1
|
Zhang P, Whipp EC, Skuli SJ, Gharghabi M, Saygin C, Sher SA, Carroll M, Pan X, Eisenmann ED, Lai TH, Harrington BK, Chan WK, Youssef Y, Chen B, Penson A, Lewis AM, Castro CR, Fox N, Cihan A, Le Luduec JB, DeWolf S, Kauffman T, Mims AS, Canfield D, Phillips H, Williams KE, Shaffer J, Lozanski A, Doong TJ, Lozanski G, Mao C, Walker CJ, Blachly JS, Daniyan AF, Alinari L, Baiocchi RA, Yang Y, Grieselhuber NR, Campbell MJ, Baker SD, Blaser BW, Abdel-Wahab O, Lapalombella R. TP53 mutations and TET2 deficiency cooperate to drive leukemogenesis and establish an immunosuppressive environment. J Clin Invest 2025; 135:e184021. [PMID: 40111422 PMCID: PMC12077897 DOI: 10.1172/jci184021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Mutations and deletions in TP53 are associated with adverse outcomes in patients with myeloid malignancies, and there is an urgent need for the development of improved therapies for TP53-mutant leukemias. Here, we identified mutations in TET2 as the most common co-occurring mutation in patients with TP53-mutant acute myeloid leukemia (AML). In mice, combined hematopoietic-specific deletion of TET2 and TP53 resulted in enhanced self-renewal compared with deletion of either gene alone. Tp53/Tet2 double-KO mice developed serially transplantable AML. Both mice and patients with AML with combined TET2/TP53 alterations upregulated innate immune signaling in malignant granulocyte-monocyte progenitors, which had leukemia-initiating capacity. A20 governs the leukemic maintenance by triggering aberrant noncanonical NF-κB signaling. Mice with Tp53/Tet2 loss had expansion of monocytic myeloid-derived suppressor cells (MDSCs), which impaired T cell proliferation and activation. Moreover, mice and patients with AML with combined TP53/TET2 alterations displayed increased expression of the TIGIT ligand, CD155, on malignant cells. TIGIT-blocking antibodies augmented NK cell-mediated killing of Tp53/Tet2 double-mutant AML cells, reduced leukemic burden, and prolonged survival in Tp53/Tet2 double-KO mice. These findings describe a leukemia-promoting link between TET2 and TP53 mutations and highlight therapeutic strategies to overcome the immunosuppressive bone marrow environment in this adverse subtype of AML.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ethan C. Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sarah J. Skuli
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mehdi Gharghabi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Caner Saygin
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Steven A. Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Martin Carroll
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiangyu Pan
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Tzung-Huei Lai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bonnie K. Harrington
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bingyi Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alex Penson
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Alexander M. Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Cynthia R. Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ali Cihan
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Tierney Kauffman
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Katie E. Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jami Shaffer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Arletta Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Tzyy-Jye Doong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Gerard Lozanski
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Charlene Mao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Christopher J. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Nicole R. Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Moray J. Campbell
- Division of Cancer Biology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Bradley W. Blaser
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Kim YK, Ramalho-Santos M. 20 years of stemness: From stem cells to hypertranscription and back. Stem Cell Reports 2025; 20:102406. [PMID: 39919752 PMCID: PMC11960510 DOI: 10.1016/j.stemcr.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Transcriptional profiling of stem cells came of age at the beginning of the century with the use of microarrays to analyze cell populations in bulk. Since then, stem cell transcriptomics has become increasingly sophisticated, notably with the recent widespread use of single-cell RNA sequencing. Here, we provide a perspective on how an early signature of genes upregulated in embryonic and adult stem cells, identified using microarrays over 20 years ago, serendipitously led to the recent discovery that stem/progenitor cells across organs are in a state of hypertranscription, a global elevation of the transcriptome. Looking back, we find that the 2002 stemness signature is a robust marker of stem cell hypertranscription, even though it was developed well before it was known what hypertranscription meant or how to detect it. We anticipate that studies of stem cell hypertranscription will be rich in novel insights in physiological and disease contexts for years to come.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| |
Collapse
|
3
|
Aran S, Golmohammadi MG, Sagha M, Ghaedi K. Aging restricts the initial neural patterning potential of developing neural stem and progenitor cells in the adult brain. Front Aging Neurosci 2025; 16:1498308. [PMID: 39916688 PMCID: PMC11798963 DOI: 10.3389/fnagi.2024.1498308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Neurosphere culture is widely used to expand neural stem and progenitor cells (NSPCs) of the nervous system. Understanding the identity of NSPCs, such as the principals involved in spatiotemporal patterning, will improve our chances of using NSPCs for neurodevelopmental and brain repair studies with the ability to direct NSPCs toward distinct fates. Some reports indicate that aging can affect the nature of NSPCs over time. Therefore, in this study, we aimed to investigate how the initial neural patterning of developing NSPCs changes over time. Methods In this research, evidence of changing neural patterning potential in the nervous system over time was presented. Thus, the embryonic and adult-derived NSPCs for cardinal characteristics were analyzed, and then, the expression of candidate genes related to neural patterning using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was evaluated at various stages of embryonic (E14 and E18), neonatal, and adult brains. Finally, it was assessed the effect of cell attachment and passage on the initial neural patterning of NSPCs. Results The analysis of gene expression revealed that although temporal patterning is maintained in vitro, it shows a decrease over time. Embryonic NSPCs exhibited the highest potential for retaining regional identity than neonatal and adult NSPCs. Additionally, it was found that culture conditions, such as cell passaging and attachment status, could affect the initial neural patterning potential, resulting in a decrease over time. Conclusion Our study demonstrates that patterning potential decreases over time and aging imposes restrictions on preliminary neural patterning. These results emphasize the significance of patterning in the nervous system and the close relationship between patterning and fate determination, raising questions about the application of aged NSPCs in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saeideh Aran
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ghasem Golmohammadi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 PMCID: PMC11685927 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Arthur NBJ, Christensen KA, Mannino K, Ruzinova MB, Kumar A, Gruszczynska A, Day RB, Erdmann-Gilmore P, Mi Y, Sprung R, York CR, Townsend RR, Spencer DH, Sykes SM, Ferraro F. Missense Mutations in Myc Box I Influence Nucleocytoplasmic Transport to Promote Leukemogenesis. Clin Cancer Res 2024; 30:3622-3639. [PMID: 38848040 PMCID: PMC11326984 DOI: 10.1158/1078-0432.ccr-24-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of patients with acute myeloid leukemia (AML), but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc gene. RESULTS Both wild-type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared with their wild-type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML-bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNA profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Nancy BJ Arthur
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Keegan A Christensen
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Kathleen Mannino
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Marianna B. Ruzinova
- Department of Pathology and Immunology, at Washington University School of Medicine, St. Louis, MO
| | - Ashutosh Kumar
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Ryan B. Day
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Yiling Mi
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Robert Sprung
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - Conner R. York
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| | - R Reid Townsend
- Department of Internal Medicine, Division of Endocrinology, Metabolism, and Lipid Research, at Washington University School of Medicine, St. Louis, MO
| | - David H. Spencer
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, at Washington University School of Medicine, St. Louis, MO
| | - Stephen M. Sykes
- Department of Pediatrics, Division of Hematology-Oncology, at Washington University School of Medicine, St. Louis, MO
| | - Francesca Ferraro
- Department of Internal Medicine, Division of Oncology, at Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
7
|
O’Hehir ZD, Lynch T, O’Neill S, March L, Xue M. Endothelial Protein C Receptor and Its Impact on Rheumatic Disease. J Clin Med 2024; 13:2030. [PMID: 38610795 PMCID: PMC11012567 DOI: 10.3390/jcm13072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Collapse
Affiliation(s)
- Zachary Daniel O’Hehir
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Sean O’Neill
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
8
|
Li MY, Yang XL, Chung CC, Lai YJ, Tsai JC, Kuo YL, Yu JY, Wang TW. TRIP6 promotes neural stem cell maintenance through YAP-mediated Sonic Hedgehog activation. FASEB J 2024; 38:e23501. [PMID: 38411462 DOI: 10.1096/fj.202301805rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Xiu-Li Yang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Chi Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Lin Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
9
|
Sichani AS, Khoddam S, Shakeri S, Tavakkoli Z, Jafroodi AR, Dabbaghipour R, Sisakht M, Fallahi J. Partial Reprogramming as a Method for Regenerating Neural Tissues in Aged Organisms. Cell Reprogram 2024; 26:10-23. [PMID: 38381402 DOI: 10.1089/cell.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging causes numerous age-related diseases, leading the human species to death. Nevertheless, rejuvenating strategies based on cell epigenetic modifications are a possible approach to counteract disease progression while getting old. Cell reprogramming of adult somatic cells toward pluripotency ought to be a promising tool for age-related diseases. However, researchers do not have control over this process as cells lose their fate, and cause potential cancerous cells or unexpected cell phenotypes. Direct and partial reprogramming were introduced in recent years with distinctive applications. Although direct reprogramming makes cells lose their identity, it has various applications in regeneration medicine. Temporary and regulated in vivo overexpression of Yamanaka factors has been shown in several experimental contexts to be achievable and is used to rejuvenate mice models. This regeneration can be accomplished by altering the epigenetic adult cell signature to the signature of a younger cell. The greatest advantage of partial reprogramming is that this method does not allow cells to lose their identity when they are resetting their epigenetic clock. It is a regimen of short-term Oct3/4, Sox2, Klf4, and c-Myc expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. We know that many neurological age-related diseases, such as Alzheimer's disease, stroke, dementia, and Parkinson's disease, are the main cause of death in the last decades of life. Therefore, scientists have a special tendency regarding neuroregeneration methods to increase human life expectancy.
