1
|
Ghosh G, Das D, Nandi A, De S, Gangappa SN, Prasad M. Ecdysone regulates phagocytic cell fate of epithelial cells in developing Drosophila eggs. J Cell Biol 2025; 224:e202411073. [PMID: 40434296 DOI: 10.1083/jcb.202411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/01/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Acquisition of nonprofessional phagocytic cell fate plays an important role in sculpting functional metazoan organs and maintaining overall tissue homeostasis. Though physiologically highly relevant, how the normal epithelial cells acquire phagocytic fate is still mostly unclear. We have employed the Drosophila ovary model to demonstrate that the classical ecdysone signaling in the somatic epithelial follicle cells (AFCs) aids the removal of germline nurse cells (NCs) in late oogenesis. Our live-cell imaging data reveal a novel phenomenon wherein collective behavior of 4-5 AFCs is required for clearing a single NC. By employing classical genetics, molecular biology, and yeast one-hybrid assay, we demonstrate that ecdysone modulates the phagocytic disposition of AFCs at two levels. It regulates the epithelial-mesenchymal transition of the AFCs through Serpent and modulates the phagocytic behavior of the AFCs through Croquemort and Draper. Our data provide unprecedented novel molecular insights into how ecdysone signaling reprograms AFCs toward a phagocytic fate.
Collapse
Affiliation(s)
- Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Devyan Das
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Abhrajyoti Nandi
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Souvik De
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| |
Collapse
|
2
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Alsubaie FS, Neufeld Z. Modelling the effect of cell motility on mixing and invasion in epithelial monolayers. J Biol Phys 2024; 50:291-306. [PMID: 39031299 PMCID: PMC11490479 DOI: 10.1007/s10867-024-09660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024] Open
Abstract
Collective cell invasion underlies several biological processes such as wound healing, embryonic development, and cancerous invasion. Here, we investigate the impact of cell motility on invasion in epithelial monolayers and its coupling to cellular mechanical properties, such as cell-cell adhesion and cortex contractility. We develop a two-dimensional computational model for cells with active motility based on the cellular Potts model, which predicts that the cellular invasion speed is mainly determined by active cell motility and is independent of the biological and mechanical properties of the cells. We also find that, in general, motile cells out-compete and invade non-motile cells, however, this can be reversed by differential cell proliferation. Stable coexistence of motile and static cell types is also possible for certain parameter regimes.
Collapse
Affiliation(s)
- Faris Saad Alsubaie
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia.
| |
Collapse
|
5
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Lofeu L, Montefeltro F, Simon MN, Kohlsdorf T. Functional modularity and mechanical stress shape plastic responses during fish development. Evolution 2024; 78:1568-1582. [PMID: 38842069 DOI: 10.1093/evolut/qpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
The adaptive potential of plastic phenotypes relies on combined developmental responses. We investigated how manipulation of developmental conditions related to foraging mode in the fish Megaleporinus macrocephalus induces plastic responses at different levels: (a) functional modularity of skull bones, (b) biomechanical properties of the chondrocranium using finite element models, (c) bmp4 expression levels, used as a proxy for molecular pathways involved in bone responses to mechanical load. We identified new modules in experimental groups, suggesting increased integration in specific head bone elements associated with the development of subterminal and upturned mouths, which are major features of Megaleporinus plastic morphotypes released in the lab. Plastic responses in head shape involved differences in the magnitude of mechanical stress, which seem restricted to certain chondrocranium regions. Three bones represent a "mechanical unit" related to changes in mouth position induced by foraging mode, suggesting that functional modularity might be enhanced by the way specific regions respond to mechanical load. Differences in bmp4 expression levels between plastic morphotypes indicate associations between molecular signaling pathways and biomechanical responses to load. Our results offer a multilevel perspective of epigenetic factors involved in plastic responses, expanding our knowledge about mechanisms of developmental plasticity that originate novel complex phenotypes.
