1
|
Benitez-Amaro A, Garcia E, La Chica Lhoëst MT, Martínez A, Borràs C, Tondo M, Céspedes MV, Caruana P, Pepe A, Bochicchio B, Cenarro A, Civeira F, Prades R, Escola-Gil JC, Llorente-Cortés V. Targeting LDL aggregation decreases atherosclerotic lipid burden in a humanized mouse model of familial hypercholesterolemia: Crucial role of ApoB100 conformational stabilization. Atherosclerosis 2024:118630. [PMID: 39547850 DOI: 10.1016/j.atherosclerosis.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND AIMS Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly1127-Cys1140 of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (Ldlr-/-hApoB100 Tg) and determine the potential LDL-related underlying mechanisms. METHODS Tg mice were fed an HFD for 21 days to induce atherosclerosis and then randomized into three groups that received a daily subcutaneous administration (10 mg/kg) of i) vehicle, ii) DP3 peptide, or iii) a non-active peptide (IP321). The in vivo biodistribution of a fluorescent-labeled peptide version (TAMRA-DP3), and its colocalization with ApoB100 in the arterial intima, was analyzed by imaging system (IVIS) and confocal microscopy. Heart aortic roots were used for atherosclerosis detection and quantification. LDL functionality was analyzed by biochemical, biophysical, molecular, and cellular studies. RESULTS Intimal neutral lipid accumulation in the aortic root was reduced in the DP3-treated group as compared to control groups. ApoB100 in LDLs from the DP3 group exhibited an increased percentage of α-helix secondary structures and decreased immunoreactivity to anti-ApoB100 antibodies. LDL from DP3-treated mice were protected against passive and sphingomyelinase (SMase)-induced aggregation, although they still experienced SMase-induced sphingomyelin phospholysis. In patients with familial hypercholesterolemia (FH), DP3 efficiently inhibited both SMase-induced phospholysis and aggregation. CONCLUSIONS DP3 peptide administration inhibits atherosclerosis by preserving the α-helix secondary structures of ApoB100 in a humanized ApoB100 murine model that mimicks the hallmark of human hypercholesterolemia.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - E Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - M T La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Martínez
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - C Borràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - M Tondo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain; Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041, Barcelona, Spain
| | - M V Céspedes
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - P Caruana
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - A Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - B Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - A Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - F Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - R Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - J C Escola-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - V Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Tang S, Wang M, Peng Y, Liang Y, Lei J, Tao Q, Ming T, Shen Y, Zhang C, Guo J, Xu H. Armeniacae semen amarum: a review on its botany, phytochemistry, pharmacology, clinical application, toxicology and pharmacokinetics. Front Pharmacol 2024; 15:1290888. [PMID: 38323080 PMCID: PMC10844384 DOI: 10.3389/fphar.2024.1290888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Armeniacae semen amarum-seeds of Prunus armeniaca L. (Rosaceae) (ASA), also known as Kuxingren in Chinese, is a traditional Chinese herbal drug commonly used for lung disease and intestinal disorders. It has long been used to treat coughs and asthma, as well as to lubricate the colon and reduce constipation. ASA refers to the dried ripe seed of diverse species of Rosaceae and contains a variety of phytochemical components, including glycosides, organic acids, amino acids, flavonoids, terpenes, phytosterols, phenylpropanoids, and other components. Extensive data shows that ASA exhibits various pharmacological activities, such as anticancer activity, anti-oxidation, antimicrobial activity, anti-inflammation, protection of cardiovascular, neural, respiratory and digestive systems, antidiabetic effects, and protection of the liver and kidney, and other activities. In clinical practice, ASA can be used as a single drug or in combination with other traditional Chinese medicines, forming ASA-containing formulas, to treat various afflictions. However, it is important to consider the potential adverse reactions and pharmacokinetic properties of ASA during its clinical use. Overall, with various bioactive components, diversified pharmacological actions and potent efficacies, ASA is a promising drug that merits in-depth study on its functional mechanisms to facilitate its clinical application.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Makover ME, Surma S, Banach M, Toth PP. Eliminating atherosclerotic cardiovascular disease residual risk. Eur Heart J 2023; 44:4731-4733. [PMID: 37448228 DOI: 10.1093/eurheartj/ehad446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Affiliation(s)
- Michael E Makover
- New York University Grossman School of Medicine, 12 Dunster Road, Great Neck, New York, NY 11021, USA
| | - Stanislaw Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, Katowice 40-752, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, Lodz 93-338, Poland
| | - Peter P Toth
- CGH Medical Center, 101 East Miller Road, Sterling, IL 61081, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kumric M, Urlic H, Bozic J, Vilovic M, Ticinovic Kurir T, Glavas D, Miric D, Zanchi J, Bradaric-Slujo A, Lozo M, Borovac JA. Emerging Therapies for the Treatment of Atherosclerotic Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 2023; 24:8062. [PMID: 37175766 PMCID: PMC10178593 DOI: 10.3390/ijms24098062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Primarily a consequence of sedentary lifestyle, atherosclerosis has already reached pandemic proportions, and with every year the burden of it is only increasing. As low-density lipoprotein cholesterol (LDL-C) represents a crucial factor in atherosclerosis formation and progression, stringent lipid-lowering therapy could conceivably be the key to preventing the unfavorable outcomes that arise as a consequence of atherosclerosis. The use of statins in lipid-lowering is often burdened by adverse events or is insufficient to prevent cardiovascular events as a monotherapy. Therefore, in the present review, the authors aimed to discuss the underlying mechanisms of dyslipidemia and associated atherosclerotic cardiovascular disease (ASCVD) and preclinical and clinical trials of novel therapeutic approaches to its treatment, some of which are still in the early stages of development. Apart from novel therapies, a novel change in perspective is needed. Specifically, the critical objective in the future management of ASCVD is to embrace emerging evidence in the field of atherosclerosis, because clinicians are often burden by common practice and personal experience, both of which have so far been shown to be futile in the setting of atherosclerosis.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Duska Glavas
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Dino Miric
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Jaksa Zanchi
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Anteo Bradaric-Slujo
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Mislav Lozo
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Josip A. Borovac
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| |
Collapse
|
5
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death globally. Despite its important risk of premature atherosclerosis and cardiovascular disease, familial hypercholesterolemia (FH) is still largely underdiagnosed worldwide. It is one of the most frequently inherited diseases due to mutations, for autosomal dominant forms, in either of the LDLR, APOB, and PCSK9 genes or possibly a few mutations in the APOE gene and, for the rare autosomal forms, in the LDLRAP1 gene. The discovery of the genes implicated in the disease has largely helped to improve the diagnosis and treatment of FH from the LDLR by Brown and Goldstein, as well as the introduction of statins, to PCSK9 discovery in FH by Abifadel et al., and the very rapid availability of PCSK9 inhibitors. In the last two decades, major progress has been made in clinical and genetic diagnostic tools and the therapeutic arsenal against FH. Improving prevention, diagnosis, and treatment and making them more accessible to all patients will help reduce the lifelong burden of the disease.