Collapse
Affiliation(s)
- Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Tavakkoli
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arad Ranji Jafroodi
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Kousnetsov R, Bourque J, Surnov A, Fallahee I, Hawiger D. Single-cell sequencing analysis within biologically relevant dimensions. Cell Syst 2024; 15:83-103.e11. [PMID: 38198894 DOI: 10.1016/j.cels.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
The currently predominant approach to transcriptomic and epigenomic single-cell analysis depends on a rigid perspective constrained by reduced dimensions and algorithmically derived and annotated clusters. Here, we developed Seqtometry (sequencing-to-measurement), a single-cell analytical strategy based on biologically relevant dimensions enabled by advanced scoring with multiple gene sets (signatures) for examination of gene expression and accessibility across various organ systems. By utilizing information only in the form of specific signatures, Seqtometry bypasses unsupervised clustering and individual annotations of clusters. Instead, Seqtometry combines qualitative and quantitative cell-type identification with specific characterization of diverse biological processes under experimental or disease conditions. Comprehensive analysis by Seqtometry of various immune cells as well as other cells from different organs and disease-induced states, including multiple myeloma and Alzheimer's disease, surpasses corresponding cluster-based analytical output. We propose Seqtometry as a single-cell sequencing analysis approach applicable for both basic and clinical research.
Collapse
Affiliation(s)
- Robert Kousnetsov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alexey Surnov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Terrinoni A, Micheloni G, Moretti V, Caporali S, Bernardini S, Minieri M, Pieri M, Giaroni C, Acquati F, Costantino L, Ferrara F, Valli R, Porta G. OTX Genes in Adult Tissues. Int J Mol Sci 2023; 24:16962. [PMID: 38069286 PMCID: PMC10707059 DOI: 10.3390/ijms242316962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cristina Giaroni
- Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Francesco Acquati
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
12
|
Arthur NB, Christensen KA, Mannino K, Ruzinova MB, Kumar A, Gruszczynska A, Day RB, Erdmann-Gilmore P, Mi Y, Sprung R, York CR, Reid Townsend R, Spencer DH, Sykes SM, Ferraro F. Missense mutations in Myc Box I influence MYC cellular localization, mRNA partitioning and turnover to promote leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563493. [PMID: 37961226 PMCID: PMC10634725 DOI: 10.1101/2023.10.22.563493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Somatic missense mutations in the phosphodegron domain of the MYC gene ( M YC Box I) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. To unveil unique proprieties of MBI MYC mutant proteins, we systematically compared the cellular and molecular consequences of expressing similar oncogenic levels of wild type and MBI mutant MYC. We found that MBI MYC mutants can accelerate leukemia by driving unique transcriptional signatures in highly selected, myeloid progenitor subpopulations. Although these mutations increase MYC stability, they overall dampen MYC chromatin localization and lead to a cytoplasmic accumulation of the mutant proteins. This phenotype is coupled with increased translation of RNA binding proteins and nuclear export machinery, which results in altered RNA partitioning and accelerated decay of select transcripts encoding proapoptotic and proinflammatory genes. Heterozygous knockin mice harboring the germline MBI mutation Myc p.T73N exhibit cytoplasmic MYC localization, myeloid progenitors' expansion with similar transcriptional signatures to the overexpression model, and eventually develop hematological malignancies. This study uncovers that MBI MYC mutations alter MYC localization and disrupt mRNA subcellular distribution and turnover of select transcripts to accelerate tumor initiation and growth.
