1
|
Mao W, Rong Y, Zhang H, Yuan F, Wang Y, Wang M, Wang L, Wang PG, Chen M, Wang S, Kong Y. Characterization and application in recombinant N-GlcNAc-protein production of a novel endo-β-N-acetylglucosaminidase from Listeria booriae. Bioorg Chem 2025; 157:108290. [PMID: 39983405 DOI: 10.1016/j.bioorg.2025.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are essential enzymes for hydrolyzing N-glycans, with applications in protein N-glycosylation analysis and glycoprotein synthesis. In this study, a novel GH18 family ENGase, Endo-LB, was identified from Listeria booriae FSL A5-0281. Composed of 593 amino acids (65.78 kDa), Endo-LB features with two domains: an Endo S-like catalytic domain and a mucin-binding protein (MucBP) domain. Recombinant Endo-LB, expressed in Escherichia coli BL21 (DE3) pLysS, exhibited a specific activity of 198.25 U/mg and hydrolyzed high mannose-type N-glycans at a temperature from 4 °C to 60 °C with optimal activity at 37 °C and pH 6.0 (range 3.0 to 10.0), making it versatile for various environmental conditions. The MucBP domain does not affect soluble Endo-LB activity but influences interaction with mucin on cell surface, suggesting potential application in targeting specific glycoproteins in complex biological environments. To address the heterogeneity of N-glycans in Pichia pastoris (Komagataella phaffii) expression, Endo-LB was further expressed in the Golgi of P. pastoris, efficiently producing glycoproteins, such as Erythropoietin (EPO) (37 mg/L) and Darbepoetin α (53 mg/L) with nearly complete N-glycans truncation, which can be further extended to generate diverse N-glycan structures. These findings highlight the versatility and potential utility of Endo-LB in glycoprotein engineering and biotechnological applications.
Collapse
Affiliation(s)
- Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongheng Rong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongmei Zhang
- Department of Endocrinology, Zibo Central Hospital, Zibo 255020, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yankang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mei Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Linhan Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Chen X, Shi T, Chen F, Xie X, Fang H, Wu Z, Liu Y, Huang Y, Wang Q, Nie G, Xu J, Shao D. Orally Antigen-Engineered Yeast Vaccine Elicits Robust Intestinal Mucosal Immunity. ACS NANO 2025; 19:10841-10853. [PMID: 40082064 DOI: 10.1021/acsnano.4c14690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mucosal immunity plays a pivotal role in safeguarding against significant global infectious diseases caused by mucosal pathogens. The development of mucosal vaccines has been limited by the poor efficiency of antigen display and the risk of adjuvants. Here, we report an engineered yeast vaccine integrating a well-displayed antigen with an intrinsic adjuvant for the development of innate and adaptive immunity to the intestinal mucosa. Compared with antigen-secretory yeast, antigen-anchored yeast significantly activated gut dendritic cells (DCs) and promoted follicular helper T (Tfh) cell differentiation, thereby amplifying the immune response by the interaction with Tfh-B cells. Consequently, oral vaccination of SARS-CoV-2 receptor-binding domain (RBD)-anchored yeast triggered stronger RBD-specific IgA-neutralizing effects, providing potential adaptive protections. Given its corresponding impact on the functionality of both innate and adaptive mucosal responses, the proposed RBD-anchored yeast outperformed RBD-anchored bacteria and biomimetic nanovaccine in the production of RBD-specific IgA and IgG. Together, these results revealed how antigen-displaying patterns could be modulated to elicit intestinal mucosal immunity and demonstrated the translational potential of antigen-displayed yeast for effective mucosal protection.
Collapse
Affiliation(s)
- Xuenian Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Tongfei Shi
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P.R. China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Hui Fang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Ziping Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Yang Liu
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Yubiao Huang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Guangjun Nie
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Jiaqi Xu
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P.R. China
| |
Collapse
|
3
|
Casteleijn MG, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R, Kubick S. Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein. Chem Rev 2025; 125:1303-1331. [PMID: 39841856 PMCID: PMC11826901 DOI: 10.1021/acs.chemrev.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature's border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.
Collapse
Affiliation(s)
| | - Ulrike Abendroth
- VTT
Technical Research Centre of Finland Ltd, 02150 Espoo, Finland
| | - Anne Zemella
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Ruben Walter
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Rashmi Rashmi
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Rainer Haag
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Stefan Kubick
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
- Faculty
of Health Sciences, Joint Faculty of the
Brandenburg University of Technology Cottbus–Senftenberg, The
Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
- B4 PharmaTech
GmbH, Altensteinstraße
40, 14195 Berlin, Germany
| |
Collapse
|
4
|
Guo D, Zhao S, Chen J, Han S, Li Y, Chen Y, Hu S, Hu Y. Heterochromatin Protein Activates the Amylase Expression Pathway and Its Application to Recombinant Protein Expression in Penicillium oxalicum. Curr Microbiol 2025; 82:75. [PMID: 39786583 DOI: 10.1007/s00284-024-04058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements. Heterochromatin protein 1 (HP1) is considered a main factor responsible for heterochromatin maintenance; it binds DNA and thus forms a tight structure to repress gene expression in fungi. This study revealed that the overexpression of HepA (a homologue of HP1) increased amylase expression in Penicillium oxalicum. Furthermore, HepA was overexpressed in two engineered strains in which the endoglucanase TaEG and amylase Amy15B were recombinantly expressed under the control of the amylase promoter Pamy15A, resulting in increased production of these two enzymes. Therefore, HepA could be used as a novel facilitator to modify Penicillium chassis cells, in which the efficiency of expression motifs located in the amylase pathway can be further strengthened.
