1
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025; 19:18003-18036. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
Zhang W, Wang X, Guo Z. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges. MATERIALS HORIZONS 2025; 12:3267-3285. [PMID: 39992357 DOI: 10.1039/d4mh01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The manipulation of droplets with non-destructive, efficient, and high-precision features is of great importance in several fields, including microfluidics and biomedicine. The lubrication layer of bioinspired slippery surfaces demonstrates remarkable stability and self-restoration capabilities when subjected to external perturbations. Consequently, research into the manipulation of droplets on slippery surfaces has continued to make progress. This paper presents a review of the methods of droplet manipulation on bioinspired slippery surfaces. It begins by outlining the basic theory of slippery surfaces and the mechanism of droplet motion on slippery surfaces. Furthermore, droplet manipulation methods on slippery surfaces are classified into active and passive approaches based on the presence of external stimuli (e.g., heat, light, electricity, and magnetism). Finally, an outlook is provided on the current challenges facing droplet manipulation on slippery surfaces, and potential solution ideas are presented.
Collapse
Affiliation(s)
- Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaobo Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
3
|
Yan Z, Kong Z, Tang Y, Zhang K, He Y, Yuan W. A Bioinspired Micro-Grooved Structure for Low Snow Adhesion and Effective Snow-Shedding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500839. [PMID: 40167478 DOI: 10.1002/adma.202500839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Many outdoor devices require effective snow prevention solutions, yet existing passive anti-icing technologies are inadequate for snow repellency due to the variability of snow properties. This study addresses this gap by proposing a bioinspired micro-grooved anti-snow structure that minimizes van der Waals forces through reduced contact area and mitigates capillary effects via a V-shaped design, facilitating the separation of liquid water at the interface. Snow-shedding performance is shown to be highly sensitive to surface roughness, with the periodic smoothness of micro-grooves significantly reducing mechanical interlocking with snow. In contrast, hierarchical superhydrophobic structures strongly interlock with ice grains, preventing spontaneous snow-shedding even at extremely low adhesion forces. By embedding superhydrophobic nanoparticles into the micro-groove structure, this study presents a multifunctional design that integrates anti-icing, anti-snow, and water-repellent properties. Experimental results demonstrate that the structure effectively balances adhesion reduction and snow-shedding performance, showing promising potential for photovoltaic solar power systems and large-scale architectural applications.
Collapse
Affiliation(s)
- Zexiang Yan
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyu Kong
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yalin Tang
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kun Zhang
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yang He
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weizheng Yuan
- Key Lab of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an, 710072, China
- Shaan'xi Key Lab of MEMS/NEMS, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Huo J, Gou X, Zhang J, Zhu J, Chen F. A Review of Droplet/Bubble Transportation on Bionic Superwetting Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412363. [PMID: 40159829 DOI: 10.1002/smll.202412363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Indexed: 04/02/2025]
Abstract
The controllable droplets/bubble transportation has a wide range of applications in the fields of biomedical, chemistry, energy, and material applications, and has aroused great attention for its significant scientific and technology importance. The main challenges derived from the liquid/solid or gas/solid contact strength and actuating energy input. Artificial superwetting surfaces inspired by nature creatures have triggered technology revolution in many fields relevant to droplet operation, and the applied actuating force improve the controllability to preferential direction. In this review, we highlights recent advancements in droplets/bubble transportation on the superwetting surfaces driven by passive or active stimulation methods inspired by bionic function interfaces. The three main superwetting surfaces including superhydrophobic surface, slippery liquid-infused porous surface, hybrid surface, various stimuli methods including gravity/buoyance, chemical/morphology gradient, heat, magnetism, electricity, light, adhesion force, and prosperous applications including micro-reaction, biochemical analysis, fog collection/antifog, energy transfer, bubble/liquid micro-robot, self-cleaning, light/circle switch have been systematically summarized. Finally, the challenges and future perspectives of research innovations and practical applications are discussed.
Collapse
Affiliation(s)
- Jinglan Huo
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangfeng Zhu
- School of Optoelectronic Engineering, Xidian University, Xi'an, 710071, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Wang Z, Jiang L, Heng L. Liquid Adhesion Regulation on Bioinspired Slippery Surfaces: From Theory to Application. ACS NANO 2025; 19:13549-13566. [PMID: 40178580 DOI: 10.1021/acsnano.5c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Regulation of liquid adhesion on functional surfaces has attracted increasing attention due to its significant implications for fundamental research in liquid manipulation and a wide array of applications. Inspired by the slippery peristomes of Nepenthes pitcher plants, the concept of slippery surfaces with regulatable liquid adhesion under external stimuli was proposed and demonstrated. This review concentrates on the advancements in liquid adhesion regulation on these bioinspired slippery surfaces. Initially, we provide a concise introduction to the basic theory and design criteria of stable slippery surfaces. Following this, we summarize the characterization methods and influence factors of liquid adhesion on these surfaces. We then categorize the smart regulation modes of liquid adhesion into four key aspects: modulating the lubricant's phase, thickness, structure, and the interactions between the lubricant and the repellent liquid. Additionally, we systematically emphasize multibehavioral liquid manipulation strategies, such as movement, merging, splitting, bouncing, and rotating, along with the emerging applications of slippery surfaces, including pipetting devices, fog collection, microreactors, biochips, and nanogenerators. Finally, we discuss the remaining challenges and future perspectives for regulating liquid adhesion and the potential applications of smart slippery surfaces.
Collapse
Affiliation(s)
- Zubin Wang
- School of Chemistry, Beihang University, Beijing 100191, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Jiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Liping Heng
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Dai Q, Du C, Huang W, Wang X. Regulation of Liquid Self-Transport Through Architectural-Thermal Coupling: Transitioning From Free Surfaces to Open Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412483. [PMID: 39888291 PMCID: PMC12005752 DOI: 10.1002/advs.202412483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/15/2024] [Indexed: 02/01/2025]
Abstract
In this work, the regulation of liquid self-transport is achieved through architectural and thermal coupling, transitioning from free surfaces to open channels. Hierarchical structures inspired by the skin of a Texas horned lizard are designed, with the primary structure of wedged grooves and the secondary structure of capillary crura. This design enables advantages including long-distance self-transport, liquid storage and active reflux management on free surfaces, directional transportation, synthesis and detection of reagents in confined spaces, as well as controllable motion and enhanced heat dissipation in open channels. The regulation capacity can be precisely controlled by adjusting the secondary capillary crura and external thermal gradients. The regulation mechanism is further elucidated through microscopic flow observation and a deduced theoretical model. The proposed structures are expected to introduce a new concept for designing lubrication systems, microfluidic chips, methods for chemical synthesis, and heat transfer in the future.
