1
|
Stachura P, Lu Z, Kronberg RM, Xu HC, Liu W, Tu JW, Schaal K, Kameri E, Picard D, von Karstedt S, Fischer U, Bhatia S, Lang PA, Borkhardt A, Pandyra AA. Deep transfer learning approach for automated cell death classification reveals novel ferroptosis-inducing agents in subsets of B-ALL. Cell Death Dis 2025; 16:396. [PMID: 40382332 DOI: 10.1038/s41419-025-07704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Ferroptosis is a recently described type of regulated necrotic cell death whose induction has anti-cancer therapeutic potential, especially in hematological malignancies. However, efforts to uncover novel ferroptosis-inducing therapeutics have been largely unsuccessful. In the current investigation, we classified brightfield microscopy images of tumor cells undergoing defined modes of cell death using deep transfer learning (DTL). The trained DTL network was subsequently combined with high-throughput pharmacological screening approaches using automated live cell imaging to identify novel ferroptosis-inducing functions of the polo-like kinase inhibitor volasertib. Secondary validation showed that subsets of B-cell acute lymphoblastic leukemia (B-ALL) cell lines, namely 697, NALM6, HAL01, REH and primary patient B-ALL samples were sensitive to ferroptosis induction by volasertib. This was accompanied by an upregulation of ferroptosis-related genes post-volasertib treatment in cell lines and patient samples. Importantly, using several leukemia models, we determined that volasertib delayed tumor growth and induced ferroptosis in vivo. Taken together, we have applied DTL to automated live-cell imaging in pharmacological screening to identify novel ferroptosis-inducing functions of a clinically relevant anti-cancer therapeutic.
Collapse
Affiliation(s)
- Paweł Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Zhe Lu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Raphael M Kronberg
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Mathematical Modelling of Biological Systems, Heinrich Heine University, Düsseldorf, North Rhine-Westphalia, Germany
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Wei Liu
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Katerina Schaal
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Cancer Prevention Graduate School (CPGS), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Weyertal 115b, Cologne, 50931, Germany
- CECAD Cluster of Excellence, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Straße 21, Cologne, 50931, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Cancer Prevention Graduate School (CPGS), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
2
|
Ye QH, Zhang P, Zhao YH, Zhu WX, Zhu HX, Wei BF. Decreased serum and local GPX4 and SLC7A11 expression correlates with disease severity in non-traumatic osteonecrosis of the femoral head. J Orthop Surg Res 2025; 20:477. [PMID: 40380264 PMCID: PMC12084951 DOI: 10.1186/s13018-025-05912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Ferroptosis is implicated in various musculoskeletal conditions, including non-traumatic osteonecrosis of the femoral head (NT-ONFH). OBJECTIVE The objective of this study was to explore the levels of two crucial proteins associated with ferroptosis, namely Glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), in both serum and femoral head samples, and to correlate their expression levels with the clinical severity of NT-ONFH. METHODS The study included 136 NT-ONFH patients and an equal number of healthy controls. In addition, 68 subjects suffering from femoral neck fractures (FNF) were included in the study. The serum concentrations of GPX4 and SLC7A11 were quantified using the enzyme-linked immunosorbent assay. The GPX4 and SLC7A11 levels among tissue samples were identified through immunohistochemical staining, western blot analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). The radiographic severity of the condition was evaluated utilizing the Association Research Circulation Osseous (ARCO) classification system, while the symptomatic severity was assessed utilizing the Visual Analogue Scale (VAS) alongside the Harris Hip Score (HHS). RESULTS Patients diagnosed with NT-ONFH had considerably reduced serum concentrations of GPX4 and SLC7A11 in comparison to individuals in the healthy control group. Negative correlations of serum GPX4 and SLC7A11 levels with the ARCO stages were observed. A total of 73 ONFH and 68 FNF patients underwent total hip replacement. The mRNA and protein levels of GPX4 and SLC7A11 were lower in the necrotic areas compared to the non-necrotic areas and FNF femoral head tissues. Subsequent Receiver operating characteristic (ROC) curve analysis suggested that the decreased levels of both serum and local GPX4 and SLC7A11 could serve as potential biomarkers for the progression of ONFH. Furthermore, serum and local GPX4 and SLC7A11 levels were found to be negatively linked to the VAS score but positively related to the HHS score. CONCLUSION The levels of GPX4 and SLC7A11, both in serum and at the local site, were inversely correlated with the progression of NT-ONFH. Targeting ferroptosis and its associated proteins through potential therapeutic interventions could be a viable strategy to mitigate the severity of NT-ONFH.
Collapse
Affiliation(s)
- Qing-He Ye
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Peng Zhang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Yong-Heng Zhao
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Wen-Xiu Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Hong-Xun Zhu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China
| | - Biao-Fang Wei
- Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong Province, China.
| |
Collapse
|
3
|
Zhou P, Huang R, Cheng Y, Yang Y, Qian D, Ming X, Wang AZ, Chen X, Min Y. Nanotherapeutic Wee1 Inhibition Sensitizes Tumor Ferroptosis to Promote Cancer Immunotherapy and Abscopal Effect. ACS NANO 2025; 19:16307-16326. [PMID: 40263774 DOI: 10.1021/acsnano.4c13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The major issue with cancer immunotherapy is the low response rate. So, development of therapeutics enhancing immune responses is an urgent need. Tumor ferroptosis could produce immunogenic cancer cell death, which may improve cancer immunotherapy. However, current ferroptosis inducers may be limited to specific genetic backgrounds of cancer cells. Therefore, sensitization to ferroptosis inducers has also been highly pursued. Here, we found that Wee1 expression was negatively associated with drug sensitivity and positively correlated with an immunosuppressive microenvironment. Further investigation demonstrated that Wee1 inhibition could result in changes of ferroptosis and iron ion homeostasis, regardless of p53 status. Our in vitro results demonstrated the underlying mechanism that Wee1 inhibition primed cancer cells to ferroptosis through mitochondria reactive oxygen species and labile iron-dependent pathways. In order to decrease side effects, we developed an acidic responsive nanoformulation of the Wee1 inhibitor, which can sensitize tumor ferroptosis in vivo and also improve the response of cancer immunotherapy. Combining immunotherapy, nanotherapeutic Wee1 inhibition also produced abscopal effect with up to 55% mice cured that has not been seen before. In summary, nanotherapeutic Wee1 inhibition sensitized ferroptosis to enhance cancer immunotherapy and abscopal effect.