Collapse
Affiliation(s)
- Leandro Lofeu
- Laboratório de Evolução e Biologia Integrativa, Departamento de Biologia - FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe Montefeltro
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista-UNESP, Ilha Solteira, São Paulo, Brazil
| | | | - Tiana Kohlsdorf
- Laboratório de Evolução e Biologia Integrativa, Departamento de Biologia - FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Serrano Nájera G, Plum AM, Steventon B, Weijer CJ, Serra M. Control of Modular Tissue Flows Shaping the Embryo in Avian Gastrulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601785. [PMID: 39026830 PMCID: PMC11257462 DOI: 10.1101/2024.07.04.601785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Avian gastrulation requires coordinated flows of thousands of cells to form the body plan. We quantified these flows using their fundamental kinematic units: one attractor and two repellers constituting its Dynamic Morphoskeleton (DM). We have also elucidated the mechanistic origin of the attractor, marking the primitive streak (PS), and controlled its shape, inducing gastrulation flows in the chick embryo that are typical of other vertebrates. However, the origins of repellers and dynamic embryo shape remain unclear. Here, we address these questions using active matter physics and experiments. Repeller 1, separating the embryo proper (EP) from extraembryonic (EE) tissues, arises from the tug-of-war between EE epiboly and EP isotropic myosin-induced active stress. Repeller 2, bisecting the anterior and posterior PS and associated with embryo shape change, arises from anisotropic myosin-induced active intercalation in the mesendoderm. Combining mechanical confinement with inhibition of mesendoderm induction, we eliminated either one or both repellers, as predicted by our model. Our results reveal a remarkable modularity of avian gastrulation flows delineated by the DM, uncovering the mechanistic roles of EE epiboly, EP active constriction, mesendoderm intercalation and ingression. These findings offer a new perspective for deconstructing morphogenetic flows, uncovering their modular origin, and aiding synthetic morphogenesis.
Collapse
Affiliation(s)
| | - Alex M. Plum
- Department of Physics, University of California San Diego, CA 92093, USA
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Cornelis J. Weijer
- Division of Molec. Cell and Dev. Biology, School of Life Sciences, Univ. of Dundee, UK
| | - Mattia Serra
- Department of Physics, University of California San Diego, CA 92093, USA
| |
Collapse
|
8
|
Suh K, Thornton R, Farahani PE, Cohen D, Toettcher J. Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596676. [PMID: 38853934 PMCID: PMC11160748 DOI: 10.1101/2024.05.30.596676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
| | - Richard Thornton
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
| | - Daniel Cohen
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton 08544
| | - Jared Toettcher
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| |
Collapse
|
9
|
Liu Y, Wu W, Feng S, Chen Y, Wu X, Zhang Q, Wu S. Dynamic response of the cell traction force to osmotic shock. MICROSYSTEMS & NANOENGINEERING 2023; 9:131. [PMID: 37854722 PMCID: PMC10579240 DOI: 10.1038/s41378-023-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Osmotic pressure is vital to many physiological activities, such as cell proliferation, wound healing and disease treatment. However, how cells interact with the extracellular matrix (ECM) when subjected to osmotic shock remains unclear. Here, we visualize the mechanical interactions between cells and the ECM during osmotic shock by quantifying the dynamic evolution of the cell traction force. We show that both hypertonic and hypotonic shocks induce continuous and large changes in cell traction force. Moreover, the traction force varies with cell volume: the traction force increases as cells shrink and decreases as cells swell. However, the direction of the traction force is independent of cell volume changes and is always toward the center of the cell-substrate interface. Furthermore, we reveal a mechanical mechanism in which the change in cortical tension caused by osmotic shock leads to the variation in traction force, which suggests a simple method for measuring changes in cell cortical tension. These findings provide new insights into the mechanical force response of cells to the external environment and may provide a deeper understanding of how the ECM regulates cell structure and function. Traction force exerted by cells under hypertonic and hypotonic shocks. Scale bar, 200 Pa. Color bar, Pa. The black arrows represent the tangential traction forces.
Collapse
Affiliation(s)
- Yongman Liu
- School of Biomedical Engineering, Anhui Medical University, 230032 Hefei, China
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shuo Feng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Xiaoping Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
10
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
11
|
Yoshida Y. Joint representation: Modeling a phenomenon with multiple biological systems. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 99:67-76. [PMID: 37068423 DOI: 10.1016/j.shpsa.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 05/30/2023]
Abstract
Biologists often study particular biological systems as models of a phenomenon of interest even if they already know that the phenomenon is produced by diverse mechanisms and hence none of those systems alone can sufficiently represent it. To understand this modeling practice, the present paper provides an account of how multiple model systems can be used to study a phenomenon that is produced by diverse mechanisms. Even if generalizability of results from a single model system is significantly limited, generalizations concerning specific aspects of mechanisms often hold across certain ranges of biological systems, which enables multiple model systems to jointly represent such a phenomenon. Comparing mechanisms that operate in different biological systems as examples of the same phenomenon also facilitates characterization and investigation of individual mechanisms. I also compare my account with two existing accounts of the use of multiple model systems and argue that my account is distinct from and complementary to them.