Collapse
Affiliation(s)
- Qingwen Dai
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Chengxuan Du
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Wei Huang
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| | - Xiaolei Wang
- National Key Laboratory of Helicopter AeromechanicsNanjing University of Aeronautics & AstronauticsNanjing210016China
- College of Mechanical and Electrical EngineeringNanjing University of Aeronautics & AstronauticsNanjing210016China
| |
Collapse
|
7
|
Yu Y, Zhang C, Yang X, Sun L, Bian F. Microfluidic Synthesis of Magnetic Nanoparticles for Biomedical Applications. SMALL METHODS 2025; 9:e2401220. [PMID: 39501972 DOI: 10.1002/smtd.202401220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Indexed: 04/25/2025]
Abstract
Magnetic nanoparticles have attracted great attention and become promising candidates in the biomedicine field due to their special physicochemical properties. They are generally divided into metallic and non-metallic magnetic nanoparticles, according to their compositions. Both of the two types have shown practical values in biomedicine applications, such as drug delivery, biosensing, bioimaging, and so on. Research efforts are devoted to the improvement of synthesis strategies to achieve magnetic nanoparticles with controllable morphology, diverse composition, active surface, or multiple functions. Taking high repeatability, programmable operation, precise fluid control, and simple device into account, the microfluidics system can expand the production scale and develop magnetic nanoparticles with desired features. This review will first describe different classifications of promising magnetic nanoparticles, followed by the advancements in microfluidic synthesis and the latest biomedical applications of these magnetic nanoparticles. In addition, the challenges and prospects of magnetic nanoparticles in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Yunru Yu
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Changqing Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Yang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Lingyu Sun
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Feika Bian
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
8
|
Wang F, Song Z, Cai X, Guo K, Pan X, Ren C, Li B. External strategies for enhanced sensing performance of self-powered polyvinylidene fluoride-based sensors. NANOSCALE 2025; 17:6981-6992. [PMID: 39980468 DOI: 10.1039/d4nr05200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The era of the Internet of Things has created an increasing demand for self-powered, flexible sensors. Among various intelligent materials, poly(vinylidene fluoride) (PVDF) has emerged as a promising candidate due to its flexibility, processability, biocompatibility, and unique electroactive properties. PVDF's distinctive piezoelectric, pyroelectric and triboelectric characteristics make it particularly suitable for self-powered flexible sensing applications. While research has primarily focused on enhancing the electroactive β phase, PVDF-based sensors still face limitations in their piezoelectric and pyroelectric performance. External strategies such as electrode design, stress/heat transfer improvements, microstructure optimization, and multifunctional synergy show great potential for improving sensing performance. Although numerous reviews address PVDF's polar phase enhancement, there is limited literature overviewing external strategies for performance optimization. This review focuses on external strategies for enhancing the sensing performance of PVDF-based sensors and their emerging applications. It also addresses practical challenges and future directions in PVDF-based sensor development.
Collapse
Affiliation(s)
- Fang Wang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zixuan Song
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xinchen Cai
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Kai Guo
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyu Pan
- College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Integrated Circuits and Microsystem, Ministry of Industry and Information Technology, Nanjing 211106, China.
| | - Chuanlai Ren
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Li
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China.
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Wang T, Hou J, Wang M, Gao S, Wang Z. Fluid Control on Bionics-Energized Surfaces. ACS NANO 2025; 19:7601-7616. [PMID: 39970052 DOI: 10.1021/acsnano.4c17716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Engineered surfaces play a vital role in various fluid applications, serving specific functions such as self-cleaning, anti-icing, thermal management, and water energy harvesting. In nature, biological surfaces, particularly those displaying physiochemical heterogeneity, showcase remarkable fluid behaviors and functionalities, offering valuable insights for artificial designs. In this Review, we focus on exploring the fascinating fluid phenomena observed on natural biological surfaces and the manipulation of fluids on bioengineered surfaces, with a particular emphasis on droplets, liquid flows, and vapor flows. We delve into the fundamental principles governing symmetric fluid motion on homogeneous surfaces and directed fluid motion on heterogeneous surfaces. We discuss surface design strategies tailored to different fluid scenarios, outlining the strengths and limitations of engineered surfaces for specific applications. Additionally, the challenges faced by engineered surfaces in real-world fluid applications are put forward. By highlighting promising research directions, we hope to stimulate advancements in bioinspired engineering and fluid science, paving the way for future developments.
Collapse
Affiliation(s)
- Ting Wang
- Department of Mechanical Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiexin Hou
- Department of Mechanical Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Mingmei Wang
- Department of Mechanical Engineering, City University of Hong Kong, 999077, Hong Kong, China
| | - Shouwei Gao
- Department of Mechanical Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
| |
Collapse
|
10
|
Lin J, Hou Y, Zhang Q, Lin JM. Droplets in open microfluidics: generation, manipulation, and application in cell analysis. LAB ON A CHIP 2025; 25:787-805. [PMID: 39774470 DOI: 10.1039/d4lc00646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Open droplet microfluidics is an emerging technology that generates, manipulates, and analyzes droplets in open configuration systems. Droplets function as miniaturized reactors for high-throughput analysis due to their compartmentalization and parallelization, while openness enables addressing and accessing the targeted contents. The convergence of two technologies facilitates the localization and intricate manipulation of droplets using external tools, showing great potential in large-scale chemical and biological applications, particularly in cell analysis. In this review, we first introduce various methods of droplet generation and manipulation in open environments. Next, we summarize the typical applications of open droplet systems in cell culture. Then, a comprehensive overview of cell analysis is provided, including nucleic acids, proteins, metabolites, and behaviors. Finally, we present a discussion of current challenges and perspectives in this field.
Collapse
Affiliation(s)
- Jiaxu Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Ying Hou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
11
|
Li X, Wang C, Chen Z, Chen C, Zhu S, Wu D, Yong J. Synergistic binding ability of electrostatic tweezers and femtosecond laser-structured slippery surfaces enabling unusual droplet manipulation applications. LAB ON A CHIP 2025; 25:644-656. [PMID: 39882834 DOI: 10.1039/d4lc01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions. The EST can manipulate droplets with a wide volume range (500 nL-1 mL), droplets hanging on tilted or even inverted surfaces, multiple droplets in parallel, corrosive droplets, low-surface-tension organic droplets (e.g., ethanol), and even droplets in a sealed space from the outside. The EST operation method is suitable for various slippery substrates prepared by femtosecond laser processing and can also be used to manipulate small solid spheres other than liquids. Additionally, a self-powered EST system is also designed without the need for high-voltage static electricity, allowing even fingers to serve as EST sources for droplet manipulation. The flexible and precise manipulation performance allows this technology to be applied in a variety of applications. For example, a new digital microfluidic (DMF) technology based on an EST array has been successfully validated and is expected to replace traditional electrowetting-on-dielectric technology in the future.
Collapse
Affiliation(s)
- Xinlei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Cunyuan Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| | - Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
| |
Collapse
|
12
|
Zhai H, Zhao S, Liu N, Tian Y, Liu Y, Cao W, Yen W, Feng L. Water-Enabled Electricity Generation by a Smooth Liquid-Like Semiconductor Coating Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410599. [PMID: 39737678 DOI: 10.1002/smll.202410599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction. The prepared SLSS not only retained the slippery surface's close contact with liquid droplets and the characteristic of sliding without residue but also exhibited an enhanced friction effect on the low-friction surface. The smooth liquid-like/semiconductor surface water sliding generator (SLSS-WSG) exerts outstanding liquid sliding friction energy harvesting with high output (≈16 V and ≈60 µA) demonstrated, capability in series connection, dual operation of power generation and self-cleaning effect, and high physical and chemical stability (continuous current scour and sun exposure). The prepared surface can be integrated with photovoltaic panels, enabling them to generate electricity from water-sliding energy during rainy days, compensating for the reduced output of photovoltaic panels during overcast and rainy weather. Furthermore, it allows for energy collection even during rainy nights. The prepared surface can be potentially applied in various fields, showing great potential for the development of water-based clean energy.
Collapse
Affiliation(s)
- Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Na Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ye Tian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenqing Cao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Yen
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Chen T, Lai C, Zhao H, Yang J, Huang K, Hong XJ, Cai Y, Dong R. MOF-Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408231. [PMID: 39723718 DOI: 10.1002/smll.202408231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Green and efficient total antioxidant capacity (TAC) detection is significant for healthy diet and disease prevention. This work first proposed the concept of TAC colorimetric detection based on microrobots. A novel metal-organic framework (MOF)-based biomimetic enzyme microrobot (MIL-88A@Fe3O4) is developed that can efficiently and accurately detect the TAC of real fruits and vegetables. Unlike the previous colorimetric detection method to measure TAC which often requires the addition of toxic hydrogen peroxide (H2O2) or light, the microrobots strategy can realize efficient TAC detection without any additional chemicals or stimuli. This is attributed to the oxidase-like activity from MIL-88A, which is discovered and confirmed for the first time by experiments and theoretical calculations. In addition, the microrobots can significantly accelerate the color reaction, resulting in a significant improvement in the detection efficiency of TAC in the motion state owing to their self-stirring effect. More importantly, the results of the MOF-based biomimetic enzyme microrobots strategy for detecting TAC in real fruits and vegetables are comparable to those tested by commonly used quantitative detection kits, in addition to low cost, excellent stability, and anti-interference ability. This attractive MOF-based biomimetic enzyme microrobot holds great prospects for future applications in catalytic sensing and promoting a healthy diet.