Collapse
|
13
|
Dickinson MJ, Barba P, Jäger U, Shah NN, Blaise D, Briones J, Shune L, Boissel N, Bondanza A, Mariconti L, Marchal AL, Quinn DS, Yang J, Price A, Sohoni A, Treanor LM, Orlando EJ, Mataraza J, Davis J, Lu D, Zhu X, Engels B, Moutouh-de Parseval L, Brogdon JL, Moschetta M, Flinn IW. A Novel Autologous CAR-T Therapy, YTB323, with Preserved T-cell Stemness Shows Enhanced CAR T-cell Efficacy in Preclinical and Early Clinical Development. Cancer Discov 2023; 13:1982-1997. [PMID: 37249512 PMCID: PMC10481129 DOI: 10.1158/2159-8290.cd-22-1276] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
CAR T-cell product quality and stemness (Tstem) are major determinants of in vivo expansion, efficacy, and clinical response. Prolonged ex vivo culturing is known to deplete Tstem, affecting clinical outcome. YTB323, a novel autologous CD19-directed CAR T-cell therapy expressing the same validated CAR as tisagenlecleucel, is manufactured using a next-generation platform in <2 days. Here, we report the preclinical development and preliminary clinical data of YTB323 in adults with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL; NCT03960840). In preclinical mouse models, YTB323 exhibited enhanced in vivo expansion and antitumor activity at lower doses than traditionally manufactured CAR T cells. Clinically, at doses 25-fold lower than tisagenlecleucel, YTB323 showed (i) promising overall safety [cytokine release syndrome (any grade, 35%; grade ≥3, 6%), neurotoxicity (any grade, 25%; grade ≥3, 6%)]; (ii) overall response rates of 75% and 80% for DL1 and DL2, respectively; (iii) comparable CAR T-cell expansion; and (iv) preservation of T-cell phenotype. Current data support the continued development of YTB323 for r/r DLBCL. SIGNIFICANCE Traditional CAR T-cell manufacturing requires extended ex vivo cell culture, reducing naive and stem cell memory T-cell populations and diminishing antitumor activity. YTB323, which expresses the same validated CAR as tisagenlecleucel, can be manufactured in <2 days while retaining T-cell stemness and enhancing clinical activity at a 25-fold lower dose. See related commentary by Wang, p. 1961. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Michael J. Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Pere Barba
- Hematology Department, Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ulrich Jäger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, and Comprehensive Cancer Center, Vienna General Hospital – Medical University of Vienna, Vienna, Austria
| | | | - Didier Blaise
- Département d'Hématologie, Programme de Transplantation et de Thérapie Cellulaire, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, Institut Paoli Calmettes, Marseille, France
| | - Javier Briones
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Leyla Shune
- University of Kansas Medical Center, Kansas City, Kansas
| | - Nicolas Boissel
- Hematology Adolescent and Young Adult Unit, Saint-Louis Hospital, APHP, Paris, France
| | | | - Luisa Mariconti
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - David S. Quinn
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jennifer Yang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Andrew Price
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Akash Sohoni
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Louise M. Treanor
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Elena J. Orlando
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jennifer Mataraza
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jaclyn Davis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Darlene Lu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xu Zhu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Boris Engels
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | | - Ian W. Flinn
- Sarah Cannon Research Institute and Tennessee Oncology Center for Blood Cancers, Nashville, Tennessee
| |
Collapse
|
14
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
15
|
Vava A, Paccez JD, Wang Y, Gu X, Bhasin MK, Myers M, Soares NC, Libermann TA, Zerbini LF. DCUN1D1 Is an Essential Regulator of Prostate Cancer Proliferation and Tumour Growth That Acts through Neddylation of Cullin 1, 3, 4A and 5 and Deregulation of Wnt/Catenin Pathway. Cells 2023; 12:1973. [PMID: 37566052 PMCID: PMC10417424 DOI: 10.3390/cells12151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise role of DCUN1D1 in prostate cancer (PCa) has not been previously explored thoroughly. Here, we investigated the role of DCUN1D1 in PCa and demonstrated that DCUN1D1 is upregulated in cell lines as well as human tissue samples. Inhibition of DCUN1D1 significantly reduced PCa cell proliferation and migration and remarkably inhibited xenograft formation in mice. Applying both genomics and proteomics approaches, we provide novel information about the DCUN1D1 mechanism of action. We identified CUL3, CUL4B, RBX1, CAND1 and RPS19 proteins as DCUN1D1 binding partners. Our analysis also revealed the dysregulation of genes associated with cellular growth and proliferation, developmental, cell death and cancer pathways and the WNT/β-catenin pathway as potential mechanisms. Inhibition of DCUN1D1 leads to the inactivation of β-catenin through its phosphorylation and degradation which inhibits the downstream action of β-catenin, reducing its interaction with Lef1 in the Lef1/TCF complex that regulates Wnt target gene expression. Together our data point to an essential role of the DCUN1D1 protein in PCa which can be explored for potential targeted therapy.
Collapse
Affiliation(s)
- Akhona Vava
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert School of Medicine, Brown University, Providence, RI 02912, USA;
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Manoj K. Bhasin
- Department of Pediatrics Bioinformatics, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Michael Myers
- Protein Networks Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | - Nelson C. Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health, Doutor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA/School/Faculdade de Lisboa, 1169-056 Lisbon, Portugal
| | - Towia A. Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (X.G.); (T.A.L.)
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (A.V.); (J.D.P.)
| |
Collapse
|
16
|
Desette A, Guichet PO, Emambux S, Masliantsev K, Cortes U, Ndiaye B, Milin S, George S, Faigner M, Tisserand J, Gaillard A, Brot S, Wager M, Tougeron D, Karayan-Tapon L. Deciphering Brain Metastasis Stem Cell Properties From Colorectal Cancer Highlights Specific Stemness Signature and Shared Molecular Features. Cell Mol Gastroenterol Hepatol 2023; 16:757-782. [PMID: 37482243 PMCID: PMC10520365 DOI: 10.1016/j.jcmgh.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND & AIMS Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.
Collapse
Affiliation(s)
- Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France.
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Sheik Emambux
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Ulrich Cortes
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Birama Ndiaye
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Serge Milin
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'Anatomie et de Cytologie Pathologiques, CHU de Poitiers, Poitiers, France
| | - Simon George
- MGX-Montpellier GenomiX, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Mathieu Faigner
- Service d'oncologie médicale, CHU de Poitiers, Poitiers, France
| | | | - Afsaneh Gaillard
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Sébastien Brot
- Université de Poitiers, CHU de Poitiers, INSERM, LNEC, Poitiers, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service de Neurochirurgie, CHU de Poitiers, Poitiers, France
| | - David Tougeron
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Service d'hépato-gastro-entérologie, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, UR 24144, Poitiers, France; Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| |
Collapse
|
17
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 15:302-322. [PMID: 37342224 PMCID: PMC10277965 DOI: 10.4252/wjsc.v15.i5.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland.
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|
18
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Lin DS, Trumpp A. Differential expression of endothelial protein C receptor (EPCR) in hematopoietic stem and multipotent progenitor cells in young and old mice. Cells Dev 2023; 174:203843. [PMID: 37080459 DOI: 10.1016/j.cdev.2023.203843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Endothelial protein C receptor (EPCR) has emerged as one of the most conserved and reliable surface markers for the prospective identification and isolation of hematopoietic stem cells (HSCs). Prior studies have consistently demonstrated that EPCR expression enriches HSCs capable of long-term multilineage repopulation in both mouse and human across different hematopoietic tissues, including bone marrow (BM), fetal liver and ex vivo HSC expansion cultures. However, little is known about the expression profiles of EPCR in multipotent progenitor (MPP) populations located immediately downstream of HSCs in the hematopoietic hierarchy and which play a major role in sustaining lifelong blood cell production. Here, we incorporate EPCR antibody detection into a multi-parameter flow cytometric panel, which allows accurate identification of HSCs and five MPP subsets (MPP1-5) in mouse BM. Our data reveal that all MPP populations contain EPCR-expressing cells. Multipotent MPP1 and MPP5 contain higher proportion of EPCR+ cells compared to the more lineage-biased MPP2-4. Notably, high expression of EPCR enriches phenotypic HSC and MPP5, but not MPP1. Comparison of EPCR expression profiles between young and old BM reveals ageing mediated expansion of EPCR-expressing cells only in HSCs, but not in any of the MPP populations. Collectively, our study provides a comprehensive characterization of the surface expression pattern of EPCR in mouse HSC and MPP1-5 cells during normal and aged hematopoiesis.