Collapse
Affiliation(s)
- Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ruijie Huang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yong Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yidong Yang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- School of Physical Sciences and Ion Medical Research Institute, University of Science and Technology of China, Hefei 230026, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin Ming
- Department of Cancer Biology and Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yuanzeng Min
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Endocrinology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 1: their emergence from injuries to the donor organ. FRONTIERS IN TRANSPLANTATION 2025; 4:1571516. [PMID: 40343197 PMCID: PMC12060192 DOI: 10.3389/frtra.2025.1571516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 1 of a bipartite review commences with a succinct exposition of innate alloimmunity in light of the danger/injury hypothesis in Immunology. The model posits that an alloimmune response, along with the presentation of alloantigens, is driven by DAMPs released from various forms of regulated cell death (RCD) induced by any severe injury to the donor or the donor organ, respectively. To provide a strong foundation for this review, which examines RCD and DAMPs as biomarkers and therapeutic targets in normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) to improve outcomes in organ transplantation, key insights are presented on the nature, classification, and functions of DAMPs, as well as the signaling mechanisms of RCD pathways, including ferroptosis, necroptosis, pyroptosis, and NETosis. Subsequently, a comprehensive discussion is provided on major periods of injuries to the donor or donor organs that are associated with the induction of RCD and DAMPs and precede the onset of the innate alloimmune response in recipients. These periods of injury to donor organs include conditions associated with donation after brain death (DBD) and donation after circulatory death (DCD). Particular emphasis in this discussion is placed on the different origins of RCD-associated DAMPs in DBD and DCD and the different routes they use within the circulatory system to reach potential allografts. The review ends by addressing another particularly critical period of injury to donor organs: their postischemic reperfusion following implantation into the recipient-a decisive factor in determining transplantation outcome. Here, the discussion focuses on mechanisms of ischemia-induced oxidative injury that causes RCD and generates DAMPs, which initiate a robust innate alloimmune response.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Zhang Y, Si W, Mao Y, Xu S, Li F, Liu J, Du S, Shao J, Qi Y, Peng X, Xue M, Jiang M, Guo K, Hu Y, Zhang F. Upregulation of ferroptosis in glucocorticoids-induced posterior subcapsular cataracts. Commun Biol 2025; 8:613. [PMID: 40234585 PMCID: PMC12000516 DOI: 10.1038/s42003-025-08067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
The Glucocorticoid-induced posterior subcapsular cataracts (GIC) is a common complication of patients received glucocorticoid treatment in clinic. We find that dexamethasone (DEX) induces lens epithelial cells' ferroptosis. DEX treatment increases intracellular ferroptosis signatures in lens epithelial cell line in vitro as well as in rat lens in vivo. The inhibition of ferroptosis by liproxstatin-1 reduces the incidence of DEX-induced rat GIC. Experimental evidence and expression profiling showed that DEX induces ferroptosis through upregulating tetraspanin CD82- controlled P53 expression. DEX-activated glucocorticoid receptors directly bind to the CD82 promoter, driving its transcriptional upregulation. CD82 expression is upregulated in the anterior capsular epithelium of GIC patients as well as in the DEX-treated rat lens and caused the cell death of anterior capsule. DEX treatment and Overexpression of CD82 in cells recapitulated ferroptotic signatures through P53 activation and GPX4/SLC7A11 suppression. Taken together, GIC is closely associated with the upregulation of CD82-P53-GPX4/SLC7A11 axis-mediated ferroptosis.
Collapse
Affiliation(s)
- Yuhang Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wei Si
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yi Mao
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Su Xu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fuzhen Li
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jingjing Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shanshan Du
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jingzhi Shao
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Qi
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingjun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Keyu Guo
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- The Jointed National Laboratory of Antibody Engineering, Henan University, Kaifeng, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Fengyan Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Jiang Y, Ye AH, He WG, Liu L, Gao X, Liu H, Liu WT, Ye FL, He DM, Liao JY, Wang J, He BC. Reducing PDK4 level constitutes a pivotal mechanism for glucocorticoids to impede osteoblastic differentiation through the enhancement of ferroptosis in mesenchymal stem cells. Stem Cell Res Ther 2025; 16:91. [PMID: 40001240 PMCID: PMC11863902 DOI: 10.1186/s13287-025-04186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND This study mainly explores the possible role and mechanism of pyruvate dehydrogenase kinase 4 (PDK4) in the onset and development of Glucocorticoid-induced osteoporosis (GIOP), and seeks potential targets for the treatment of GIOP. METHODS Mesenchymal stem cells (MSCs) were treated with osteogenic induction medium. An in vitro osteogenic damage model was established by exposing MSCs to a high concentration (10- 6 M) of dexamethasone (DEX). Osteogenic markers were measured with real-time quantitative polymerase chain reaction, western blot, alkaline phosphatase staining, and Alizarin Red S staining. Ferroptosis markers were assessed through reactive oxygen species (ROS) fluorescent probe, transmission electron microscopy, and measurement of malondialdehyde (MDA). The potential mechanism was investigated using RT-qPCR, western blot, lysosomal probes, molecular docking, and other analytical approaches. The role of PDK4 was validated by using a GIOP rat model, micro-computed tomography and Masson's trichrome staining. RESULTS High concentrations (10- 6 M) of DEX inhibited osteogenic differentiation in C3H10T1/2 cells, and PDK4 exhibited the opposite effect. PDK4 partially reversed the osteogenic inhibitory effect of DEX both in vivo and in vitro. DEX caused mitochondrial shrinkage and disappearance of cristae in C3H10T1/2 cells, as well as an increase in total iron, ROS, MDA contents, and the level of ferroptosis key factors. These changes were partially weakened by PDK4. The ferroptosis inhibitor ferrostatin-1 partially blocked the inhibitory effect of DEX, while ferroptosis inducer RSL3 inhibited osteogenic differentiation and weakened the reversal effect of PDK4. DEX reduced the protein level of PDK4, which was partially weakened by Bafilomycin A1. The molecular docking results showed that DEX can directly bind with PDK4. CONCLUSION PDK4 can enhance the osteogenic differentiation ability of MSCs and bone mass of GIOP rats. DEX may promote the degradation of PDK4 via lysosome pathway, through which to weaken the osteogenic ability of MSCs by increasing ferroptosis. PDK4 may become a potential target for improving GIOP.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ai-Hua Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Department of Orthropetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Orthropetics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Department of Orthropetics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wen-Ting Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang-Lin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dong-Mei He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun-Yi Liao
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jing Wang
- Department of Blood Transfusion, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
Yang B, Yang K, Chen Y, Li Q, Chen J, Li S, Wu Y. Exposure of A2E to blue light promotes ferroptosis in the retinal pigment epithelium. Cell Mol Biol Lett 2025; 30:22. [PMID: 39984833 PMCID: PMC11846388 DOI: 10.1186/s11658-025-00700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) is closely related to the etiology of autosomal recessive Stargardt's disease (STGD1) and dry age-related macular degeneration (AMD). N-retinylidene-N-retinylethanolamine (A2E) is a leading component of RPE lipofuscin that is highly susceptible to blue light. Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid peroxides to a lethal level, which plays an important role in retinal diseases. However, it remains unknown whether A2E functions as a physiological trigger for eliciting blue light-induced ferroptosis of RPE cells. METHODS A2E-loaded RPE cells and Abca4-/-Rdh8-/- mice were exposed to blue light, respectively. Western blotting, immunofluorescence staining, reactive oxygen species (ROS) staining, intracellular iron staining, lipid peroxidation staining, fundus imaging, optical coherence tomography (OCT), hematoxylin-eosin (HE) staining, and electroretinography (ERG) were utilized to elucidate the role of blue light in A2E induced ferroptosis in the RPE and its potential mechanisms. RESULTS Exposure of A2E to blue light promoted ferroptotic cell death in RPE cells by elevating ferrous ion (Fe2+) levels and inhibiting the solute carrier family 7 membrane 11 (SLC7A11)-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis. GPX4 inactivation and ROS generated by Fe2+ overload and GSH depletion precipitated lipid peroxidation and subsequent ferroptosis in A2E-containing RPE cells upon exposure to blue light. In addition to GSH supplement, repressing either Fe2+ by deferiprone (DFP) or lipid peroxidation with ferrostatin-1 (Fer-1) significantly protected RPE cells against ferroptosis caused by blue light illumination of A2E. Abca4-/-Rdh8-/- mice featured by an accelerated deposition of A2E in the RPE is an animal model for STGD1 and dry AMD. It was observed that ferroptosis was indeed present in the RPE of Abca4-/-Rdh8-/- mice following exposure to blue light. Notably, alleviating ferroptosis by intraperitoneally injected Fer-1 effectively rescued retinal function and ameliorated RPE/photoreceptor degeneration in blue light-exposed Abca4-/-Rdh8-/- mice. CONCLUSIONS Our results suggest the importance of blue light in A2E-mediated ferroptosis in the RPE, and deeply broaden the understanding of mechanisms underlying RPE atrophy arising from lipofuscin accumulation in STGD1 and dry AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Kunhuan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuling Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingjian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| | - Yalin Wu
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
8
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zuo R, Cao B, Kong L, Wang F, Li S, Shan H, Guan J, Kang Q. MiR-370-3p regulate TLR4/SLC7A11/GPX4 to alleviate the progression of glucocorticoids-induced osteonecrosis of the femoral head by promoting osteogenesis and suppressing ferroptosis. J Orthop Translat 2025. [DOI: 10.1016/j.jot.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025] Open
|
10
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2025; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Wu T, Ji M, Li T, Luo L. The molecular and metabolic landscape of ferroptosis in respiratory diseases: Pharmacological aspects. J Pharm Anal 2025; 15:101050. [PMID: 40034685 PMCID: PMC11873008 DOI: 10.1016/j.jpha.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 03/05/2025] Open
Abstract
Ferroptosis is a form of cell death that occurs when there is an excess of reactive oxygen species (ROS), lipid peroxidation, and iron accumulation. The precise regulation of metabolic pathways, including iron, lipid, and amino acid metabolism, is crucial for cell survival. This type of cell death, which is associated with oxidative stress, is controlled by a complex network of signaling molecules and pathways. It is also implicated in various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), lung cancer, pulmonary fibrosis (PF), and the coronavirus disease 2019 (COVID-19). To combat drug resistance, it is important to identify appropriate biological markers and treatment targets, as well as intervene in respiratory disorders to either induce or prevent ferroptosis. The focus is on the role of ferroptosis in the development of respiratory diseases and the potential of targeting ferroptosis for prevention and treatment. The review also explores the interaction between immune cell ferroptosis and inflammatory mediators in respiratory diseases, aiming to provide more effective strategies for managing cellular ferroptosis and respiratory disorders.