Collapse
Affiliation(s)
- Ting Chen
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Caiyan Lai
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - He Zhao
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Jie Yang
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Kai Huang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xu-Jia Hong
- The Affiliated Traditional Chinese Medicine Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuepeng Cai
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| | - Renfeng Dong
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Wang W, Shao W, Li N, Guo HY, Zeng SC, Zhang Y, Zhang JR, Han DD, Zhang YL. Graphene Oxide Foam-Based Floating Actuators Manipulated via Dual-Marangoni-Effect Propulsion and Magnetic-Field-Guided Navigation. SMALL METHODS 2025:e2401946. [PMID: 39828629 DOI: 10.1002/smtd.202401946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Intelligent stimuli-responsive actuators that can convert environmental energies into mechanical works have garnered significant research interests. Among different actuation principles, Marangoni effect is distinguished due to simplicity, high efficiency, remote manipulation, and water environment adaptability. Nevertheless, both chemical and physical Marangoni actuators face their own challenges with respect to limited chemical loading, precise light illumination, and relatively poor motion controllability. In this study, floating actuators based on graphene oxide foam (GOF), manipulable via dual Marangoni effects and magnetic field, are fabricated by Direct Laser Writing (DLW). This is the first work to realize dual-Marangoni-effect actuators. Specifically, it is observed that the actuator driven by the chemical Marangoni effect can attain an average speed of 0.57 rad s-1. Meanwhile, the actuator driven by the photothermal Marangoni effect is capable of reaching an average speed of 0.17 rad s-1, and the average speed is 1.34 cm s-1 under the manipulation of magnetic field. Multi-field coupling and dual Marangoni effects make actuators more flexible and intelligent, with promising potential for intelligent control and biomedical engineering.
Collapse
Affiliation(s)
- Wei Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Wei Shao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ning Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Heng-Yu Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Su-Chuan Zeng
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yang Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jia-Rui Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dong-Dong Han
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong-Lai Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
15
|
Wang F, Liu C, Dai Z, Xu W, Ma X, Gao Y, Ge X, Zheng W, Du X. Photopyroelectric tweezers for versatile manipulation. Innovation (N Y) 2025; 6:100742. [PMID: 39872479 PMCID: PMC11763915 DOI: 10.1016/j.xinn.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025] Open
Abstract
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios. These PPTs allow for remote and programmable manipulation of objects with diverse materials (polymer, inorganic, and metal), different phases (bubble, liquid, and solid), and various geometries (sphere, cuboid, and wire). Furthermore, the PPT is not only adaptable to high-conductivity media but also applicable to both portable macroscopic manipulation platforms and microscopic manipulation systems, enabling cross-scale manipulations for solid objects, liquid droplets, and biological samples. The high-level flexibility and adaptability of the PPT extend to broad applications in manipulating hydrogel robots, sorting particles, assembling cells, and stimulating cells. By surpassing the limitations of conventional tweezers, the PPT bridges the gap between macroscopic and microscopic manipulations, offering a revolutionary tool in robotics, colloidal science, biomedical fields, and beyond.
Collapse
Affiliation(s)
- Fang Wang
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Cong Liu
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjin Dai
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Department of Polymer Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Weizhong Xu
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Xinyue Ma
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Yufeng Gao
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Xuewu Ge
- Department of Polymer Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wei Zheng
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Xuemin Du
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
16
|
Cheng G, Kuan CY, Lou KW, Ho Y. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313935. [PMID: 38379512 PMCID: PMC11733724 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chit Yau Kuan
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Kuan Wen Lou
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
| | - Yi‐Ping Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
- Centre for Novel BiomaterialsThe Chinese University of Hong KongHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SAR999077China
- The Ministry of Education Key Laboratory of Regeneration MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
17
|
Sui M, Dong H, Mu G, Yang Z, Ai Y, Zhao J. Acoustofluidic Tweezers Integrated with Droplet Sensing Enable Multifunctional Closed-Loop Droplet Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409394. [PMID: 39527667 PMCID: PMC11714172 DOI: 10.1002/advs.202409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Droplet manipulation technologies with surface acoustic waves attract significant attention for applications in fluid handling and bioanalysis. However, existing technologies face challenges in automation, precision, and functional integration, limiting broader applications. In this work, a highly integrated droplet-sensing acoustofluidic tweezer is developed, incorporating orthogonally arranged slanted finger interdigital transducers and a custom-designed control and detection circuit system. Using a single acoustic device, this tweezer enables switchable acoustic droplet manipulation and detection, providing multifunctional closed-loop manipulation of on-chip microliter-scale droplets. The platform takes advantage of the wideband frequency response characteristics of the transducers, along with an automated droplet detection algorithm, enabling high-precision detection of central positions, edge positions, contact diameters, and the number of droplets. With this feedback, automated closed-loop control of various droplet manipulation functions, including transportation, merging, mixing, splitting, and internal particle enrichment, is achieved for the first time on a single acoustic platform. This significantly enhances the precision, efficiency, and fault tolerance of the manipulation process. This droplet-sensing acoustofluidic tweezer provides an innovative acoustic solution for droplet manipulation technologies in fields such as fluid processing and biosensing, demonstrating significant application potential.
Collapse
Affiliation(s)
- Mingyang Sui
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Huijuan Dong
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Guanyu Mu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Zhen Yang
- Institute of OrthopedicsChinese PLA General HospitalBeijing Key Laboratory of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ye Ai
- Pillar of Engineering Product DevelopmentSingapore University of Technology and DesignSingapore487372Singapore
| | - Jie Zhao
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
18
|
Li X, Wu B, Sun S, Wu P. Making Sticky-Slippery Switchable Fluorogels Through Self-Adaptive Bicontinuous Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411273. [PMID: 39400936 DOI: 10.1002/adma.202411273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Developing gel materials with tunable frictional properties is crucial for applications in soft robotics, anti-fouling, and joint protection. However, achieving reversible switching between extreme sticky and slippery states remains a formidable challenge due to the opposing requirements for energy dissipation on gel surfaces. Herein, a self-adaptive bicontinuous fluorogel is introduced that decouples lubrication and adhesion at varying temperatures. The phase-separated fluorogel comprises a soft fluorinated lubricating phase and a stiff yet thermal-responsive load-bearing phase. At ambient temperature, the fluorogel exhibits a highly slippery surface owing to a low-energy-dissipating lubricating layer, demonstrating an ultralow friction coefficient of 0.004. Upon heating, the fluorogel transitions into a highly dissipating state via hydrogen bond dissociation, concurrently releasing adhesive dangling chains to make the surface highly sticky with an adhesion strength of ≈362 kPa. This approach provides a promising foundation for creating advanced adaptive materials with on-demand self-adhesive and self-lubricating capabilities.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
19
|
Tian Z, Du C, Xue J, Liu Y. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators. NANO LETTERS 2024; 24:13422-13430. [PMID: 39387646 DOI: 10.1021/acs.nanolett.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory for Cross-Scale Micro and Nano Manufacturing (Ministry of Education), Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
| |
Collapse
|
20
|
Yan X, Yang M, Duan W, Cui H. Particle-Solid Transition Architecture for Efficient Passive Building Cooling. ACS NANO 2024; 18:27752-27763. [PMID: 39321467 DOI: 10.1021/acsnano.4c10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Electricity consumption for building cooling accounts for a significant portion of global energy usage and carbon emissions. To address this challenge, passive daytime radiative cooling (PDRC) has emerged as a promising technique for cooling buildings without electricity input. However, existing radiative coolers face material mismatch issues, particularly on cementitious composites like concrete, limiting their practical application. Here, we propose a cementitious radiative cooling armor based on a particle-solid transition architecture (PSTA) to overcome these challenges. The PSTA design features an asymmetric yet monolithic morphology and an all-inorganic nature, decoupling radiative cooling from building compatibility while ensuring UV resistance. In the PSTA design, nanoparticles on the surface serve as sunlight scatterers and thermal emitters, while those embedded within a cementitious substrate provide build compatibility and cohesiveness. This configuration results in enhanced interfacial bonding strength, high solar reflectance, and strong mid-infrared emittance. Specifically, the PSTA delivers an enhanced interfacial shear strength (0.93 MPa), several-fold higher than that in control groups (metal, glass, plastic) along with a cooling performance (a subambient temperature drop of ∼6.6 °C and a cooling power of ∼92.8 W under a direct solar irradiance of ∼680 W/m2) that rivals or outperforms previous reports. Importantly, the design concept of the PSTA is applicable to various particles and solids, facilitating the practical application of PDRC technology in building scenarios.