Collapse
Affiliation(s)
- Dawn S Lin
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| |
Collapse
|
20
|
Liu Y, Huang M, Wang X, Liu Z, Li S, Chen YG. Segregation of the stemness program from the proliferation program in intestinal stem cells. Stem Cell Reports 2023; 18:1196-1210. [PMID: 37028424 DOI: 10.1016/j.stemcr.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Stem cells can undergo continuous self-renewal and meanwhile retain the stemness capability to differentiate to mature functional cells. However, it is unclear whether the proliferation property can be segregated from the stemness in stem cells. The intestinal epithelium undergoes fast renewal, and the Lgr5+ intestinal stem cells (ISCs) are essential to maintain homeostasis. Here, we report that methyltransferase-like 3 (Mettl3), a critical enzyme for N6-methyladenosine (m6A) methylation, is required for ISCs maintenance as its deletion results in fast loss of stemness markers but has no effect on cell proliferation. We further identify four m6A-modified transcriptional factors, whose ectopic expression can restore stemness gene expression in Mettl3-/- organoids, while their silencing leads to stemness loss. In addition, transcriptomic profiling analysis discerns 23 genes that can be segregated from the genes responsible for cell proliferation. Together, these data reveal that m6A modification sustains ISC stemness, which can be uncoupled from cell proliferation.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zinan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Li
- Guangzhou Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Guangzhou Laboratory, Guangzhou, China; School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
21
|
Zhang X, Gong S, Li H, Jiang J, Jia Y, Zhang R, Liu H, Wang A, Jin Y, Lin P. USP18 promotes endometrial receptivity via the JAK/STAT1 and the ISGylation pathway. Theriogenology 2023; 202:110-118. [PMID: 36934584 DOI: 10.1016/j.theriogenology.2023.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Interferon-tau (IFNT), a pregnancy recognition signal in ruminants, promotes the establishment of endometrial receptivity by inducing the expression of interferon-stimulated genes (ISGs) via the Janus kinase/signal transducer and activator of transcription (JAK/STATs) signaling pathway. However, the precise mechanisms remain largely unknown. Ubiquitin-specific protease 18 (USP18) acts specifically on the ISGylation modification system to exert deubiquitination and participates in the regulation of the type I IFN signaling pathway. The purpose of this study was to determine the role and mechanism of USP18 on endometrial receptivity in goat. USP18 was mainly localized in the uterine luminal and glandular epithelium, and its expression levels were significantly increased from days 5-18 of early pregnancy. Progesterone (P4), estradiol (E2), and IFNT significantly stimulated USP18 expression in goat endometrial epithelial cells (gEECs) cultured in vitro. Meanwhile, the markers of endometrial receptivity HOXA11, ITGB1, ITGB3, and ITGB5 were significantly upregulated after USP18 overexpression in gEECs. However, USP18 interference significantly inhibited the expression of HOXA10, ITGB1, ITGB3, and ITGB5 in gEECs. In addition, both the phosphorylation levels of STAT1 and the expression of ISGylation-modified proteins were significantly increased after USP18 silencing in gEECs. Furthermore, pretreatment with the STAT1 inhibitor Fludara markedly restored the effect of USP18 interference in gEECs. In summary, USP18 may play an important role in promoting goat endometrial receptivity by regulating the JAK/STAT1 pathway and ISGylation.
Collapse
Affiliation(s)
- Xinyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Suhua Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haijing Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaqi Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haokun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Xiao H, Zhu H, Bögler O, Mónica FZ, Kots AY, Murad F, Bian K. Soluble Guanylate Cyclase β1 Subunit Represses Human Glioblastoma Growth. Cancers (Basel) 2023; 15:1567. [PMID: 36900358 PMCID: PMC10001022 DOI: 10.3390/cancers15051567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 alone repressed the aggressive course of glioma. The antitumor effect of sGCβ1 was not associated with enzymatic activity of sGC since overexpression of sGCβ1 alone did not influence the level of cyclic GMP. Additionally, sGCβ1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCβ1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCβ1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCβ1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCβ1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Haifeng Zhu
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Oliver Bögler
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Fabiola Zakia Mónica
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paolo 13083, Brazil
| | - Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ferid Murad
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| |
Collapse
|
23
|
Déjosez M, Marin A, Hughes GM, Morales AE, Godoy-Parejo C, Gray JL, Qin Y, Singh AA, Xu H, Juste J, Ibáñez C, White KM, Rosales R, Francoeur NJ, Sebra RP, Alcock D, Volkert TL, Puechmaille SJ, Pastusiak A, Frost SDW, Hiller M, Young RA, Teeling EC, García-Sastre A, Zwaka TP. Bat pluripotent stem cells reveal unusual entanglement between host and viruses. Cell 2023; 186:957-974.e28. [PMID: 36812912 PMCID: PMC10085545 DOI: 10.1016/j.cell.2023.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.
Collapse
Affiliation(s)
- Marion Déjosez
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | - Arturo Marin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariadna E Morales
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Carlos Godoy-Parejo
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jonathan L Gray
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Yiren Qin
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Arun A Singh
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Hui Xu
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Javier Juste
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain; CIBER Epidemiology and Public Health, CIBERESP, Madrid, Spain
| | - Carlos Ibáñez
- Estación biológica de doñana (CSIC), Avda. Américo Vespucio 26, Seville 41092, Spain
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute for Genomics, New York, NY, USA
| | - Dominic Alcock
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Thomas L Volkert
- Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA
| | | | - Andrzej Pastusiak
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA
| | - Simon D W Frost
- Microsoft Premonition, Microsoft Building 99, 14820 NE 36th Street, Redmond, WA 98052, USA; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany; Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe University, Max-von-Laue-Str, 60438 Frankfurt, Germany
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine and the Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Thomas P Zwaka
- Huffington Center for Cell-Based Research in Parkinson's disease, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA; Paratus Sciences, 430 East 29th Street, Suite 600, New York, NY 10016, USA.
| |
Collapse
|
24
|
Quantitative Evaluation of Stem-like Markers of Human Glioblastoma Using Single-Cell RNA Sequencing Datasets. Cancers (Basel) 2023; 15:cancers15051557. [PMID: 36900348 PMCID: PMC10001303 DOI: 10.3390/cancers15051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Targeting glioblastoma (GBM) stem-like cells (GSCs) is a common interest in both the laboratory investigation and clinical treatment of GBM. Most of the currently applied GBM stem-like markers lack validation and comparison with common standards regarding their efficiency and feasibility in various targeting methods. Using single-cell RNA sequencing datasets from 37 GBM patients, we obtained a large pool of 2173 GBM stem-like marker candidates. To evaluate and select these candidates quantitatively, we characterized the efficiency of the candidate markers in targeting the GBM stem-like cells by their frequencies and significance of being the stem-like cluster markers. This was followed by further selection based on either their differential expression in GBM stem-like cells compared with normal brain cells or their relative expression level compared with other expressed genes. The cellular location of the translated protein was also considered. Different combinations of selection criteria highlight different markers for different application scenarios. By comparing the commonly used GSCs marker CD133 (PROM1) with markers selected by our method regarding their universality, significance, and abundance, we revealed the limitations of CD133 as a GBM stem-like marker. Overall, we propose BCAN, PTPRZ1, SOX4, etc. for laboratory-based assays with samples free of normal cells. For in vivo targeting applications that require high efficiency in targeting the stem-like subtype, the ability to distinguish GSCs from normal brain cells, and a high expression level, we recommend the intracellular marker TUBB3 and the surface markers PTPRS and GPR56.
Collapse
|
25
|
Zhao Y, Lu T, Song Y, Wen Y, Deng Z, Fan J, Zhao M, Zhao R, Luo Y, xie J, Hu B, Sun H, Wang Y, He S, Gong Y, Cheng J, Liu X, Yu L, Li J, Li C, Shi Y, Huang Q. Cancer Cells Enter an Adaptive Persistence to Survive Radiotherapy and Repopulate Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204177. [PMID: 36658726 PMCID: PMC10015890 DOI: 10.1002/advs.202204177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.
