1
|
Shao X, Wu T, Li M, Zheng M, Lin H, Qi X. Enterococcus faecalis Exerts Neuroprotective Effects via the Vagus Nerve in a Mouse Model of Parkinson's Disease. Mol Neurobiol 2025; 62:7875-7891. [PMID: 39954164 DOI: 10.1007/s12035-025-04741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease worldwide. Current treatment methods for PD are unable to halt disease progression. The gut microbiota contributes to the neurodevelopment of PD; however, the gut-brain connections and underlying neural bases that regulate this complex behavior are not yet clear. Enterococcus faecalis (EF) is a common commensal bacterium of the gut and a common pathogen associated with hospital-acquired infections. Here, we demonstrated the significant therapeutic effects of a non-pathogenic strain of EF (EF ATCC19433) on PD. In this study, we established a mouse model of PD by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that EF treatment alleviated behavioral impairment, dopaminergic neuronal loss, blood-brain barrier damage, and neuroinflammation induced by MPTP in the mice. Additionally, 16S rRNA sequencing revealed that dysbiosis of PD-related microbial communities induced by MPTP was reversed by EF treatment. Moreover, EF treatment relieved gastrointestinal dysfunction in the mice. The therapeutic efficacy of EF in MPTP-induced PD mice is markedly diminished when the activity of EF is lost. Further mechanistic studies indicated that the neuroprotective effects of EF in PD were associated with the vagus nerve pathway. Following the surgical severance of the vagus nerve through subdiaphragmatic vagotomy, the protective effects of EF on PD were markedly diminished. Our study suggests that EF can alleviate neurofunctional impairments and gastrointestinal disorders associated with PD, indicating that gut-derived microbes influence brain function through the vagus nerve pathway.
Collapse
Affiliation(s)
- Xian Shao
- Department of Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Tao Wu
- School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Mengyun Li
- Department of Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Matao Zheng
- Department of Neurosurgery, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Healthy Science Center, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
2
|
Bai Q, Wang C, Ding N, Wang Z, Liu R, Li L, Piao H, Song Y, Yan G. Eupalinolide B targets DEK and PANoptosis through E3 ubiquitin ligases RNF149 and RNF170 to negatively regulate asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156657. [PMID: 40120540 DOI: 10.1016/j.phymed.2025.156657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE We investigated the mechanism by which eupalinolide B (EB) regulates DEK protein ubiquitination and degradation, and its impact on DEK-mediated receptor-interacting protein kinase 1 (RIPK)-PANoptosis pathway in allergic asthma. STUDY DESIGN AND METHODS In vitro studies were conducted on human bronchial epithelial cells (BEAS-2B) treated with EB and human-recombinant DEK. Mass spectrometry analysis, RNA sequencing, molecular docking, and functional assays were used to assess the interactions and effects of EB, DEK, and ring finger protein 149 and 170 (RNF149 and RNF170). In vivo experiments involved a house dust mite-induced asthma model in mice and evaluation of airway inflammation, DEK expression, and PANoptosis markers. RESULTS In vitro, EB could bind to DEK. RNF149 and RNF170 were identified as regulatory factors of DEK, polyubiquitinating the K349 site in the DEK coding DNA sequence region 270-350 through K48 linkages and leading to its degradation. RNA sequencing showed that DEK overexpression upregulated the expression of genes such as RIPK1, FADD, and Caspase 8. Treatment with DEK siRNA or EB reduced the activation of the RIPK1-PANoptosis pathway in BEAS-2B-DEK cells. In vivo, EB significantly reduced the levels of DEK in house dust mite-induced mice and alleviated pulmonary inflammatory cell infiltration, goblet cell hyperplasia, collagen fiber deposition, and eosinophil proportion in BALF. Knocking out the DEK gene reduced RIPK1-induced PANoptosis, and inhibited airway inflammation and cell apoptosis. CONCLUSION EB promotes the degradation of DEK by RNF149 and RNF170, inhibits the RIPK1-PANoptosis pathway, and may effectively suppress asthma. EB may become a potential drug for treating airway inflammation in asthma.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Ningpo Ding
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
3
|
Munavar-K F, Lenka N. Deubiquitinating enzymes at the crossroads of blood-brain barrier integrity and neurodegeneration: mechanistic insights, therapeutic targeting and future directions. Tissue Barriers 2025:2504738. [PMID: 40358463 DOI: 10.1080/21688370.2025.2504738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) carries immense significance concerning cellular homeostasis that encompasses both ubiquitination and deubiquitination as key facets for maintaining protein stability. The deubiquitinating enzymes (DUBs) have emerged as critical regulators of proteostasis, neuroinflammation and blood-brain barrier (BBB) integrity by controlling the fate of crucial proteins associated with barrier architectures in CNS and neurodegenerative disorders (NDs) alike. However, a concrete understanding of their specific neurodevelopmental and neuroprotective functions is yet to be discerned. This article discusses the multifaceted roles of DUBs in the maintenance of BBB integrity, neuroprotection and various NDs and also underscores the therapeutic prospects targeting the same. While DUBs like USP7, USP9X, USP27X, UCHL1, etc. participate in neural stem cell maintenance and neurogenesis, including BBB function, USP13, USP14, USP25, BRCC3 and CYLD, among others, are associated with BBB dysfunction and NDs. The mechanistic underpinning concerning their hitherto unexplored mode of action, DUB-substrate interactions and specificity would facilitate developing the therapeutic agonists and small-molecule inhibitors to prevent or reverse neuroinflammation, BBB impairment and developmental disorders. Recent innovations concerning DUB-targeting chimaeras (DUBTACs) and proteolysis-targeting chimaeras (PROTACs) can be explored further for their plausible administration via nanoparticle-based delivery approaches to alleviate the progressive neurodegeneration.
Collapse
Affiliation(s)
- Fahima Munavar-K
- BRIC-National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Nibedita Lenka
- BRIC-National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| |
Collapse
|
4
|
She LY, Li LY, Tang H, Yu Q, Gao FY, Zeng YQ, Chen LJ, Xiong L, Li LW, Chen F, Sun JF, Zheng WH, Zhao X, Liang G. OTUD1 positively regulates microglia neuroinflammation and promotes the pathogenesis of Alzheimer's disease by deubiquitinating C/EBPβ. Acta Pharmacol Sin 2025:10.1038/s41401-025-01566-y. [PMID: 40335710 DOI: 10.1038/s41401-025-01566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Microglia-mediated neuroinflammation is closely associated with AD pathogenesis. Abnormal deubiquitinating enzyme (DUB) expression is associated with neuroinflammation. Identification of functional DUBs in microglia may provide novel targets for AD treatment. Here, we found that the levels of DUB, ovarian tumor deubiquitinase 1 (OTUD1), were upregulated in AD model mice and amyloid-beta-induced microglia. OTUD1 knockdown in microglia significantly inhibited neuroinflammation, thereby improving cognitive impairment in AD model mice. Liquid chromatography-tandem mass spectrometry analysis coupled with co-immunoprecipitation revealed the CCAAT/enhancer-binding protein β (C/EBPβ), a key transcription factor regulating microglial inflammation, as an OTUD1-interacting protein. Mechanistically, OTUD1 bound to C/EBPβ and maintained its stability by removing the K48 ubiquitin chain at K253 of C/EBPβ, thereby activating the C/EBPβ-nuclear factor-κB-mediated inflammatory responses in microglia. Overall, our results revealed the roles of the OTUD1-C/EBPβ axis in mediating the microglial inflammatory responses and AD pathology, facilitating the development of new strategies targeting microglial neuroinflammation for AD treatment.