Collapse
Affiliation(s)
- Marianne Abifadel
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Catherine Boileau
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
7
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
8
|
There is urgent need to treat atherosclerotic cardiovascular disease risk earlier, more intensively, and with greater precision: A review of current practice and recommendations for improved effectiveness. Am J Prev Cardiol 2022; 12:100371. [PMID: 36124049 PMCID: PMC9482082 DOI: 10.1016/j.ajpc.2022.100371] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/10/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is epidemic throughout the world and is etiologic for such acute cardiovascular events as myocardial infarction, ischemic stroke, unstable angina, and death. ASCVD also impacts risk for dementia, chronic kidney disease peripheral arterial disease and mobility, impaired sexual response, and a host of other visceral impairments that adversely impact the quality and rate of progression of aging. The relationship between low-density lipoprotein cholesterol (LDL-C) and risk for ASCVD is one of the most highly established and investigated issues in the entirety of modern medicine. Elevated LDL-C is a necessary condition for atherogenesis induction. Basic scientific investigation, prospective longitudinal cohorts, and randomized clinical trials have all validated this association. Yet despite the enormous number of clinical trials which support the need for reducing the burden of atherogenic lipoprotein in blood, the percentage of high and very high-risk patients who achieve risk stratified LDL-C target reductions is low and has remained low for the last thirty years. Atherosclerosis is a preventable disease. As clinicians, the time has come for us to take primordial and primary prevention more serously. Despite a plethora of therapeutic approaches, the large majority of patients at risk for ASCVD are poorly or inadequately treated, leaving them vulnerable to disease progression, acute cardiovascular events, and poor aging due to loss of function in multiple visceral organs. Herein we discuss the need to greatly intensify efforts to reduce risk, decrease disease burden, and provide more comprehensive and earlier risk assessment to optimally prevent ASCVD and its complications. Evidence is presented to support that treatment should aim for far lower goals in cholesterol management, should take into account many more factors than commonly employed today and should begin significantly earlier in life.
Collapse
|
9
|
Strandberg TE, Kivimäki M. Comment on: "What Is Aging-Related Disease? An Epidemiological Perspective" by Le Couteur and Thillainadesan. J Gerontol A Biol Sci Med Sci 2022; 77:2175-2176. [PMID: 35323943 PMCID: PMC9678188 DOI: 10.1093/gerona/glac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Timo E Strandberg
- University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- University of Oulu, Center for Life Course Health Research, Oulu, Finland
| | - Mika Kivimäki
- University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
10
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
11
|
Abstract
Abstract
Purpose
As atherosclerosis is a prominent cause of morbidity and mortality, early detection of atherosclerotic plaques is vital to prevent complications. Imaging plays a significant role in this goal. Molecular imaging and structural imaging detect different phases of atherosclerotic progression. In this review, we explain the relation between these types of imaging with the physiopathology of plaques, along with their advantages and disadvantages. We also discuss in detail the most commonly used positron emission tomography (PET) radiotracers for atherosclerosis imaging.
Method
A comprehensive search was conducted to extract articles related to imaging of atherosclerosis in PubMed, Google Scholar, and Web of Science. The obtained papers were reviewed regarding precise relation with our topic. Among the search keywords utilized were "atherosclerosis imaging", "atherosclerosis structural imaging", "atherosclerosis CT scan" "positron emission tomography", "PET imaging", "18F-NaF", "18F-FDG", and "atherosclerosis calcification."
Result
Although structural imaging such as computed tomography (CT) offers essential information regarding plaque structure and morphologic features, these modalities can only detect macroscopic alterations that occur later in the disease’s progression, when the changes are frequently irreversible. Molecular imaging modalities like PET, on the other hand, have the advantage of detecting microscopic changes and allow us to treat these plaques before irreversible changes occur. The two most commonly used tracers in PET imaging of atherosclerosis are 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG). While there are limitations in the use of 18F-FDG for the detection of atherosclerosis in coronary arteries due to physiological uptake in myocardium and high luminal blood pool activity of 18F-FDG, 18F-NaF PET is less affected and can be utilized to analyze the coronary arteries in addition to the peripheral vasculature.
Conclusion
Molecular imaging with PET/CT has become a useful tool in the early detection of atherosclerosis. 18F-NaF PET/CT shows promise in the early global assessment of atherosclerosis, but further prospective studies are needed to confirm its role in this area.
Collapse
|
12
|
Kopčeková J, Kolesárová A, Schwarzová M, Kováčik A, Mrázová J, Gažarová M, Lenártová P, Chlebo P, Kolesárová A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020857. [PMID: 35055679 PMCID: PMC8775948 DOI: 10.3390/ijerph19020857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
The objective of the present study was to evaluate the effect of short-term consumption of bitter apricot seeds phytonutrients on cardiovascular risk factors with a special focus on LDL cholesterol subfractions using the Lipoprint system. A group of 34 adult volunteers (21 female/13 male) consumed 60 mg kg−1 of body weight of bitter apricot seeds daily for 42 days. Subjects were divided into two groups: one with normal cholesterol levels (NTC) and one with elevated total cholesterol levels (ETC). Blood serum levels of total cholesterol (T-C), low-density cholesterol (LDL-C), high-density cholesterol (HDL-C), and triglycerides (TG) did not change significantly (p > 0.05) in NTC group. However, there were significant decreasing of T-C (p ˂ 0.05) and LDL-C (p < 0.01) in ETC group. The LDL1, LDL2, and atherogenic LDL3−7 subfractions progressively decreased after 42 days of apricot seeds consumption in ETC group (p < 0.05). Apricot seeds consumption was associated with a significant increase in the mean LDL particle size especially in ETC group (p ˂ 0.01). The results of the present study support the hypothesis that daily consumption of bitter apricot seeds for 42 days positively modified the lipoprotein profile in the group with elevated total cholesterol.
Collapse
Affiliation(s)
- Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
- Correspondence: ; Tel.: +421-37-641-4225
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Marianna Schwarzová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Martina Gažarová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Petra Lenártová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Peter Chlebo
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Adriana Kolesárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| |
Collapse
|
13
|
Taghizadeh Jazdani S, Shahbazian HB, Cheraghian B, Jalali MT, Mohammadtaghvaei N. Association between the rs615563 variant of PCSK9 gene and circulating lipids and Type 2 diabetes. BMC Res Notes 2021; 14:309. [PMID: 34380558 PMCID: PMC8359546 DOI: 10.1186/s13104-021-05723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Many different genetic variants of proprotein convertase subtilisin kexin 9 (PCSK9) are related to the serum levels of cholesterol and LDL cholesterol (LDL-C). The rs615563 variant of PCSK9 (a gain-of-function mutation) is associated with increased triglycerides and cholesterol levels, but its association with the incidence of diabetes is not well defined. This study aimed to investigate the relationship between the PCSK9 rs615563 variant with the incidence of type 2 diabetes. The data reported in this study are based on subsamples from a 5-year (2009–2014) cohort study of the adult population (590 subjects) aged 20 years and older. The rs615563 polymorphism was genotyped using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis. Results The distribution of PCSK9 rs615563 genotypes was not significantly different between the diabetic and non-diabetic individuals. The incidence of diabetes after five-years of follow-up was not different between the genotypes. Our findings also showed no significant relationship between this polymorphism and serum lipid parameters. The data extracted from our cohort study do not support the findings that the gain-of-function mutations of PCSK9 predispose to the incidence of type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05723-4.
Collapse
Affiliation(s)
- Samira Taghizadeh Jazdani
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hajieh Bibi Shahbazian
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Epidemiology and Biostatistics, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Mohammadtaghvaei
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
15
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Biometric, nutritional, biochemical, and cardiovascular outcomes in male rats submitted to an experimental model of early weaning that mimics mother abandoning. J Dev Orig Health Dis 2020; 12:523-529. [PMID: 32900421 DOI: 10.1017/s2040174420000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Literature describes breast milk as the best food for the newborn, recommending exclusive breastfeeding for up to 6 months of age. However, it is not available for more than 40% of children worldwide. Pharmacological and non-pharmacological models of 3-day early weaning were developed in rodents to investigate later outcomes related solely to this nutritional insult. Thus, the present work aimed to describe biometric, nutritional, biochemical, and cardiovascular outcomes in adult male rats submitted to 3-day early weaning achieved by maternal deprivation. This experimental model comprises not only nutritional insult but also emotional stress, simulating mother abandoning. Male offspring were physically separated from their mothers at 21st (control) or 18th (early weaning) postnatal day, receiving water/food ad libitum. Analysis performed at postnatal days 30, 90, 150, and 365 encompassed body mass and food intake monitoring and serum biochemistry determination. Further assessments included hemodynamic, echocardiographic, and cardiorespiratory evaluation. Early-weaned males presented higher body weight when compared to control as well as dyslipidemia, higher blood pressure, diastolic dysfunction, and cardiac hypertrophy in adult life. Animals early deprived of their mothers have also presented a worse performance on the maximal effort ergometer test. This work shows that 3-day early maternal deprivation favors the development of cardiovascular disease in male rats.