Collapse
Affiliation(s)
- Xiantong Yan
- Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meng Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Duan
- Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hongzhi Cui
- Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Liu M, Ji B, Dang C, Zhao F, Zhang C, Jin Y, Jiang M, Lu Y, Tang H, Wang S, Wang Z. Leidenfrost Effect-Induced Chaotic Vortex Flow for Efficient Mixing of Highly Viscous Droplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409192. [PMID: 39188204 DOI: 10.1002/adma.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Indexed: 08/28/2024]
Abstract
Efficiently mixing highly viscous liquids in microfluidic systems is appealing for green chemistry such as chemical synthesis and catalysis, but it is a long-standing challenge owing to the unfavorable diffusion kinetics. In this work, a new strategy is explored for mixing viscous droplets by harnessing a peculiar Leidenfrost state, where the substrate temperature is above the boiling point of the liquid without apparent liquid evaporation. Compared to the control experiment where the droplet stays at a similar temperature but in the contact boiling regime, the mixing time can be reduced significantly. Moreover, it is demonstrated that the liquid mixing originates from the chaotic convection flow in the Leidenfrost droplet, characterized by the internal vortex motion evidenced by the microscale visualization. A correlation between mixing time and droplet volume is also proposed, showing a good agreement with experimental results. It is further shown that Leidenfrost droplets can be used to synthesize nanoparticles of the desired morphology, and it is anticipated that this simple and scalable fabrication approach will find applications in the biological, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Minjie Liu
- School of Mechanical Engineering, Tiangong University, Tianjin, 300387, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Bingqiang Ji
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- School of Astronautics, Beihang University, Beijing, 100191, China
| | - Chaoqun Dang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Fuwang Zhao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chao Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuankai Jin
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Mengnan Jiang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hui Tang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
22
|
Zhou Y, Wu J, Gao G, Zeng Y, Liu S, Zheng H. Universal droplet propulsion by dynamic surface-charge wetting. MICROSYSTEMS & NANOENGINEERING 2024; 10:134. [PMID: 39327423 PMCID: PMC11427456 DOI: 10.1038/s41378-024-00745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 09/28/2024]
Abstract
Controllable droplet propulsion on solid surfaces plays a crucial role in various technologies. Many actuating methods have been developed; however, there are still some limitations in terms of the introduction of additives, the versatilities of solid surfaces, and the speed of transportation. Herein, we have demonstrated a universal droplet propulsion method based on dynamic surface-charge wetting by depositing oscillating and opposite surface charges on dielectric films with unmodified surfaces. Dynamic surface-charge wetting propels droplets by continuously inducing smaller front contact angles than rear contact angles. This innovative imbalance is built by alternately storing and spreading opposite charges on dielectric films, which results in remarkable electrostatic forces under large gradients and electric fields. The method exhibits excellent droplet manipulation performance characteristics, including high speed (~130 mm/s), high adaptability of droplet volume (1 μL-1 mL), strong handling ability on non-slippery surfaces with large contact angle hysteresis (CAH) (maximum angle of 35°), significant programmability and reconfigurability, and low mass loss. The great application potential of this method has been effectively demonstrated in programmable microreactions, defogging without gravity assistance, and surface cleaning of photovoltaic panels using condensed droplets.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Jiayao Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Ge Gao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yubin Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Sheng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - Huai Zheng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
23
|
Wang G, Ma F, Zhu L, Zhu P, Tang L, Hu H, Liu L, Li S, Zeng Z, Wang L, Xue Q. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311489. [PMID: 38696759 DOI: 10.1002/adma.202311489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Slippery surfaces, which originate in nature with special wettability, have attracted considerable attention in both fundamental research and practical applications in a variety of fields due to their unique characteristics of superlow liquid friction and adhesion. Although research on bioinspired slippery surfaces is still in its infancy, it is a rapidly growing and enormously promising field. Herein, a systematic review of recent progress in bioinspired slippery surfaces, beginning with a brief introduction of several typical creatures with slippery property in nature, is presented. Subsequently,this review gives a detailed discussion on the basic concepts of the wetting, friction, and drag from micro- and macro-aspects and focuses on the underlying slippery mechanism. Next, the state-of-the-art developments in three categories of slippery surfaces of air-trapped, liquid-infused, and liquid-like slippery surfaces, including materials, design principles, and preparation methods, are summarized and the emerging applications are highlighted. Finally, the current challenges and future prospects of various slippery surfaces are addressed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lijing Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ping Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lei Tang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hongyi Hu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Luqi Liu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuangyang Li
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Liping Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qunji Xue
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
24
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
25
|
Yang Y, Jiang P, Li H, Li W, Li D, Yan X, Zhu X, Ye D, Yang Y, Wang H, Chen R, Liao Q. Photothermal-Driven Droplet Manipulation: A Perspective. J Phys Chem Lett 2024; 15:8877-8895. [PMID: 39171577 DOI: 10.1021/acs.jpclett.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Optofluidics, which utilizes the interactions between light and fluids to realize various functions, has garnered increasing attention owing to the advantages of operational simplicity, exceptional flexibility, rapid response, etc. As one of the typical light-fluid interactions, the localized photothermal effect serving as a stimulus has been widely used for fluid manipulation. Particularly, significant progress on photothermal-driven droplet manipulation has been made. In this perspective, recent advancements in localized photothermal effect driven droplet manipulation are summarized. First, the photothermal manipulation of droplets on open surfaces is outlined. An attractive droplet manipulation of light droplet levitation above the gas-liquid interface via localized photothermal effect is then discussed. Besides, the photothermal-driven manipulation of droplets in an immiscible liquid phase is also discussed. Although promising, further development of photothermal-driven droplet manipulation is still needed. The challenges and perspectives of this light droplet manipulation strategy for broad implementation are summarized, which will help future studies and applications.
Collapse
Affiliation(s)
- Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Pengcheng Jiang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Haonan Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou 450046, P. R. China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xiao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
26
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Zhao Y, Peng B, Liu L, Fu Y, Zhao T, Chi W, Li D, Ji D, Wang X, Wang D. Scalable Preparation of Liquid Infused Coatings for Lubrication of 10 3 m 2 Dry Ski Slopes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39074038 DOI: 10.1021/acs.langmuir.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
To facilitate effective training for freestyle skiers on artificial dry ski slopes, it is crucial to reduce the friction coefficient of the slopes and closely match it with that of snow. Traditional lubrication methods, such as water or soapy water, come with multiple disadvantages, including water waste, which leads to environmental pollution, short-lived effectiveness, and high costs. In this study, we have successfully developed a method for the scalable preparation of a liquid-infused coating (LIC) by tandem spraying inexpensive and environmentally friendly SiO2 particles and silicone oil lubricants. Experimental results showed that the resulting LIC is capable of imparting slippery properties to various surfaces, regardless of the surface chemistry. Moreover, the presence of LIC could reduce the friction coefficient significantly. By carefully regulating the surface composition, we achieved a friction coefficient of 0.059 between a snowboard and the LIC-functionalized ski slope, closely matching that between the snowboard and snow in a typical skiing competition venue (∼0.06). We successfully applied LIC onto 103 m2 dry ski slopes, providing a training ground for professional freestyle skiers.