Collapse
Affiliation(s)
- Yoshinari Yoshida
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA, Heller Hall, 271 S 19th Ave #831, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Takahashi N, Yoshino D, Sugahara R, Hirose S, Sone K, Rieu JP, Funamoto K. Microfluidic platform for the reproduction of hypoxic vascular microenvironments. Sci Rep 2023; 13:5428. [PMID: 37012295 PMCID: PMC10070331 DOI: 10.1038/s41598-023-32334-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
Vascular endothelial cells (ECs) respond to mechanical stimuli caused by blood flow to maintain vascular homeostasis. Although the oxygen level in vascular microenvironment is lower than the atmospheric one, the cellular dynamics of ECs under hypoxic and flow exposure are not fully understood. Here, we describe a microfluidic platform for the reproduction hypoxic vascular microenvironments. Simultaneous application of hypoxic stress and fluid shear stress to the cultured cells was achieved by integrating a microfluidic device and a flow channel that adjusted the initial oxygen concentration in a cell culture medium. An EC monolayer was then formed on the media channel in the device, and the ECs were observed after exposure to hypoxic and flow conditions. The migration velocity of the ECs immediately increased after flow exposure, especially in the direction opposite to the flow direction, and gradually decreased, resulting in the lowest value under the hypoxic and flow exposure condition. The ECs after 6-h simultaneous exposure to hypoxic stress and fluid shear stress were generally aligned and elongated in the flow direction, with enhanced VE-cadherin expression and actin filament assembly. Thus, the developed microfluidic platform is useful for investigating the dynamics of ECs in vascular microenvironments.
Collapse
Affiliation(s)
- Naoyuki Takahashi
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Daisuke Yoshino
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryuji Sugahara
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Kazuki Sone
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Jean-Paul Rieu
- Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
- Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8597, Japan.
| |
Collapse
|
13
|
McCraw MR, Uluutku B, Solomon HD, Anderson MS, Sarkar K, Solares SD. Optimizing the accuracy of viscoelastic characterization with AFM force-distance experiments in the time and frequency domains. SOFT MATTER 2023; 19:451-467. [PMID: 36530043 DOI: 10.1039/d2sm01331b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori, the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.
Collapse
Affiliation(s)
- Marshall R McCraw
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Berkin Uluutku
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Halen D Solomon
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Megan S Anderson
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| | - Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.
| |
Collapse
|
14
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
15
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
16
|
Rorot W. Counting with Cilia: The Role of Morphological Computation in Basal Cognition Research. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1581. [PMID: 36359671 PMCID: PMC9689127 DOI: 10.3390/e24111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
"Morphological computation" is an increasingly important concept in robotics, artificial intelligence, and philosophy of the mind. It is used to understand how the body contributes to cognition and control of behavior. Its understanding in terms of "offloading" computation from the brain to the body has been criticized as misleading, and it has been suggested that the use of the concept conflates three classes of distinct processes. In fact, these criticisms implicitly hang on accepting a semantic definition of what constitutes computation. Here, I argue that an alternative, mechanistic view on computation offers a significantly different understanding of what morphological computation is. These theoretical considerations are then used to analyze the existing research program in developmental biology, which understands morphogenesis, the process of development of shape in biological systems, as a computational process. This important line of research shows that cognition and intelligence can be found across all scales of life, as the proponents of the basal cognition research program propose. Hence, clarifying the connection between morphological computation and morphogenesis allows for strengthening the role of the former concept in this emerging research field.