Collapse
|
17
|
Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2020; 51:340-349. [PMID: 32754843 DOI: 10.1007/s00595-020-02092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
18
|
Ke XX, Chao H, Abbas MN, Kausar S, Gul I, Ji H, Yang L, Cui H. Niemann-Pick type C1 regulates cholesterol transport and metamorphosis in silkworm, Bombyx mori (Dazao). Int J Biol Macromol 2020; 152:525-534. [DOI: 10.1016/j.ijbiomac.2020.02.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023]
|
19
|
Kostis JB, Shetty M, Chowdhury YS, Kostis WJ. The Legacy Effect in Treating Hypercholesterolemia. J Cardiovasc Pharmacol Ther 2020; 25:291-298. [DOI: 10.1177/1074248420907256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The duration of randomized controlled clinical trials usually is approximately 3 to 5 years although hypercholesterolemia and other risk factors for atherosclerotic cardiovascular disease (ASCVD) are lifelong conditions. Objectives: The legacy effect, defined as the persistence of benefit of pharmacologic interventions in clinical trials after the end of the randomized phase when all participants receive active therapy, is used to examine the long-term benefit. We summarize the evidence for the existence of the legacy effect as it pertains to hypercholesterolemia, describe underlying mechanisms, and discuss its relevance to clinical practice. Methods: We examined all published (n = 13) randomized clinical trials of lipid-lowering agents compared to placebo or usual care with follow-up after the randomized phase for the presence or absence of a legacy effect. Results: A legacy effect was demonstrated in all studies. The current US and European guidelines recommend treatment with high-intensity statins for patients with manifest ASCVD and that individualized approach be used for primary prevention. Conclusion: The legacy effect results in significant long-term clinical benefits by preventing fatal and nonfatal events. This implies that early therapy would result in lower event rates. Long-term follow-up should be a part of clinical trial design in order to evaluate the presence or absence of a legacy effect.
Collapse
Affiliation(s)
- John B. Kostis
- Rutgers Robert Wood Johnson Medical School, Cardiovascular Institute, New Brunswick, NJ, USA
| | - Mrinali Shetty
- Rutgers Robert Wood Johnson Medical School, Cardiovascular Institute, New Brunswick, NJ, USA
| | - Yuvraj Singh Chowdhury
- Rutgers Robert Wood Johnson Medical School, Cardiovascular Institute, New Brunswick, NJ, USA
| | - William J. Kostis
- Rutgers Robert Wood Johnson Medical School, Cardiovascular Institute, New Brunswick, NJ, USA
| |
Collapse
|
20
|
Guo S, Xia XD, Gu HM, Zhang DW. Proprotein Convertase Subtilisin/Kexin-Type 9 and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:137-156. [DOI: 10.1007/978-981-15-6082-8_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Chen B, Shi X, Cui Y, Hou A, Zhao P. A Review of PCSK9 Inhibitors and their Effects on Cardiovascular Diseases. Curr Top Med Chem 2019; 19:1790-1817. [PMID: 31400268 DOI: 10.2174/1568026619666190809094203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiovascular diseases remain the leading cause of morbidity and mortality in the world, with elevated Low-Density Lipoprotein-Cholesterol (LDL-C) levels as the major risk factor. Lower levels of LDL-C can effectively reduce the risk of cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating the degradation of hepatic LDL receptors that remove LDL-C from the circulation. PCSK9 inhibitors are a new class of agents that are becoming increasingly important in the treatment to reduce LDL-C levels. Two PCSK9 inhibitors, alirocumab and evolocumab, have been approved to treat hypercholesterolemia and are available in the United States and the European Union. Through the inhibition of PCSK9 and increased recycling of LDL receptors, serum LDL-C levels can be significantly reduced. OBJECTIVE This review will describe the chemistry, pharmacokinetics, and pharmacodynamics of PCSK9 inhibitors and their clinical effects.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Yanping Cui
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 20092, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| | - Pengjun Zhao
- Department of Pediatric, Shidong Hospital, Shanghai 20092, China
| |
Collapse
|
22
|
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases plasma low-density lipoprotein cholesterol (LDL-C) by decreasing expression of the LDL receptor on hepatic cells. Evolocumab is a human monoclonal immunoglobulin G2 that binds specifically to human PCSK9 to reduce LDL-C. Evolocumab exhibits nonlinear kinetics as a result of binding to PCSK9. Elimination is predominantly through saturable binding to PCSK9 at lower concentrations and a nonsaturable proteolytic pathway at higher concentrations. The effective half-life of evolocumab is 11–17 days. The pharmacodynamic effects of evolocumab on PCSK9 are rapid, with maximum suppression within 4 h. At steady state, peak reduction of LDL-C occurs approximately 1 week after a subcutaneous dose of 140 mg every 2 weeks (Q2W) and 2 weeks after a subcutaneous dose 420 mg once monthly (QM), and returns towards baseline over the dosing interval. In several clinical studies, these doses of evolocumab reduced LDL-C by approximately 55–75% compared with placebo. Evolocumab also reduced lipoprotein(a) [Lp(a)] levels and improved those of other lipids in clinical studies. No clinically meaningful differences in pharmacodynamic effects on LDL-C were observed in adult subjects regardless of mild/moderate hepatic impairment, renal impairment or renal failure, body weight, race, sex, or age. No clinically meaningful differences were observed for the pharmacodynamic effects of evolocumab on LDL-C between patients who received evolocumab alone or in combination with a statin, resulting in additional lowering of LDL-C when evolocumab was combined with a statin. No dose adjustment is necessary based on patient-specific factors or concomitant medication use.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Drugs to lower LDL-C levels are very widely used. In this brief review, I will use selected recent studies to delineate several important principles that provide a rationale for how to maximize the benefits of using LDL-C lowering drugs to reduce cardiovascular disease. The focus will be on using statins, ezetimibe, and PCSK9 monoclonal antibodies as recent studies have predominantly utilized these agents. RECENT FINDINGS The key principles to consider when using LDL-C-lowering drugs to reduce cardiovascular disease are: the lower the LDL-C the better; the sooner and the longer one lowers LDL-C the better; the higher the risk of cardiovascular disease the greater the absolute benefit; the higher the baseline LDL-C the greater the absolute benefit; and compared with the benefits of cholesterol-lowering drugs on reducing cardiovascular disease the risk of side effects is very modest. SUMMARY Understanding and employing these key concepts in caring for patients will allow one to use cholesterol-lowering drugs wisely to maximize the reduction of cardiovascular events.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
Target discovery using biobanks and human genetics. Drug Discov Today 2019; 25:438-445. [PMID: 31562982 DOI: 10.1016/j.drudis.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
Large-scale biobanks can yield unprecedented insights into our health and provide discoveries of new and potentially targetable biomarkers. Several protective loss-of-function alleles have been identified, including variants that protect against cardiovascular disease, obesity, type 2 diabetes, and asthma and allergic diseases. These alleles serve as indicators of efficacy, mimicking the effects of drugs and suggesting that inhibiting these genes could provide therapeutic benefit, as has been observed for PCSK9. We provide a context for these findings through a multifaceted review covering the use of genetics in drug discovery efforts through genome-wide and phenome-wide association studies, linking deep mutation scanning data to molecular function and highlighting some additional tools that might help in the interpretation of newly discovered variants.