Collapse
Affiliation(s)
- Yuehua Zhao
- Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Peng
- Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lijun Liu
- Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanming Fu
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
| | - Tianyu Zhao
- School of Science, Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
| | - Weichao Chi
- School of Science, Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
| | - Dong Li
- School of Science, Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
| | - Dong Ji
- Winter Sports Administrative Center of the General Administration of Sport of China, Beijing 100044, China
| | - Xin Wang
- Department of Kinesiology, Shenyang Sport University, Shenyang 110102, China
| | - Dapeng Wang
- Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
28
|
Kaneelil PR, de Souza JP, Turk G, Pahlavan AA, Stone HA. Electrically mediated self-assembly and manipulation of drops at an interface. SOFT MATTER 2024; 20:5417-5424. [PMID: 38946480 DOI: 10.1039/d4sm00531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The fluid-fluid interface is a complex environment for a floating object where the statics and dynamics may be governed by capillarity, gravity, inertia, and other external body forces. Yet, the alignment of these forces in intricate ways may result in beautiful pattern formation and self-assembly of these objects, as in the case of crystalline order observed with bubble rafts or colloidal particles. While interfacial self-assembly has been explored widely, controlled manipulation of floating objects, e.g. drops, at the fluid-fluid interface still remains a challenge largely unexplored. In this work, we reveal the self-assembly and manipulation of water drops floating at an oil-air interface. We show that the assembly occurs due to electrostatic interactions between the drops and their environment. We highlight the role of the boundary surrounding the system by showing that even drops with a net zero electric charge can self-assemble under certain conditions. Using experiments and theory, we show that the depth of the oil bath plays an important role in setting the distance between the self-assembled drops. Furthermore, we demonstrate ways to manipulate the drops actively and passively at the interface.
Collapse
Affiliation(s)
- Paul R Kaneelil
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | - J Pedro de Souza
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Günther Turk
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Amir A Pahlavan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
29
|
Han X, Tan S, Wang Q, Zuo X, Heng L, Jiang L. Noncontact Microfluidics of Highly Viscous Liquids for Accurate Self-Splitting and Pipetting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402779. [PMID: 38594015 DOI: 10.1002/adma.202402779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Accurate dosing for various liquids, especially for highly viscous liquids, is fundamental in wide-ranging from molecular crosslinking to material processing. Despite droppers or pipettes being widely used as pipetting devices, they are powerless for quantificationally splitting and dosing highly viscous liquids (>100 mPa s) like polymer liquids due to the intertwined macromolecular chains and strong cohesion energy. Here, a highly transparent photopyroelectric slippery (PS) platform is provided to achieve noncontact self-splitting for liquids with viscosity as high as 15 000 mPa s, just with the assistance of sunlight and a cooling source to provide a local temperature difference (ΔT). Moreover, to guarantee the accuracy for pipetting liquids (>80%), the ultrathin MXene film (within a thickness of 20 nm) is self-assembled as the photo-thermal layers, overcoming the trade-off between transparency and photothermal property. Compared with traditional pipetting strategies (≈1.3% accuracy for pipetting polymer liquids), this accurate microfluidic chip shows great potential in adhesive systems (bonding strength, twice than using the droppers or pipettes).
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Shengda Tan
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Qi Wang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Xiaobiao Zuo
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
- National Engineering Research Center of Functional Carbon Composite, Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China
| | - Liping Heng
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 102206, China
| |
Collapse
|
30
|
Ma J, Zhang C, Zhang P, Song J. One-step synthesis of functional slippery lubricated coating with substrate independence, anti-fouling property, fog collection, corrosion resistance, and icephobicity. J Colloid Interface Sci 2024; 664:228-237. [PMID: 38461789 DOI: 10.1016/j.jcis.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Ranging from industrial facilities to residential infrastructure, functional surfaces encompassing functionalities such as anti-fouling, fog collection, anti-corrosion, and anti-icing play a critical role in the daily lives of humans, but creating these surfaces is elusive. Bionic dewetting and liquid-infused surfaces have inspired the exploitation of functional surfaces. However, practical applications of these existing surfaces remain challenging because of their inherent shortcomings. In this study, we propose a novel functional slippery lubricated coating (FSLC) based on a simple blend of polysilazane (PSZ), silicone oil, and nano silica. This simple, nonfluorine based, and low-cost protocol promotes not only hierarchical micro-nano structure but also favorable surface chemistry, which facilitates robust silicone oil adhesion and excellent slippery properties (sliding angle: ∼1.6°) on various solid materials without extra processing or redundant treatments. The highly integrated competence of FSLC, characterized by robustness, durability, strong adhesion to substrates, and the ability for large-area preparation, render them ideal for practical production and application. The proposed FSLC holds outstanding application potentials for anti-fouling, self-cleaning, fog collection, anti-corrosion, and anti-icing functionalities.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China; Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chen Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Peng Zhang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
31
|
Yong J, Li X, Hu Y, Wang Y, Peng Y, Chen Z, Zhang Y, Zhu S, Wang C, Wu D. Portable Triboelectric Electrostatic Tweezer for External Manipulation of Droplets within a Closed Femtosecond Laser-Treated Superhydrophobic System. NANO LETTERS 2024; 24:7116-7124. [PMID: 38832663 DOI: 10.1021/acs.nanolett.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Controllable droplet manipulation has diverse applications; however, limited methods exist for externally manipulating droplets in confined spaces. Herein, we propose a portable triboelectric electrostatic tweezer (TET) by integrating electrostatic forces with a superhydrophobic surface that can even manipulate droplets in an enclosed space. Electrostatic induction causes the droplet to be subjected to an electrostatic force in an electrostatic field so that the droplet can be moved freely with the TET on a superhydrophobic platform. Characterized by its high precision, flexibility, and robust binding strength, TET can manipulate droplets under various conditions and achieve a wide range of representative fluid applications such as droplet microreactors, precise self-cleaning, cargo transportation, the targeted delivery of chemicals, liquid sorting, soft droplet robotics, and cell labeling. Specifically, TET demonstrated the ability to manipulate internal droplets from the outside of a closed system, such as performing cell labeling experiments within a sealed Petri dish without opening the culture system.
Collapse
Affiliation(s)
- Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Xinlei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Youdi Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yiming Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yubin Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| |
Collapse
|
32
|
Jang H, Song W, Song H, Kang DK, Park S, Seong M, Jeong HE. Sustainable Biofilm Inhibition Using Chitosan-Mesoporous Nanoparticle-Based Hybrid Slippery Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27728-27740. [PMID: 38758746 DOI: 10.1021/acsami.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.
Collapse
Affiliation(s)
- Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wonwoo Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeonseok Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Tan L, Zeng Q, Xu F, Zhao Q, Chen A, Wang T, Tao X, Yang Y, Wang X. Controllable Manipulation of Large-Volume Droplet on Non-Slippery Surfaces Based on Triboelectric Contactless Charge Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313878. [PMID: 38364828 DOI: 10.1002/adma.202313878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Controllable droplet manipulation is crucial in diverse scientific and engineering fields. Traditional electric-based methods usually rely on commercial high-voltage (HV) power sources, which are typically bulky, expensive, and potentially hazardous. The triboelectric nanogenerator (TENG) is a highly studied device that can generate HV output with limited current, showing great potential in droplet manipulation applications. However, current TENG-based approaches usually utilize traditional free-standing TENGs that produce short-pulsed alternating-current signals. This limitation hinders continuous electrostatic forces necessary for precise droplet control, leading to complex circuitry and suboptimal droplet motion control in terms of volume, distance, direction, and momentum. Here, a triboelectric contactless charge injection (TCCI) method employing a novel dual-functional triboelectric nanogenerator (DF-TENG), is proposed. The DF-TENG can produce both high voltage and constant current during unidirectional motion, enabling continuous corona discharges for contactless charge injection into the droplets. Using this method, a large-volume droplet (3000 µL) can be controlled with momentum up to 115.2 g mm s-1, quintupling the highest value recorded by the traditional methods. Moreover, the TCCI method is adaptable for a variety of non-slippery substrates and droplets of different compositions and viscosities, which makes it an ideal manipulation strategy for droplet transport, chemical reactions, and even driving solids.