Collapse
Affiliation(s)
- Tong Wu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Miaorong Ji
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
12
|
Wang L, Tian G. Insight into dipeptidase 1: structure, function, and mechanism in gastrointestinal cancer diseases. Transl Cancer Res 2024; 13:7015-7025. [PMID: 39816548 PMCID: PMC11730190 DOI: 10.21037/tcr-2024-2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent. DPEP1 has been observed to promote oncogenic activities in hepatocellular carcinoma, non-small cell lung cancer, colorectal cancer, and lymphoblastic malignancies and is hypothesized to participate in multiple biological processes, including tumor cell invasion, metastatic spread, cellular signaling pathways, cell-matrix interactions, and evasion of immune surveillance. Conversely, DPEP1 has been identified as a tumor suppressor in pancreatic adenocarcinoma, lobular breast carcinoma, and Wilms tumor. Moreover, the role of DPEP1 in colorectal cancer has been increasingly recognized in recent research. Emerging evidence suggests that DPEP1 substantially augments the metastatic and invasive potential of colorectal cancer cells, facilitates immune evasion, and confers resistance to chemotherapeutic agents. Despite these findings, the precise molecular mechanisms remain to be fully characterized. This systematic review endeavors to elucidate the structural and functional attributes of the DPEP1 protein, with the aim to clarify its regulatory mechanisms and assess its clinical relevance in oncology. Gaining a thorough understanding of the physiological role and molecular underpinnings of DPEP1 is critical to informing the diagnostic, therapeutic, and prognostic paradigms of related pathologies. It is anticipated that these insights will facilitate the discovery of novel therapeutic targets and generate new investigative trajectories, particularly in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
15
|
Yang B, Yang K, Chen J, Wu Y. Crocin Protects the 661W Murine Photoreceptor Cell Line against the Toxic Effects of All- Trans-Retinal. Int J Mol Sci 2024; 25:10124. [PMID: 39337609 PMCID: PMC11432120 DOI: 10.3390/ijms251810124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is a common disease contributing to vision loss in the elderly. All-trans-retinal (atRAL) is a retinoid in the retina, and its abnormal accumulation exhibits toxicity to the retina and promotes oxidative stress-induced photoreceptor degeneration, which plays a crucial role in AMD progression. Crocin is a natural product extracted from saffron, which displays significant antioxidant and anti-inflammatory effects. The present study elucidates the protective effects of crocin on photoreceptor cell damage by atRAL and its potential mechanisms. The results revealed that crocin significantly attenuated cytotoxicity by repressing oxidative stress, mitochondrial injury, and DNA damage in atRAL-loaded photoreceptor cells. Moreover, crocin visibly inhibited DNA damage-induced apoptosis and gasdermin E (GSDME)-mediated pyroptosis in photoreceptor cells after exposure to atRAL. It was also observed that crocin distinctly prevented an increase in Fe2+ levels and lipid peroxidation caused by atRAL via suppressing the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway, thereby ameliorating photoreceptor cell ferroptosis. In short, these findings provide new insights that crocin mitigates atRAL-induced toxicity to photoreceptor cells by inhibiting oxidative stress, apoptosis, pyroptosis, and ferroptosis.
Collapse
Affiliation(s)
- Bo Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunhuan Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
16
|
Yu L, Qiu Y, Tong X. Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers (Basel) 2024; 16:3131. [PMID: 39335103 PMCID: PMC11430741 DOI: 10.3390/cancers16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Renal cancer is a common and serious malignant tumor of the urinary system. While surgery effectively treats early-stage renal cancer, advanced cases pose a significant challenge due to poor treatment outcomes and chemotherapy resistance. Therefore, there is an urgent need to develop alternative therapeutic strategies. Ferroptosis is a newly defined form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which plays a critical role in tumor progression and drug resistance. Recent studies have shown that ferroptosis is involved in the occurrence and development of renal cancer, and ferroptosis-related genes can induce cell apoptosis and can be used as potential biomarkers for early diagnosis of renal cancer and participate in drug resistance of renal cancer chemotherapy. With the continuous improvement of the mechanism of ferroptosis, drugs targeting ferroptosis for the treatment of renal cancer are emerging in an endless stream. Based on the theoretical basis of the occurrence of ferroptosis, this paper reviewed drug-induced ferroptosis in renal cancer cells from the aspects of herbal medicine, natural compounds, drug resistance mechanisms, and nanomaterials, and delves into the clinical application potential of ferroptosis-related drugs in the treatment of renal cancer.
Collapse
Affiliation(s)
- Lingyan Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuyueyang Qiu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
17
|
Maremonti F, Tonnus W, Gavali S, Bornstein S, Shah A, Giacca M, Linkermann A. Ferroptosis-based advanced therapies as treatment approaches for metabolic and cardiovascular diseases. Cell Death Differ 2024; 31:1104-1112. [PMID: 39068204 PMCID: PMC11369293 DOI: 10.1038/s41418-024-01350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
| | - Ajay Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany.
