have also been discussed for reference to the researchers who are interested in the field of self-powered sensors.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Linlin Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Bojing Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China.
| |
Collapse
|
45
|
Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, Lin Z. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021; 50:13646-13691. [PMID: 34821246 DOI: 10.1039/d1cs00506e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.
Collapse
Affiliation(s)
- Baoying Dai
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|