Collapse
Affiliation(s)
- Liming Tan
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Qixuan Zeng
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Fan Xu
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Qing Zhao
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Ai Chen
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Tingyu Wang
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Xingming Tao
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuchen Yang
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Xue Wang
- Department of Applied Physics, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
34
|
Liu M, Hua J, Du X. Smart materials for light control of droplets. NANOSCALE 2024. [PMID: 38624048 DOI: 10.1039/d3nr05593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Droplet manipulation plays a critical role in both fundamental research and practical applications, especially when combined with smart materials and external fields to achieve multifunctional droplet manipulation. Light control of droplets has emerged as a significant and widely used strategy, driven primarily by photochemistry, photomechanics, light-induced Marangoni effects, and light-induced electric effects. This approach allowing for droplet manipulation with high spatial and temporal resolution, all while maintaining a remote and non-contact mode of operation. This review aims to provide a comprehensive overview of the mechanisms underlying light control of droplets, the design of smart materials for this purpose, and the diverse range of applications enabled by this technique. These applications include merging, splitting, releasing, forwarding, backward movement, and rotation of droplets, as well as chemical reactions, droplet robots, and microfluidics. By presenting this information, we aim to establish a unified framework that guides the sustainable development of light control of droplets. Additionally, this review addresses the challenges associated with light control of droplets and suggests potential directions for future development.
Collapse
Affiliation(s)
- Meijin Liu
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jiachuan Hua
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
35
|
Li X, Wang C, Hu Y, Cheng Z, Xu T, Chen Z, Yong J, Wu D. Multifunctional Electrostatic Droplet Manipulation on the Femtosecond Laser-Prepared Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18154-18163. [PMID: 38547460 DOI: 10.1021/acsami.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A strategy to manipulate droplets on the lubricated slippery surfaces using tribostatic electricity is proposed. By employing femtosecond laser-induced porous microstructures, we prepared a slippery surface with ultralow adhesion to various liquids. Electrostatic induction causes the charges within the droplet to be redistributed; thus, the droplet on the as-prepared slippery surfaces can be guided by electrostatic force under the electrostatic field, with controllable sliding direction and unlimited transport distance. The combination of electrostatic interaction and slippery surfaces allows us to manipulate droplets with a wide volume range (from 100 nL to 0.5 mL), charged droplets (including electrostatic attraction and repulsion), corrosive droplets, and even organic droplets with ultralow surface tension. In addition, droplets on tilted surfaces, curved surfaces, and inverted slippery surfaces can also be manipulated. Especially, the slippery surfaces can even allow the electrostatic interaction to manipulate alcohol with surface tension as low as 22.3 mN/m and liquid droplets suspended on a downward surface, which is not possible with reported superhydrophobic substrates. The features of slippery surfaces make the electrostatic manipulation successfully applied in versatile droplet manipulation, droplet patterning, chemical microreaction, transport of solid cargo, targeted delivery of chemicals, and liquid sorting.
Collapse
Affiliation(s)
- Xinlei Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Youdi Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zilong Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Tianyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Zhenrui Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, P. R. China
| |
Collapse
|
36
|
Wang X, Zhuang Z, Li X, Yao X. Droplet Manipulation on Bioinspired Slippery Surfaces: From Design Principle to Biomedical Applications. SMALL METHODS 2024; 8:e2300253. [PMID: 37246251 DOI: 10.1002/smtd.202300253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Droplet manipulation with high efficiency, high flexibility, and programmability, is essential for various applications in biomedical sciences and engineering. Bioinspired liquid-infused slippery surfaces (LIS), with exceptional interfacial properties, have led to expanding research for droplet manipulation. In this review, an overview of actuation principles is presented to illustrate how materials or systems can be designed for droplet manipulation on LIS. Recent progress on new manipulation methods on LIS is also summarized and their prospective applications in anti-biofouling and pathogen control, biosensing, and the development of digital microfluidics are presented. Finally, an outlook is made on the key challenges and opportunities for droplet manipulation on LIS.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Zhicheng Zhuang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518075, P. R. China
| |
Collapse
|
37
|
Liang X, Karnaukh KM, Zhao L, Seshadri S, DuBose AJ, Bailey SJ, Cao Q, Cooper M, Xu H, Haggmark M, Helgeson ME, Gordon M, Luzzatto-Fegiz P, Read de Alaniz J, Zhu Y. Dynamic Manipulation of Droplets on Liquid-Infused Surfaces Using Photoresponsive Surfactant. ACS CENTRAL SCIENCE 2024; 10:684-694. [PMID: 38559290 PMCID: PMC10979485 DOI: 10.1021/acscentsci.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Fast and programmable transport of droplets on a substrate is desirable in microfluidic, thermal, biomedical, and energy devices. Photoresponsive surfactants are promising candidates to manipulate droplet motion due to their ability to modify interfacial tension and generate "photo-Marangoni" flow under light stimuli. Previous works have demonstrated photo-Marangoni droplet migration in liquid media; however, migration on other substrates, including solid and liquid-infused surfaces (LIS), remains an outstanding challenge. Moreover, models of photo-Marangoni migration are still needed to identify optimal photoswitches and assess the feasibility of new applications. In this work, we demonstrate 2D droplet motion on liquid surfaces and on LIS, as well as rectilinear motion in solid capillary tubes. We synthesize photoswitches based on spiropyran and merocyanine, capable of tension changes of up to 5.5 mN/m across time scales as short as 1.7 s. A millimeter-sized droplet migrates at up to 5.5 mm/s on a liquid, and 0.25 mm/s on LIS. We observe an optimal droplet size for fast migration, which we explain by developing a scaling model. The model also predicts that faster migration is enabled by surfactants that maximize the ratio between the tension change and the photoswitching time. To better understand migration on LIS, we visualize the droplet flow using tracer particles, and we develop corresponding numerical simulations, finding reasonable agreement. The methods and insights demonstrated in this study enable advances for manipulation of droplets for microfluidic, thermal and water harvesting devices.
Collapse
Affiliation(s)
- Xichen Liang
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Kseniia M. Karnaukh
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Lei Zhao
- Department
of Mechanical Engineering, University of
California at Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Serena Seshadri
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Austin J. DuBose
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Sophia J. Bailey
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Qixuan Cao
- Department
of Physics, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Marielle Cooper
- Department
of Mechanical Engineering, University of
California at Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Hao Xu
- Department
of Mechanical Engineering, University of
California at Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Michael Haggmark
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Michael Gordon
- Department
of Chemical Engineering, University of California
at Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Paolo Luzzatto-Fegiz
- Department
of Mechanical Engineering, University of
California at Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Javier Read de Alaniz
- Department
of Chemistry, University of California at
Santa Barbara, Santa Barbara, California 93106-5070, United States
| | - Yangying Zhu
- Department
of Mechanical Engineering, University of
California at Santa Barbara, Santa
Barbara, California 93106-5070, United States
| |
Collapse
|
38
|
Tan S, Han X, Sun Y, Guo P, Sun X, Chai Z, Jiang L, Heng L. Light-Induced Dynamic Manipulation of Liquid Metal Droplets in the Ambient Atmosphere. ACS NANO 2024; 18:8484-8495. [PMID: 38445597 DOI: 10.1021/acsnano.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Dynamic manipulation of liquid metal (LM) droplets, a material combining metallicity and fluidity, has recently revealed tremendous potential in developing unconstrained microrobots. LM manipulating techniques based on magnetic fields, electric fields, chemical reactions, and ion concentration gradients in liquid environments have advanced considerably, but dynamic manipulation in air remains a challenge. Herein, a photoresponsive pyroelectric superhydrophobic (PPS) platform is proposed for noncontact, flexible, and controllable manipulation in the ambient atmosphere. The PPS can generate additional free charges when illuminated by light, thus generating the driving force to manipulate liquid metal droplets. By using the synergistic effect of dielectrophoretic and electrostatic forces generated under light navigation, liquid metal droplets can achieve a series of complex motion behaviors, such as climbing slopes, going over steps, avoiding obstacles, crossing mazes, etc. We further extend the light control of liquid metal droplets to robots applied in electronic circuits, including circuit switching robots and circuit welding robots. This light strategy for manipulating liquid metal droplets provides insights into the development of intelligent, responsive interfaces and simultaneously provides possibilities for the application of liquid metals.