Collapse
Affiliation(s)
- Yucui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Tingting Lu
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Yanwei Song
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanqin Wen
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Zheng Deng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jiahui Fan
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
| | - Minghui Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Ruyi Zhao
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yuntao Luo
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jianzhu xie
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Binjie Hu
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Haoran Sun
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yiwei Wang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Sijia He
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yanping Gong
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jin Cheng
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Xinjian Liu
- Department of BiochemistrySchool of MedicineSun Yat‐sen UniversityShenzhen518107China
| | - Liang Yu
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Jikun Li
- Department of General SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Chuanyuan Li
- Department of DermatologyDuke University Medical CenterBox 3135DurhamNC27710USA
| | - Yongyong Shi
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200030China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio‐X Institutes)Qingdao UniversityQingdao266003China
| | - Qian Huang
- Shanghai Key Laboratory for Pancreatic Diseases and Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
26
|
Mormone E, Iorio EL, Abate L, Rodolfo C. Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming. Front Neurosci 2023; 17:1073689. [PMID: 36816109 PMCID: PMC9929468 DOI: 10.3389/fnins.2023.1073689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to be clarified, such as the role of mitochondrial metabolism in the regulation of endogenous adult neurogenesis and its implication in neurodegeneration. Although stem cells require glycolysis to maintain their stemness, they can perform oxidative phosphorylation and it is becoming more and more evident that mitochondria are central players, not only for ATP production but also for neuronal differentiation's steps regulation, through their ability to handle cellular redox state, intracellular signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis, upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase (OGG1) repair system would link mitochondrial DNA integrity to the modulation of neural differentiation. On the other side, there is an increasing interest in NSCs generation, from induced pluripotent stem cells, as a clinical model for neurodegenerative diseases (NDs), although this methodology still presents several drawbacks, mainly related to the reprogramming process. Indeed, high levels of reactive oxygen species (ROS), associated with telomere shortening, genomic instability, and defective mitochondrial dynamics, lead to pluripotency limitation and reprogramming efficiency's reduction. Moreover, while a physiological or moderate ROS increase serves as a signaling mechanism, to activate differentiation and suppress self-renewal, excessive oxidative stress is a common feature of NDs and aging. This ROS-dependent regulatory effect might be modulated by newly identified ROS suppressors, including the NAD+-dependent deacetylase enzymes family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of NAD synthesis has been coupled to different roles for NAD in chromatin stability, DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved in the control of both telomere's chromatin state and expression of nuclear gene involved in the regulation of mitochondrial gene expression, as well as in several NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where they play important roles. In this review we summarize the current knowledge on how SIRTs-dependent modulation of mitochondrial metabolism could impact on neurogenesis and neurodegeneration, focusing mainly on ROS function and their role in SIRTs-mediated cell reprogramming and telomere protection.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Elisabetta Mormone, ;
| | | | - Lucrezia Abate
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy,Department of Paediatric Onco-Haematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy,Carlo Rodolfo,
| |
Collapse
|
27
|
Perry JM. Immune System Influence on Hematopoietic Stem Cells and Leukemia Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:125-135. [PMID: 38228962 DOI: 10.1007/978-981-99-7471-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are the source for all blood cells, including immune cells, and they interact dynamically with the immune system. This chapter will explore the nature of stem cells, particularly HSCs, in the context of their immune microenvironment. The dynamic interactions between stem cells and the immune system can have profound implications for current and future therapies, particularly regarding a potential "immune-privileged" HSC microenvironment. Immune/stem cell interactions change during times of stress and injury. Recent advances in cancer immunotherapy have overturned the long-standing belief that, being derived from the self, cancer cells should be immunotolerant. Instead, an immunosurveillance system recognizes and eliminates emergent pre-cancerous cells. Only in the context of a failing immunosurveillance system does cancer fully develop. Combined with the knowledge that stem cells or their unique properties can be critically important for cancer initiation, persistence, and resistance to therapy, understanding the unique immune properties of stem cells will be critical for the development of future cancer therapies. Accordingly, the therapeutic implications for leukemic stem cells (LSCs) inheriting an immune-privileged state from HSCs will be discussed. Through their dynamic interactions with a diverse immune system, stem cells serve as the light and dark root of cancer prevention vs. development.
Collapse
Affiliation(s)
- John M Perry
- Children's Mercy Kansas City, Kansas City, MO, USA.
- University of Kansas Medical Center, Kansas City, KS, USA.
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
28
|
Zekri ARN, Bahnassy A, Mourad M, Malash I, Ahmed O, Abdellateif MS. Genetic profiling of different phenotypic subsets of breast cancer stem cells (BCSCs) in breast cancer patients. Cancer Cell Int 2022; 22:423. [PMID: 36585652 PMCID: PMC9805169 DOI: 10.1186/s12935-022-02841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) have a crucial role in breast carcinogenesis, development, and progression. The aim of the current study is to characterize the BCSCs through the genetic profiling of different BCSCs phenotypic subsets to determine their related genetic pathways. METHODS Fresh tumor tissue samples were obtained from 31 breast cancer (BC) patients for (1) Mammosphere culture. (2) Magnetic separation of the BCSCs subsets using CD24, CD44, and CD326 Microbeads. (3) Flow cytometry (FCM) assay using CD44, CD24, and EpCAM. (4) RT-PCR profiler Arrays using stem cell (SC) panel of 84 genes for four group of cells (1) CD44+/CD24-/EpCAM- BCSCs, (2) CD44+/CD24- /EpCAM+ BCSCs, (3) mammospheres, and (4) normal breast tissues. RESULTS The BCSCs (CD44+/CD24-/EpCAM-) showed significant downregulation in 13 genes and upregulation in 15, where the CD44, GJB1 and GDF3 showed the maximal expression (P = 0.001, P = 0.003 and P = 0.007); respectively). The CD44+/CD24-/EpCAM+ BCSCs showed significant upregulation in 28 genes, where the CD44, GDF3, and GJB1 showed maximal expression (P < 0.001, P = 0.001 and P = 0.003; respectively). The mammospheres showed significant downregulation in 9 genes and a significant upregulation in 35 genes. The maximal overexpression was observed in GJB1 and FGF2 (P = 0.001, P = 0.001; respectively). The genes which achieved significant overexpression in all SC subsets were CD44, COL9A1, FGF1, FGF2, GDF3, GJA1, GJB1, GJB2, HSPA9, and KRT15. While significant downregulation in BMP2, BMP3, EP300, and KAT8. The genes which were differentially expressed by the mammospheres compared to the other BCSC subsets were CCND2, FGF3, CD4, WNT1, KAT2A, NUMB, ACAN, COL2A1, TUBB3, ASCL2, FOXA2, ISL1, DTX1, and DVL1. CONCLUSION BCSCs have specific molecular profiles that differ according to their phenotypes which could affect patients' prognosis and outcome.
Collapse
Affiliation(s)
- Abdel-Rahman N. Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer Bahnassy
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magda Mourad
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ibrahim Malash
- grid.7776.10000 0004 0639 9286Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S. Abdellateif
- grid.7776.10000 0004 0639 9286Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
30
|
Choe MS, Bae CM, Kim SJ, Oh ST, Kown YJ, Choi WY, Han HJ, Baek KM, Chang W, Kim JS, Lim KS, Yun SP, Lee MY. Human embryonic stem cell-specific role of YAP in maintenance of self-renewal and survival. Cell Mol Life Sci 2022; 79:544. [PMID: 36219276 PMCID: PMC11802944 DOI: 10.1007/s00018-022-04558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Human embryonic stem cells (hESCs) have unique characteristics, such as self-renewal and pluripotency, which are distinct from those of other cell types. These characteristics of hESCs are tightly regulated by complex signaling mechanisms. In this study, we demonstrate that yes-associated protein (YAP) functions in an hESC-specific manner to maintain self-renewal and survival in hESCs. hESCs were highly sensitive to YAP downregulation to promote cell survival. Interestingly, hESCs displayed dynamic changes in YAP expression in response to YAP downregulation. YAP was critical for the maintenance of self-renewal. Additionally, the function of YAP in maintenance of self-renewal and cell survival was hESC-specific. Doxycycline upregulated YAP in hESCs and attenuated the decreased cell survival induced by YAP downregulation. However, decreased expression of self-renewal markers triggered by YAP downregulation and neural/cardiac differentiation were affected by doxycycline treatment. Collectively, the results reveal the mechanism underlying the role of YAP and the novel function of doxycycline in hESCs.