Collapse
Affiliation(s)
- Ling-Yu She
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Lu-Yao Li
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Hao Tang
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qin Yu
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Feng-Yi Gao
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Qing Zeng
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Lin-Jie Chen
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Li Xiong
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Li-Wei Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Fan Chen
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Jin-Feng Sun
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Wen-Hua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Xia Zhao
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Guang Liang
- The First People's Hospital of Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
5
|
Wang TT, Zhou MY, Gong XN, Huang Y, Li FL, Gu SL, Zhang MY, Li LL, Xu ZS, Li R, Cai L. Eupalinolide B alleviates corticosterone-induced PC12 cell injury and improves depression-like behaviors in CUMS rats by regulating the GSK-3β/β-catenin pathway. Biochem Pharmacol 2025; 235:116831. [PMID: 40021022 DOI: 10.1016/j.bcp.2025.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Eupalinolide B (EB), a primary bioactive compound isolated from Eupatorium lindleyanum DC., has exhibited various pharmacological properties, such as antitumor, anti-inflammatory, and notably, neuroprotective effects in neurodegenerative diseases. However, the in-depth studies on the antidepressant potential of EB and its underlying mechanisms are still lacking. Herein, we investigated the therapeutic effects of EB on corticosterone (CORT)-induced neurotoxicity in PC12 cells and its antidepressant-like effects in rats subjected to chronic unpredictable mild stress (CUMS). In particular, we focused on the molecular mechanisms related to modulating the GSK-3β/β-catenin pathway. Our findings revealed that EB promoted cell proliferation while decreasing apoptosis and oxidative stress in CORT-induced PC12 cells. In vivo, EB alleviated the depressive-like behaviors in CUMS rats, as assayed by the sucrose preference test, open field test, and forced swim test. Additionally, EB attenuated the hippocampal pathological damage and increased Ki67- and doublecortin-positive cell numbers in hippocampal dentate gyrus, thus restoring hippocampal neurogenesis in CUMS rats. The binding of EB to GSK-3β was confirmed using molecular docking and cellular thermal shift assays. Overexpression of GSK-3β diminished the therapeutic effects of EB on CORT-induced PC12 cells, further indicating that GSK-3β is the target of EB. Mechanistically, EB hindered GSK-3β activity and thus activated β-catenin signaling in both CORT-induced PC12 cells and CUMS rat hippocampus, as demonstrated by increased p-GSK-3β (Ser9), reduced p-β-catenin, and elevated β-catenin expression. Collectively, this study offers new insights into the antidepressant mechanisms of EB, highlighting its potential as a candidate for depression treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Xue-Na Gong
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026 Anhui Province, PR China.
| | - Li Cai
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China.
| |
Collapse
|
6
|
Su D, Liu S, Lyu C, Wu D, Wang T, Wan X, Zhou L, Kang C, Guo L. Traditional Herbal Medicine Pithecellobium clypearia (Jack) Benth: Research progress in chemical constituents and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119635. [PMID: 40118196 DOI: 10.1016/j.jep.2025.119635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pithecellobium clypearia, a traditional herbal medicine, has garnered widespread attention for its significant anti-infective benefits. However, there is currently a lack of comprehensive reviews examining the chemical constituents and pharmacological activities of P. clypearia. AIMS OF THE STUDY This review aims to investigate the chemical constituents and pharmacological effects of P. clypearia, and to explore its potential for wider medical applications through the synthesis of these findings. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for Pithecellobium clypearia, Using "Pithecellobium clypearia", "Archidendron clypearia", "pharmacology", "chemical composition" and "biological activity", as the keywords, we summarized the main chemical compositions and pathological mechanisms of P. clypearia. RESULTS A total of 129 compounds were isolated from P. clypearia, the primary active components identified include flavonoids, polysaccharides, lignins, triterpenoids, steroids, and phenolic acids. These compounds contribute to the medicinal plant's diverse pharmacological effects, which include antiviral, antibacterial, anti-inflammatory, antioxidant, and neuroprotective properties. P. clypearia presents great potential, especially in its antiviral and anti-inflammatory effects, indicating its valuable role in future therapeutic strategies. CONCLUSION P. clypearia has demonstrated effectiveness and safety in treating various respiratory and gastrointestinal diseases. It shows good monotherapy efficacy and significantly enhances overall treatment outcomes when used in combination therapy. P. clypearia is a valuable treatment option for patients of different age groups and provides a safe and effective alternative in various clinical settings.
Collapse
Affiliation(s)
- Dapeng Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Siqi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chaogeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dehua Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liangyun Zhou
- Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
8
|
Wang R, Zhang Z, Jiang W, Liu J, Tian C, Wang M. Novel Isatin-Chalcone Hybrid Molecules: Design, Synthesis and Anti-Neuroinflammatory Activity Evaluation. Molecules 2025; 30:1421. [PMID: 40286027 PMCID: PMC11990898 DOI: 10.3390/molecules30071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Neuroinflammation is considered a significant factor in triggering numerous neurodegenerative diseases. Hence, the development of effective anti-inflammatory drugs is of utmost urgency. In this study, three series of new isatin-chalcone hybrid derivatives were successfully designed and synthesized, and their anti-neuritis activities were explored using BV2 microglial cells. The results indicated that compound 4b exhibited the most potent anti-inflammatory activity (IC50 = 1.6 μM; TI = 21.6). After being treated with compound 4b, the production of TNF-α and IL-6 decreased significantly (p < 0.0001). In silico molecular modeling studies on inflammation proteins suggested that compound 4b might bind to TLR4/MD2 and p38. Predicted by the software Molinspiration, the Log p value and Log BB of compound 4b were 3.36 and -0.32, respectively.
Collapse
Affiliation(s)
- Rongrong Wang
- College of Pharmacy, Beihua University, Jilin 132013, China; (R.W.); (W.J.)
| | - Zhili Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.Z.); (J.L.)
| | - Wei Jiang
- College of Pharmacy, Beihua University, Jilin 132013, China; (R.W.); (W.J.)
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.Z.); (J.L.)