Collapse
Affiliation(s)
- Shengda Tan
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiao Han
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yue Sun
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Pu Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Xu Sun
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ziyuan Chai
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Liping Heng
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
39
|
Wang X, Li X, Pu A, Shun HB, Chen C, Ai L, Tan Z, Zhang J, Liu K, Gao J, Ban K, Yao X. On-chip droplet analysis and cell spheroid screening by capillary wrapping enabled shape-adaptive ferrofluid transporters. LAB ON A CHIP 2024; 24:1782-1793. [PMID: 38358122 DOI: 10.1039/d3lc00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Non-invasive droplet manipulation with no physical damage to the sample is important for the practical value of manipulation tools in multidisciplinary applications from biochemical analysis and diagnostics to cell engineering. It is a challenge to achieve this for most existing photothermal, electric stimuli, and magnetic field-based technologies. Herein, we present a droplet handling toolbox, the ferrofluid transporter, for non-invasive droplet manipulation in an oil environment. It involves the transport of droplets with high robustness and efficiency owing to low interfacial friction. This capability caters to various scenarios including droplets with varying components and solid cargo. Moreover, we fabricated a droplet array by transporter positioning and achieved droplet gating and sorting for complex manipulation in the droplet array. Benefiting from the ease of scale-up and high biocompatibility, the transporter-based droplet array can serve as a digital microfluidic platform for on-chip droplet-based bioanalysis, cell spheroid culture, and downstream drug screening tests.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xin Li
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Aoyang Pu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Ho Bak Shun
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Cien Chen
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Liqing Ai
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Zhaoling Tan
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jilin Zhang
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Kai Liu
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China.
| | - Kiwon Ban
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Xi Yao
- Department of Biomedical Sciences, Department of Infectious Diseases and Public Health, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
40
|
Zhang C, Wei R, Mo H, Zhai Y, Sun D. Deep learning-assisted 3D laser steering using an optofluidic laser scanner. BIOMEDICAL OPTICS EXPRESS 2024; 15:1668-1681. [PMID: 38495701 PMCID: PMC10942714 DOI: 10.1364/boe.514489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 03/19/2024]
Abstract
Laser ablation is an effective treatment modality. However, current laser scanners suffer from laser defocusing when scanning targets at different depths in a 3D surgical scene. This study proposes a deep learning-assisted 3D laser steering strategy for minimally invasive surgery that eliminates laser defocusing, increases working distance, and extends scanning range. An optofluidic laser scanner is developed to conduct 3D laser steering. The optofluidic laser scanner has no mechanical moving components, enabling miniature size, lightweight, and low driving voltage. A deep learning-based monocular depth estimation method provides real-time target depth estimation so that the focal length of the laser scanner can be adjusted for laser focusing. Simulations and experiments indicate that the proposed method can significantly increase the working distance and maintain laser focusing while performing 2D laser steering, demonstrating the potential for application in minimally invasive surgery.
Collapse
Affiliation(s)
- Chunqi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ruofeng Wei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hangjie Mo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yujia Zhai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center of Robotics and Automation, Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
41
|
Wu J, Fang D, Zhou Y, Gao G, Zeng J, Zeng Y, Zheng H. Multifunctional droplet handling on surface-charge-graphic-decorated porous papers. LAB ON A CHIP 2024; 24:594-603. [PMID: 38175166 DOI: 10.1039/d3lc00806a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Developing a fluidic platform that combines high-throughput with reconfigurability is essential for a wide range of cutting-edge applications, but achieving both capabilities simultaneously remains a significant challenge. Herein, we propose a novel and unique method for droplet manipulation via drawing surface charge graphics on electrode-free papers in a contactless way. We find that opposite charge graphics can be written and retained on the surface layer of porous insulating paper by a controlled charge depositing method. The retained charge graphics result in high-resolution patterning of electrostatic potential wells (EPWs) on the hydrophobic porous surface, allowing for digital and high-throughput droplet handling. Since the charge graphics can be written/projected dynamically and simultaneously in large areas, allowing for on-demand and real-time reconfiguration of EPWs, we are able to develop a charge-graphic fluidic platform with both high reconfigurability and high throughput. The advantages and application potential of the platform have been demonstrated in chemical detection and dynamically controllable fluidic networks.
Collapse
Affiliation(s)
- Jiayao Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Duokui Fang
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhou
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ge Gao
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Ji Zeng
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yubin Zeng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Transients in Hydraulic Machinery, Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Ma J, Song J. Multifunctional slippery photothermal coating. J Colloid Interface Sci 2024; 653:1548-1556. [PMID: 37806062 DOI: 10.1016/j.jcis.2023.09.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Slippery liquid-infused porous surface (SLIPS) has shown significant application values in various areas and has been commonly obtained by injecting the water-immiscible lubricant into a low-surface-energy modified micro/nano-structured surface. Constrained by the availability of desirable structured substrates or simple preparation schemes, the exploration of SLIPS with multifunctionality and universality that is facile to fabricate and robust in realistic applications remains challenging. Herein, we propose a one-step, fluoride-free and unconventional protocol based on a one-pot reaction of polysilazane (PSZ), silicone oils and multiwalled carbon nanotubes (MWCNT), which creates not only the favorable micro/nano-scale physical structures and surface chemistry for the excellent slippery property (sliding angle < 3°) and robust lubricant retention, but also the superior photothermal responsiveness for the potential multifunctional applications. It has been demonstrated that the proposed multifunctional slippery photothermal coating (MSPC) displayed outstanding potential in corrosion resistance, droplet manipulation and anti/de-icing. We envision that the proposed strategy could be realized in the real-life applications.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jinlong Song
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
43
|
Zhou S, Yang J, Li R, Chen Y, Li C, Chen C, Tao Y, Fan S, Wu D, Wen L, Qiu B, Ding W. Live Imaging of 3D Hanging Drop Arrays through Manipulation of Light-Responsive Pyroelectric Slippery Surface and Chip Adhesion. NANO LETTERS 2023; 23:10710-10718. [PMID: 38010943 DOI: 10.1021/acs.nanolett.3c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Three-dimensional (3D) hanging drop cell culture is widely used in organoid culture because of its lack of selection pressure and rapid cell aggregation. However, current hanging drop technology has limitations, such as a dependence on complex microfluidic transport channels or specific capillary force templates for drop formation, which leads to unchangeable drop features. These methods also hinder live imaging because of space and complexity constraints. Here, we have developed a hanging drop construction method and created a flexible 3D hanging drop construction platform composed of a manipulation module and an adhesion module. Their harmonious operation allows for the easy construction of hanging drops of varying sizes, types, and patterns. Our platform produces a cell hanging drop chip with small sizes and clear fields of view, thereby making it compatible with live imaging. This platform has great potential for personalized medicine, cancer and drug discovery, tissue engineering, and stem cell research.
Collapse
Affiliation(s)
- Shuneng Zhou
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Junfeng Yang
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Rui Li
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yiyu Chen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chao Chen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Tao
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shengying Fan
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Li Wen
- Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
44
|
Sun P, Hao X, Jin Y, Yin Y, Wu C, Zhang J, Gao L, Wang S, Wang Z. Heterogenous Slippery Surfaces: Enabling Spontaneous and Rapid Transport of Viscous Liquids with Viscosities Exceeding 10 000 mPa s. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304218. [PMID: 37649201 DOI: 10.1002/smll.202304218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Superhydrophobic and slippery lubricant-infused surfaces have garnered significant attention for their potential to passively transport low-viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high-viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water-infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long-distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state-of-the-art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.