Collapse
Affiliation(s)
- Mu Seog Choe
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - Chang Min Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - So Jin Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - Seung Tack Oh
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - Yu Jin Kown
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - Won-Young Choi
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea
| | - Ho Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyung Min Baek
- College of Oriental Medicine, Daegu Haany University, Daegu, South Korea
| | - Woochul Chang
- College of Education, Pusan National University, Busan, South Korea
| | - Joong Sun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Seung Pil Yun
- College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
31
|
Novak R, Ahmad YA, Timaner M, Bitman-Lotan E, Oknin-Vaisman A, Horwitz R, Hartmann O, Reissland M, Buck V, Rosenfeldt M, Nikomarov D, Diefenbacher ME, Shaked Y, Orian A. RNF4~RGMb~BMP6 axis required for osteogenic differentiation and cancer cell survival. Cell Death Dis 2022; 13:820. [PMID: 36153321 PMCID: PMC9509360 DOI: 10.1038/s41419-022-05262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.
Collapse
Affiliation(s)
- Rostislav Novak
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel ,Rambam Health Campus Center, Haifa, 3109610 Israel
| | - Yamen Abu Ahmad
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Michael Timaner
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Eliya Bitman-Lotan
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Avital Oknin-Vaisman
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Roi Horwitz
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Oliver Hartmann
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Michaela Reissland
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Viktoria Buck
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Mathias Rosenfeldt
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Markus Elmar Diefenbacher
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Yuval Shaked
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Amir Orian
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| |
Collapse
|
32
|
Zhou RT, Ni YR, Zeng FJ. The roles of long noncoding RNAs in the regulation of OCT4 expression. Stem Cell Res Ther 2022; 13:383. [PMID: 35907897 PMCID: PMC9338536 DOI: 10.1186/s13287-022-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
OCT4 is a major transcription factor that maintains the pluripotency of stem cells, including embryonic stem cells, induced pluripotent stem cells and cancer stem cells. An increasing number of long noncoding RNAs have been reported to participate in the regulation of OCT4 expression through various mechanisms, including binding with the OCT4 gene promoter to regulate local methylation; promoting chromosomal spatial folding to form an inner ring, thereby aggregating OCT4 cis-acting elements scattered in discontinuous sites of the chromosome; competitively binding microRNAs with OCT4 to upregulate OCT4 expression at the posttranscriptional level; and sharing a promoter with OCT4. Moreover, the transcription of some long noncoding RNAs is regulated by OCT4, and certain long noncoding RNAs form feedback regulatory loops with OCT4. In this review, we summarized the research progress of the long noncoding RNAs involved in the regulation of OCT4 expression.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China.,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.,Medical College, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi-Ran Ni
- Medical College, China Three Gorges University, Yichang, 443002, Hubei, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Fan-Jun Zeng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China. .,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|
33
|
Wang S, Li L, Cook C, Zhang Y, Xia Y, Liu Y. A potential fate decision landscape of the TWEAK/Fn14 axis on stem and progenitor cells: a systematic review. Stem Cell Res Ther 2022; 13:270. [PMID: 35729659 PMCID: PMC9210594 DOI: 10.1186/s13287-022-02930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Stem and progenitor cells (SPCs) possess self-remodeling ability and differentiation potential and are responsible for the regeneration and development of organs and tissue systems. However, the precise mechanisms underlying the regulation of SPC biology remain unclear. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) acts on miscellaneous cells via binding to fibroblast growth factor-inducible 14 (Fn14) and exerts pleiotropic functions in the regulation of divergent stem cell fates. TWEAK/Fn14 signaling can regulate the proliferation, differentiation, and migration of multiple SPCs as well as tumorigenesis in certain contexts. Although TWEAK’s roles in modulating multiple SPCs are sparsely reported, the systemic effector functions of this multifaceted protein have not been fully elucidated. In this review, we summarized the fate decisions of TWEAK/Fn14 signaling on multiple stem cells and characterized its potential in stem cell therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
34
|
Much C, Smallegan MJ, Hwang T, Hanson SD, Dumbović G, Rinn JL. Evolutionary divergence of Firre localization and expression. RNA (NEW YORK, N.Y.) 2022; 28:842-853. [PMID: 35304421 PMCID: PMC9074896 DOI: 10.1261/rna.079070.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/06/2022] [Indexed: 06/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly evolving and thus typically poorly conserved in their sequences. How these sequence differences affect the characteristics and potential functions of lncRNAs with shared synteny remains unclear. Here we show that the syntenically conserved lncRNA Firre displays distinct expression and localization patterns in human and mouse. Single molecule RNA FISH reveals that in a range of cell lines, mouse Firre (mFirre) is predominantly nuclear, while human FIRRE (hFIRRE) is distributed between the cytoplasm and nucleus. This localization pattern is maintained in human/mouse hybrid cells expressing both human and mouse Firre, implying that the localization of the lncRNA is species autonomous. We find that the majority of hFIRRE transcripts in the cytoplasm are comprised of isoforms that are enriched in RRD repeats. We furthermore determine that in various tissues, mFirre is more highly expressed than its human counterpart. Our data illustrate that the rapid evolution of syntenic lncRNAs can lead to variations in lncRNA localization and abundance, which in turn may result in disparate lncRNA functions even in closely related species.
Collapse
Affiliation(s)
- Christian Much
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80302, USA
| | - Taeyoung Hwang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Skylar D Hanson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
| | - Gabrijela Dumbović
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, USA
| |
Collapse
|
35
|
Bhawe K, Das JK, Yoo C, Felty Q, Gong Z, Deoraj A, Liuzzi JP, Ehtesham NZ, Hasnain SE, Singh VP, Mohapatra I, Komotar RJ, Roy D. Nuclear respiratory factor 1 transcriptomic signatures as prognostic indicators of recurring aggressive mesenchymal glioblastoma and resistance to therapy in White American females. J Cancer Res Clin Oncol 2022; 148:1641-1682. [PMID: 35441887 DOI: 10.1007/s00432-022-03987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The mechanisms contributing to recurrence of glioblastoma (GBM), an aggressive neuroepithelial brain tumor, remain unknown. We have recently shown that nuclear respiratory factor 1 (NRF1) is an oncogenic transcription factor and its transcriptional activity is associated with the progression and prognosis of GBM. Herein, we extend our efforts to (1) identify influential NRF1-driven gene and microRNA (miRNA) expression for the aggressiveness of mesenchymal GBM; and (2) understand the molecular basis for its poor response to therapy. METHODS Clinical data and RNA-Seq from four independent GBM cohorts were analyzed by Bayesian Network Inference with Java Objects (BANJO) and Markov chain Monte Carlo (MCMC)-based gene order to identify molecular drivers of mesenchymal GBM as well as prognostic indicators of poor response to radiation and chemotherapy. RESULTS We are the first to report sex-specific NRF1 motif enriched gene signatures showing increased susceptibility to GBM. Risk estimates for GBM were increased by greater than 100-fold with the joint effect of NRF1-driven gene signatures-CDK4, DUSP6, MSH2, NRF1, and PARK7 in female GBM patients and CDK4, CASP2, H6PD, and NRF1 in male GBM patients. NRF1-driven causal Bayesian network genes were predictive of poor survival and resistance to chemoradiation in IDH1 wild-type mesenchymal GBM patients. NRF1-regulatable miRNAs were also associated with poor response to chemoradiation therapy in female IDH1 wild-type mesenchymal GBM. Stable overexpression of NRF1 reprogramed human astrocytes into neural stem cell-like cells expressing SOX2 and nestin. These cells differentiated into neurons and form tumorospheroids. CONCLUSIONS In summary, our novel discovery shows that NRF1-driven causal genes and miRNAs involved in cancer cell stemness and mesenchymal features contribute to cancer aggressiveness and recurrence of aggressive therapy-resistant glioblastoma.