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Burtscher J, Burtscher M. Notoginsenoside R1 treatment effects on high-altitude myocardial injury. Biomed Pharmacother 2024; 178:117205. [PMID: 39068854 DOI: 10.1016/j.biopha.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
|
19
|
Jiang M, Wu S, Xie K, Zhou G, Zhou W, Bao P. The significance of ferroptosis in renal diseases and its therapeutic potential. Heliyon 2024; 10:e35882. [PMID: 39220983 PMCID: PMC11363859 DOI: 10.1016/j.heliyon.2024.e35882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Kidney diseases are significant global public health concern, with increasing prevalence and substantial economic impact. Developing novel therapeutic approaches are essential for delaying disease progression and improving patient quality of life. Cell death signifying the termination of cellular life, could facilitate appropriate bodily development and internal homeostasis. Recently, regulated cell death (RCD) forms such as ferroptosis, characterized by iron-dependent lipid peroxidation, has garnered attention in diverse renal diseases and other pathological conditions. This review offers a comprehensive examination of ferroptosis, encompassing an analysis of the involvement of iron and lipid metabolism, the System Xc - /glutathione/glutathione peroxidase 4 signaling, and additional associated pathways. Meanwhile, the review delves into the potential of targeting ferroptosis as a therapeutic approach in the management of acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy, and renal tumors. Furthermore, it emphasizes the significance of ferroptosis in the transition from AKI to CKD and further accentuates the potential for repurposing drug and utilizing traditional medicine in targeting ferroptosis-related pathways for clinical applications. The integrated review provides valuable insights into the role of ferroptosis in kidney diseases and highlights the potential for targeting ferroptosis as a therapeutic strategy.
Collapse
Affiliation(s)
- Mingzhu Jiang
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shujun Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Kun Xie
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Gang Zhou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wei Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ping Bao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
22
|
Belavgeni A, Maremonti F, Linkermann A. Protocol for isolating murine kidney tubules and ex vivo cell death assays. STAR Protoc 2024; 5:103005. [PMID: 38613777 PMCID: PMC11021354 DOI: 10.1016/j.xpro.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024] Open
Abstract
Isolating kidney tubules offers insights into their biological function without stroma, vascular cells, and immune system interference. Our murine tubule isolation protocol focuses on ex vivo cell death assays. We describe steps for solution preparation; kidney extraction, decapsulation, and slicing; and tubule isolation. We also outline assays like western blotting, lactate dehydrogenase release assay, and live-cell imaging of vital dyes during experimental acute tubular necrosis. This adaptable protocol allows the generation of outgrown primary tubular cells that maintain the features of tubular cells.
Collapse
Affiliation(s)
- Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Lin HF, Jiang YC, Chen ZW, Zheng LL. Design, synthesis, and anti-inflammatory activity of indole-2-formamide benzimidazole[2,1- b]thiazole derivatives. RSC Adv 2024; 14:16349-16357. [PMID: 38812824 PMCID: PMC11134322 DOI: 10.1039/d4ra00557k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Molecular hybridization is a widely employed technique in medicinal chemistry for drug modification, aiming to enhance pharmacological activity and minimize side effects. The combination of an indole ring and imidazole[2,1-b]thiazole has shown promising potential as a group that exhibits potent anti-inflammatory effects. In this study, we designed and synthesized a series of derivatives comprising indole-2-formamide benzimidazole[2,1-b]thiazole to evaluate their impact on LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release, as well as iron death in RAW264.7 cells. The findings revealed that most compounds effectively inhibited LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release in RAW264.7 cells. Compound 13b exhibited the most potent anti-inflammatory activity among the tested compounds. The results of the cytotoxicity assay indicated that compound 13b was nontoxic. Additionally, compound 13b was found to elevate the levels of ROS, MDA, and Fe2+, while reducing GSH content, thereby facilitating the iron death process. Consequently, compound 13b showed promise for future development as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Hai-Feng Lin
- Department of Gastroenterology, Affiliated Hospital of Putian University Putian China
| | - Yu-Cai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University Putian China
| | - Zhi-Wei Chen
- Department of Pathology, Affiliated Hospital of Putian University Putian China
| | - Lin-Lin Zheng
- Department of Oncology, Affiliated Hospital of Putian University Putian China
| |
Collapse
|
24
|
Li T, Hu X, Fan L, Yang Y, He K. Myricanol improves metabolic profiles in dexamethasone induced lipid and protein metabolism disorders in mice. Biomed Pharmacother 2024; 174:116557. [PMID: 38583337 DOI: 10.1016/j.biopha.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Tiandan Li
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaochao Hu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Lingyang Fan
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Yang
- chool of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| | - Kai He
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan 418000, China.
| |
Collapse
|
25
|
Eladwy RA, Alsherbiny MA, Chang D, Fares M, Li CG, Bhuyan DJ. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front Nutr 2024; 11:1372982. [PMID: 38533461 PMCID: PMC10963608 DOI: 10.3389/fnut.2024.1372982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 μg/mL Dex + 2,400 μg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 μg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.
Collapse
Affiliation(s)
- Radwa A Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Department of Pharmacology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
26
|
Wang Y, Chen Z, Li J, Wen Y, Li J, Lv Y, Pei Z, Pei Y. A Paramagnetic Metal-Organic Framework Enhances Mild Magnetic Hyperthermia Therapy by Downregulating Heat Shock Proteins and Promoting Ferroptosis via Aggravation of Two-Way Regulated Redox Dyshomeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306178. [PMID: 38161219 PMCID: PMC10953551 DOI: 10.1002/advs.202306178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH2 ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT. Aggravated RDH promotes glutathione peroxidase 4 inactivation and lipid peroxidation to promote ferroptosis, which further synergizes with MMHT. H22-tumor-bearing mice treated with Lac-FcMOF under alternating magnetic field (AMF) demonstrated a 90.4% inhibition of tumor growth. This work therefore provides a new strategy for the simple construction of a magnetic hyperthermia agent that enables efficient MMHT by downregulating HSPs and promoting ferroptosis through the aggravation of two-way regulated RDH.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Zelong Chen
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Jiahui Li
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yafei Wen
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Jiaxuan Li
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yinghua Lv
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Zhichao Pei
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yuxin Pei
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| |
Collapse
|
27
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
28
|
Yang L, Cai X, Li R. Ferroptosis Induced by Pollutants: An Emerging Mechanism in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2166-2184. [PMID: 38275135 DOI: 10.1021/acs.est.3c06127] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Cui L, Zheng F, Zhang M, Wang Z, Meng X, Dong J, Liu K, Guo L, Wang H, Li J. Selenium suppressed the LPS-induced oxidative stress of bovine endometrial stromal cells through Nrf2 pathway with high cortisol background. J Anim Sci 2024; 102:skae260. [PMID: 39219376 PMCID: PMC11445656 DOI: 10.1093/jas/skae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024] Open
Abstract