Collapse
Affiliation(s)
- Demin Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengfang Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuhui Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yangtao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Meng S, Miao A, Wu S, Du X, Gao F. Genetically modified chickens as bioreactors for protein-based drugs. Front Genome Ed 2025; 6:1522837. [PMID: 39845893 PMCID: PMC11753250 DOI: 10.3389/fgeed.2024.1522837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors. This review delves into the analysis and comparison of different expression systems for protein drug production, highlighting the advantages and limitations of microbial, yeast, plant cell, and mammalian cell expression systems. Additionally, the emerging significance of genetically modified chickens as a potential bioreactor system for producing protein-based drugs is highlighted. The avian bioreactor enables the expression of target genes in ovarian cells, resulting in the production of corresponding gene expression products in egg whites. This production method boasts advantages such as a short cycle, high production efficiency, low research costs, and the expression products being closer to their natural state and easier to purify. It demonstrates immense potential in production applications, scientific research, and sustainable development. The utilization of advanced gene editing technologies, such as CRISPR/Cas9, has revolutionized the precision and efficiency of generating genetically modified chickens. This has paved the way for enhanced production of recombinant therapeutic proteins with desired glycosylation patterns and reduced immunogenic responses.
Collapse
Affiliation(s)
- Shujuan Meng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Aijun Miao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Fei Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
7
|
Bolino M, Duman H, Avcı İ, Kayili HM, Petereit J, Zundel C, Salih B, Karav S, Frese SA. Proteomic and N-glycomic comparison of synthetic and bovine whey proteins and their effect on human gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613515. [PMID: 39345577 PMCID: PMC11429724 DOI: 10.1101/2024.09.18.613515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Advances in food production systems and customer acceptance have led to the commercial launch of dietary proteins produced via modern biotechnological approaches as alternatives to traditional agricultural sources. At the same time, a deeper understanding of how dietary components interact with the gut microbiome has highlighted the importance of understanding the nuances underpinning diet-microbiome interactions. Novel food proteins with distinct post-translational modifications resulting from their respective production systems have not been characterized, nor how they may differ from their traditionally produced counterparts. To address this, we have characterized the protein composition and N-glycome of a yeast-synthesized whey protein ingredient isolated from commercially available ice cream and compared this novel ingredient to whey protein powder isolate derived from bovine milk. We found that despite strong similarities in protein composition, the N-glycome significantly differs between these protein sources, reflecting the biosynthetic machinery of the production systems. Further, the composition profile and diversity of proteins found in the synthetic whey protein were lower relative to bovine whey protein, despite both being predominantly composed of β-lactoglobulin. Finally, to understand whether these differences in N-glycome profiles affected the human gut microbiome, we tested these proteins in an in vitro fecal fermentation model. We found that the two whey protein sources generated significant differences among three distinct microbial compositions, which we hypothesize is a product of differences in N-glycan composition and degradation by these representative microbial communities. This work highlights the need to understand how differences in novel biotechnological systems affect the bioactivity of these proteins, and how these differences impact the human gut microbiome.
Collapse
Affiliation(s)
- Matthew Bolino
- Department of Nutrition, University of Nevada, Reno; Reno, NV USA 89557
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University; 17020 Çanakkale, TR
| | - İzzet Avcı
- Department of Chemistry, Faculty of Science; Hacettepe University, 06500 Ankara, TR
| | - Hacı Mehmet Kayili
- Department of Biomedical Engineering, Faculty of Engineering; Karabük University; 78000 Karabük, TR
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno; Reno, NV USA 89557
| | - Chandler Zundel
- Department of Nutrition, University of Nevada, Reno; Reno, NV USA 89557
| | - Bekir Salih
- Department of Chemistry, Faculty of Science; Hacettepe University, 06500 Ankara, TR
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University; 17020 Çanakkale, TR
| | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno; Reno, NV USA 89557
| |
Collapse
|
8
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
10
|
Gao L, Jiang Y, Hong K, Chen X, Wu X. Glycosylation of cellulase: a novel strategy for improving cellulase. Crit Rev Biotechnol 2024; 44:191-201. [PMID: 36592990 DOI: 10.1080/07388551.2022.2144117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 01/04/2023]
Abstract
Protein glycosylation is the most complex posttranslational modification process. Most cellulases from filamentous fungi contain N-glycosylation and O-glycosylation. Here, we discuss the potential roles of glycosylation on the characteristics and function of cellulases. The use of certain cultivation, inducer, and alteration of engineering glycosylation pathway can enable the rational control of cellulase glycosylation. Glycosylation does not occur arbitrarily and may tend to modify the 3D structure of cellulases by using specially distributed glycans. Therefore, glycoengineering should be considered comprehensively along with the spatial structure of cellulases. Cellulase glycosylation may be an evolution phenomenon, which has been considered as an economical way for providing different functions from identical proteins. In addition to gene and transcription regulations, glycosylation may be another regulation on the protein expression level. Enhanced understanding of the potential regulatory role of cellulase glycosylation will enable synthetic biology approaches for the development of commercial cellulase.
Collapse
Affiliation(s)
- Le Gao
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yi Jiang
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Kai Hong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoyi Chen
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
11
|
Quezada A, Annapareddy A, Javanmardi K, Cooper J, Finkelstein IJ. Mammalian Antigen Display for Pandemic Countermeasures. Methods Mol Biol 2024; 2762:191-216. [PMID: 38315367 DOI: 10.1007/978-1-0716-3666-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pandemic countermeasures require the rapid design of antigens for vaccines, profiling patient antibody responses, assessing antigen structure-function landscapes, and the surveillance of emerging viral lineages. Cell surface display of a viral antigen or its subdomains can facilitate these goals by coupling the phenotypes of protein variants to their DNA sequence. Screening surface-displayed proteins via flow cytometry also eliminates time-consuming protein purification steps. Prior approaches have primarily relied on yeast as a display chassis. However, yeast often cannot express large viral glycoproteins, requiring their truncation into subdomains. Here, we describe a method to design and express antigens on the surface of mammalian HEK293T cells. We discuss three use cases, including screening of stabilizing mutations, deep mutational scanning, and epitope mapping. The mammalian antigen display platform described herein will accelerate ongoing and future pandemic countermeasures.