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.Z.); (J.L.)
| | - Meng Wang
- College of Pharmacy, Beihua University, Jilin 132013, China; (R.W.); (W.J.)
| |
Collapse
|
9
|
Xu W, Hua Z, Wang Y, Tang W, Ge W, Chen Y, Wang Z, Gu Y, Liu C, Du P. Redox-Induced Stabilization of AMBRA1 by USP7 Promotes Intestinal Oxidative Stress and Colitis Through Antagonizing DUB3-Mediated NRF2 Deubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411320. [PMID: 39887666 PMCID: PMC11948009 DOI: 10.1002/advs.202411320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Inflammatory bowel disease (IBD) is associated with oxidative stress and redox signaling disruption. It is recently reported that proautophagic autophagy/beclin-1 regulator 1 (AMBRA1) is a positive modulator of the NF-κB pathway that promotes intestinal inflammation. However, its effect on intestinal redox state and whether AMBRA1 is regulated by oxidative stress remain unknown. In this study, it is found that AMBRA1 functions as a pro-oxidative factor that increases oxidative stress in intestinal epithelial cells (IECs) in vitro and in vivo. Mechanistically, the N-terminal F1 domain is required for AMBRA1 to competitively interact with the N-terminal domain of NRF2, thereby antagonizing the interaction between deubiquitinating protein 3 (DUB3) and NRF2, suppressing DUB3-mediated NRF2 deubiquitination, and leading to NRF2 degradation. In response to H2O2 stimulation, the interaction between AMBRA1 and ubiquitin-specific protease 7 (USP7) is enhanced, facilitating USP7 to deubiquitinate AMBRA1 at K83 and K86 and stabilize AMBRA1. Notably, the USP7 inhibitor, P5091, inhibits oxidative stress and colitis in vivo. Elevated AMBRA1 expression in inflamed colon tissues from ulcerative colitis patients is negatively correlated with decreased NRF2 protein levels. Overall, this study identifies AMBRA1 as a pro-oxidative factor in IECs and provides a redox-modulating therapeutic strategy for targeting USP7/AMBRA1 in IBD.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Zhebin Hua
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yaosheng Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wenbo Tang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Wensong Ge
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - YingWei Chen
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
| | - Zhongchuan Wang
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Yubei Gu
- Department of GastroenterologyRui Jin HospitalAffiliate to Shanghai Jiao Tong Universityschool of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Chen‐Ying Liu
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| | - Peng Du
- Department of Colorectal SurgeryXinhua HospitalShanghai Jiaotong UniversitySchool of MedicineShanghai200092China
- Shanghai Colorectal Cancer Research CenterShanghai200092China
| |
Collapse
|
10
|
Li H, Sun Y, Yin H, Zhang Y, Yu J, Hou N, Wang P, Liang H, Xie A, Wang X, Dong J, Xu X. Virtual screening of natural products targeting ubiquitin-specific protease 7. J Biomol Struct Dyn 2025; 43:2666-2673. [PMID: 38361286 DOI: 10.1080/07391102.2024.2316779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Ubiquitin-specific protease 7 (USP7) is a promising prognostic and druggable target for cancer therapy. Inhibition of USP7 can activate the MDM2-P53 signaling pathway, thereby promoting cancer cell apoptosis. This study based on watvina molecular docking of virtual screening method and biological evaluation found the new USP7 inhibitors targeting catalytic active site. Three hits were screened from 3760 natural products and validated as USP7 inhibitors by enzymatic and kinetic assays. The IC50 values of scutellarein (Scu), semethylzeylastera (DML) and salvianolic acid C (SAC) were 3.017, 6.865 and 8.495 μM, respectively. Further, we reported that the hits could downregulate MDM2 and activate p53 signal pathway in HCT116 cells. Molecular dynamics simulation was used to investigate the binding mechanism of USP7 to Scu, the compound with the best performance, which formed stable contact with Val296, Gln297, Phe409, Tyr465 and Tyr514. These interactions are essential for maintaining the biological activity of Scu. Three natural products are suitable as lead compounds for the development of novel USP7 inhibitors, especially anti-colon cancer drugs.
Collapse
Affiliation(s)
- Hongju Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ning Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaohong Wang
- Shandong Foreign Trade Vocational College, Qingdao, Shandong, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- Qingdao Marine Science and Technology Center, Qingdao, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
11
|
Wen J, Li Y, Deng W, Li Z. Central nervous system and immune cells interactions in cancer: unveiling new therapeutic avenues. Front Immunol 2025; 16:1528363. [PMID: 40092993 PMCID: PMC11907007 DOI: 10.3389/fimmu.2025.1528363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide. Despite significant advancements in cancer research, our understanding of its complex developmental pathways remains inadequate. Recent research has clarified the intricate relationship between the central nervous system (CNS) and cancer, particularly how the CNS influences tumor growth and metastasis via regulating immune cell activity. The interactions between the central nervous system and immune cells regulate the tumor microenvironment via various signaling pathways, cytokines, neuropeptides, and neurotransmitters, while also incorporating processes that alter the tumor immunological landscape. Furthermore, therapeutic strategies targeting neuro-immune cell interactions, such as immune checkpoint inhibitors, alongside advanced technologies like brain-computer interfaces and nanodelivery systems, exhibit promise in improving treatment efficacy. This complex bidirectional regulatory network significantly affects tumor development, metastasis, patient immune status, and therapy responses. Therefore, understanding the mechanisms regulating CNS-immune cell interactions is crucial for developing innovative therapeutic strategies. This work consolidates advancements in CNS-immune cell interactions, evaluates their potential in cancer treatment strategies, and provides innovative insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
12
|
Huo H, Zhang H, Liu H, Ma J, Zhang Q, Zhao Y, Zheng J, Tu P, Song Y, Li J. In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry. Chin Med 2025; 20:26. [PMID: 40016837 PMCID: PMC11866864 DOI: 10.1186/s13020-025-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.
Collapse
Affiliation(s)
- Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Hang Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Huiting Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jiale Ma
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
| |
Collapse
|
13
|
Hu Y, Gan Y, Lei J, Cai J, Zhou Y, Chen H, Zhang Q, Shi Y. Schaftoside Reduces Depression- and Anxiogenic-like Behaviors in Mice Depression Models. Brain Sci 2025; 15:238. [PMID: 40149760 PMCID: PMC11940525 DOI: 10.3390/brainsci15030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Major depressive disorder is a common mental health issue characterized by persistently low mood and high morbidity and mortality. The major pathophysiology is neuroinflammation, as evidenced by elevated cytokine levels. Patients often fail to achieve full remission with the use of currently available antidepressants, prompting the search for new treatment options. Schaftoside (SS), a flavonoid found in traditional Chinese herbs, has both antioxidant and anti-inflammatory properties. However, its antidepressant effects are poorly understood. METHODS Male C57BL/6 mice underwent chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS) treatment to induce depression- and anxiety-like behaviors. SS was administered at 40, 80, and 160 mg/kg for 28 days. The effect on depression-like behaviors was assessed using behavioral assays, and ELISA was used to measure pro-inflammatory cytokines in the serum and hippocampus. RESULTS SS significantly decreased immobility in the forced swim and tail suspension tests, increased sucrose preference in the sucrose preference test, and reduced feeding latency in the novelty-suppressed feeding test. These findings indicate improved depression and anxiety-like behaviors. ELISA showed that SS lowered interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha levels in the serum and hippocampus of CUMS mice. CONCLUSIONS Our study indicates that SS has antidepressant and anxiolytic effects, possibly through neuroinflammatory processes, making it a promising therapeutic candidate for depression, and thus deserves further investigation into its mechanisms and clinical efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Shi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Y.H.); (Y.G.); (J.L.); (J.C.); (Y.Z.); (H.C.); (Q.Z.)