Collapse
|
25
|
Svendsen K, Jacobs DR, Røyseth IT, Garstad KW, Byfuglien MG, Granlund L, Mørch-Reiersen LT, Telle-Hansen VH, Retterstøl K. Community pharmacies offer a potential high-yield and convenient arena for total cholesterol and CVD risk screening. Eur J Public Health 2019; 29:17-23. [PMID: 30239673 DOI: 10.1093/eurpub/cky190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Moderately elevated blood total cholesterol (TC), blood glucose (BG) and blood pressure (BP) are rarely symptomatic and as such many individuals remain untreated. We studied the yield of an in-pharmacy screening for identifying undetected high TC and strategies to reach those with absence of prior measurement of TC, BG and BP. Methods A cross-sectional TC screening study with complementary TC measurements and self-administered questionnaire was conducted for 1 week in each of 2012 and 2014 in 148 and 149 BootsTM Norge AS community pharmacies nationwide in Norway. Results Non-medicated adults (n = 21 090) with mean age 54.5 ± 16.0 were included. The study population resembled the Norwegian population in regards to body mass index, educational level, smokers and physical inactivity level, but with an overrepresentation of middle-aged women. Of 20 743 with available data, 11% (n = 2337) were unaware of their high TC ≥7.0 mmol/L, and an additional 8% were unaware of TC ≥6.2 mmol/L. More than 40% of the study sample had not measured TC or BG before. In order for future screenings to reach those who are less likely to have previously measured TC and BG, our results suggest that young, low-educated, overweight men and women should be targeted for TC measurement, whereas normal weigh men in all ages should be targeted for BG measurement. Conclusions In total 19% in an in-pharmacy screening were unaware of their elevated TC of ≥6.2 mmol/L. We also identified characteristics that could be used reach those who are less likely to have measured TC and BG.
Collapse
Affiliation(s)
- Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - David R Jacobs
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ida Tonning Røyseth
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs plass, Oslo, Norway
| | | | | | | | | | - Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs plass, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
26
|
Wang M, Zhao D, Xu L, Guo W, Nie L, Lei Y, Long Y, Liu M, Wang Y, Zhang X, Zhang L, Li H, Zhang J, Yuan D, Yue L. Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism 2019; 94:47-58. [PMID: 30768966 DOI: 10.1016/j.metabol.2019.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/03/2019] [Accepted: 02/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in the cholesterol metabolism by negatively regulating the low-density lipoprotein receptor (LDLR). Lipid metabolic and ovarian disorders are the common clinical manifestation of polycystic ovary syndrome (PCOS). Here, we intended to elucidate the role of PCSK9 in the pathogenesis of PCOS conducted on a human population in case-control design and animal part in an interventional study. METHODS We firstly investigated the serum levels of PCSK9 in 46 PCOS patients compared with 49 healthy women as controls, and then developed a PCOS mouse model induced by dehydroepiandrosterone (DHEA) and a high-fat diet (HFD) to determine the role of PCSK9 in abnormal lipid metabolism and ovarian dysfunction of PCOS in four groups (n = 40 per group): control, PCOS mice, PCOS plus alirocumab group, and PCOS plus vehicle group. The expression of PCSK9 in their serum, hepatic and ovarian tissues, serum lipid profiles and hormones were measured. Additionally, mRNA and protein expression levels of LDLR in hepatic and ovarian tissues, ovarian morphology and function were determined. Finally, we used freshly isolated theca-interstitial cells (TICs) and granulosa cells (GCs) from prepubertal normal mice to explore the effect of PCSK9 on LDL uptake of the cells. RESULTS Serum PCSK9 concentrations were higher in PCOS patients than normal controls (P < 0.05). The PCOS model mice exhibited significantly increased serum levels of total cholesterol (TC), LDL-C and high-density lipoprotein-cholesterol (HDL-C; P < 0.001, P < 0.001, P = 0.0004, respectively). Moreover, the serum PCSK9 protein level was significantly increased in PCOS mice (P = 0.0002), which positively correlated with serum LDL-C (r = 0.5279, P = 0.0004) and TC (r = 0.4151, P = 0.035). In both liver and ovary of PCOS mice, PCSK9 mRNA and protein levels were significantly increased (P < 0.05), but LDLR levels were significantly decreased (P < 0.05). Furthermore, alirocumab inhibiting PCSK9 partly increased in LDLR expression in both liver and ovary in PCOS mice, also ameliorated the lipid metabolic disorders and pathological changes of ovarian morphology and function and serum reproductive hormones but not in the PCOS plus vehicle group. In vitro experiment, recombinant PCSK9 decreased LDL uptake in TICs and GCs (P < 0.001, P = 0.0011, respectively), which were partly reversed by alirocumab (P < 0.001, P = 0.012, respectively). CONCLUSION Abnormal high expression of PCSK9 in the blood, liver and ovary may be involved in the pathogenesis of PCOS by affecting lipid metabolism and ovarian function, and the inhibition of PCSK9 may partly reverse the pathological changes of PCOS. Our research suggests a possibility of PCSK9 as a new attractive target for diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Meijiao Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, China; Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
| | - Wenjing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yi Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Min Liu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yichen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Xueqin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Li Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Hanna Li
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Jinhu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Dongzhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China.
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China.
| |
Collapse
|
27
|
Miyamoto S, Narita T, Komiya M, Fujii G, Hamoya T, Nakanishi R, Tamura S, Kurokawa Y, Takahashi M, Mutoh M. Novel screening system revealed that intracellular cholesterol trafficking can be a good target for colon cancer prevention. Sci Rep 2019; 9:6192. [PMID: 30996256 PMCID: PMC6470178 DOI: 10.1038/s41598-019-42363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
In conventional research methods for cancer prevention, cell proliferation and apoptosis have been intensively targeted rather than the protection of normal or benign tumor cells from malignant transformation. In this study, we aimed to identify candidate colon cancer chemopreventive drugs based on the transcriptional activities of TCF/LEF, NF-κB and NRF2, that play important roles in the process of malignant transformation. We screened a “validated library” consisting of 1280 approved drugs to identify hit compounds that decreased TCF/LEF and NF-κB transcriptional activity and increased NRF2 transcriptional activity. Based on the evaluation of these 3 transcriptional activities, 8 compounds were identified as candidate chemopreventive drugs for colorectal cancer. One of those, itraconazole, is a clinically used anti-fungal drug and was examined in the Min mouse model of familial adenomatous polyposis. Treatment with itraconazole significantly suppressed intestinal polyp formation and the effects of itraconazole on transcriptional activities may be exerted partly through inhibition of intracellular cholesterol trafficking. This screen represents one of the first attempts to identify chemopreventive agents using integrated criteria consisting of the inhibition of TCF/LEF, NF-κB and induction of NRF2 transcriptional activity.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.,Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Takumi Narita
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Masami Komiya
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Gen Fujii
- Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Hamoya
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Ruri Nakanishi
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shuya Tamura
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Yurie Kurokawa
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Maiko Takahashi
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Michihiro Mutoh
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
28
|
Abstract
Ischemic heart disease and stroke are the leading causes of death in the world currently. Both of these conditions are primarily caused by atherosclerosis, the underlying pathophysiology of which is the deposition of lipid, specifically low-density lipoprotein cholesterol (LDL-C) within the arterial bed. PCSK9, is a proteolytic enzyme, which indirectly increases LDL-C levels by causing the destruction of LDL receptors, the main way that humans regulate their serum LDL-C levels. Inhibitors of PCSK9 in conjunction with statins have allowed achievement of very low LDL-C levels. This review will provide an in-depth efficacy and safety review of alirocumab, a monoclonal antibody inhibitor of PCSK9, including the ODYSSEY OUTCOMES trial.