Collapse
Affiliation(s)
- Pengcheng Sun
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiuqing Hao
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yingying Yin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chenyang Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jie Zhang
- Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China
| | - Lujia Gao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
45
|
Li H, Yang Y, Zhu X, Ye D, Yang Y, Wang H, Chen R, Liao Q. Droplet transportation on photosensitive lubricant-impregnated slippery surfaces in response to the light induced Marangoni effect and asymmetrical wetting ridges. SOFT MATTER 2023; 19:7323-7333. [PMID: 37727081 DOI: 10.1039/d3sm00887h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Flexible control of droplet transportation is crucial in various applications but is constrained by liquid-solid friction. The development of biomimetic lubricant-impregnated slippery surfaces provides a new solution for flexible manipulation of droplet transportation. Herein, a light strategy is reported for flexibly controlling droplet transportation on photosensitive lubricant-impregnated slippery surfaces. Owing to the localized heating effect of a focused laser beam via photothermal conversion, the resultant thermal Marangoni flow and horizontal component of the surface tension associated with the asymmetric wetting ridges are together responsible for actuating droplet transportation. It is found that the asymmetry of the wetting ridge is dominated by the thickness of the infused oil layer, which directly affects the droplet transportation. The feasibility of this light strategy is also demonstrated by uphill movement, droplet coalescence, and chemical reaction. This study provides a new design for potential applications in open droplet microfluidics, analytical chemistry, diagnosis, etc.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Hong Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China.
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
46
|
Zhan H, Yuan Z, Li Y, Zhang L, Liang H, Zhao Y, Wang Z, Zhao L, Feng S, Liu Y. Versatile bubble maneuvering on photopyroelectric slippery surfaces. Nat Commun 2023; 14:6158. [PMID: 37789018 PMCID: PMC10547833 DOI: 10.1038/s41467-023-41918-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Contactless bubble manipulation with a high spatiotemporal resolution brings a qualitative leap forward in a variety of applications. Despite considerable advances, light-induced bubble maneuvering remains challenging in terms of robust transportation, splitting and detachment. Here, a photopyroelectric slippery surface (PESS) with a sandwich structure is constructed to achieve the versatile bubble manipulation. Due to the generated dielectric wetting and nonuniform electric field under the irradiation of near infrared (NIR) light, a bubble is subject to both the Laplace force and dielectrophoresis force, enabling a high-efficiency bubble steering. We demonstrate that the splitting, merging and detachment of underwater bubbles can be achieved with high flexibility and precision, high velocity and agile direction maneuverability. We further extend the capability of bubble control to microrobots for cargo transportation, micropart assembly and transmission of gear structures. We envision this robust bubble manipulation strategy on the PESS would provide a valuable platform for various bubble-involved processes, ranging from microfluidic devices to soft robotics.
Collapse
Affiliation(s)
- Haiyang Zhan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zichao Yuan
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu Li
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liang Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hui Liang
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Yuhui Zhao
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Zhiguo Wang
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lei Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shile Feng
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yahua Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
47
|
Tan R, Hao P, Wu D, Yang H, Xia Y, Li S, Wang J, Liang L, Zhou J, Zhang T. Ice-Inspired Polymeric Slippery Surface with Excellent Smoothness, Stability, and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41193-41200. [PMID: 37585479 DOI: 10.1021/acsami.3c10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Ice is omnipresent in our daily life and possesses intrinsic slipperiness as a result of the formation of a quasi-liquid layer. Thus, the functional surfaces inspired by ice show great prospects in widespread fields from surface lubrication to antifouling coatings. Herein, we report an ice-inspired polymeric slippery surface (II-PSS) constructed by a self-lubricating liquid layer and a densely surface-grafted polymer brush. The polymer brush layer could act as a homogeneous matrix to capture lubricant molecules via strong and dynamic dipole-dipole interactions to form a stable quasi-liquid layer that resembles the ice surface. The II-PSS can be easily fabricated on various solid substrates (e.g., silicon, glass, aluminum oxide, plastics, etc.) with excellent smoothness (roughness of ∼0.4 nm), optical transmittance (∼94.5%), as well as repellence toward diverse liquids with different surface tensions (22.3-72.8 mN m-1), pH values (1-14), salinity, and organic pollutants. Further investigation shows that the II-PSS exhibits extremely low attachment for proteins and marine organisms (e.g., algae and mussels) for over one month. These results demonstrate a robust and promising strategy for high-performance antifouling coatings.
Collapse
Affiliation(s)
- Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Peng Hao
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, People's Republic of China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yifu Xia
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Shengfei Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Lisha Liang
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Jin Zhou
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| |
Collapse
|
48
|
Liu X, Li B, Gu Z, Zhou K. 4D Printing of Butterfly Scale-Inspired Structures for Wide-Angle Directional Liquid Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207640. [PMID: 37078893 DOI: 10.1002/smll.202207640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Unidirectional liquid transport has been extensively explored for water/fog harvesting, electrochemical sensing, and desalination. However, current research mainly focuses on linear liquid transport (transport angle α = 0°), which exhibits hindered lateral liquid spreading and low unidirectional transport efficiency. Inspired by the wide-angle (0° < α < 180°) liquid transport on butterfly wings, this work successfully achieves linear (α = 0°), wide-angle, and even ultra-wide-angle (α = 180°) liquid transport by four-dimensional (4D) printing of butterfly scale-inspired re-entrant structures. These asymmetric re-entrant structures can achieve unidirectional liquid transport, and their layout can control the Laplace pressure in the forward (structure-tilting) and lateral directions to adjust the transport angle. Specifically, high transport efficiency and programmable forward/lateral transport paths are simultaneously achieved by the ultra-wide-angle transport, where liquid fills the lateral path before being transported forward. Moreover, the ultra-wide-angle transport is also validated in 3D space, which provides an innovative platform for advanced biochemical microreaction, large-area evaporation, and self-propelled oil-water separation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Boyuan Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
49
|
Yang S, Li M, Li C, Yan L, Li Q, Gong Q, Li Y. Droplet-Driven Self-Propelled Devices Fabricated by a Femtosecond Laser. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37469253 PMCID: PMC10401497 DOI: 10.1021/acsami.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Self-propelled autonomous devices have broad application prospects in energy conservation, environmental protection, and biomedical engineering. Nevertheless, the driving force always consumes external energy or special chemicals. Here, a novel and green droplet-driven device (DDD) consisting of superhydrophilic triangles on a superhydrophobic plate is processed only by a femtosecond laser. The water droplet flows into water along the superhydrophilic channel and forms a jet to provide driving force for the DDD, whose strength can be manipulated by changing the point angle of the triangle and the volume of the droplet. By fabricating multiple or special channels, the DDD can translate and rotate along the designed track and even carry objects. This provides a new route for the fabrication of green self-propelled autonomous devices and their applications in the fields of intelligent systems and environmental protection.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Meng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Chu Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Linyu Yan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qiang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| | - Yan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| |
Collapse
|
50
|
Niu J, Liu W, Li JX, Pang X, Liu Y, Zhang C, Yue K, Zhou Y, Xu F, Li X, Li F. Machining water through laser cutting of nanoparticle-encased water pancakes. Nat Commun 2023; 14:3853. [PMID: 37386038 DOI: 10.1038/s41467-023-39574-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Due to the inherent disorder and fluidity of water, precise machining of water through laser cutting are challenging. Herein we report a strategy that realizes the laser cutting machining of water through constructing hydrophobic silica nanoparticle-encased water pancakes with sub-millimeter depth. Through theoretical analysis, numerical simulation, and experimental studies, the developed process of nanoparticle-encased water pancake laser cutting and the parameters that affect cutting accuracy are verified and elucidated. We demonstrate that laser-fabricated water patterns can form diverse self-supporting chips (SSCs) with openness, transparency, breathability, liquid morphology, and liquid flow control properties. Applications of laser-fabricated SSCs to various fields, including chemical synthesis, biochemical sensing, liquid metal manipulation, patterned hydrogel synthesis, and drug screening, are also conceptually demonstrated. This work provides a strategy for precisely machining water using laser cutting, addressing existing laser machining challenges and holding significance for widespread fields involving fluid patterning and flow control in biological, chemical, materials and biomedical research.
Collapse
Affiliation(s)
- Jicheng Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenjing Liu
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Jasmine Xinze Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xianglong Pang
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Keyang Yue
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yulin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xiaoguang Li
- Shaanxi Basic Discipline (Liquid Physics) Research Center, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|