Collapse
Affiliation(s)
- Andrea Quezada
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ankur Annapareddy
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - John Cooper
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Dubey KK, Kumar A, Baldia A, Rajput D, Kateriya S, Singh R, Nikita, Tandon R, Mishra YK. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol Adv 2023; 69:108267. [PMID: 37813174 DOI: 10.1016/j.biotechadv.2023.108267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Kumar
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark.
| |
Collapse
|
13
|
Wenzel L, Hoffmann M, Rapp E, Rexer TFT, Reichl U. Cell-free N-glycosylation of peptides using synthetic lipid-linked hybrid and complex N-glycans. Front Mol Biosci 2023; 10:1266431. [PMID: 37767159 PMCID: PMC10520871 DOI: 10.3389/fmolb.2023.1266431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate "empty," i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human β-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and β-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.
Collapse
Affiliation(s)
- Lisa Wenzel
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Marcus Hoffmann
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Thomas F. T. Rexer
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Zahmanova G, Takova K, Tonova V, Koynarski T, Lukov LL, Minkov I, Pishmisheva M, Kotsev S, Tsachev I, Baymakova M, Andonov AP. The Re-Emergence of Hepatitis E Virus in Europe and Vaccine Development. Viruses 2023; 15:1558. [PMID: 37515244 PMCID: PMC10383931 DOI: 10.3390/v15071558] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. Transmission of HEV mainly occurs via the fecal-oral route (ingesting contaminated water or food) or by contact with infected animals and their raw meat products. Some animals, such as pigs, wild boars, sheep, goats, rabbits, camels, rats, etc., are natural reservoirs of HEV, which places people in close contact with them at increased risk of HEV disease. Although hepatitis E is a self-limiting infection, it could also lead to severe illness, particularly among pregnant women, or chronic infection in immunocompromised people. A growing number of studies point out that HEV can be classified as a re-emerging virus in developed countries. Preventative efforts are needed to reduce the incidence of acute and chronic hepatitis E in non-endemic and endemic countries. There is a recombinant HEV vaccine, but it is approved for use and commercially available only in China and Pakistan. However, further studies are needed to demonstrate the necessity of applying a preventive vaccine and to create conditions for reducing the spread of HEV. This review emphasizes the hepatitis E virus and its importance for public health in Europe, the methods of virus transmission and treatment, and summarizes the latest studies on HEV vaccine development.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Valeria Tonova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Tsvetoslav Koynarski
- Department of Animal Genetics, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Laura L Lukov
- Faculty of Sciences, Brigham Young University-Hawaii, Laie, HI 96762, USA
| | - Ivan Minkov
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | - Maria Pishmisheva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Stanislav Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, 4400 Pazardzhik, Bulgaria
| | - Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| | - Anton P Andonov
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Ouadhi S, López DMV, Mohideen FI, Kwan DH. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. Protein Eng Des Sel 2023; 36:gzac010. [PMID: 36444941 DOI: 10.1093/protein/gzac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).
Collapse
Affiliation(s)
- Sara Ouadhi
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Dulce María Valdez López
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - F Ifthiha Mohideen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Anticancer Asparaginases: Perspectives in Using Filamentous Fungi as Cell Factories. Catalysts 2023. [DOI: 10.3390/catal13010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The enzyme L-asparaginase (L-asparagine amidohydrolase) catalyzes the breakdown of L-asparagine into aspartate and ammonia, which leads to an anti-neoplastic activity stemming from its capacity to deplete L-asparagine concentrations in the bloodstream, and it is therefore used in cases of acute lymphoblastic leukemia (ALL) to inhibit malignant cell growth. Nowadays, this anti-cancer enzyme, largely produced by Escherichia coli, is well established on the market. However, E. coli L-asparaginase therapy has side effects such as anaphylaxis, coagulation abnormality, low plasma half-life, hepatotoxicity, pancreatitis, protease action, hyperglycemia, and cerebral dysfunction. This review provides a perspective on the use of filamentous fungi as alternative cell factories for L-asparaginase production. Filamentous fungi, such as various Aspergillus species, have superior protein secretion capacity compared to yeast and bacteria and studies show their potential for the future production of proteins with humanized N-linked glycans. This article explores the past and present applications of this important enzyme and discusses the prospects for using filamentous fungi to produce safe eukaryotic asparaginases with high production yields.
Collapse
|
17
|
Pruvost T, Mathieu M, Dubois S, Maillère B, Vigne E, Nozach H. Deciphering cross-species reactivity of LAMP-1 antibodies using deep mutational epitope mapping and AlphaFold. MAbs 2023; 15:2175311. [PMID: 36797224 PMCID: PMC9980635 DOI: 10.1080/19420862.2023.2175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Delineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed. We used deep mutational scanning (DMS) of the human LAMP-1 antigen displayed on yeast surface and leveraged next-generation sequencing to observe the effect of individual mutants on the binding of two LAMP-1 antibodies and to determine their functional epitopes on LAMP-1. Fine-tuned epitope mapping by DMS approaches is augmented by knowledge of experimental antigen structure. As human LAMP-1 structure has not yet been solved, we used the AlphaFold predicted structure of the full-length protein to combine with DMS data and ultimately finely map antibody epitopes. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one of the two antibodies with a LAMP-1 luminal domain. Finally, we used AlphaFold models of non-human LAMP-1 to understand the lack of mAb cross-reactivity. While both epitopes in the murine form exhibit multiple mutations in comparison to human LAMP-1, only one and two mutations in the Macaca form suffice to hinder the recognition by mAb B and A, respectively. Altogether, this study promotes a new application of AlphaFold to speed up precision mapping of antibody-antigen interactions and consequently accelerate antibody engineering for optimization.