| |
Collapse
|
14
|
Gu SL, Liu XS, Xu ZS, Li LL, Wu XJ, Li FL, Huang Y, Ran X, Li R. Eupalinolide B alleviates rheumatoid arthritis through the promotion of apoptosis and autophagy via regulating the AMPK/mTOR/ULK-1 signaling axis. Int Immunopharmacol 2025; 148:114179. [PMID: 39874849 DOI: 10.1016/j.intimp.2025.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The excessive proliferation of fibroblast-like synoviocytes (FLS) leads to synovial hyperplasia, a key pathological hallmark of rheumatoid arthritis (RA). Eupalinolide B (EB), a sesquiterpene lactone of Eupatorium lindleyanum DC., has anti-inflammatory effects and anti-proliferative activity in tumor cells. However, its potential use in RA treatment is unclear. This study explored EB's anti-rheumatoid activities by promoting apoptosis and autophagy in RA-FLS and the synovium of adjuvant-induced arthritis (AIA) rats, focusing on its regulation of the AMPK/mTOR/ULK-1 axis. Our findings revealed that EB inhibited proliferation, induced apoptosis, and promoted autophagy in RA-FLS. Autophagy inhibition using 3-methyladenine (3-MA) diminished EB's anti-proliferative effects, suggesting that EB promotes RA-FLS autophagy as a death mechanism. Z-VAD-FMK, a pan-caspase inhibitor, decreased EB-induced autophagy, while 3-MA co-treatment reduced caspase-3 activity, demonstrating that EB-induced apoptosis and autophagy promoted each other to support its anti-proliferative effects. In vivo, EB exhibited clear anti-arthritic effects in AIA rats, as shown by reduced paw swelling, arthritis index, serum levels of TNF-α, IL-1β, and MCP-1, and joint damage, along with decreased Ki67 expression, increased apoptosis, and enhanced autophagy in AIA rat synovium. Mechanistically, EB regulated the AMPK/mTOR/ULK-1 axis in RA-FLS and AIA rat synovium, as evidenced by higher expression of p-AMPK and p-ULK-1 and lower levels of p-mTOR. Notably, co-treatment of the AMPK inhibitor compound C negated EB's beneficial effects in RA-FLS and AIA rats. Collectively, EB demonstrated exact anti-RA effects by inducing apoptosis and autophagy via the regulation of the AMPK/mTOR/ULK-1 axis, highlighting its potential for RA therapy.
Collapse
Affiliation(s)
- Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China.
| |
Collapse
|
15
|
Kuang W, Zhuge R, Song P, Yi L, Zhang S, Zhang Y, Wong YK, Chen R, Zhang J, Wang Y, Liu D, Gong Z, Wang P, Ouyang X, Wang J. Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3. MedComm (Beijing) 2025; 6:e70034. [PMID: 39811801 PMCID: PMC11731104 DOI: 10.1002/mco2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time. We demonstrated that EB ameliorates periodontal inflammation and alveolar bone resorption with a ligated periodontitis mouse model. In addition, the impact of EB on macrophages inflammation was examined in the Raw264.7 cell line. We identified ubiquitin-conjugating enzyme, UBE2D3, as the direct covalent binding protein targets of EB by using a chemoproteomic method based on activity-based protein profiling, biolayer interferometry method, and cellular thermal shift assay. Furthermore, the direct binding site of EB to UBE2D3 was identified using high-resolution mass spectrometry and confirmed by experiments. Taken together, EB ameliorates periodontitis by targeting UBE2D3 to suppress the ubiquitination degradation of IκBα, leading to inactivation of nuclear transcription factor-κB signaling pathway. And this was confirmed by siRNA-mediated gene knockdown in inflammatory macrophages. Our results suggested that EB may be a new kind of UBE2D3 inhibitor and may become a promising therapeutic agent for anti-periodontitis.
Collapse
Affiliation(s)
- Wenhua Kuang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruishen Zhuge
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Ping Song
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Letai Yi
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Inner Mongolia Medical UniversityHohhotChina
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yin Kwan Wong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanbo Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zipeng Gong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Peili Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangying Ouyang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
16
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
17
|
Mu D, Liu J, Mi Y, Wang D, Xu L, Yang Y, Liu Y, Liang D, Hou Y. Gnetupendin A protects against ischemic stroke through activating the PI3K/AKT/mTOR-dependent autophagy pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156233. [PMID: 39550921 DOI: 10.1016/j.phymed.2024.156233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Autophagy has been recently emerged as a prominent factor in the pathogenesis of ischemic stroke (IS) and is increasingly being considered as a potential therapeutic target for IS. Gnetum parvifolium has been identified as a potential therapeutic agent for inflammatory diseases such as rheumatism and traumatic injuries. However, the pharmacological effects of Gnetupindin A (GA), a stilbene compound isolated from Gnetum parvifolium, have not been fully elucidated until now. OBJECTIVE Here we identified the therapeutic potential of GA for IS, deeply exploring the possible mechanisms related to its regulation of autophagy. METHODS The mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and the oxygen-glucose deprivation reperfusion (OGD/R)-exposed cells served as models to study the protection of GA against IS. The adeno-associated virus (AAV) encoding shAtg5, in conjunction with autophagy inhibitor 3-Methyladenine (3-MA) were utilized to explore the role of GA in regulating autophagy following IS. Molecular docking, CETSA, and DARTS were used to identify the specific therapeutic target of GA. PI3K inhibitor LY294002 was employed to test the participation of PI3K in GA-mediated autophagy and neuroprotective effects following IS. RESULTS Our findings revealed that treatment with GA significantly alleviated the brain infract volume, edema, improved neurological deficits and attenuated apoptosis. Mechanistically, we found that GA promoted autophagic flow both in vivo and in vitro after IS. Notably, neural-targeted knockdown of Atg5 abolished the neuroprotective effects mediated by GA. Inhibition of autophagy using 3-MA blocked the attenuation on apoptosis induced by GA. Moreover, molecular docking, CETSA, and DARTS analysis demonstrated that GA specifically targeted PI3K and further inhibited the activation of PI3K/AKT/mTOR signaling pathway. LY294002, which inhibits PI3K, reversed GA-induced autophagy and neuroprotective effects on OGD/R-treated cells. CONCLUSION We demonstrated, for the first time, that GA protects against IS through promoting the PI3K/AKT/mTOR-dependent autophagy pathway. Our findings provide a novel mechanistic insight into the anti-IS effect of GA in regulating autophagy.
Collapse
Affiliation(s)
- Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Dong Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
18
|
Wang L, Zhang Y, Yu T, Wu H. The Role and Mechanism of Deubiquitinase USP7 in Tumor-Associated Inflammation. Biomedicines 2024; 12:2734. [PMID: 39767641 PMCID: PMC11726842 DOI: 10.3390/biomedicines12122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes are a class of proteases that remove ubiquitin tags from proteins, thereby controlling protein stability and function. Tumor inflammation arises from interactions between tumor cells and their microenvironment, which trigger an inflammatory response. The deubiquitinating enzyme USP7 plays a central role in this process. Research suggests that USP7 may modulate various signaling pathways related to inflammatory responses through its deubiquitinating activity, thereby influencing tumor development and progression, including regulating T cell immune activity, improving macrophage anti-tumor activity, and regulating NF-κB signal pathways. Overall, describing the role and mechanism of USP7 in the tumor inflammatory response is of great importance for elucidating the regulatory mechanism of tumor inflammation and developing new therapeutic strategies. This article mainly reviews the structure, function, role, and mechanism of USP7 in the tumor inflammation response.