Collapse
Affiliation(s)
- Kaumudi Bhawe
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jayanta K Das
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Zhenghua Gong
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Juan P Liuzzi
- Department of Dietetics and Nutrition, Florida International University, Miami, FL, 33199, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Delhi (IIT-D), Indian Institute of Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Varindera Paul Singh
- Institute of Neuroscience, Medanta-The Medicity, Gurugram, Haryana, 12200, India
| | - Ishani Mohapatra
- Institute of Neuroscience, Medanta-The Medicity, Gurugram, Haryana, 12200, India
| | - Ricardo Jorge Komotar
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
36
|
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|
37
|
Scambi I, Peroni D, Nodari A, Merigo F, Benati D, Boschi F, Mannucci S, Frontini A, Visonà S, Sbarbati A, Krampera M, Galiè M. The transcriptional profile of adipose-derived stromal cells (ASC) mirrors the whitening of adipose tissue with age. Eur J Cell Biol 2022; 101:151206. [DOI: 10.1016/j.ejcb.2022.151206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
|
38
|
Modvig S, Wernersson R, Øbro NF, Olsen LR, Christensen C, Rosthøj S, Degn M, Jürgensen GW, Madsen HO, Albertsen BK, Wehner PS, Rosthøj S, Lilljebjörn H, Fioretos T, Schmiegelow K, Marquart HV. High CD34 surface expression in BCP-ALL predicts poor induction therapy response and is associated with altered expression of genes related to cell migration and adhesion. Mol Oncol 2022; 16:2015-2030. [PMID: 35271751 PMCID: PMC9120905 DOI: 10.1002/1878-0261.13207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Minimal residual disease (MRD) constitutes the most important prognostic factor in B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL). Flow cytometry is widely used in MRD assessment, yet little is known regarding the effect of different immunophenotypic subsets on outcome. In this study of 200 BCP‐ALL patients, we found that a CD34‐positive, CD38 dim‐positive, nTdT dim‐positive immunophenotype on the leukemic blasts was associated with poor induction therapy response and predicted an MRD level at the end of induction therapy (EOI) of ≥ 0.001. CD34 expression was strongly and positively associated with EOI MRD, whereas CD34‐negative patients had a low relapse risk. Further, CD34 expression increased from diagnosis to relapse. CD34 is a stemness‐associated cell‐surface molecule, possibly involved in cell adhesion/migration or survival. Accordingly, genes associated with stemness were overrepresented among the most upregulated genes in CD34‐positive leukemias, and protein–protein interaction networks showed an overrepresentation of genes associated with cell migration, cell adhesion, and negative regulation of apoptosis. The present work is the first to demonstrate a CD34‐negative immunophenotype as a good prognostic factor in ALL, whereas high CD34 expression is associated with poor therapy response and an altered gene expression profile reminiscent of migrating cancer stem‐like cells.
Collapse
Affiliation(s)
- Signe Modvig
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rasmus Wernersson
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Intomics A/S, Lyngby, Denmark
| | - Nina Friesgaard Øbro
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Christensen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Susanne Rosthøj
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Matilda Degn
- Dept. of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet
| | - Gitte Wullf Jürgensen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans O Madsen
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Klug Albertsen
- Dept. of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peder Skov Wehner
- H.C. Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Steen Rosthøj
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kjeld Schmiegelow
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Dept. of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Faculty of Medicine, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Dept. of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
39
|
Nachmias B, Khan DH, Voisin V, Mer AS, Thomas GE, Segev N, St-Germain J, Hurren R, Gronda M, Botham A, Wang X, Maclean N, Seneviratne AK, Duong N, Xu C, Arruda A, Orouji E, Algouneh A, Hakem R, Shlush L, Minden MD, Raught B, Bader GD, Schimmer AD. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia 2022; 36:1283-1295. [PMID: 35152270 PMCID: PMC9061300 DOI: 10.1038/s41375-022-01513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin β family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.
Collapse
|
40
|
Budnik B, Straubhaar J, Neveu J, Shvartsman D. In‐depth analysis of proteomic and genomic fluctuations during the time course of human embryonic stem cells directed differentiation into beta cells. Proteomics 2022; 22:e2100265. [DOI: 10.1002/pmic.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL) FAS Division of Science Harvard University 52 Oxford Street Cambridge MA 02138 USA
| | - Juerg Straubhaar
- Informatics and Scientific Applications Group FAS Center for Systems Biology Harvard University 38 Oxford Street Cambridge MA 02138 USA
| | - John Neveu
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL) FAS Division of Science Harvard University 52 Oxford Street Cambridge MA 02138 USA
| | - Dmitry Shvartsman
- Department of Stem Cell and Regenerative Biology Harvard Stem Cell Institute Harvard University 7 Divinity Avenue Cambridge MA 02138 USA
- Present address: Cellaria Inc. 9 Audubon Road Wakefield MA 01880 USA
| |
Collapse
|
41
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
42
|
Pavlovich PV, Cauchy P. Sequences to Differences in Gene Expression: Analysis of RNA-Seq Data. Methods Mol Biol 2022; 2508:279-318. [PMID: 35737247 DOI: 10.1007/978-1-0716-2376-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA-Seq is now a routinely employed assay to measure gene expression. As the technique matured over the last decade, so have dedicated analytic tools. In this chapter, we first describe the mainstream as well as the most up-to-date protocols and their implications on downstream analysis. We then detail the steps entailing RNA-Seq analysis in three main stages: (i) preprocessing and data preparation, (ii) upstream processing, and (iii) high-level analyses. We review the most recent and relevant tools as one workflow following a stepwise order. The chapter further encompasses in-depth features of these tools. Details of the required code are made available throughout the chapter, as well as of the underlying statistics. We illustrate these steps with analysis of publicly available RNA-Seq data.
Collapse
Affiliation(s)
| | - Pierre Cauchy
- Universitätskilinkum Freiburg, Freiburg, Germany.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
43
|
Effects of Simulated Microgravity on Wild Type and Marfan hiPSCs-Derived Embryoid Bodies. Cell Mol Bioeng 2021; 14:613-626. [PMID: 34900014 PMCID: PMC8630351 DOI: 10.1007/s12195-021-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 11/03/2022] Open
Abstract
Background Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including the inhibition of regenerative stem cell differentiation. In this work, we investigate the effects of microgravity simulation on early lineage commitment of hiPSCs from healthy and Marfan Syndrome (MFS; OMIM #154700) donors, using the embryoid bodies model of tissue differentiation and evaluating their ultra-structural conformation. MFS model involves an anomalous organization of the extracellular matrix for a deficit of fibrillin-1, an essential protein of connective tissue. Methods In vitro models require the use of embryoid bodies derived from hiPSCs. A DRPM was used to simulate microgravity conditions. Results Our data suggest an increase of the stemness of those EBs maintained in SMG condition. EBs are still capable of external migration, but are less likely to distinguish, providing a measure of the remaining progenitor or stem cell populations in the earlier stage. The microgravity response appears to vary between WT and Marfan EBs, presumably as a result of a cell structural component deficiency due to fibrillin-1 protein lack. In fact, MFS EBs show a reduced adaptive capacity to the environment of microgravity that prevented them from reacting and making rapid adjustments, while healthy EBs show stem retention, without any structural changes due to microgravity conditions. Conclusion EBs formation specifically mimics stem cell differentiation into embryonic tissues, this process has also significant similarities with adult stem cell-based tissue regeneration. The use of SMG devices for the maintenance of stem cells on regenerative medicine applications is becoming increasingly more feasible. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00680-1.