Collapse
Affiliation(s)
- Tiphanie Pruvost
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | - Magali Mathieu
- Sanofi, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| | | | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, Université Paris-Saclay, SIMoS, France
| |
Collapse
|
18
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
19
|
Yap WS, Thibault G. A new combinatorial megaplasmid library assembly method designed to screen for minimal pathways by using SCRaMbLE. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000657. [PMID: 36389121 PMCID: PMC9647409 DOI: 10.17912/micropub.biology.000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Human proteins expressed in yeast are common to enhance protein production while the expression of functional human pathways remain challenging. Here, we propose a simple and economical high-throughput gene assembly method to create a yeast megaplasmid library from human cDNA to screen for minimal human functional pathways. We introduced artificial promoters followed by symmetric loxP sites into the megaplasmids using Golden Gate assembly coupled with streptavidin-bead-based purification. The isolated high molecular weight, randomly assembled cDNA megaplasmid library may be useful for high-throughput directed evolution experiments and may be adapted for use in other model organisms.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
,
Current address: Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
,
Mechanobiology Institute, National University of Singapore, Singapore, 117411
,
Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
,
Correspondence to: Guillaume Thibault (
)
| |
Collapse
|
20
|
Piirainen MA, Frey AD. The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts. Front Mol Biosci 2022; 9:910709. [PMID: 35720120 PMCID: PMC9201249 DOI: 10.3389/fmolb.2022.910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.
Collapse
Affiliation(s)
- Mari A. Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D. Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Kemistintie 1, Aalto University, Otakaari, Finland
- *Correspondence: Alexander D. Frey,
| |
Collapse
|
21
|
Ruffell D. A factory within a yeast cell: innovative approaches for a sustainable future - an interview with Irina Borodina. FEBS Lett 2022; 596:699-702. [PMID: 35170046 DOI: 10.1002/1873-3468.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Daniela Ruffell
- FEBS Letters Editorial Office, Heidelberg University Biochemistry Center, Germany
| |
Collapse
|
22
|
Zhang Z, Xiang B, Zhao S, Yang L, Chen Y, Hu Y, Hu S. Construction of a novel filamentous fungal protein expression system based on redesigning of regulatory elements. Appl Microbiol Biotechnol 2022; 106:647-661. [PMID: 35019997 DOI: 10.1007/s00253-022-11761-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Boyu Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengfang Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Le Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Irani V, Soliman C, Raftis MA, Guy AJ, Elbourne A, Ramsland PA. Expression of monoclonal antibodies for functional and structural studies. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kobalter S, Radkohl A, Schwab H, Emmerstorfer-Augustin A, Pichler H. Plasmid-Based Gene Knockout Strategy with Subsequent Marker Recycling in Pichia pastoris. Methods Mol Biol 2022; 2513:135-151. [PMID: 35781204 DOI: 10.1007/978-1-0716-2399-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene knockout is a key technology in the development of cell factories and basic research alike. The methylotrophic yeast Pichia pastoris is typically employed as a producer of proteins and of fine chemicals, due to its ability to accumulate high cell densities in conjunction with a set of strong inducible promoters. However, protocols for genome engineering in this host are still cumbersome and time-consuming. Moreover, extensive genome engineering raises the need for a multitude of selection markers, which are limited in P. pastoris. In this chapter, we describe a fast and efficient method for gene disruption in P. pastoris that utilizes marker recycling to enable repetitive genome engineering cycles. A set of ready-to-use knockout vectors simplifies cloning procedures and facilitates quick knockout generation.
Collapse
Affiliation(s)
- Simon Kobalter
- Graz Institute of Molecular Biotechnology, University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Astrid Radkohl
- Graz Institute of Molecular Biotechnology, University of Technology, Graz, Austria
| | - Helmut Schwab
- Graz Institute of Molecular Biotechnology, University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Graz Institute of Molecular Biotechnology, University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Graz Institute of Molecular Biotechnology, University of Technology, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
| |
Collapse
|
25
|
Javanmardi K, Chou CW, Terrace CI, Annapareddy A, Kaoud TS, Guo Q, Lutgens J, Zorkic H, Horton AP, Gardner EC, Nguyen G, Boutz DR, Goike J, Voss WN, Kuo HC, Dalby KN, Gollihar JD, Finkelstein IJ. Rapid characterization of spike variants via mammalian cell surface display. Mol Cell 2021; 81:5099-5111.e8. [PMID: 34919820 PMCID: PMC8675084 DOI: 10.1016/j.molcel.2021.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.