Stress and infection seriously threaten the reproductive performance and health of dairy cows. Various perinatal stresses increase plasma cortisol concentrations in cows, and chronically high cortisol levels may increase the incidence and severity of the uterine diseases. Selenium (Se) enhances antioxidant capacity of cows. The aim of this study was to explore how Se affects the oxidative stress of primary bovine endometrial stromal cells (BESC) with high cortisol background. The levels of reactive oxygen species (ROS) and other biomarkers of oxidative stress were measured using flow cytometry and assay kits. The changes in nuclear NF-E2-related factor 2 (Nrf2) pathway were detected by Western blot, qPCR, and immunofluorescence. The result showed that lipopolysaccharide (LPS) increased (P < 0.01) ROS and malondialdehyde (MDA) content and reduced (P < 0.01) superoxide dismutase (SOD) concentration, provoking BESC oxidative stress. The elevated levels of cortisol resulted in the accumulation (P < 0.05) of ROS and MDA and inhibition (P < 0.05) of SOD in unstimulated BESC but demonstrated an antioxidative effect in LPS-stimulated cells. Pretreatment with Se reduced (P < 0.01) the levels of ROS and MDA, while increasing (P < 0.05) the antioxidant capacities and the relative abundance of gene transcripts and proteins related to the Nrf2 pathway in BESC. This antioxidant effect was more pronounced in the presence of high cortisol level. In conclusion, cortisol alone induced the oxidative damage but provided an antioxidant protection in the presence of LPS. Se alleviated the LPS-induced cellular oxidative stress, which is probably achieved through activating Nrf2 pathway. At high cortisol levels, Se supplement has a more significant protective effect on BESC oxidative stress. This study provided evidence for the protective role of Se in bovine endometrial oxidative damage of stressed animals and suggested the potential regulatory mechanism in vitro.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| |
Collapse
|
30
|
Li N, Wang R, Ai X, Guo J, Bai Y, Guo X, Zhang R, Du X, Chen J, Li H. Electroacupuncture Inhibits Neural Ferroptosis in Rat Model of Traumatic Brain Injury via Activating System Xc -/GSH/GPX4 Axis. Curr Neurovasc Res 2024; 21:86-100. [PMID: 38629369 DOI: 10.2174/0115672026297775240405073502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Ferroptosis is an iron-dependent regulating programmed cell death discovered recently that has been receiving much attention in traumatic brain injury (TBI). xCT, a major functional subunit of Cystine/glutamic acid reverse transporter (System Xc-), promotes cystine intake and glutathione biosynthesis, thereby protecting against oxidative stress and ferroptosis. OBJECTIVE The intention of this research was to verify the hypothesis that electroacupuncture (EA) exerted an anti-ferroptosis effect via an increase in the expression of xCT and activation of the System Xc-/GSH/GPX4 axis in cortical neurons of TBI rats. METHODS After the TBI rat model was prepared, animals received EA treatment at GV20, GV26, ST36 and PC6, for 15 min. The xCT inhibitor Sulfasalazine (SSZ) was administered 2h prior to model being prepared. The degree of neurological impairment was evaluated by means of TUNEL staining and the modified neurological severity score (mNSS). Specific indicators of ferroptosis (Ultrastructure of mitochondria, Iron and ROS) were detected by transmission electron microscopy (TEM), Prussian blue staining (Perls stain) and flow cytometry (FCM), respectively. GSH synthesis and metabolism-related factors in the content of the cerebral cortex were detected by an assay kit. Real-time quantitative PCR (RT-QPCR), Western blot (WB), and immunofluorescence (IF) were used for detecting the expression of System Xc-/GSH/GPX4 axisrelated proteins in injured cerebral cortex tissues. RESULTS EA successfully relieved nerve damage within 7 days after TBI, significantly inhibited neuronal ferroptosis, upregulated the expression of xCT and System Xc-/GSH/GPX4 axis forward protein and promoted glutathione (GSH) synthesis and metabolism in the injured area of the cerebral cortex. However, aggravation of nerve damage and increased ferroptosis effect were found in TBI rats injected with xCT inhibitors. CONCLUSIONS EA inhibits neuronal ferroptosis by up-regulated xCT expression and by activating System Xc-/GSH/GPX4 axis after TBI, confirming the relevant theories regarding the EA effect in treating TBI and providing theoretical support for clinical practice.
Collapse
Affiliation(s)
- Na Li
- School of Acupuncture-Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Ruihui Wang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xia Ai
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jie Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Yuwang Bai
- Department of Pneumology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710001, China
| | - Xinrong Guo
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Rongchao Zhang
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xu Du
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jingxuan Chen
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Hua Li
- School of Acupuncture-Tuina, Shaanxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, 712046, China
| |
Collapse
|
31
|
Dong Y, Heng G, Zhang J, Shen Y, Lan Z, Wei K, Jin W. Association between corticosteroid use and 28-day mortality in septic shock patients with gram-negative bacterial infection: a retrospective study. Front Med (Lausanne) 2023; 10:1276181. [PMID: 38020171 PMCID: PMC10657847 DOI: 10.3389/fmed.2023.1276181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Although corticosteroids are recommended in the 2021 Surviving Sepsis Campaign (SSC) guidelines, evidence with respect to their effects on short-term mortality remains conflicting. We conducted this study to identify whether corticosteroids alter 28-day mortality in septic shock patients with gram-negative bacterial infection. Materials and methods A total of 621 patients with septic shock and gram-negative bacterial culture results were identified from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Propensity score matching (PSM) was performed, and Kaplan-Meier survival curve analyses with log-rank tests were used to determine the relationship between corticosteroid use and the risk of 28-day mortality. Subgroup analyses were conducted to assess whether the conclusions were stable and reliable. Results Corticosteroid administration was associated with increased 28-day mortality in septic shock patients with gram-negative bacterial infection (log-rank test P = 0.028). The incidence of Stage 2 or 3 AKI and the rate of hospital mortality were higher among patients who received corticosteroids. The incidence of Stage 2 or 3 AKI in the early period significantly mediated the relationship between corticosteroid use and 28-day mortality [P =0.046 for the average causal mediation effect (ACME)]. Interaction tests indicated that the effect of corticosteroid use was maintained in patients with a neutrophil-to-lymphocyte ratio (NLR) of <20 (P-value for interaction = 0.027). Conclusion Systemic corticosteroid use could be harmful in septic shock patients with gram-negative bacterial infection, especially in patients with relatively low NLR.
Collapse
Affiliation(s)
- Yi Dong
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Gang Heng
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
| | - Jianxin Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
| | - Yanbing Shen
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
| | - Zhen Lan
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Weidong Jin
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
32
|
Liu J, Han X, Zhou J, Leng Y. Molecular Mechanisms of Ferroptosis and Their Involvement in Acute Kidney Injury. J Inflamm Res 2023; 16:4941-4951. [PMID: 37936596 PMCID: PMC10627075 DOI: 10.2147/jir.s427505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Ferroptosis is a novel way of regulating cell death, which occurs in a process that is closely linked to intracellular iron metabolism, lipid metabolism, amino acid metabolism, and multiple signaling pathways. The latest research shows that ferroptosis plays a key role in the pathogenesis of acute kidney injury (AKI). Ferroptosis may be an important target for treating AKI caused by various reasons, such as ischemia-reperfusion injury, rhabdomyolysis syndrome, sepsis, and nephrotoxic drugs. This paper provides a review on the regulatory mechanisms of ferroptosis and its role in AKI, which may help to provide new research ideas for the treatment of AKI and future research.
Collapse
Affiliation(s)
- Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People’s Republic of China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
33
|
Abudurousuli G, Xu S, Che J, Ding X, Gui B, Zhu L. Role of ferroptosis in effects of anesthetics on multiple organ diseases: A literature review. Heliyon 2023; 9:e20405. [PMID: 37780755 PMCID: PMC10539942 DOI: 10.1016/j.heliyon.2023.e20405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Anesthesiologists are often faced with patients combined with a series of organ injuries, such as acute lung injury, myocardial ischemia-reperfusion injury, and neurodegenerative diseases. With the in-depth study of these diseases, we are more aware of the choice and rational use of anesthetics for the prognosis of these patients. Ferroptosis is a new type of programmed cell death. This unique pattern of cell death, driven by an imbalance between oxides and antioxidants, is regulated by multiple cellular metabolic events, including redox homeostasis, iron handling, mitochondrial activity, and lipids peroxidation. Numerous studies confirmed that anesthetics modulate ferroptosis by interfering its machineries such as cystine-import-glutathione-glutathione peroxidase 4 axis, Heme oxygenase 1, nuclear factor erythroid 2-related factor 2, and iron homeostasis system. In this literature review, we systemically illustrated possible involvement of ferroptosis in effects of anesthetics and adjuvant drugs on multiple organ diseases, hoping our work may serve as a basis for further studies on regulating ferroptosis through anesthetics related pharmacological modulation and promoting the rational use of anesthetics.