Collapse
Affiliation(s)
- Luhong Wang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhang
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Tao Yu
- Cancer Hospital Affiliated to Dalian University of Technology, Shenyang 110042, China; (L.W.); (Y.Z.)
| | - Huijian Wu
- Dalian Key Laboratory of Protein Modification and Disease, Faculty of Medicine, School of Biological Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
20
|
Huang L, Li G, Zhang Y, Zhuge R, Qin S, Qian J, Chen R, Kwan Wong Y, Tang H, Wang P, Xiao W, Wang J. Small-molecule targeting BCAT1-mediated BCAA metabolism inhibits the activation of SHOC2-RAS-ERK to induce apoptosis of Triple-negative breast cancer cells. J Adv Res 2024:S2090-1232(24)00476-4. [PMID: 39490614 DOI: 10.1016/j.jare.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with the worst prognosis. Exploring novel carcinogenic factors and therapeutic drugs for TNBC remains a focus to improve prognosis. Branched-chain amino acid transaminase 1 (BCAT1), a crucial enzyme in branched-chain amino acid (BCAA) metabolism, has been linked to various tumor developments, but its carcinogenic function and mechanism in TNBC remain unclear. Eupalinolide B (EB) is a naturally-derived small-molecule with anti-tumor activity, but its role in TNBC remains unknown. OBJECTIVES By exploring the targets and pharmacological mechanisms of EB in inhibiting TNBC, this study aimed to discover novel therapeutic targets and potential inhibitors for TNBC, and elucidate novel pathogenic mechanisms of TNBC. METHODS The inhibitory effect of EB on TNBC was investigated using mouse models and cellular phenotypic experiments. Activity-based protein profiling (ABPP) technology, pull down-WB, CETSA-WB and MST were utilized to discover and validate the targets of EB. The oncogenic role of BCAT1 was determined through clinical data analysis and biochemical experiments. To elucidate the mechanism by which EB inhibited TNBC, many methods, including but not limited to HPLC and proteomic sequencing were used. RESULTS We found that EB significantly inhibited TNBC progression. We identified BCAT1 as the direct target of EB and confirmed that BCAT1 was critical for TNBC development. EB inhibited BCAT1-involved BCAA metabolism to reduce the synthesis of BCAAs (including Leu, Ile, and Val), thereby inhibiting SHOC2 (a Leu-rich repeat protein) expression and the downstream SHOC2-participating RAS-ERK signaling pathway, ultimately leading to apoptosis of TNBC cells. CONCLUSION Collectively, this study not only elucidates the oncogenic role of BCAT1 and its downstream SHOC2-RAS-ERK signaling axis in TNBC progression but also opens up avenues for potential therapies targeting BCAT1 or BCAA metabolism (using EB alone or in combination with its inhibitor candesartan) for TNBC treatment.
Collapse
Affiliation(s)
- Ling Huang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Guanjun Li
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Ying Zhang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; Oncology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Bei Xian Ge, Xi Cheng District, Beijing 100053, China
| | - Ruishen Zhuge
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Ruixing Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Huan Tang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peili Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Wei Xiao
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jigang Wang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Zhu Y, Meng Y, Zhang J, Liu R, Shen S, Gu L, Wong YK, Ma A, Chai X, Zhang Y, Liu Y, Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int J Biol Sci 2024; 20:5510-5530. [PMID: 39494324 PMCID: PMC11528459 DOI: 10.7150/ijbs.99592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Celastrol, a compound derived from traditional Chinese medicine, has therapeutic effects and has been used to treat inflammation-related diseases, cancer, cardiovascular diseases, and neurodegenerative diseases. However, current reviews lack a comprehensive and systematic summary of the anti-tumor mechanisms and molecular targets of celastrol. For this reason, this paper reviews the anticancer properties of celastrol and the molecular mechanisms underlying its anticancer effects. This paper primarily focuses on the mechanism of action of celastrol in terms of inhibition of cell proliferation and regulation of the cell cycle, regulation of apoptosis and autophagy, inhibition of cell invasion and metastasis, anti-inflammation, regulation of immunotherapy, and angiogenesis. More importantly, the target proteins of celastrol identified by chemical proteomics or other methods are highlighted, providing detailed targets with novel therapeutic potential for anti-tumor treatment. In addition, we describe the side effects and strategies to improve the bioavailability of celastrol. In summary, this paper analyzes celastrol, a natural compound with therapeutic effects and clear targets, aiming to draw more attention from the scientific and pharmacological communities and accelerating its clinical application for the benefit of cancer patients.
Collapse
Affiliation(s)
- Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin-kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
23
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
24
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
25
|
Zhao Y, Peng Y, Wei X, Wu G, Li B, Li X, Long L, Zeng J, Luo W, Tian Y, Wang Z, Peng X. N-Salicyloyl Tryptamine Derivatives as Potent Neuroinflammation Inhibitors by Constraining Microglia Activation via a STAT3 Pathway. ACS Chem Neurosci 2024; 15:2484-2503. [PMID: 38865609 DOI: 10.1021/acschemneuro.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.