Collapse
Affiliation(s)
- Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Ankur Annapareddy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Josh Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hayley Zorkic
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew P Horton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Giaochau Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Jule Goike
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; CCDC Army Research Laboratory-South, Austin, TX, USA; Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
Piirainen MA, Salminen H, Frey AD. Production of galactosylated complex-type N-glycans in glycoengineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 106:301-315. [PMID: 34910238 PMCID: PMC8720083 DOI: 10.1007/s00253-021-11727-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/05/2022]
Abstract
Abstract N-glycosylation is an important posttranslational modification affecting the properties and quality of therapeutic proteins. Glycoengineering in yeast aims to produce proteins carrying human-compatible glycosylation, enabling the production of therapeutic proteins in yeasts. In this work, we demonstrate further development and characterization of a glycoengineering strategy in a Saccharomyces cerevisiae Δalg3 Δalg11 strain where a truncated Man3GlcNAc2 glycan precursor is formed due to a disrupted lipid-linked oligosaccharide synthesis pathway. We produced galactosylated complex-type and hybrid-like N-glycans by expressing a human galactosyltransferase fusion protein both with and without a UDP-glucose 4-epimerase domain from Schizosaccharomyces pombe. Our results showed that the presence of the UDP-glucose 4-epimerase domain was beneficial for the production of digalactosylated complex-type glycans also when extracellular galactose was supplied, suggesting that the positive impact of the UDP-glucose 4-epimerase domain on the galactosylation process can be linked to other processes than its catalytic activity. Moreover, optimization of the expression of human GlcNAc transferases I and II and supplementation of glucosamine in the growth medium increased the formation of galactosylated complex-type glycans. Additionally, we provide further characterization of the interfering mannosylation taking place in the glycoengineered yeast strain. Key points • Glycoengineered Saccharomyces cerevisiae can form galactosylated N-glycans. • Genetic constructs impact the activities of the expressed glycosyltransferases. • Growth medium supplementation increases formation of target N-glycan structure. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11727-8.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Heidi Salminen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
27
|
Overexpression of cell-wall GPI-anchored proteins restores cell growth of N-glycosylation-defective och1 mutants in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2021; 105:8771-8781. [PMID: 34738170 DOI: 10.1007/s00253-021-11649-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
The glycoproteins of yeast contain a large outer chain on N-linked oligosaccharides; therefore, yeast is not suitable for producing therapeutic glycoproteins for human use. Using a deletion mutant strain of α1,6-mannosyltransferase (och1Δ), we previously produced humanized N-glycans in fission yeast; however, the Schizosaccharomyces pombe och1Δ cells displayed a growth delay even during vegetative growth, resulting in reduced productivity of heterologous proteins. To overcome this problem, here we performed a genome-wide screen for genes that would suppress the growth defect of temperature-sensitive och1Δ cells. Using a genomic library coupled with screening of 18,000 transformants, we identified two genes (pwp1+, SPBC1E8.05), both encoding GPI-anchored proteins, that increased the growth rate of och1Δ cells, lacking the outer chain. We further showed that a high copy number of the genes was needed to improve the growth rate. Mutational analysis of Pwp1p revealed that the GPI-anchored region of Pwp1p is important in attenuating the growth defect. Analysis of disruptants of pwp1+ and SPBC1E8.05 showed that neither gene was essential for cell viability; however, both mutants were sensitive β-glucanase, suggesting that Pwp1p and the protein encoded by SPBC1E8.05 non-enzymatically support β-glucan on the cell-surface of S. pombe. Collectively, our work not only sheds light on the functional relationships between GPI-anchored proteins and N-linked oligosaccharides of glycoproteins in S. pombe, but also supports the application of S. pombe to the production of human glycoprotein. KEY POINTS: • We screened for genes that suppress the growth defect of fission yeast och1Δ cells. • Appropriate expression of GPI-anchored proteins alleviates the growth delay of och1Δ cells. • The GPI-anchor domain of Pwp1p is important for suppressing the growth defect of och1Δ cells.
Collapse
|
28
|
Shenoy A, Yalamanchili S, Davis AR, Barb AW. Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain. Antibodies (Basel) 2021; 10:antib10040038. [PMID: 34698072 PMCID: PMC8544235 DOI: 10.3390/antib10040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 μM) and bound CD20 on Raji B cells.
Collapse
Affiliation(s)
- Anjali Shenoy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Srisaimaneesh Yalamanchili
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Alexander R. Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
29
|
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, Wang Z, Poston D, Muecksch F, Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ, Bloom JD. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat Commun 2021; 12:4196. [PMID: 34234131 PMCID: PMC8263750 DOI: 10.1038/s41467-021-24435-8] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasmas, including plasmas from individuals from whom some of the antibodies were isolated. While the binding of polyclonal plasma antibodies are affected by mutations across multiple RBD epitopes, the plasma-escape maps most resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - Paul D Bieniasz
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Michel C Nussenzweig
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
30
|
Greaney AJ, Loes AN, Gentles LE, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Sci Transl Med 2021; 13:eabi9915. [PMID: 34103407 PMCID: PMC8369496 DOI: 10.1126/scitranslmed.abi9915] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutations in key antibody epitopes has raised concerns that antigenic evolution could erode adaptive immunity elicited by prior infection or vaccination. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted by antibodies elicited by vaccination or natural infection. To investigate how human antibody responses to vaccines are influenced by viral mutations, we used deep mutational scanning to compare the specificity of polyclonal antibodies elicited by either two doses of the mRNA-1273 COVID-19 vaccine or natural infection with SARS-CoV-2. The neutralizing activity of vaccine-elicited antibodies was more targeted to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein compared to antibodies elicited by natural infection. However, within the RBD, binding of vaccine-elicited antibodies was more broadly distributed across epitopes compared to infection-elicited antibodies. This greater binding breadth means that single RBD mutations have less impact on neutralization by vaccine sera compared to convalescent sera. Therefore, antibody immunity acquired by natural infection or different modes of vaccination may have a differing susceptibility to erosion by SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lauren E Gentles
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Keara D Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
31
|
Nomura K, Maki Y, Okamoto R, Satoh A, Kajihara Y. Glycoprotein Semisynthesis by Chemical Insertion of Glycosyl Asparagine Using a Bifunctional Thioacid-Mediated Strategy. J Am Chem Soc 2021; 143:10157-10167. [PMID: 34189908 DOI: 10.1021/jacs.1c02601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycosylation is a major modification of secreted and cell surface proteins, and the resultant glycans show considerable heterogeneity in their structures. To understand the biological processes arising from each glycoform, the preparation of homogeneous glycoproteins is essential for extensive biological experiments. To establish a more robust and rapid synthetic route for the synthesis of homogeneous glycoproteins, we studied several key reactions based on amino thioacids. We found that diacyl disulfide coupling (DDC) formed with glycosyl asparagine thioacid and peptide thioacid yielded glycopeptides. This efficient coupling reaction enabled us to develop a new glycoprotein synthesis method, such as the bifunctional thioacid-mediated strategy, which can couple two peptides with the N- and C-termini of glycosyl asparagine thioacid. Previous glycoprotein synthesis methods required valuable glycosyl asparagine in the early stage and subsequent multiple glycoprotein synthesis routes, whereas the developed concept can generate glycoproteins within a few steps from peptide and glycosyl asparagine thioacid. Herein, we report the characterization of the DDC of amino thioacids and the efficient ability of glycosyl asparagine thioacid to be used for robust glycoprotein semisynthesis.