Collapse
|
44
|
Tanhuad N, Thongsa-Ad U, Sutjarit N, Yoosabai P, Panvongsa W, Wongniam S, Suksamrarn A, Piyachaturawat P, Anurathapan U, Borwornpinyo S, Chairoungdua A, Hongeng S, Bhukhai K. Ex vivo expansion and functional activity preservation of adult hematopoietic stem cells by a diarylheptanoid from Curcuma comosa. Biomed Pharmacother 2021; 143:112102. [PMID: 34474347 DOI: 10.1016/j.biopha.2021.112102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs, CD34+ cells) have shown therapeutic efficacy for transplantation in various hematological disorders. However, a large quantity of HSCs is required for transplantation. Therefore, strategies to increase HSC numbers and preserve HSC functions through ex vivo culture are critically required. Here, we report that expansion medium supplemented with ASPP 049, a diarylheptanoid isolated from Curcuma comosa, and a cocktail of cytokines markedly increased numbers of adult CD34+ cells. Interestingly, phenotypically defined primitive HSCs (CD34+CD38-CD90+) were significantly increased under ASPP 049 treatment relative to control. ASPP 049 treatment also improved two functional properties of HSCs, as evidenced by an increased number of CD34+CD38- cells in secondary culture (self-renewal) and the growth of colony-forming units as assessed by colony formation assay (multilineage differentiation). Transplantation of cultured CD34+ cells into immunodeficient mice demonstrated the long-term reconstitution and differentiation ability of ASPP 049-expanded cells. RNA sequencing and KEGG analysis revealed that Hippo signaling was the most likely pathway involved in the effects of ASPP 049. These results suggest that ASPP 049 improved ex vivo expansion and functional preservation of expanded HSCs. Our findings provide a rationale for the use of ASPP 049 to grow HSCs prior to hematological disease treatment.
Collapse
Affiliation(s)
- Nopmullee Tanhuad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ploychompoo Yoosabai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirapope Wongniam
- Central Instrument Facility Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
45
|
Yan HC, Sun Y, Zhang MY, Zhang SE, Sun JD, Dyce PW, Klinger FG, De Felici M, Shen W, Cheng SF. YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway. Histochem Cell Biol 2021; 157:39-50. [PMID: 34586448 DOI: 10.1007/s00418-021-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
46
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol 2021; 480:69-77. [PMID: 34411594 DOI: 10.1016/j.ydbio.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Follicular fluid is one source of microRNAs (miRNAs). These miRNAs originate from oocytes and their neighboring cells. The changes in the miRNAs profile in the follicular fluid could alter folliculogenesis and oocyte maturation, and lead to infertility. Polycystic ovary syndrome (PCOS) patients have increased miR-21 levels in their sera, granulosa cells, and follicular fluid, and this mi-RNA plays a role in the pathophysiology and follicular dysfunction of PCOS patients. In the current study, we intend to examine whether expression levels of miR-21 influence oocyte maturation and embryo development. We examined miR-21 over-expression and down-regulation of miR-21 by miR-off 21 during in vitro maturation (IVM) to assess its influence on oocyte maturation and embryo development in mice. Over-expression of miR-21 in cumulus cells decreased expansion, meiotic progression, Glutathione-S-transferase GSH levels, and decreased expressions of Bmpr2 and Ptx3 genes. Subsequently, we noted that in vitro fertilization, and the cleavage rate and blastocyst formation significantly increased in cumulus oocyte complexes (COCs) that over-expressed miR-21. Inhibition of miR-21 by miR-off 21 led to increased cumulus expansion and GSH levels, along with decreased cleavage rate and blastocyst formation by alterations in Cdk2ap1 and Oct4 gene expressions. However, oocyte progression from the germinal vesicle (GV) to the metaphase II (MII) stage was not significant. miR-21 altered the gene expression levels in cumulus cells and influenced cytoplasmic oocyte maturation, cumulus expansion, and subsequent embryonic development in mice.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Warsi S, Blank U, Dahl M, Hooi Min Grahn T, Schmiderer L, Andradottir S, Karlsson S. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica 2021; 106:2203-2214. [PMID: 32675226 PMCID: PMC8327730 DOI: 10.3324/haematol.2019.236125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Life-long production of blood from hematopoietic stem cells (HSC) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal – a cardinal feature of HSC. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is known about its functions in adulthood. Previously, SMAD-mediated BMP signaling has been proven dispensable for HSC. However, the BMP type-II receptor (BMPR-II) is highly expressed in HSC, leaving the possibility that BMP function via alternative pathways. Here, we establish that BMP signaling is required for selfrenewal of adult HSC. Through conditional knockout we show that BMPR-II deficient HSC have impaired self-renewal and regenerative capacity. BMPR-II deficient cells have reduced p38 activation, implying that non-SMAD pathways operate downstream of BMP in HSC. Indeed, a majority of primitive hematopoietic cells do not engage in SMADmediated responses downstream of BMP in vivo. Furthermore, deficiency of BMPR-II results in increased expression of TJP1, a known regulator of self-renewal in other stem cells, and knockdown of TJP1 in primitive hematopoietic cells partly rescues the BMPR-II null phenotype. This suggests TJP1 may be a universal stem cell regulator. In conclusion, BMP signaling, in part mediated through TJP1, is required endogenously by adult HSC to maintain self-renewal capacity and proper resilience of the hematopoietic system during regeneration.
Collapse
Affiliation(s)
- Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ulrika Blank
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maria Dahl
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
49
|
The expression of tenascin-C in neural stem/progenitor cells is stimulated by the growth factors EGF and FGF-2, but not by TGFβ1. Cell Tissue Res 2021; 385:659-674. [PMID: 34309729 PMCID: PMC8526465 DOI: 10.1007/s00441-021-03508-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Neural stem/progenitor cells (NSPCs) rely on internal and external cues determining their lineage decisions during brain development. The progenitor cells of the embryonic mammalian forebrain reside in the ventricular and subventricular zones of the lateral ventricles, where they proliferate, generate neurons and glial cells, and respond to external cues like growth factors. The extracellular matrix (ECM) surrounds NSPCs and influences the cell fate by providing mechanical scaffold, trophic support, and instructive signals. The ECM molecule tenascin-C (Tnc) is expressed in the proliferative zones of the developing forebrain and involved in the proliferation and maturation of NSPCs. Here, we analyzed the regulation of the Tnc gene expression by NSPCs cultivated under the influence of different growth factors. We observed that the epidermal growth factor (EGF) and the fibroblast growth factor (FGF)-2 strongly increased the expression of Tnc, whereas the transforming growth factor (TGF)β 1 had no effect on Tnc gene expression, in contrast to previous findings in cell cultures of neural and non-neural origin. The stimulation of the Tnc gene expression induced by EGF or FGF-2 was reversible and seen in constantly treated as well as short term stimulated NSPC cultures. The activation depended on the presence of the respective receptors, which was slightly different in cortical and striatal NSPC cultures. Our results confirm the influence of extracellular stimuli regulating the expression of factors that form a niche for NSPCs during embryonic forebrain development.
Collapse
|
50
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|