Collapse
Affiliation(s)
- Gulibositan Abudurousuli
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Siyang Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jiangsu Province Official Hospital, Nanjing, China
| | - Jinxing Che
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, The Huai'an Maternity and Child Healthcare Hospital, Huai'an, China
| | - Xiahao Ding
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Bo Gui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Linjia Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Belavgeni A, Tonnus W, Linkermann A. Cancer cells evade ferroptosis: sex hormone-driven membrane-bound O-acyltransferase domain-containing 1 and 2 (MBOAT1/2) expression. Signal Transduct Target Ther 2023; 8:336. [PMID: 37679313 PMCID: PMC10484997 DOI: 10.1038/s41392-023-01593-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
36
|
Wang Y, Zhang T, Du H, Yang M, Xie G, Liu T, Deng S, Yuan W, He S, Wu D, Xu Y. Dipeptidase‑2 is a prognostic marker in lung adenocarcinoma that is correlated with its sensitivity to cisplatin. Oncol Rep 2023; 50:161. [PMID: 37449493 PMCID: PMC10360146 DOI: 10.3892/or.2023.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lung cancer accounts for the highest percentage of cancer morbidity and mortality worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Although numerous therapies have been developed for lung cancer, patient prognosis is limited by tumor metastasis and more effective treatment targets are urgently required. In the present study, gene expression profiles were extracted from the Gene Expression Omnibus database and mRNA expression data were downloaded from The Cancer Genome Atlas database. In addition, TIMER 2.0 database was used to analyze the expression of genes in normal and multiple tumor tissues. Protein expression was confirmed using the Human Protein Atlas database and LUAD cell lines, sphere formation assay, western blotting, and a xenograft mouse model were used to confirm the bioinformatics analysis. Dipeptidase‑2 (DPEP2) expression was significantly decreased in LUAD and was negatively associated with prognosis. DPEP2 overexpression substantially inhibited epithelial‑mesenchymal transition (EMT) as well as LUAD cell metastasis, and limited the expression of the cancer stem cell transformation markers, CD44 and CD133. In addition, DPEP2 improved LUAD sensitivity to cisplatin by inhibiting EMT; this was verified in vitro and in vivo. These data indicated that DPEP2 upregulates E‑cadherin, thereby regulating cell migration, cancer stem cell transformation, and cisplatin resistance, ultimately affecting the survival of patients with LUAD. Overall, the findings of the present suggest that DPEP2 is important in the development of LUAD and can be used both as a prognostic marker and a target for future therapeutic research.
Collapse
Affiliation(s)
- Yuanyi Wang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zhang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Yang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Guangsu Xie
- Clinical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China
| | - Teng Liu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shihua Deng
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Yuan
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
37
|
Cheng Q, Mou L, Su W, Chen X, Zhang T, Xie Y, Xue J, Lee PY, Wu H, Du Y. Ferroptosis of CD163 + tissue-infiltrating macrophages and CD10 + PC + epithelial cells in lupus nephritis. Front Immunol 2023; 14:1171318. [PMID: 37583695 PMCID: PMC10423811 DOI: 10.3389/fimmu.2023.1171318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Dysregulation of cell death and defective clearance of dying cells are closely related to the pathogenesis of lupus nephritis (LN). However, the contribution of a recently discovered form of programmed cell death (PCD) called ferroptosis to LN has not been explored in detail. The purpose of this study was to investigate the role of ferroptosis and its associated metabolic pathways in the pathogenesis of LN. Methods The composite gene expression scores were calculated by averaging the z-scored transformed log2 expressed genes within each form of PCD and pathway. Immunohistochemistry and immunofluorescence assays were used to verify the bioinformatics results. Results We determined that ferroptosis is prominently and specifically elevated in the glomerular compartment of LN patients compared to other forms of PCD and kidney disease. This finding was then verified by immunohistochemical staining of 4-HNE (a key indicator for ferroptosis) expression in our own cohort (P < 0.0001). Intercorrelation networks were observed between 4-HNE and blood urea nitrogen, SLE disease activity index, serum creatinine, and complement 4, and negatively correlated with glomerular filtration rate in our own LN cohort (P < 0.05). Furthermore, enhanced iron metabolism and reduced fatty acid synthesis may be the most important factors for ferroptosis within the glomerulus. Through analysis of a single cell sequencing dataset and verification of immunohistochemical and immunofluorescence staining, aberrantly activated lipid peroxidation in CD163+ macrophages and CD10+ PC+ (pyruvate carboxylase) epithelial cells indicated that they may be undergoing ferroptosis in the glomerular compartment. Conclusions Two dysregulated genes, CD163 and PC, were identified and verified that were significantly associated with lipid peroxidation. Targeting ferroptosis in CD163+ macrophages and CD10+ PC+ epithelial cells may provide novel therapeutic approaches in LN.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Su
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Zhang J, Ge P, Liu J, Luo Y, Guo H, Zhang G, Xu C, Chen H. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit. Int J Mol Sci 2023; 24:12138. [PMID: 37569514 PMCID: PMC10418884 DOI: 10.3390/ijms241512138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), triggered by various pathogenic factors inside and outside the lungs, leads to diffuse lung injury and can result in respiratory failure and death, which are typical clinical critical emergencies. Severe acute pancreatitis (SAP), which has a poor clinical prognosis, is one of the most common diseases that induces ARDS. When SAP causes the body to produce a storm of inflammatory factors and even causes sepsis, clinicians will face a two-way choice between anti-inflammatory and anti-infection objectives while considering the damaged intestinal barrier and respiratory failure, which undoubtedly increases the difficulty of the diagnosis and treatment of SAP-ALI/ARDS. For a long time, many studies have been devoted to applying glucocorticoids (GCs) to control the inflammatory response and prevent and treat sepsis and ALI/ARDS. However, the specific mechanism is not precise, the clinical efficacy is uneven, and the corresponding side effects are endless. This review discusses the mechanism of action, current clinical application status, effectiveness assessment, and side effects of GCs in the treatment of ALI/ARDS (especially the subtype caused by SAP).
Collapse
Affiliation(s)
- Jinquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
39
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
40
|
Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D, Liu Z. The Road from AKI to CKD: Molecular Mechanisms and Therapeutic Targets of Ferroptosis. Cell Death Dis 2023; 14:426. [PMID: 37443140 PMCID: PMC10344918 DOI: 10.1038/s41419-023-05969-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Acute kidney injury (AKI) is a prevalent pathological condition that is characterized by a precipitous decline in renal function. In recent years, a growing body of studies have demonstrated that renal maladaptation following AKI results in chronic kidney disease (CKD). Therefore, targeting the transition of AKI to CKD displays excellent therapeutic potential. However, the mechanism of AKI to CKD is mediated by multifactor, and there is still a lack of effective treatments. Ferroptosis, a novel nonapoptotic form of cell death, is believed to have a role in the AKI to CKD progression. In this study, we retrospectively examined the history and characteristics of ferroptosis, summarized ferroptosis's research progress in AKI and CKD, and discussed how ferroptosis participates in regulating the pathological mechanism in the progression of AKI to CKD. Furthermore, we highlighted the limitations of present research and projected the future evolution of ferroptosis. We hope this work will provide clues for further studies of ferroptosis in AKI to CKD and contribute to the study of effective therapeutic targets to prevent the progression of kidney diseases.