Collapse
Affiliation(s)
| | | | | | - Ayano Satoh
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1, Tsushimanaka, Okayama 700-0082, Japan
| | | |
Collapse
|
32
|
Valli M, Grillitsch K, Grünwald-Gruber C, Tatto NE, Hrobath B, Klug L, Ivashov V, Hauzmayer S, Koller M, Tir N, Leisch F, Gasser B, Graf AB, Altmann F, Daum G, Mattanovich D. A subcellular proteome atlas of the yeast Komagataella phaffii. FEMS Yeast Res 2021; 20:5700286. [PMID: 31922548 PMCID: PMC6981350 DOI: 10.1093/femsyr/foaa001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of metabolic and regulatory pathways is a common pattern of living organisms. Eukaryotic cells are subdivided into several organelles enclosed by lipid membranes. Organelle proteomes define their functions. Yeasts, as simple eukaryotic single cell organisms, are valuable models for higher eukaryotes and frequently used for biotechnological applications. While the subcellular distribution of proteins is well studied in Saccharomyces cerevisiae, this is not the case for other yeasts like Komagataella phaffii (syn. Pichia pastoris). Different to most well-studied yeasts, K. phaffii can grow on methanol, which provides specific features for production of heterologous proteins and as a model for peroxisome biology. We isolated microsomes, very early Golgi, early Golgi, plasma membrane, vacuole, cytosol, peroxisomes and mitochondria of K. phaffii from glucose- and methanol-grown cultures, quantified their proteomes by liquid chromatography-electrospray ionization-mass spectrometry of either unlabeled or tandem mass tag-labeled samples. Classification of the proteins by their relative enrichment, allowed the separation of enriched proteins from potential contaminants in all cellular compartments except the peroxisomes. We discuss differences to S. cerevisiae, outline organelle specific findings and the major metabolic pathways and provide an interactive map of the subcellular localization of proteins in K. phaffii.
Collapse
Affiliation(s)
- Minoska Valli
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Nadine E Tatto
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Bernhard Hrobath
- Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Lisa Klug
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Vasyl Ivashov
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Sandra Hauzmayer
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Martina Koller
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nora Tir
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Leisch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
33
|
Piirainen MA, Frey AD. Investigating the role of ERAD on antibody processing in glycoengineered Saccharomyces cerevisiae. FEMS Yeast Res 2021; 20:5700285. [PMID: 31922547 DOI: 10.1093/femsyr/foaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
34
|
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021; 29:463-476.e6. [PMID: 33592168 PMCID: PMC7869748 DOI: 10.1016/j.chom.2021.02.003] [Citation(s) in RCA: 857] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. Despite this inter- and intra-person heterogeneity, the mutations that most reduce antibody binding usually occur at just a few sites in the RBD's receptor-binding motif. The most important site is E484, where neutralization by some plasma is reduced >10-fold by several mutations, including one in the emerging 20H/501Y.V2 and 20J/501Y.V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Binding Sites
- COVID-19/virology
- Cell Line
- Female
- Humans
- Male
- Middle Aged
- Mutation
- Prospective Studies
- Protein Binding
- Protein Domains
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Young Adult
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Keara D Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, Hilton SK, Huddleston J, Eguia R, Crawford KHD, Dingens AS, Nargi RS, Sutton RE, Suryadevara N, Rothlauf PW, Liu Z, Whelan SPJ, Carnahan RH, Crowe JE, Bloom JD. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 2021; 29:44-57.e9. [PMID: 33259788 PMCID: PMC7676316 DOI: 10.1016/j.chom.2020.11.007] [Citation(s) in RCA: 763] [Impact Index Per Article: 190.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and are a major contributor to neutralizing antibody responses elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies. They further enable the design of escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same RBD surface but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea N Loes
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Sarah K Hilton
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Huddleston
- Molecular and Cell Biology, University of Washington, Seattle, WA 98195 USA
| | - Rachel Eguia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert H Carnahan
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Zhou T, Zhou B, Zhao Y, Li Q, Song G, Zhu Z, Long Y, Cui Z. Development of a Mucus Gland Bioreactor in Loach Paramisgurnus dabryanus. Int J Mol Sci 2021; 22:ijms22020687. [PMID: 33445609 PMCID: PMC7827776 DOI: 10.3390/ijms22020687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Most currently available bioreactors have some defects in the expression, activity, or purification of target protein and peptide molecules, whereas the mucus gland of fish can overcome these defects to become a novel bioreactor for the biopharmaceutical industry. In this study, we have evaluated the practicability of developing a mucus gland bioreactor in loach (Paramisgurnus dabryanus). A transgenic construct pT2-krt8-IFN1 was obtained by subcloning the promoter of zebrafish keratin 8 gene and the type I interferon (IFN1) cDNA of grass carp into the SB transposon. The IFN1 expressed in CIK cells exhibited an antiviral activity against the replication of GCRV873 and activated two genes downstream of JAK-STAT signaling pathway. A transgenic loach line was then generated by microinjection of the pT2-krt8-IFN1 plasmids and in vitro synthesized capped SB11 mRNA. Southern blots indicated that a single copy of IFN1 gene was stably integrated into the genome of transgenic loach. The expression of grass carp IFN1 in transgenic loaches was detected with RT-PCR and Western blots. About 0.0825 µg of grass carp IFN1 was detected in 20 µL mucus from transgenic loaches. At a viral titer of 1 × 103 PFU/mL, plaque numbers on plates containing mucus from transgenic loaches reduced by 18% in comparison with those of the control, indicating that mucus of IFN1-transgenic loaches exhibited an antiviral activity. Thus, we have successfully created a mucus gland bioreactor that has great potential for the production of various proteins and peptides.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bolan Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yasong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (T.Z.); (B.Z.); (Y.Z.); (Q.L.); (G.S.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (Y.L.); (Z.C.); Tel.: +86-27-68780100 (Y.L.); +86-27-68780090 (Z.C.)