Collapse
Affiliation(s)
- Eli M Roth
- President, Sterling Research Group & Clinical Professor, Division of Cardiovascular Health & Disease, University of Cincinnati, Cincinnati, OH 45219-513, USA
| |
Collapse
|
29
|
Banach M, Patti AM, Giglio RV, Cicero AFG, Atanasov AG, Bajraktari G, Bruckert E, Descamps O, Djuric DM, Ezhov M, Fras Z, von Haehling S, Katsiki N, Langlois M, Latkovskis G, Mancini GBJ, Mikhailidis DP, Mitchenko O, Moriarty PM, Muntner P, Nikolic D, Panagiotakos DB, Paragh G, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Rosano GMC, Rosenson RS, Rysz J, Sahebkar A, Serban MC, Vinereanu D, Vrablík M, Watts GF, Wong ND, Rizzo M. The Role of Nutraceuticals in Statin Intolerant Patients. J Am Coll Cardiol 2018; 72:96-118. [PMID: 29957236 DOI: 10.1016/j.jacc.2018.04.040] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Statins are the most common drugs administered for patients with cardiovascular disease. However, due to statin-associated muscle symptoms, adherence to statin therapy is challenging in clinical practice. Certain nutraceuticals, such as red yeast rice, bergamot, berberine, artichoke, soluble fiber, and plant sterols and stanols alone or in combination with each other, as well as with ezetimibe, might be considered as an alternative or add-on therapy to statins, although there is still insufficient evidence available with respect to long-term safety and effectiveness on cardiovascular disease prevention and treatment. These nutraceuticals could exert significant lipid-lowering activity and might present multiple non-lipid-lowering actions, including improvement of endothelial dysfunction and arterial stiffness, as well as anti-inflammatory and antioxidative properties. The aim of this expert opinion paper is to provide the first attempt at recommendation on the management of statin intolerance through the use of nutraceuticals with particular attention on those with effective low-density lipoprotein cholesterol reduction.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Medical University of Lodz, and the Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Angelo Maria Patti
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rosaria Vincenza Giglio
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, and the Medical Faculty, University of Prishtina, Prishtina, Kosovo
| | - Eric Bruckert
- Institute of Cardiometabolism and Nutrition (ICAN), Endocrinology Department, Hopital Pitié Salpetrière, Paris, France
| | - Olivier Descamps
- Department of Internal Medicine, Centres Hospitaliers Jolimont, Haine Saint-Paul, Belgium; Department of Cardiology, Cliniques Universitaires Saint-Luc, Bruxells, Belgium
| | - Dragan M Djuric
- Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marat Ezhov
- National Cardiology Research Center, Moscow, Russia
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
| | - Niki Katsiki
- Second Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia
| | - G B John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Olena Mitchenko
- Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Kiev, Ukraine
| | - Patrick M Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Paul Muntner
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Demosthenes B Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria
| | - Daniel Pella
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia
| | - Giuseppe M C Rosano
- Cardiovascular Clinical Academic Group St. George's Hospitals NHS Trust University of London, London, United Kingdom; IRCCS San Raffaele Roma, Rome, Italy
| | - Robert S Rosenson
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacek Rysz
- Department of Hypertension, Medical University of Lodz, and the Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute and Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dragos Vinereanu
- University of Medicine and Pharmacy "Carol Davila," and Department of Cardiology, University and Emergency Hospital, Bucharest, Romania
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic
| | - Gerald F Watts
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, and School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, California
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
PCSK9 and neurocognitive function: Should it be still an issue after FOURIER and EBBINGHAUS results? J Clin Lipidol 2018; 12:1123-1132. [PMID: 30318062 DOI: 10.1016/j.jacl.2018.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
The serine protease proprotein convertase subtilisin/kexin type 9 (PCSK9) modulates the levels of low-density lipoprotein cholesterol and cardiovascular risk. Potential risks of adverse neurological effects of intensive lipid-lowering treatment have been hypothesized, as cholesterol is a component of the central nervous system. Moreover, several observations suggest that PCSK9 might play a role in neurogenesis, neuronal migration and apoptosis. In rodents, increased expression of PCSK9 has been detected in specific areas of the central nervous system during embryonic development; also, PCSK9 modulates low-density lipoprotein receptor levels in the ischemic brain areas. Despite a putative participation of PCSK9 in nervous system physiology, the absence of PCSK9 in knockout mice or in humans with loss-of-function mutations of PCSK9 gene has not been linked to neurological alterations. In recent years, some concerns have been raised about the potential neurological side effects of cholesterol-lowering treatments and, more specifically of PCSK9 inhibitors. In this review, the evidence regarding the function of PCSK9 in neuron differentiation, apoptosis, and migration and in nervous system development and latest clinical trials evaluating the effects of PCSK9 inhibitors on neurocognitive function will be described.
Collapse
|
31
|
Wasserman SM, Sabatine MS, Koren MJ, Giugliano RP, Legg JC, Emery MG, Doshi S, Liu T, Somaratne R, Gibbs JP. Comparison of LDL-C Reduction Using Different Evolocumab Doses and Intervals. J Cardiovasc Pharmacol Ther 2018; 23:423-432. [DOI: 10.1177/1074248418774043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: The proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor evolocumab reduces low-density lipoprotein cholesterol (LDL-C) and the risk of cardiovascular events. Objectives: To compare LDL-C reduction using evolocumab 140 mg once every 2 weeks (Q2W) or 420 mg monthly (QM) versus lower doses (70 mg Q2W or 280 mg QM) or placebo. Methods: Patients received evolocumab 70 or 140 mg Q2W, 280 or 420 mg QM, or placebo Q2W or QM in two 12-week phase 2 studies: one with and one without statins. Changes from baseline in LDL-C were compared across Q2W doses and across QM doses. Results: The analysis included 741 patients. Mean (95% confidence interval [CI]) reduction in LDL-C across Q2W visits through week 12 was 63.0% (60.3% to 65.7%) for evolocumab 140 mg Q2W, compared to 41.3% (38.6% to 44.0%) for 70 mg Q2W and 1.9% (4.6% reduction to 0.8% increase) for placebo Q2W (each P < .001 vs 140 mg Q2W), and 62.7% (60.1% to 65.3%) for 420 mg QM, compared to 55.5% (52.9% to 58.0%) for 280 mg QM and 2.5% (5.1% reduction to 0.1% increase) for placebo QM (each P < .001 vs 420 mg QM). Similar results were observed at the mean of weeks 10 and 12. In a subgroup (n = 151) with weekly assessments from weeks 8 to 12, mean (95% CI) peak effect on LDL-C reduction was 72.8% (67.7% to 77.9%) for 140 mg Q2W and 69.0% (63.6% to 74.3%) for 420 mg QM. Trough effect at week 12 underestimated LDL-C reduction. Median peak–trough variability was 20.5%, 21.1%, 31.9%, and 35.1% for evolocumab 140 mg Q2W, 420 mg QM, 70 mg Q2W, and 280 mg QM, respectively. Conclusion: Evolocumab 140 mg Q2W and 420 mg QM yielded similar LDL-C reduction. These doses sustained maximal LDL-C reduction, resulting in greater stability in LDL-C reduction over the dosing interval compared to lower doses. These results support evolocumab doses of either 140 mg Q2W or 420 mg QM.
Collapse
Affiliation(s)
| | - Marc S. Sabatine
- Division of Cardiovascular Medicine, Thrombolysis in Myocardial Infarction (TIMI) Study Group, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J. Koren
- Jacksonville Center for Clinical Research, Jacksonville, FL, USA
| | - Robert P. Giugliano
- Division of Cardiovascular Medicine, Thrombolysis in Myocardial Infarction (TIMI) Study Group, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason C. Legg
- Global Biostatistical Science, Amgen Inc, Thousand Oaks, CA, USA
| | | | - Sameer Doshi
- Clinical Pharmacology, Amgen Inc, Thousand Oaks, CA, USA
| | - Thomas Liu
- Global Biostatistical Science, Amgen Inc, Thousand Oaks, CA, USA
| | | | - John P. Gibbs
- Clinical Pharmacology, Amgen Inc, Thousand Oaks, CA, USA
| |
Collapse
|
32
|
Dainis AM, Ashley EA. Cardiovascular Precision Medicine in the Genomics Era. JACC Basic Transl Sci 2018; 3:313-326. [PMID: 30062216 PMCID: PMC6059349 DOI: 10.1016/j.jacbts.2018.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Precision medicine strives to delineate disease using multiple data sources-from genomics to digital health metrics-in order to be more precise and accurate in our diagnoses, definitions, and treatments of disease subtypes. By defining disease at a deeper level, we can treat patients based on an understanding of the molecular underpinnings of their presentations, rather than grouping patients into broad categories with one-size-fits-all treatments. In this review, the authors examine how precision medicine, specifically that surrounding genetic testing and genetic therapeutics, has begun to make strides in both common and rare cardiovascular diseases in the clinic and the laboratory, and how these advances are beginning to enable us to more effectively define risk, diagnose disease, and deliver therapeutics for each individual patient.