Collapse
Affiliation(s)
- Wiktor Rorot
- Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw, 00-927 Warszawa, Poland
| |
Collapse
|
17
|
Kawabe Y, Schaap P. Adenylate cyclase A amplification and functional diversification during Polyspondylium pallidum development. EvoDevo 2022; 13:18. [PMID: 36261860 PMCID: PMC9583560 DOI: 10.1186/s13227-022-00203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background In Dictyostelium discoideum (Ddis), adenylate cyclase A (ACA) critically generates the cAMP oscillations that coordinate aggregation and morphogenesis. Unlike group 4 species like Ddis, other groups do not use extracellular cAMP to aggregate. However, deletion of cAMP receptors (cARs) or extracellular phosphodiesterase (PdsA) in Polyspondylium pallidum (Ppal, group 2) blocks fruiting body formation, suggesting that cAMP oscillations ancestrally control post-aggregative morphogenesis. In group 2, the acaA gene underwent several duplications. We deleted the three Ppal aca genes to identify roles for either gene and tested whether Ppal shows transient cAMP-induced cAMP accumulation, which underpins oscillatory cAMP signalling. Results In contrast to Ddis, pre-aggregative Ppal cells did not produce a pulse of cAMP upon stimulation with the cAR agonist 2′H-cAMP, but acquired this ability after aggregation. Deletion of Ppal aca1, aca2 and aca3 yielded different phenotypes. aca1ˉ cells showed relatively thin stalks, aca2ˉ showed delayed secondary sorogen formation and aca3ˉ formed less aggregation centers. The aca1ˉaca2ˉ and aca1ˉaca3ˉ mutants combined individual defects, while aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ additionally showed > 24 h delay in aggregation, with only few aggregates with fragmenting streams being formed. The fragments developed into small fruiting bodies with stalk and spore cells. Aggregation was restored in aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ by 2.5 mM 8Br-cAMP, a membrane-permeant activator of cAMP-dependent protein kinase (PKA). Like Ddis, Ppal sorogens also express the adenylate cyclases ACR and ACG. We found that prior to aggregation, Ddis acaˉ/ACG cells produced a pulse of cAMP upon stimulation with 2′H-cAMP, indicating that cAMP oscillations may not be dependent on ACA alone. Conclusions The three Ppal replicates of acaA perform different roles in stalk morphogenesis, secondary branch formation and aggregation, but act together to enable development by activating PKA. While even an aca1ˉaca3ˉaca2ˉ mutant still forms (some) fruiting bodies, suggesting little need for ACA-induced cAMP oscillations in this process, we found that ACG also mediated transient cAMP-induced cAMP accumulation. It, therefore, remains likely that post-aggregative Ppal morphogenesis is organized by cAMP oscillations, favouring a previously proposed model, where cAR-regulated cAMP hydrolysis rather than its synthesis dominates oscillatory behaviour. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00203-7.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
18
|
Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d’Alessandro J, Janel S, Douanier A, Delaval B, Lafont F, Lim CT, Delacour D, Prost J, Xi W, Ladoux B. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. SCIENCE ADVANCES 2022; 8:eabn5406. [PMID: 36103541 PMCID: PMC9473582 DOI: 10.1126/sciadv.abn5406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.
Collapse
Affiliation(s)
- Alexandros Glentis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Wang Xi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
19
|
Zhai J, Li S, Sen S, Vallvé-Juanico J, Irwin JC, Vo KC, Wan J, Du Y, Chen ZJ, Giudice LC. Transcriptomic analysis supports collective endometrial cell migration in the pathogenesis of adenomyosis. Reprod Biomed Online 2022; 45:519-530. [PMID: 35773139 PMCID: PMC9976941 DOI: 10.1016/j.rbmo.2022.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
RESEARCH QUESTION Adenomyosis is a common uterine disorder of uncertain causes. Can transcriptomic analyses of the endometrium and myometrium reveal potential mechanisms underlying adenomyosis pathogenesis? DESIGN Transcriptomic profiles of eutopic endometrium and myometrium from women with and without diffuse adenomyosis and with symptomatic FIGO type 2-5 fibroids in the proliferative phase of the menstrual cycle were assessed using RNA sequencing and bioinformatic analysis. Differentially expressed genes (DEG) and potential pathways were validated by quantitative reverse transcription polymerase chain reaction, immunoblotting and Masson staining, using additional clinical samples. RESULTS Top biological processes in the endometrium of women with versus without adenomyosis, enriched from DEG, comprised inflammation, extracellular matrix (ECM) organization, collagen degradation and hyaluronan synthesis, which are key in cell migration and cell movement. Top biological processes enriched from DEG in the myometrium of women with versus without adenomyosis revealed ECM organization dysfunction, abnormal sensory pain perception and gamma aminobutyric acid (GABA) synaptic transmission. Dysregulation of prolactin signalling was also enriched in eutopic endometrium and in the myometrium of women with adenomyosis. CONCLUSIONS Overall, our results support the invasive endometrium theory in the pathogenesis of adenomyosis, in which inflammation induces ECM remodelling resulting in a track for subsequent endometrial collective cell migration and onset of adenomyosis. Moreover, abnormal myometrial GABA synaptic transmission may contribute to dysmenorrhoea in women with adenomyosis and is a possible target for novel therapeutic development. Prolactin signalling abnormalities may serve as another opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Junyu Zhai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Sushmita Sen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Júlia Vallvé-Juanico