| |
Collapse
|
37
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front Microbiol 2021; 11:607028. [PMID: 33505376 PMCID: PMC7829337 DOI: 10.3389/fmicb.2020.607028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | - Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
- acib—Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
38
|
|
39
|
Recombinant H7 hemagglutinin expressed in glycoengineered Pichia pastoris forms nanoparticles that protect mice from challenge with H7N9 influenza virus. Vaccine 2020; 38:7938-7948. [PMID: 33131935 DOI: 10.1016/j.vaccine.2020.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Cases of H7N9 human infection caused by an avian-origin H7N9 virus emerged in eastern China in 2013, leading to the urgent requirement of developing an effective vaccine to reduce its pandemic potential. In this report, the full-length recombinant H7 protein (rH7) of A/Hangzhou/1/2013 (H7N9) virus was expressed by a glycoengineered Pichia pastoris system. The rH7 protein underwent complex glycosylation modifications and polymerized to nanoparticles of 30-50 nm in diameter. Recombinant H7 (1.9 µg) elicited a > 1:40 hemagglutination inhibition titer, and 3.75 µg rH7 protected 100% of the mice in the mice challenge model with 10-fold 50% lethal dose of the A/Shanghai/2/2013 (H7N9) rat lung-adapted strain. In conclusion, rH7 produced by the glycoengineered P. pastoris can be used for vaccination against the H7N9 virus, and provides an effective platform for the rapid production of future influenza vaccines.
Collapse
|
40
|
Radoman B, Grünwald-Gruber C, Schmelzer B, Zavec D, Gasser B, Altmann F, Mattanovich D. The Degree and Length of O-Glycosylation of Recombinant Proteins Produced in Pichia pastoris Depends on the Nature of the Protein and the Process Type. Biotechnol J 2020; 16:e2000266. [PMID: 32975831 DOI: 10.1002/biot.202000266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The methylotrophic yeast Pichia pastoris is known as an efficient host for the production of heterologous proteins. While N-linked protein glycosylation is well characterized in P. pastoris there is less knowledge of the patterns of O-glycosylation. O-glycans produced by P. pastoris consist of short linear mannose chains, which in the case of recombinant biopharmaceuticals can trigger an immune response in humans. This study aims to reveal the influence of different cultivation strategies on O-mannosylation profiles in P. pastoris. Sixteen different model proteins, produced by different P. pastoris strains, are analyzed for their O-glycosylation profile. Based on the obtained data, human serum albumin (HSA) is chosen to be produced in fast and slow growth fed batch fermentations by using common promoters, PGAP and PAOX1 . After purification and protein digestion, glycopeptides are analyzed by LC/ESI-MS. In the samples expressed with PGAP it is found that the degree of glycosylation is slightly higher when a slow growth rate is used, regardless of the efficiency of the producing strain. The highest glycosylation intensity is observed in HSA produced with PAOX1 . The results indicate that the O-glycosylation level is markedly higher when the protein is produced in a methanol-based expression system.
Collapse
Affiliation(s)
- Bojana Radoman
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Bernhard Schmelzer
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Domen Zavec
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| |
Collapse
|
41
|
Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, Hilton SK, Huddleston J, Eguia R, Crawford KH, Dingens AS, Nargi RS, Sutton RE, Suryadevara N, Rothlauf PW, Liu Z, Whelan SP, Carnahan RH, Crowe JE, Bloom JD. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.10.292078. [PMID: 32935107 PMCID: PMC7491521 DOI: 10.1101/2020.09.10.292078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J. Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Sarah K. Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Huddleston
- Molecular and Cell Biology, University of Washington, Seattle, WA, 98195 USA
| | - Rachel Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
42
|
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020; 182:1295-1310.e20. [PMID: 32841599 PMCID: PMC7418704 DOI: 10.1016/j.cell.2020.08.012] [Citation(s) in RCA: 1468] [Impact Index Per Article: 293.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor and is a major determinant of host range and a dominant target of neutralizing antibodies. Here, we experimentally measure how all amino acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity-enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
44
|
Natarajan A, Jaroentomeechai T, Cabrera-Sánchez M, Mohammed JC, Cox EC, Young O, Shajahan A, Vilkhovoy M, Vadhin S, Varner JD, Azadi P, DeLisa MP. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat Chem Biol 2020; 16:1062-1070. [PMID: 32719555 DOI: 10.1038/s41589-020-0595-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.