Collapse
Key Words
- CAD, coronary artery disease
- CF, cystic fibrosis
- CHD, coronary heart disease
- CML, chronic myelogenous leukemia
- CRS, conventional risk score
- CVD, cardiovascular disease
- CaM, calmodulin
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- FH, familial hypercholesterolemia
- GRS, genomic risk score
- HCM, hypertrophic cardiomyopathy
- HDR, homology directed repair
- IVF, in vitro fertilization
- LDL-C, low-density lipoprotein cholesterol
- LQTS, long QT syndrome
- NGS, next-generation sequencing
- PGD, preimplantation genetic diagnosis
- SNP, single nucleotide polymorphism
- genome sequencing
- genomics
- iPSC, induced pluripotent stem cells
- precision medicine
- ssODN, single-stranded oligodeoxynucleotide
- targeted therapeutics
Collapse
Affiliation(s)
| | - Euan A. Ashley
- Department of Genetics, Stanford University, Stanford, California
- Department of Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| |
Collapse
|
33
|
Cicero AFG, Colletti A. An update on the safety of nutraceuticals and effects on lipid parameters. Expert Opin Drug Saf 2018; 17:303-313. [DOI: 10.1080/14740338.2018.1429404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Alessandro Colletti
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev 2017; 75:731-767. [PMID: 28938795 DOI: 10.1093/nutrit/nux047] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been growing interest in the possible use of nutraceuticals to improve and optimize dyslipidemia control and therapy. Based on the data from available studies, nutraceuticals might help patients obtain theraputic lipid goals and reduce cardiovascular residual risk. Some nutraceuticals have essential lipid-lowering properties confirmed in studies; some might also have possible positive effects on nonlipid cardiovascular risk factors and have been shown to improve early markers of vascular health such as endothelial function and pulse wave velocity. However, the clinical evidence supporting the use of a single lipid-lowering nutraceutical or a combination of them is largely variable and, for many of the nutraceuticals, the evidence is very limited and, therefore, often debatable. The purpose of this position paper is to provide consensus-based recommendations for the optimal use of lipid-lowering nutraceuticals to manage dyslipidemia in patients who are still not on statin therapy, patients who are on statin or combination therapy but have not achieved lipid goals, and patients with statin intolerance. This statement is intended for physicians and other healthcare professionals engaged in the diagnosis and management of patients with lipid disorders, especially in the primary care setting.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; and Kosovo Society of Cardiology
| | - Olivier Descamps
- Department of Internal Medicine, Centres Hospitaliers Jolimont, Haine Saint-Paul, Belgium; and Belgian Atherosclerosis Society
| | - Dragan M Djuric
- Institute of Medical Physiology "Richard Burian," Faculty of Medicine, University of Belgrade, Belgrade, Serbia; and Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; and Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; and Belgian Atherosclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; and Baltic Atherosclerosis Society
| | - Demosthenes B Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; and Hungarian Atherosclerosis Society
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, UK
| | - Olena Mitchenko
- Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Kiev, Ukraine; and Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- 1st Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; and Austrian Atherosclerosis Society
| | - Daniel Pella
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; and Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece; and Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; and Croatian Atherosclerosis Society
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; and Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, and Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes," Timisoara, Romania
| | - Laurence S Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P Toth
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA; and Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; and Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; and Czech Atherosclerosis Society
| | - Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, California, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration Group; and Polish Lipid Association
| |
Collapse
|
35
|
Cicero AF, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci 2017; 13:965-1005. [PMID: 28883839 PMCID: PMC5575230 DOI: 10.5114/aoms.2017.69326] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Arrigo F.G. Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; Kosovo Society of Caridology
| | - Olivier Descamps
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia; Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; Belgian Atheroclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; Baltic Atherosclerosis Society
| | - Demosthenes B. Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Atherosclerosis Society
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Olena Mitchenko
- 13Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Ukraine; Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; Austrian Atheroclerosis Society (AAS)
| | - Daniel Pella
- 1 Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Greece; Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; Croatian Atherosclerosis Society
| | - Kausik K. Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania; Department of Functional Sciences, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Laurence S. Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P. Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; Czech Atherosclerosis Society
| | - Nathan D. Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group; Polish Lipid Association (PoLA)
| |
Collapse
|
36
|
Desgagné V, Bouchard L, Guérin R. microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application. Clin Chem Lab Med 2017; 55:667-686. [PMID: 27987357 DOI: 10.1515/cclm-2016-0575] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short (~22 nucleotides), non-coding, single-stranded RNA molecules that regulate the expression of target genes by partial sequence-specific base-pairing to the targeted mRNA 3'UTR, blocking its translation, and promoting its degradation or its sequestration into processing bodies. miRNAs are important regulators of several physiological processes including developmental and metabolic functions, but their concentration in circulation has also been reported to be altered in many pathological conditions such as familial hypercholesterolemia, cardiovascular diseases, obesity, type 2 diabetes, and cancers. In this review, we focus on the role of miRNAs in lipoprotein and lipid metabolism, with special attention to the well-characterized miR-33a/b, and on the huge potential of miRNAs for clinical application as biomarkers and therapeutics in the context of cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Luigi Bouchard
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| | - Renée Guérin
- Département de biochimie, Université de Sherbrooke, Sherbrooke, Québec
| |
Collapse
|
37
|
Zhang PY. PCSK9 as a therapeutic target for cardiovascular disease. Exp Ther Med 2017; 13:810-814. [PMID: 28450903 PMCID: PMC5403434 DOI: 10.3892/etm.2017.4055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/12/2017] [Indexed: 01/14/2023] Open
Abstract
It is well recognized that the elevated plasma level of low-density lipoprotein-cholesterol (LDL-C) is a major risk factor for atherosclerosis and cardiovascular disease (CVD). Deposition of pro-atherogenic LDL-C, on the intima of arterial wall, contributes to plaque formation and atherosclerosis, which further leads to lowered blood flow to vital organs and increased risk of CVD. The most commonly used statin therapy is effective in reducing dyslipidemia and preventing cardiovascular events only in about half of the patient population. However, in patients with familial hypercholesterolemia, these drugs were not effective to meet the required goals of lower LDL-C, and to reduce the CVD risk. Furthermore, many patients even develop intolerability to statins and resistance. The identification of pro-protein convertase subtilisin/kexin type 9 (PCSK9) and the association of PCSK9 mutations with familial hypercholesterolemia led to the identification of PCSK9 as a new therapeutic target for lowering LDL-C and dyslipidemia-associated CVD. PCSK9 is found to promote the degradation of LDL-receptor (LDLR), thus rendering it unavailable for recycling to hepatocyte plasma membrane, leading to elevated levels of circulating LDL-C, as it cannot be taken up into cells. While gain-of-function mutations aggravate the degradation of LDLR as in familial hypercholesterolemia whereas loss of function mutations reduce the ability of PCSK9 to promote the degradation of LDLR and thus lower the plasma level of LDL-C and dyslipidemia. Monoclonal antibodies against PCSK9 are currently being tested in clinical trials and are found to be efficacious in countering the activity of PCSK9 and thus control the plasma LDL-C and triglycerides even in statin non-responsive patients and protect against dyslipidemia-related CVD.