Collapse
Affiliation(s)
- Runzhi Guo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Jiayu Duan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Fei Cheng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
41
|
Ni SH, Zhang XJ, OuYang XL, Ye TC, Li J, Li Y, Sun SN, Han XW, Long WJ, Wang LJ, Yang ZQ, Lu L. Lobetyolin Alleviates Ferroptosis of Skeletal Muscle in 5/6 Nephrectomized Mice via Activation of Hedgehog-GLI1 Signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154807. [PMID: 37121057 DOI: 10.1016/j.phymed.2023.154807] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Muscle wasting increases morbidity and mortality and is related to chronic kidney disease (CKD) and dialysis. It is still unclear whether ferroptosis occurs during this progression and whether it is a potential intervention target for the treatment of CKD-related muscle injury. PURPOSE The objective is to identify potential compounds for treating ferroptosis and muscle wasting and explore the potential mechanisms in vivo/in vitro. METHODS Initially, we explored whether ferroptosis is present in the skeletal muscle of 5/6 nephrectomized (NPM) mice via RNA-Seq analysis, TUNEL staining, Oil red O staining, MDA/GSH/GSSG level detection and real-time quantitative PCR (qPCR). Subsequently, utilizing our established molecular phenotyping strategy, we screened potential traditional Chinese herb-derived compounds for alleviation of muscle wasting and ferroptosis. HE staining, Oil red O staining, TUNEL staining, immunofluorescence staining, MDA/GSH/GSSG level detection, Fe level detection, western blotting and qPCR were applied to assess the effects of the identified compound on muscle wasting and ferroptosis and explore the potential mechanism. Furthermore, RNA-Seq analysis, ChIP-Seq analysis and further experiments in vitro were performed to determine the role of Hedgehog signaling in the effect of Lobetyolin (LBT) on ferroptosis. RESULTS In NPM mice, skeletal muscle dysfunction, lipogenesis, reduced GSH/GSSG ratio, decreased GSH content, increased MDA production and and higher levels of ferroptosis markers were observed. LBT treatment (30 mg/kg or 50 mg/kg) significantly alleviates skeletal muscle injury by inhibiting ferroptosis. Additionally, in an in vitro investigation, C2C12 cells exposed to Indolyl sulfate (IS) induced ferroptosis and LBT treatment (20 μM and 50 μM) protected C2C12 from such injury, consistent with the results from the in vivo analysis. Furthermore, it was found LBT increased the levels of protein involving Hedgehog signaling pathway (SMO and GLI1), and rescue analysis revealed that this pathway played a crucial role in the regulation of ferroptosis. Further experiments demonstrated that LBT upregulated a series of suppressors of ferroptosis by activating Gli1 transcription. CONCLUSION LBT alleviates CKD-induced muscle injury by inhibiting ferroptosis through activation of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Lu OuYang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
42
|
Belavgeni A, Maremonti F, Tonnus W, Stadtmüller M, Gavali S, Mallais M, Flade K, Brucker A, Becker JN, Beer K, Tmava M, Stumpf J, Gembardt F, Hugo C, Giacca M, Hale BG, Perakakis N, Sha W, Pratt DA, Schally AV, Bornstein SR, Linkermann A. vPIF-1 is an insulin-like antiferroptotic viral peptide. Proc Natl Acad Sci U S A 2023; 120:e2300320120. [PMID: 37186845 PMCID: PMC10214148 DOI: 10.1073/pnas.2300320120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be 200- to 500-fold less effective compared to the endogenous ligands. We therefore speculated that these peptides also have noninsulin functions. Here, we report that the LCDV-1 VILP can function as a potent and highly specific inhibitor of ferroptosis. Induction of cell death by the ferroptosis inducers erastin, RSL3, FIN56, and FINO2 and nonferroptotic necrosis produced by the thioredoxin-reductase inhibitor ferroptocide were potently prevented by LCDV-1, while human insulin had no effect. Fas-induced apoptosis, necroptosis, mitotane-induced cell death and growth hormone-releasing hormone antagonist-induced necrosis were unaffected, suggesting the specificity to ferroptosis inhibition by the LCDV-1 VILP. Mechanistically, we identified the viral C-peptide to be required for inhibition of lipid peroxidation and ferroptosis inhibition, while the human C-peptide exhibited no antiferroptotic properties. In addition, the deletion of the viral C-peptide abolishes radical trapping activity in cell-free systems. We conclude that iridoviridae, through the expression of insulin-like viral peptides, are capable of preventing ferroptosis. In analogy to the viral mitochondrial inhibitor of apoptosis and the viral inhibitor of RIP activation (vIRA) that prevents necroptosis, we rename the LCDV-1 VILP a viral peptide inhibitor of ferroptosis-1. Finally, our findings indicate that ferroptosis may function as a viral defense mechanism in lower organisms.
Collapse
Affiliation(s)
- Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Marlena Stadtmüller
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Melodie Mallais
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Karolin Flade
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Anne Brucker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Jorunn Naila Becker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Kristina Beer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Mirela Tmava
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Julian Stumpf
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
| | - Mauro Giacca
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, WC2R 2LSLondon, United Kingdom
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zürich8057, Zürich, Switzerland
| | - Nikolaos Perakakis
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307Dresden, Germany
| | - Wei Sha
- Veterans Affairs Medical Center, Miami, FL33125
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33150
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL33136
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL33136
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Miami, FL33125
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL33150
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL33136
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL33136
| | - Stefan R. Bornstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, WC2R 2LSLondon, United Kingdom
- Center for Regenerative Therapies, Technische Universität Dresden, 01307Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of Technische Universität Dresden, Faculty of Medicine, 01307Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921Singapore, Singapore
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY10461
| |
Collapse
|
43
|
Cai W, Liu L, Shi X, Liu Y, Wang J, Fang X, Chen Z, Ai D, Zhu Y, Zhang X. Alox15/15-HpETE Aggravates Myocardial Ischemia-Reperfusion Injury by Promoting Cardiomyocyte Ferroptosis. Circulation 2023; 147:1444-1460. [PMID: 36987924 DOI: 10.1161/circulationaha.122.060257] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury causes cardiac dysfunction to myocardial cell loss and fibrosis. Prevention of cell death is important to protect cardiac function after I/R injury. The process of reperfusion can lead to multiple types of cardiomyocyte death, including necrosis, apoptosis, autophagy, and ferroptosis. However, the time point at which the various modes of cell death occur after reperfusion injury and the mechanisms underlying ferroptosis regulation in cardiomyocytes are still unclear. METHODS Using a left anterior descending coronary artery ligation mouse model, we sought to investigate the time point at which the various modes of cell death occur after reperfusion injury. To discover the key molecules involved in cardiomyocyte ferroptosis, we performed a metabolomics study. Loss/gain-of-function approaches were used to understand the role of 15-lipoxygenase (Alox15) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) in myocardial I/R injury. RESULTS We found that apoptosis and necrosis occurred in the early phase of I/R injury, and that ferroptosis was the predominant form of cell death during the prolonged reperfusion. Metabolomic profiling of eicosanoids revealed that Alox15 metabolites accumulated in ferroptotic cardiomyocytes. We demonstrated that Alox15 expression was specifically increased in the injured area of the left ventricle below the suture and colocalized with cardiomyocytes. Furthermore, myocardial-specific knockout of Alox15 in mice alleviated I/R injury and restored cardiac function. 15-Hydroperoxyeicosatetraenoic acid (15-HpETE), an intermediate metabolite derived from arachidonic acid by Alox15, was identified as a trigger for cardiomyocyte ferroptosis. We explored the mechanism underlying its effects and found that 15-HpETE promoted the binding of Pgc1α to the ubiquitin ligase ring finger protein 34, leading to its ubiquitin-dependent degradation. Consequently, attenuated mitochondrial biogenesis and abnormal mitochondrial morphology were observed. ML351, a specific inhibitor of Alox15, increased the protein level of Pgc1α, inhibited cardiomyocyte ferroptosis, protected the injured myocardium, and caused cardiac function recovery. CONCLUSIONS Together, our results established that Alox15/15-HpETE-mediated cardiomyocyte ferroptosis plays an important role in prolonged I/R injury.