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Kim Chi Vo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA
| | - Jipeng Wan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan Shandong, China,Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics Shanghai, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China,Corresponding author. (L. C. Giudice)
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco CA, USA,Corresponding author. (L. C. Giudice)
| |
Collapse
|
20
|
Wu H, Dang D, Yang X, Wang J, Qi R, Yang W, Liang W. Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm. MICROMACHINES 2022; 13:mi13060818. [PMID: 35744432 PMCID: PMC9229272 DOI: 10.3390/mi13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Dan Dang
- School of Science, Shenyang Jianzhu University, Shenyang 110168, China
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Ruolong Qi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| |
Collapse
|
21
|
García-García RD, Garay-Pacheco E, Marín-Llera JC, Chimal-Monroy J. Recombinant Limb Assay as in Vivo Organoid Model. Front Cell Dev Biol 2022; 10:863140. [PMID: 35557939 PMCID: PMC9086426 DOI: 10.3389/fcell.2022.863140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Organ formation initiates once cells become committed to one of the three embryonic germ layers. In the early stages of embryogenesis, different gene transcription networks regulate cell fate after each germ layer is established, thereby directing the formation of complex tissues and functional organs. These events can be modeled in vitro by creating organoids from induced pluripotent, embryonic, or adult stem cells to study organ formation. Under these conditions, the induced cells are guided down the developmental pathways as in embryonic development, resulting in an organ of a smaller size that possesses the essential functions of the organ of interest. Although organoids are widely studied, the formation of skeletal elements in an organoid model has not yet been possible. Therefore, we suggest that the formation of skeletal elements using the recombinant limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from undissociated or dissociated-reaggregated undifferentiated mesodermal cells introduced into an ectodermal cover obtained from an early limb bud. Next, this filled ectoderm is grafted into the back of a donor chick embryo. Under these conditions, the cells can receive the nascent embryonic signals and develop complex skeletal elements. We propose that the formation of skeletal elements induced through the RL system may occur from stem cells or other types of progenitors, thus enabling the study of morphogenetic properties in vivo from these cells for the first time.
Collapse
Affiliation(s)
| | | | | | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
22
|
Sadhukhan S, Mishra PK. A multi-layered hybrid model for cancer cell invasion. Med Biol Eng Comput 2022; 60:1075-1098. [DOI: 10.1007/s11517-022-02514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022]
|
23
|
Khataee H, Fraser M, Neufeld Z. Modelling the Collective Mechanical Regulation of the Structure and Morphology of Epithelial Cell Layers. Front Cell Dev Biol 2022; 10:767688. [PMID: 35399530 PMCID: PMC8987200 DOI: 10.3389/fcell.2022.767688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The morphology and function of epithelial sheets play an important role in healthy tissue development and cancer progression. The maintenance of structure of closely packed epithelial layers requires the coordination of various mechanical forces due to intracellular activities and interactions with other cells and tissues. However, a general model for the combination of mechanical properties which determine the cell shape and the overall structure of epithelial layers remains elusive. Here, we propose a computational model, based on the Cellular Potts Model, to analyse the interplay between mechanical properties of cells and dynamical transitions in epithelial cell shapes and structures. We map out phase diagrams as functions of cellular properties and the orientation of cell division. Results show that monolayers of squamous, cuboidal, and columnar cells are formed when the axis of cell proliferation is perpendicular to the substrate or along the major axis of the cells. Monolayer-to-multilayer transition is promoted via cell extrusion, depending on the mechanical properties of cells and the orientation of cell division. The results and model predictions are discussed in the context of experimental observations.