Collapse
Affiliation(s)
- Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
38
|
Fuentes MC, Lajo T, Carrión JM, Cuñé J. A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol1. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2016. [DOI: 10.3233/mnm-160065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mari C. Fuentes
- AB-BIOTICS S.A., Cerdanyola del Vallès, Edifici Eureka, Campus UAB, Bellaterra, Spain
| | - Teresa Lajo
- Department of Endocrinology and Nutrition, Moncloa Hospital, Madrid, Spain
| | - Juan M. Carrión
- Department of Endocrinology and Nutrition, Torrelodones University Hospital, Torrelodones-Madrid, Spain
| | - Jordi Cuñé
- AB-BIOTICS S.A., Cerdanyola del Vallès, Edifici Eureka, Campus UAB, Bellaterra, Spain
| |
Collapse
|
39
|
Abstract
The coronary artery calcium (CAC) scan has recently emerged as a reproducible noninvasive test to detect asymptomatic atherosclerotic coronary artery disease. It has several advantages over the traditional cardiac stress testing modalities, including lower cost, greater sensitivity for nonobstructing coronary artery lesions, and excellent prognostic value when combined with the Framingham risk parameters. Its chief disadvantage is that it does not identify obstructing coronary artery lesions or noncalcified coronary artery plaque. A CAC scan utilizes a chest computed tomogram and computer software to calculate the amount of calcium in the four main coronary vessels. Calcium is deposited in coronary plaques so that the greater the calcium score, the greater the plaque burden. This, in turn, is the basis for predicting a 10-15-year risk of a cardiovascular event. Individuals with a zero calcium score have a very low 10-year risk of a cardiovascular event. Obtaining a calcium score in a diabetic patient permits rational decisions for prescribing statin therapy. In patients with a zero score, the initiation of statin therapy is not recommended because the 5-year incidence of atherosclerotic cardiovascular disease is so low. In patients with diabetes, it is recommended to repeat the calcium scan in 4-5 years to permit timely therapy in the event that the score becomes positive. Since statins mildly increase coronary calcium as part of the stabilization of plaque, a reduction in the calcium score should not be anticipated. However, progression of the calcium score by more than 15%/year (calculated from a repeat CAC scan) provides additional prognostic information of an indication of progression of atherosclerosis. In summary, the coronary calcium score is a major clinical advance for noninvasively detecting coronary artery disease and managing antiatherosclerotic therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Mark R Burge
- Division of Endocrinology, Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - R Philip Eaton
- Division of Endocrinology, Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - David S Schade
- Division of Endocrinology, Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| |
Collapse
|
40
|
|
41
|
Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatol Int 2016; 11:54-69. [PMID: 27530815 DOI: 10.1007/s12072-016-9757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022]
Abstract
The discovery that coordinated expression of a limited number of genes can reprogram differentiated somatic cells to induced pluripotent stem cells (iPSC) has opened novel possibilities for developing cell-based models of diseases and regenerative medicine utilizing cell reprogramming or cell transplantation. Directed differentiation of iPSCs can potentially generate differentiated cells belonging to any germ layer, including cells with hepatocyte-like morphology and function. Such cells, termed iHeps, can be derived by sequential cell signaling using available information on embryological development or by forced expression of hepatocyte-enriched transcription factors. In addition to the translational aspects of iHeps, the experimental findings have provided insights into the mechanisms of cell plasticity that permit one cell type to transition to another. However, iHeps generated by current methods do not fully exhibit all characteristics of mature hepatocytes, highlighting the need for additional research in this area. Here we summarize the current approaches and achievements in this field and discuss some existing hurdles and emerging approaches for improving iPSC differentiation, as well as maintaining such cells in culture for increasing their utility in disease modeling and drug development.
Collapse
|
42
|
Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol 2016; 65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/12/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers.
Collapse
Affiliation(s)
- Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Clara Steichen
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Noushin Dianat
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Weber
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94807, France; UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif F-94800, France; Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France.
| |
Collapse
|
43
|
Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, Morrison AC, Brody JA, Gupta N, Nomura A, Kessler T, Duga S, Bis JC, van Duijn CM, Cupples LA, Psaty B, Rader DJ, Danesh J, Schunkert H, McPherson R, Farrall M, Watkins H, Lander E, Wilson JG, Correa A, Boerwinkle E, Merlini PA, Ardissino D, Saleheen D, Gabriel S, Kathiresan S. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J Am Coll Cardiol 2016; 67:2578-89. [PMID: 27050191 PMCID: PMC5405769 DOI: 10.1016/j.jacc.2016.03.520] [Citation(s) in RCA: 687] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Approximately 7% of American adults have severe hypercholesterolemia (untreated low-density lipoprotein [LDL] cholesterol ≥190 mg/dl), which may be due to familial hypercholesterolemia (FH). Lifelong LDL cholesterol elevations in FH mutation carriers may confer coronary artery disease (CAD) risk beyond that captured by a single LDL cholesterol measurement. OBJECTIVES This study assessed the prevalence of an FH mutation among those with severe hypercholesterolemia and determined whether CAD risk varies according to mutation status beyond the observed LDL cholesterol level. METHODS Three genes causative for FH (LDLR, APOB, and PCSK9) were sequenced in 26,025 participants from 7 case-control studies (5,540 CAD case subjects, 8,577 CAD-free control subjects) and 5 prospective cohort studies (11,908 participants). FH mutations included loss-of-function variants in LDLR, missense mutations in LDLR predicted to be damaging, and variants linked to FH in ClinVar, a clinical genetics database. RESULTS Among 20,485 CAD-free control and prospective cohort participants, 1,386 (6.7%) had LDL cholesterol ≥190 mg/dl; of these, only 24 (1.7%) carried an FH mutation. Within any stratum of observed LDL cholesterol, risk of CAD was higher among FH mutation carriers than noncarriers. Compared with a reference group with LDL cholesterol <130 mg/dl and no mutation, participants with LDL cholesterol ≥190 mg/dl and no FH mutation had a 6-fold higher risk for CAD (odds ratio: 6.0; 95% confidence interval: 5.2 to 6.9), whereas those with both LDL cholesterol ≥190 mg/dl and an FH mutation demonstrated a 22-fold increased risk (odds ratio: 22.3; 95% confidence interval: 10.7 to 53.2). In an analysis of participants with serial lipid measurements over many years, FH mutation carriers had higher cumulative exposure to LDL cholesterol than noncarriers. CONCLUSIONS Among participants with LDL cholesterol ≥190 mg/dl, gene sequencing identified an FH mutation in <2%. However, for any observed LDL cholesterol, FH mutation carriers had substantially increased risk for CAD.
Collapse
Affiliation(s)
- Amit V Khera
- Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Gina M Peloso
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Kim S Lawson
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, Texas
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Xuan Deng
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | | | - Pradeep Natarajan
- Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Connor A Emdin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Alexander G Bick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Alanna C Morrison
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, Texas
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Akihiro Nomura
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts; Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz-Kreislauf-Forschung, München, Germany, and Munich Heart Alliance, München, Germany
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy, and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joshua C Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington
| | | | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Bruce Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington; Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
| | - Daniel J Rader
- Departments of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Danesh
- Public Health and Primary Care, University of Cambridge, Cambridge, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge and National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrum für Herz-Kreislauf-Forschung, München, Germany, and Munich Heart Alliance, München, Germany
| | | | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Eric Lander
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Eric Boerwinkle
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, Texas
| | | | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, University of Parma, Parma, Italy, and ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy
| | - Danish Saleheen
- Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Sekar Kathiresan
- Center for Human Genetic Research, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts.