Collapse
Affiliation(s)
- Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Le Liu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Yanan Liu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Jin Wang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Xuan Fang
- Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China (X.F.)
| | - Zhipeng Chen
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, China (W.C., L.L., X.S., Y.L., J.W., Z.C., D.A., Y.Z., X.X.)
| |
Collapse
|
44
|
Abstract
Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.
Collapse
Affiliation(s)
- Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
- RICORS2040, Madrid, Spain.
- Departamento de Farmacología, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
45
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Toh P, Seale LA, Berry MJ, Torres DJ. Prolonged maternal exposure to glucocorticoids alters selenoprotein expression in the developing brain. Front Mol Neurosci 2023; 16:1115993. [PMID: 37033382 PMCID: PMC10080067 DOI: 10.3389/fnmol.2023.1115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Aberrant activation of the stress-response system in early life can alter neurodevelopment and cause long-term neurological changes. Activation of the hypothalamic-pituitary-adrenal axis releases glucocorticoids into the bloodstream, to help the organism adapt to the stressful stimulus. Elevated glucocorticoid levels can promote the accumulation of reactive oxygen species, and the brain is highly susceptible to oxidative stress. The essential trace element selenium is obtained through diet, is used to synthesize antioxidant selenoproteins, and can mitigate glucocorticoid-mediated oxidative damage. Glucocorticoids can impair antioxidant enzymes in the brain, and could potentially influence selenoprotein expression. We hypothesized that exposure to high levels of glucocorticoids would disrupt selenoprotein expression in the developing brain. C57 wild-type dams of recently birthed litters were fed either a moderate (0.25 ppm) or high (1 ppm) selenium diet and administered corticosterone (75 μg/ml) via drinking water during postnatal days 1 to 15, after which the brains of the offspring were collected for western blot analysis. Glutathione peroxidase 1 and 4 levels were increased by maternal corticosterone exposure within the prefrontal cortex, hippocampus, and hypothalamus of offspring. Additionally, levels of the glucocorticoid receptor were decreased in the hippocampus and selenoprotein W was elevated in the hypothalamus by corticosterone. Maternal consumption of a high selenium diet independently decreased glucocorticoid receptor levels in the hippocampus of offspring of both sexes, as well as in the prefrontal cortex of female offspring. This study demonstrates that early life exposure to excess glucocorticoid levels can alter selenoprotein levels in the developing brain.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
47
|
Gavali S, Tonnus W, Linkermann A. Immunological consequences of arsenic trioxide-induced necrosis. Cell Mol Immunol 2023; 20:308-309. [PMID: 36693921 PMCID: PMC9971234 DOI: 10.1038/s41423-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
48
|
Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X, Wang X. Fe-MnO 2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother 2023; 161:114431. [PMID: 36827713 DOI: 10.1016/j.biopha.2023.114431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ferroptosis has emerged as a therapeutic tactic to trigger cancer cell death driven by abnormal accumulation of reactive oxygen species (ROS). However, a single ferroptosis treatment modality is often limited. In this work, a combination therapy of ferroptosis and immunotherapy for cancer was proposed. Specifically, a versatile nanodrug was designed for the multiple treatment of hepatocellular carcinoma (HCC) by loading dihydroartemisinin (DHA) on Fe3+-doped MnO2 nanosheets (Fe-MnO2/DHA). Firstly, Fe-MnO2/DHA was degraded by glutathione (GSH) in the tumor microenvironment (TME) to release Fe2+, Mn2+ and DHA, leading to aberrant ROS accumulation due to Fenton/Fenton-like reaction. Secondly, breakage of endoperoxide bridge from DHA was caused by Fe2+ to further induce oxidative stress. Thirdly, the depleted GSH promoted the inactivation of glutathione peroxidase 4 (GPX4), resulting in lipid peroxide (LPO) accumulation. The resulting LPO and ROS could induce ferroptosis and apoptosis of liver cancer cells. Furthermore, Fe-MnO2/DHA mediated three-pronged stimulation of oxidative stress, resulting in high levels of targeted immunogenic cell death (ICD). It could enhance the infiltration of CD4+ T and CD8+ T cells, and promote macrophage polarization. DHA also acted as an immunomodulator to inhibit regulatory T cells (Tregs) for systemic antitumor. Overall, Fe-MnO2/DHA presents a multi-modal therapy for HCC driven by ferroptosis, apoptosis and immune activation, significantly advancing synergistic cancer treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
49
|
Lv YW, Du Y, Ma SS, Shi YC, Xu HC, Deng L, Chen XY. Proanthocyanidins attenuates ferroptosis against influenza-induced acute lung injury in mice by reducing IFN-γ. Life Sci 2023; 314:121279. [PMID: 36526043 DOI: 10.1016/j.lfs.2022.121279] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is associated with high morbidity and mortality and is partly driven promoted by ferroptosis. Proanthocyanidins (PAs) is a natural bioactive flavonoid with anti-inflammatory and antioxidant activities. PAs can also significantly protect against acute lung inflammation and ferroptosis in alveolar epithelial cells. However, it is unclear whether PAs can alleviate ALI by reducing ferroptosis. This study aimed to evaluate the protective effects of PAs and the potential mechanisms against Influenza A virus (IAV)-induced ALI. METHODS Mice were inoculated nasally with IAV to induce ALI. IAV-induced pulmonary inflammation and ferroptosis was tested by measuring the levels of malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and acyl-CoA synthetase long-chain family member (ACSL4) in lung tissue. The potential targets that PAs protect against IAV-induced ALI were determined via a systemic pharmacological analysis. The molecular mechanism of PAs in ALI treatment was investigated by assessing the level of inflammation and ferroptosis markers using Western Blot and quantitative real-time PCR. RESULTS Systemic pharmacological analysis suggested that PAs protect against IAV-induced pneumonia thorough TGF-β1 and its relative signaling pathway. PAs effectively alleviated histopathological lung injury, reduced inflammatory cytokines and chemokines secretion, which were increased in IAV-infected mice. Meanwhile, PAs further prevented mouse airway inflammation in ALI, concomitant with the decreased expression TGF-β1, smad2/3, p-Smad2, p-Smad3 and ferroptosis mediator IFN-γ. Furthermore,IFN-γ promotes cell lipid peroxidation and ferroptosis,PAs significantly reduced MDA and ACSL4 levels and upregulated GSH, GPX4, and SLC7A11. CONCLUSION Overall, PAs can attenuate ferroptosis against IAV-induced ALI via the TGF-β1/Smad2/3 pathway and is a promising novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Yi-Wen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yang Du
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Sheng-Suo Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-Cong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua-Chong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou, China.
| | - Xiao-Yin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
50
|
Kaufmann T, Simon HU. Pharmacological Induction of Granulocyte Cell Death as Therapeutic Strategy. Annu Rev Pharmacol Toxicol 2023; 63:231-247. [PMID: 36028226 DOI: 10.1146/annurev-pharmtox-051921-115130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland; ,
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; , .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|