Collapse
Affiliation(s)
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jody C Mohammed
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Michael Vilkhovoy
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sandra Vadhin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Matthew P DeLisa
- Department of Microbiology, Cornell University, Ithaca, NY, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA. .,Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
45
|
Synthesis of lipid-linked oligosaccharides by a compartmentalized multi-enzyme cascade for the in vitro N-glycosylation of peptides. J Biotechnol 2020; 322:54-65. [PMID: 32653637 DOI: 10.1016/j.jbiotec.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
A wide range of glycoproteins can be recombinantly expressed in aglycosylated forms in bacterial and cell-free production systems. To investigate the effect of glycosylation of these proteins on receptor binding, stability, efficacy as drugs, pharmacodynamics and pharmacokinetics, an efficient glycosylation platform is required. Here, we present a cell-free synthetic platform for the in vitro N-glycosylation of peptides mimicking the endoplasmic reticulum (ER) glycosylation machinery of eukaryotes. The one-pot, two compartment multi-enzyme cascade consisting of eight recombinant enzymes including the three Leloir glycosyltransferases, Alg1, Alg2 and Alg11, expressed in E. coli and S. cerevisiae, respectively, has been engineered to produce the core lipid-linked (LL) oligosaccharide mannopentaose-di-(N-acetylglucosamine) (LL-Man5). Pythanol (C20H42O), a readily available alcohol consisting of regular isoprenoid units, was utilized as the lipid anchor. As part of the cascade, GDP-mannose was de novo produced from the inexpensive substrates ADP, polyphosphate and mannose. To prevent enzyme inhibition, the nucleotide sugar cascade and the glycosyltransferase were segregated into two compartments by a cellulose ester membrane with 3.5 kDa cut-off allowing for the effective diffusion of GDP-mannose across compartments. Finally, as a proof-of-principle, pythanyl-linked Man5 and the single-subunit oligosaccharyltransferase Trypanosoma brucei STT3A expressed in Sf9 insect cells were used to in vitro N-glycosylate a synthetic peptide of ten amino acids bearing the eukaryotic consensus motif N-X-S/T.
Collapse
|
46
|
Heistinger L, Gasser B, Mattanovich D. Microbe Profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris. Microbiology (Reading) 2020; 166:614-616. [DOI: 10.1099/mic.0.000958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methylotrophic yeasts of the genus Komagataella are abundantly found in tree exudates. Their ability to utilize methanol as carbon and energy source relies on an assimilation pathway localized in largely expanded peroxisomes, and a cytosolic methanol dissimilation pathway. Other substrates like glucose or glycerol are readily utilized as well. Komagataella yeasts usually grow as haploid cells and are secondary homothallic as they can switch mating type. Upon mating diploid cells sporulate readily, forming asci with four haploid spores. Their ability to secrete high amounts of heterologous proteins made them interesting for biotechnology, which expands today also to other products of primary and secondary metabolism.
Collapse
Affiliation(s)
- Lina Heistinger
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics at Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Christian Doppler Laboratory for Growth Decoupled Protein Production in Yeast at Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
47
|
Starr TN, Greaney AJ, Hilton SK, Crawford KH, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, Veesler D, Bloom JD. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.157982. [PMID: 32587970 PMCID: PMC7310626 DOI: 10.1101/2020.06.17.157982] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor, and is a major determinant of host range and a dominant target of neutralizing antibodies. Here we experimentally measure how all amino-acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Co-first authors
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
- Co-first authors
| | - Sarah K. Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead Contact
| |
Collapse
|
48
|
Lee MH, Hsu TL, Lin JJ, Lin YJ, Kao YY, Chang JJ, Li WH. Constructing a human complex type N-linked glycosylation pathway in Kluyveromyces marxianus. PLoS One 2020; 15:e0233492. [PMID: 32469948 PMCID: PMC7259728 DOI: 10.1371/journal.pone.0233492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Glycosylation can affect various protein properties such as stability, biological activity, and immunogenicity. To produce human therapeutic proteins, a host that can produce glycoproteins with correct glycan structures is required. Microbial expression systems offer economical, rapid and serum-free production and are more amenable to genetic manipulation. In this study, we developed a protocol for CRISPR/Cas9 multiple gene knockouts and knockins in Kluyveromyces marxianus, a probiotic yeast with a rapid growth rate. As hyper-mannosylation is a common problem in yeast, we first knocked out the α-1,3-mannosyltransferase (ALG3) and α-1,6-mannosyltransferase (OCH1) genes to reduce mannosylation. We also knocked out the subunit of the telomeric Ku domain (KU70) to increase the homologous recombination efficiency of K. marxianus. In addition, we knocked in the MdsI (α-1,2-mannosidase) gene to reduce mannosylation and the GnTI (β-1,2-N-acetylglucosaminyltransferase I) and GnTII genes to produce human N-glycan structures. We finally obtained two strains that can produce low amounts of the core N-glycan Man3GlcNAc2 and the human complex N-glycan Man3GlcNAc4, where Man is mannose and GlcNAc is N-acetylglucosamine. This study lays a cornerstone of glycosylation engineering in K. marxianus toward producing human glycoproteins.
Collapse
Affiliation(s)
- Ming-Hsuan Lee
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Nankang, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jinn-Jy Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Yi-Ying Kao
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wen-Hsiung Li
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
50
|
Thak EJ, Yoo SJ, Moon HY, Kang HA. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res 2020; 20:5721243. [DOI: 10.1093/femsyr/foaa009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Yeasts are prominent hosts for the production of recombinant proteins from industrial enzymes to therapeutic proteins. Particularly, the similarity of protein secretion pathways between these unicellular eukaryotic microorganisms and higher eukaryotic organisms has made them a preferential host to produce secretory recombinant proteins. However, there are several bottlenecks, in terms of quality and quantity, restricting their use as secretory recombinant protein production hosts. In this mini-review, we discuss recent developments in synthetic biology approaches to constructing yeast cell factories endowed with enhanced capacities of protein folding and secretion as well as designed targeted post-translational modification process functions. We focus on the new genetic tools for optimizing secretory protein expression, such as codon-optimized synthetic genes, combinatory synthetic signal peptides and copy number-controllable integration systems, and the advanced cellular engineering strategies, including endoplasmic reticulum and protein trafficking pathway engineering, synthetic glycosylation, and cell wall engineering, for improving the quality and yield of secretory recombinant proteins.
Collapse
Affiliation(s)
- Eun Jung Thak
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Su Jin Yoo
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hye Yun Moon
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Laboratory of Molecular Systems Biology, Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|