| |
Collapse
|
44
|
ESSENS dyslipidemia: A placebo-controlled, randomized study of a nutritional supplement containing red yeast rice in subjects with newly diagnosed dyslipidemia. Nutrition 2016; 32:767-76. [PMID: 27143594 DOI: 10.1016/j.nut.2016.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/24/2015] [Accepted: 01/13/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Evidence suggests prolonged exposure to lower levels of low-density lipoprotein cholesterol (LDL-C), starting at a younger age, substantially lowers cardiovascular (CV) risk. Accordingly, the CV pandemic affecting younger population in low- to low-middle-income countries, where statin usage is poor even in secondary prevention, may benefit from lipid-lowering nutritional products, as nutritional intervention is generally preferred in these cultures. However, the safety and efficacy of such preparations have not been systematically tested. METHODS In this multicenter, double-blind study, 191 statin-free subjects with newly-diagnosed hyperlipidemia (LDL-C >120 mg/dL, 3.11 mmol/L) and no evidence of CV disease were randomized to one capsule of a proprietary bioactive phytonutrient formulation containing red yeast rice, grape-seed, niacinamide, and folic acid (RYR-NS) or matched placebo twice daily, along with lifestyle modification, for 12 wk. RESULTS Mean baseline LDL-C levels were 148.5 ± 24.0 mg/dL (3.85 ± 0.62 mmol/L) and 148.6 ± 21.9 mg/dL (3.85 ± 0.57 mmol/L) in the RYR-NS and placebo groups respectively. Compared with placebo, RYR-NS resulted in a significant reduction in LDL-C (-29.4% versus -3.5%, P < 0.0001) and non-high-density lipoprotein cholesterol (non-HDL-C; -29.8% versus -10.3%, P < 0.0001) at 12 wk. With RYR-NS, 43.4% individuals attained desirable LDL-C levels and 55.4% desirable non-HDL-C levels by week 12, compared to only 0% and 1.1%, respectively, at baseline. No safety issues were observed. CONCLUSION This study demonstrates the efficacy and safety of RYR-NS in lowering LDL-C and non-HDL-C after 12 wk, with magnitude of LDL-C reduction being comparable to that seen with moderate-intensity statin therapy. Further long-term studies are required to determine the impact of RYR-NS on treatment adherence and clinical outcomes.
Collapse
|
45
|
Jacobson TA, Maki KC, Orringer CE, Jones PH, Kris-Etherton P, Sikand G, La Forge R, Daniels SR, Wilson DP, Morris PB, Wild RA, Grundy SM, Daviglus M, Ferdinand KC, Vijayaraghavan K, Deedwania PC, Aberg JA, Liao KP, McKenney JM, Ross JL, Braun LT, Ito MK, Bays HE, Brown WV. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol 2015; 9:S1-122.e1. [DOI: 10.1016/j.jacl.2015.09.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Wilson DP, Gidding SS. Atherosclerosis: Is a cure in sight? J Clin Lipidol 2015; 9:S1-4. [DOI: 10.1016/j.jacl.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 01/23/2023]
|
47
|
Gu HM, Zhang DW. Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. J Biomed Res 2015; 29:356-61. [PMID: 26445568 PMCID: PMC4585429 DOI: 10.7555/jbr.29.20150067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the main cause of mortality and morbidity in the world. Plasma levels of low density lipoprotein cholesterol (LDL-C) are positively correlated with the risk of atherosclerosis. High plasma LDL concentrations in patients with hypercholesterolemia lead to build-up of LDL in the inner walls of the arteries, which becomes oxidized and promotes the formation of foam cells, consequently initiating atherosclerosis. Plasma LDL is mainly cleared through the LDL receptor (LDLR) pathway. Mutations in the LDLR cause familiar hypercholesterolemia and increase the risk of premature coronary heart disease. The expression of LDLR is regulated at the transcriptional level via the sterol regulatory element binding protein 2 (SREBP-2) and at the posttranslational levels mainly through proprotein convertase subtilisin/kexin-type 9 (PCSK9) and inducible degrader of the LDLR (IDOL). In this review, we summarize the latest advances in the studies of PCSK9.
Collapse
Affiliation(s)
- Hong-Mei Gu
- Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta , Edmonton, Alberta, T6G 2S2 , Canada
| | - Da-Wei Zhang
- Departments of Pediatrics and Biochemistry, Group on the Molecular and Cell Biology of Lipids, University of Alberta , Edmonton, Alberta, T6G 2S2 , Canada
| |
Collapse
|
48
|
Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep 2015; 16:439. [PMID: 25052769 DOI: 10.1007/s11883-014-0439-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A decade after our discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in cholesterol metabolism through the identification of the first mutations leading to hypercholesterolemia, PCSK9 has become one of the most promising targets in cholesterol and cardiovascular diseases. This challenging work in the genetics of hypercholesterolemia paved the way for a plethora of studies around the world allowing the characterization of PCSK9, its expression, its impact on reducing the abundance of LDL receptor, and the identification of loss-of-function mutations in hypocholesterolemia. We highlight the different steps of this adventure and review the published clinical trials especially those with the anti-PCSK9 antibodies evolocumab (AMG 145) and alirocumab (SAR236553/REGN727), which are in phase III trials. The promising results in lowering LDL cholesterol levels raise hope that the PCSK9 adventure will lead, after the large and long-term ongoing phase III studies evaluating efficacy and safety, to a new anticholesterol pharmacological class.
Collapse
|
49
|
Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, McKenney JM, Grundy SM, Gill EA, Wild RA, Wilson DP, Brown WV. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report. J Clin Lipidol 2015; 9:129-69. [PMID: 25911072 DOI: 10.1016/j.jacl.2015.02.003] [Citation(s) in RCA: 559] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
The leadership of the National Lipid Association convened an Expert Panel to develop a consensus set of recommendations for patient-centered management of dyslipidemia in clinical medicine. An Executive Summary of those recommendations was previously published. This document provides support for the recommendations outlined in the Executive Summary. The major conclusions include (1) an elevated level of cholesterol carried by circulating apolipoprotein B-containing lipoproteins (non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol [LDL-C], termed atherogenic cholesterol) is a root cause of atherosclerosis, the key underlying process contributing to most clinical atherosclerotic cardiovascular disease (ASCVD) events; (2) reducing elevated levels of atherogenic cholesterol will lower ASCVD risk in proportion to the extent that atherogenic cholesterol is reduced. This benefit is presumed to result from atherogenic cholesterol lowering through multiple modalities, including lifestyle and drug therapies; (3) the intensity of risk-reduction therapy should generally be adjusted to the patient's absolute risk for an ASCVD event; (4) atherosclerosis is a process that often begins early in life and progresses for decades before resulting a clinical ASCVD event. Therefore, both intermediate-term and long-term or lifetime risk should be considered when assessing the potential benefits and hazards of risk-reduction therapies; (5) for patients in whom lipid-lowering drug therapy is indicated, statin treatment is the primary modality for reducing ASCVD risk; (6) nonlipid ASCVD risk factors should also be managed appropriately, particularly high blood pressure, cigarette smoking, and diabetes mellitus; and (7) the measurement and monitoring of atherogenic cholesterol levels remain an important part of a comprehensive ASCVD prevention strategy.
Collapse
Affiliation(s)
- Terry A Jacobson
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Matthew K Ito
- Oregon State University/Oregon Health & Science University, College of Pharmacy, Portland, OR, USA
| | - Kevin C Maki
- Midwest Center for Metabolic & Cardiovascular Research and DePaul University, Chicago, IL, USA
| | | | - Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA
| | | | - James M McKenney
- Virginia Commonwealth University and National Clinical Research, Richmond, VA, USA
| | - Scott M Grundy
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Gill
- University of Washington/Harborview Medical Center, Seattle, WA, USA
| | - Robert A Wild
- Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Don P Wilson
- Cook Children's Medical Center, Fort Worth, TX, USA
| | | |
Collapse
|
50
|
Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 2015; 161:161-172. [PMID: 25815993 PMCID: PMC4525717 DOI: 10.1016/j.cell.2015.01.036] [Citation(s) in RCA: 793] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 01/06/2023]
Abstract
One-fourth of all deaths in industrialized countries result from coronary heart disease. A century of research has revealed the essential causative agent: cholesterol-carrying low-density lipoprotein (LDL). LDL is controlled by specific receptors (LDLRs) in liver that remove it from blood. Mutations that eliminate LDLRs raise LDL and cause heart attacks in childhood, whereas mutations that raise LDLRs reduce LDL and diminish heart attacks. If we are to eliminate coronary disease, lowering LDL should be the primary goal. Effective means to achieve this goal are currently available. The key questions are: who to treat, when to treat, and how long to treat.
Collapse
Affiliation(s)
- Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|