Collapse
Affiliation(s)
- Yuting Zhao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiuzhen Wei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Genping Wu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bo Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Luo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ying Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
26
|
Zhang W, Wu Q, Zhang X, Qin Y, Gao L, Hu S, Du S, Ren C. NLRP3 promotes radiation-induced brain injury by regulating microglial pyroptosis. Neuropathol Appl Neurobiol 2024; 50:e12992. [PMID: 38831600 DOI: 10.1111/nan.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Radiation Oncology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaonan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Qin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shushu Hu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Ren
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Guan X, Wang Y, Yu W, Wei Y, Lu Y, Dai E, Dong X, Zhao B, Hu C, Yuan L, Luan X, Miao K, Chen B, Cheng X, Zhang W, Qin J. Blocking Ubiquitin-Specific Protease 7 Induces Ferroptosis in Gastric Cancer via Targeting Stearoyl-CoA Desaturase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307899. [PMID: 38460164 PMCID: PMC11095140 DOI: 10.1002/advs.202307899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Indexed: 03/11/2024]
Abstract
Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Yichao Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhouZhejiang310014China
| | - Wenkai Yu
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yong Wei
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Lu
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Enyu Dai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas77030USA
| | - Xiaowu Dong
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Zhao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Can Hu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Li Yuan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kai Miao
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Bonan Chen
- Department of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
| | - Xiang‐Dong Cheng
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
- School of PharmacyNaval Medical UniversityShanghai200433China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100193China
| | - Jiang‐Jiang Qin
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| |
Collapse
|
29
|
Kang YJ, Hyeon SJ, McQuade A, Lim J, Baek SH, Diep YN, Do KV, Jeon Y, Jo D, Lee CJ, Blurton‐Jones M, Ryu H, Cho H. Neurotoxic Microglial Activation via IFNγ-Induced Nrf2 Reduction Exacerbating Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304357. [PMID: 38482922 PMCID: PMC11132036 DOI: 10.1002/advs.202304357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/08/2024] [Indexed: 05/29/2024]
Abstract
Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aβ)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Seung Jae Hyeon
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Amanda McQuade
- Institute for Neurodegenerative DiseasesUniversity of CaliforniaSan FranciscoCA94158USA
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Jiwoon Lim
- IBS SchoolUniversity of Science and Technology (UST)Daejeon34114Republic of Korea
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Seung Hyun Baek
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yen N. Diep
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Khanh V. Do
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Yeji Jeon
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| | - Dong‐Gyu Jo
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoul16419Republic of Korea
| | - C. Justin Lee
- Center for Cognition and SocialityInstitute for Basic Science (IBS)Daejeon34126Republic of Korea
| | - Mathew Blurton‐Jones
- Department of Neurobiology & BehaviorUniversity of California IrvineIrvineCA92697USA
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCA92697USA
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA92697USA
| | - Hoon Ryu
- Center for Brain DisordersBrain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hansang Cho
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of BiophysicsSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwonGyeonggi16419Republic of Korea
| |
Collapse
|
30
|
Cui J, Xu L, Sun Y, Dai L, Mo Y, Yun K, Chen Y, Chen L. VSP-2 attenuates secretion of inflammatory cytokines induced by LPS in BV2 cells by mediating the PPARγ /NF-κB signaling pathway. Open Life Sci 2024; 19:20220861. [PMID: 38681727 PMCID: PMC11049741 DOI: 10.1515/biol-2022-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation, characterized by microglial activation and the subsequent secretion of inflammatory cytokines, plays a pivotal role in neurodegenerative diseases and brain injuries, often leading to neuronal damage and death. Alleviating neuroinflammation has thus emerged as a promising strategy to protect neurons and ameliorate neurodegenerative disorders. While peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated potential therapeutic actions on neuroinflammation, their prolonged use, such as with rosiglitazone, can lead to cardiac risks and lipid differentiation disorders. In this study, we investigated the effects of a newly synthesized PPARγ agonist, VSP-2, on secretion of inflammatory cytokines in BV2 cells. Treatment with VSP-2 significantly reduced the mRNA and protein levels of proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, VSP-2 attenuated the phosphorylation of nuclear factor kappa B (NF-κB) (65 kD) and IκBα, as well as the nuclear translocation of NF-κB (65 kD). Additionally, the use of PPARγ small interfering RNA was able to attenuate the effects of VSP-2 on proinflammatory cytokines and the NF-κB pathway. In conclusion, our findings suggest that VSP-2 effectively suppressed the expressions of IL-1β, IL-6, and TNF-α via the PPARγ/NF-κB signaling pathway. Given its potential therapeutic benefits, VSP-2 may emerge as a promising candidate for the treatment of neurodegenerative diseases or brain injuries associated with neuroinflammation.
Collapse
Affiliation(s)
- Jingxin Cui
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Liwei Xu
- Scientific Experiment Center, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, 541199, Guangxi, China
| | - Yimeng Sun
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Lingfei Dai
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Yuxiu Mo
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Keli Yun
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Yifei Chen
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| | - Linglin Chen
- School of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin, Guangxi, 541199, China
| |
Collapse
|
31
|
Cui Z, Li C, Liu W, Sun M, Deng S, Cao J, Yang H, Chen P. Scutellarin activates IDH1 to exert antitumor effects in hepatocellular carcinoma progression. Cell Death Dis 2024; 15:267. [PMID: 38622131 PMCID: PMC11018852 DOI: 10.1038/s41419-024-06625-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.
Collapse
Affiliation(s)
- Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences & MEGAROBO, Beijing, China.
| |
Collapse
|
32
|
Li Q, Ding X, Chang Z, Fan X, Pan J, Yang Y, Li X, Jiang W, Fan K. Metal-Organic Framework Based Nanozyme System for NLRP3 Inflammasome-Mediated Neuroinflammatory Regulation in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2303454. [PMID: 38031989 DOI: 10.1002/adhm.202303454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Neuroinflammation is associated with a series of pathological symptoms in Parkinson's disease (PD), including α-synuclein aggregation and dopaminergic neuronal death. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation at the lesion site and is a promising target for PD treatment. In this study, a nanoscale metal-organic framework (Zr-FeP MOF) based nanozyme is fabricated using Fe-5,10,15,20-tetra (4-carboxyphenyl) porphyrin (Fe-TCPP) and Zr6 cluster as ligands. The Zr-FeP MOF is subsequently encapsulated with mannitol (Man)-liposome, resulting in the formation of Zr-FeP MOF@Man liposome (MOF@Man Liposome) nanozyme system. The in vitro studies show that this nanozyme system is effective in relieving the formation of NLRP3 inflammasome and mitochondrial dysfunction. In mouse models of PD, the nanozyme system demonstrates a significant blood-brain barrier-crossing capability attributed to the Man-mediated brain targeting. Additionally, transcriptomic and biochemical studies show that the nanozyme system effectively inhibits the formation and assembly of inflammasome components, mitigating the activation of glial cells and neuroinflammatory response, and ultimately regulating the pathological symptoms of PD effectively.
Collapse
Affiliation(s)
- Qing Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohui Chang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaowan Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangpeng Pan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Yang
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
33
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
34
|
Chen H, Hu Q, Wen T, Luo L, Liu L, Wang L, Shen X. Arteannuin B, a sesquiterpene lactone from Artemisia annua, attenuates inflammatory response by inhibiting the ubiquitin-conjugating enzyme UBE2D3-mediated NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155263. [PMID: 38181532 DOI: 10.1016/j.phymed.2023.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1β, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.
Collapse
Affiliation(s)
- Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
35
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Feng Z, Sun N, Noor F, Sun P, Zhang H, Zhong J, Yin W, Fan K, Yang H, Zhang Z, Sun Y, Li H. Matrine Targets BTF3 to Inhibit the Growth of Canine Mammary Tumor Cells. Int J Mol Sci 2023; 25:540. [PMID: 38203709 PMCID: PMC10779273 DOI: 10.3390/ijms25010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The canine mammary tumor model is more suitable for studying human breast cancer, and the safety concentrations of matrine and the biotin-labeled matrine probe were determined in canine primary mammary epithelial cells, and then selected canine mammary tumor cell lines CHMm and CHMp were incubated with matrine, and cell viability was detected by CCK-8. The biotin-labeled matrine probe was used to pull-down the targets of matrine in canine mammary tumor cells, and the targets were screened in combination with activity-based protein profiling (ABPP) and Genecards database, and verified by qPCR and western blot. The results showed that the maximum non-cytotoxic concentrations of matrine and biotin-labeled matrine probe in canine primary mammary epithelial cells were 250 μg/mL and 500 μg/mL, respectively. Matrine and biotin-labeled matrine probe had a proliferation inhibitory effect time-dependently on CHMm and CHMp cells within a safe concentration range, and induced autophagy in cells. Then BTF3 targets were obtained by applying ABPP and Genecards screening. Cellular thermal shift assay (CETSA) findings indicated that matrine could increase the heat stability of BTF3 protein. Pull-down employing biotin-labeled matrine probe with CHMm and CHMp cell lysates revealed that BTF3 protein was detected in the biotin-labeled matrine probe group and that BTF3 protein was significantly decreased by the addition of matrine. The qPCR and western blot findings of CHMm and CHMp cells treated with matrine revealed that matrine decreased the expression of the BTF3 gene and protein with the extension of the action time, and the impact was more substantial at the protein level, respectively.
Collapse
Affiliation(s)
- Zijian Feng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Fida Noor
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030600, China; (K.F.); (Z.Z.)
| | - Huizhen Yang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Zhenbiao Zhang
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030600, China; (K.F.); (Z.Z.)
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China; (Z.F.); (N.S.); (F.N.); (P.S.); (H.Z.); (J.Z.); (W.Y.); (H.Y.); (Y.S.)
| |
Collapse
|
37
|
Xiong LJ, Tian YF, Zhai CT, Li W. Application and Effectiveness of Chinese Medicine in Regulating Immune Checkpoint Pathways. Chin J Integr Med 2023; 29:1045-1056. [PMID: 37580466 DOI: 10.1007/s11655-023-3743-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/16/2023]
Abstract
Immunotherapy targeting immune checkpoint molecules has emerged as a key approach in cancer treatment, representing the forefront of antitumor research. However, studies on immune checkpoint molecules have mainly focused on targeted therapies. Chinese medicine (CM) research as a complementary medicine has revealed that immune checkpoint molecules also undergo disease-specific changes in the context of autoimmune diseases. This review article presents a comprehensive analysis of CM studies on immune checkpoint molecules in the last 5 years, with a focus on their role in different diseases and treatment modalities. CM research predominantly utilizes oral administration of herbal plant extracts or acupuncture techniques, which stimulate the immune system by activating specific acupoints through temperature and needling. In this study, we analyzed the modulation and mechanisms of immune checkpoint molecules associated with different coinhibitory and costimulatory molecules, and reviewed the immune functions of related molecules and CM studies in treating autoimmune diseases and tumors. By summarizing the characteristics and research value of CM in regulating immune checkpoint molecules, this review aims to provide a useful reference for future studies in this field.
Collapse
Affiliation(s)
- Luo-Jie Xiong
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yue-Feng Tian
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| | - Chun-Tao Zhai
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Wei Li
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| |
Collapse
|
38
|
Wu J, Han Y, Xu H, Sun H, Wang R, Ren H, Wang G. Deficient chaperone-mediated autophagy facilitates LPS-induced microglial activation via regulation of the p300/NF-κB/NLRP3 pathway. SCIENCE ADVANCES 2023; 9:eadi8343. [PMID: 37801503 PMCID: PMC10558133 DOI: 10.1126/sciadv.adi8343] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Neuroinflammation is a pathological change that is involved in the progression of Parkinson's disease. Dysfunction of chaperone-mediated autophagy (CMA) has proinflammatory effects. However, the mechanism by which CMA mediates inflammation and whether CMA affects microglia and microglia-mediated neuronal damage remain to be elucidated. In the present study, we found that LAMP2A, a limiting protein for CMA, was decreased in lipopolysaccharide (LPS)-treated primary microglia. Activation of CMA by the activator CA significantly repressed LPS-induced microglial activation, whereas CMA dysfunction exacerbated microglial activation. We further identified that the protein p300 was a substrate of CMA. Degradation of p300 by CMA reduced p65 acetylation, thereby inhibiting the transcription of proinflammatory factors and the activation of the NLRP3 inflammasome. Furthermore, CA pretreatment inhibited microglia-mediated inflammation and, in turn, attenuated neuronal death in vitro and in vivo. Our findings suggest repressive effects of CMA on microglial activation through the p300-associated NF-κB signaling pathway, thus uncovering a mechanistic link between CMA and neuroinflammation.
Collapse
Affiliation(s)
- Jin Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yingying Han
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hao Xu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
- MOE Key Laboratory, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
39
|
Asveda T, Priti T, Ravanan P. Exploring microglia and their phenomenal concatenation of stress responses in neurodegenerative disorders. Life Sci 2023:121920. [PMID: 37429415 DOI: 10.1016/j.lfs.2023.121920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Neuronal cells are highly functioning but also extremely stress-sensitive cells. By defending the neuronal cells against pathogenic insults, microglial cells, a unique cell type, act as the frontline cavalry in the central nervous system (CNS). Their remarkable and unique ability to self-renew independently after their creation is crucial for maintaining normal brain function and neuroprotection. They have a wide range of molecular sensors that help maintain CNS homeostasis during development and adulthood. Despite being the protector of the CNS, studies have revealed that persistent microglial activation may be the root cause of innumerable neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and Amyloid Lateral Sclerosis (ALS). From our vigorous review, we state that there is a possible interlinking between pathways of Endoplasmic reticulum (ER) stress response, inflammation, and oxidative stress resulting in dysregulation of the microglial population, directly influencing the accumulation of pro-inflammatory cytokines, complement factors, free radicals, and nitric oxides leading to cell death via apoptosis. Recent research uses the suppression of these three pathways as a therapeutic approach to prevent neuronal death. Hence, in this review, we have spotlighted the advancement in microglial studies, which focus on their molecular defenses against multiple stresses, and current therapeutic strategies indirectly targeting glial cells for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Thankavelu Asveda
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Talwar Priti
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
40
|
Chen W, Zhang J, Zhang Y, Zhang J, Li W, Sha L, Xia Y, Chen L. Pharmacological modulation of autophagy for epilepsy therapy: opportunities and obstacles. Drug Discov Today 2023; 28:103600. [PMID: 37119963 DOI: 10.1016/j.drudis.2023.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Epilepsy (EP) is a long-term neurological disorder characterized by neuroinflammatory responses, neuronal apoptosis, imbalance between excitatory and inhibitory neurotransmitters, and oxidative stress in the brain. Autophagy is a process of cellular self-regulation to maintain normal physiological functions. Emerging evidence suggests that dysfunctional autophagy pathways in neurons are a potential mechanism underlying EP pathogenesis. In this review, we discuss current evidence and molecular mechanisms of autophagy dysregulation in EP and the probable function of autophagy in epileptogenesis. Moreover, we review the autophagy modulators reported for the treatment of EP models, and discuss the obstacles to, and opportunities for, the potential therapeutic applications of novel autophagy modulators as EP therapies. Teaser: Defective autophagy affects the onset and progression of epilepsy, and many anti-epileptic drugs have autophagy-modulating effects.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanling Li
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Xia
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
41
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
42
|
Zhang J, Zhang M, Huo XK, Ning J, Yu ZL, Morisseau C, Sun CP, Hammock BD, Ma XC. Macrophage Inactivation by Small Molecule Wedelolactone via Targeting sEH for the Treatment of LPS-Induced Acute Lung Injury. ACS CENTRAL SCIENCE 2023; 9:440-456. [PMID: 36968547 PMCID: PMC10037491 DOI: 10.1021/acscentsci.2c01424] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Soluble epoxide hydrolase (sEH) plays a critical role in inflammation by modulating levels of epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFAs). Here, we investigate the possible role of sEH in lipopolysaccharide (LPS)-mediated macrophage activation and acute lung injury (ALI). In this study, we found that a small molecule, wedelolactone (WED), targeted sEH and led to macrophage inactivation. Through the molecular interaction with amino acids Phe362 and Gln384, WED suppressed sEH activity to enhance levels of EETs, thus attenuating inflammation and oxidative stress by regulating glycogen synthase kinase 3beta (GSK3β)-mediated nuclear factor-kappa B (NF-κB) and nuclear factor E2-related factor 2 (Nrf2) pathways in vitro. In an LPS-stimulated ALI animal model, pharmacological sEH inhibition by WED or sEH knockout (KO) alleviated pulmonary damage, such as the increase in the alveolar wall thickness and collapse. Additionally, WED or sEH genetic KO both suppressed macrophage activation and attenuated inflammation and oxidative stress in vivo. These findings provided the broader prospects for ALI treatment by targeting sEH to alleviate inflammation and oxidative stress and suggested WED as a natural lead candidate for the development of novel synthetic sEH inhibitors.
Collapse
Affiliation(s)
- Juan Zhang
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
- School
of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Min Zhang
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
- School
of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Xiao-Kui Huo
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Jing Ning
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhen-Long Yu
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Christophe Morisseau
- Department
of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Cheng-Peng Sun
- College
of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Bruce D. Hammock
- Department
of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Second
Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
43
|
ATF5 Attenuates the Secretion of Pro-Inflammatory Cytokines in Activated Microglia. Int J Mol Sci 2023; 24:ijms24043322. [PMID: 36834738 PMCID: PMC9961550 DOI: 10.3390/ijms24043322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The highly dynamic changes in microglia necessary to achieve a rapid neuroinflammatory response require a supply of energy from mitochondrial respiration, which leads to the accumulation of unfolded mitochondrial proteins. We previously reported that microglial activation is correlated with the mitochondrial unfolded protein response (UPRmt) in a kaolin-induced hydrocephalus model, but we still do not know the extent to which these changes in microglia are involved in cytokine release. Here, we investigated the activation of BV-2 cells and found that treatment with lipopolysaccharide (LPS) for 48 h increased the secretion of pro-inflammatory cytokines. This increase was accompanied by a concurrent decrease in oxygen consumption rate (OCR) and mitochondrial membrane potential (MMP), in association with the up-regulation of the UPRmt. Inhibition of the UPRmt by knockdown of ATF5, a key upstream regulator of the UPRmt, using small-interfering RNA against ATF5 (siATF5) not only increased production of the pro-inflammatory cytokines, interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α), but also decreased MMP. Our results suggest that ATF5-dependent induction of the UPRmt in microglia acts as a protective mechanism during neuroinflammation and may be a potential therapeutic target for reducing neuroinflammation.
Collapse
|
44
|
Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K, Wang Q. Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes. Front Pharmacol 2023; 14:1093696. [PMID: 36762117 PMCID: PMC9905117 DOI: 10.3389/fphar.2023.1093696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Eupalinolide A (EA; Z-configuration) and eupalinolide B (EB; E-configuration) are bioactive cis-trans isomers isolated from Eupatorii Lindleyani Herba that exert anti-inflammatory and antitumor effects. Although one pharmacokinetic study found that the metabolic parameters of the isomers were different in rats, metabolic processes relevant to EA and EB remain largely unknown. Our preliminary findings revealed that EA and EB are rapidly hydrolyzed by carboxylesterase. Here, we investigated the metabolic stability and enzyme kinetics of carboxylesterase-mediated hydrolysis and cytochrome P450 (CYP)-mediated oxidation of EA and EB in human liver microsomes (HLMs). We also explored differences in the hydrolytic stability of EA and EB in human liver microsomes and rat liver microsomes (RLMs). Moreover, cytochrome P450 reaction phenotyping of the isomers was performed via in silico methods (i.e., using a quantitative structure-activity relationship model and molecular docking) and confirmed using human recombinant enzymes. The total normalized rate approach was considered to assess the relative contributions of five major cytochrome P450s to EA and EB metabolism. We found that EA and EB were eliminated rapidly, mainly by carboxylesterase-mediated hydrolysis, as compared with cytochrome P450-mediated oxidation. An inter-species difference was observed as well, with faster rates of EA and EB hydrolysis in rat liver microsomes. Furthermore, our findings confirmed EA and EB were metabolized by multiple cytochrome P450s, among which CYP3A4 played a particularly important role.
Collapse
Affiliation(s)
- Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China,Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, China,Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| |
Collapse
|
45
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
46
|
Zhang X, Yang S, Han S, Sun Y, Han M, Zheng X, Li F, Wei Y, Wang Y, Bi J. Differential methylation of circRNA m6A in an APP/PS1 Alzheimer's disease mouse model. Mol Med Rep 2023; 27:55. [PMID: 36660942 PMCID: PMC9879070 DOI: 10.3892/mmr.2023.12942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/25/2022] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disease characterized by memory loss and progressive cognitive impairment. The characteristic AD pathologies include extracellular senile plaques formed by β‑amyloid protein deposition, neurofibrillary tangles formed by hyper‑phosphorylation of τ protein and neuronal loss caused by glial cell proliferation. However, the pathogenesis of AD is still unclear. Dysregulation of RNA methylation is associated with biological processes, including neurodevelopment and neurodegenerative disease. N6‑methyladenosine (m6A) is the main modification in eukaryotic RNA and may be associated with the pathophysiology of AD. Circular RNA (circRNA) is a new type of evolutionarily conserved non‑coding RNA without 5'‑cap and 3'‑polyadenylic acid tail. circRNA undergoes m6A RNA methylation and may be involved in the pathogenesis of AD. In the present study, high‑throughput sequencing was performed to assess the degree of circRNA m6A methylation in APP/PS1 AD and C57BL/6 mice. These results suggested that circRNA m6A methylation in AD mice was markedly altered compared to the control group. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to predict associated pathways; genes with different circRNA m6A methylation in AD mice were associated with 'axon guidance', 'long‑term potentiation', 'glutamatergic synapse', 'cholinergic synapse', 'GABAergic synapse' and 'long‑term depression'. Methylated RNA immunoprecipitation reverse transcription‑quantitative PCR demonstrated that among the eight selected circRNA m6A genes, there were five genes that demonstrated significantly increased methylation and three demonstrated significantly decreased methylation. In summary, the present study indicated that circRNA m6A methylation may be associated with pathogenesis of AD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Suge Yang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Song Han
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Sun
- Department of Outpatients, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Han
- Department of Geriatric Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaolei Zheng
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fan Li
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Wei
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yun Wang
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China,Correspondence to: Dr Yun Wang, Department of Neurological Medicine, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, Shandong 250033, P.R. China, E-mail:
| | - Jianzhong Bi
- Department of Neurological Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
47
|
Hong J, Wong B, Rhodes CJ, Kurt Z, Schwantes-An TH, Mickler EA, Gräf S, Eyries M, Lutz KA, Pauciulo MW, Trembath RC, Montani D, Morrell NW, Wilkins MR, Nichols WC, Trégouët DA, Aldred MA, Desai AA, Tuder RM, Geraci MW, Eghbali M, Stearman RS, Yang X. Integrative Multiomics to Dissect the Lung Transcriptional Landscape of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523812. [PMID: 36712057 PMCID: PMC9882207 DOI: 10.1101/2023.01.12.523812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.
Collapse
|