Collapse
|
24
|
Zhang J, Guo Q, Zhang G, Cao X, Chen W, Li Y, Guan M, Yu J, Wang X, Yan Y. High myosin binding protein H expression predicts poor prognosis in glioma patients. Sci Rep 2022; 12:1525. [PMID: 35087137 PMCID: PMC8795254 DOI: 10.1038/s41598-022-05512-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/12/2022] [Indexed: 01/02/2023] Open
Abstract
Glioma is the most common and fatal primary brain tumor in humans. Myosin binding protein H (MYBPH), which was first identified as an important myofibrillar constituent of vertebrate skeletal and cardiac muscles, reduces cell motility and metastasis. However, its role in gliomas remains unclear. We evaluated the expression of MYBPH in glioma using Gene Expression Profiling Interactive Analysis ( http://gepia.cancer-pku.cn/ ) and Chinese Glioma Genome Atlas ( https://www.cgga.org.cn/ ). The results showed that MYBPH was highly expressed in glioma tissues. Moreover, MYBPH expression was significantly associated with high tumor aggressiveness and poor outcomes in glioma patients. Mechanistically, the results suggested that MYBPH might promote tumor progression by improving tumor invasion and migration. Our results establish MYBPH as an important prognostic biomarker that could be considered a potential epigenetic and immunotherapeutic target for treatment. We showed that MYBPH is a novel biomarker that is variably expressed in glioblastoma (GBM). The association of high MYBPH expression with poor prognosis in newly diagnosed GBM patients and increased expression in recurrent GBM is indicative of its role in tumor aggressiveness.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
- Zhejiang Key Laboratory of Pathophysiology, Ningbo University, Ningbo, 315211, China
| | - Qianqiao Guo
- Department of Electrophysiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Guoxiang Zhang
- Department of General Surgery, Lianshi People's Hospital, Nanxun District, Huzhou, 313013, China
| | - Xuemei Cao
- Ningbo Clinical Pathology Diagnostic Center, Ningbo, 315020, China
| | - Wei Chen
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Yong Li
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Minwu Guan
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Jianjun Yu
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Xindong Wang
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Yujin Yan
- Department of Neurosurgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
25
|
Guo X, Li Z, Liu S, Zhang M, Guan Y, Qin J, Li X, Zhang B, Tang J. Studying the effect of PDA@CeO 2 nanoparticles with antioxidant activity on the mechanical properties of cells. J Mater Chem B 2021; 9:9204-9212. [PMID: 34698747 DOI: 10.1039/d1tb01918j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studying the influence of nanomaterials on the microstructure and mechanical properties of cells is essential to guide the biological applications of nanomaterials. In this article, the effects of the first synthesized PDA@CeO2 nanoparticles (NPs) with multiple ROS scavenging activities on cell ultra-morphology and mechanical properties were investigated by atomic force microscopy (AFM). After the cells were exposed to PDA@CeO2 NPs, there was no obvious change in cell morphology, but the Young's modulus of the cells was increased. On the contrary, after the cells were damaged by H2O2, the secreted molecules appeared on the cell surface, and the Young's modulus was decreased significantly. However, PDA@CeO2 NPs could effectively inhibit the reduction of the Young's modulus caused by oxidative stress damage. PDA@CeO2 NPs could also protect F-actin from oxidative stress damage and maintain the stability of the cytoskeleton. This work investigates the intracellular antioxidant mechanism of nanomaterials from the changes in the microstructure and biomechanics of living cells, providing a new analytical approach to explore the biological effects of nanomaterials.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, P. R. China.,School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
26
|
Bao R, Al-Shakarji NM, Bunyak F, Palaniappan K. DMNet: Dual-Stream Marker Guided Deep Network for Dense Cell Segmentation and Lineage Tracking. ... IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS. IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION 2021; 2021:3354-3363. [PMID: 35386855 PMCID: PMC8982054 DOI: 10.1109/iccvw54120.2021.00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accurate segmentation and tracking of cells in microscopy image sequences is extremely beneficial in clinical diagnostic applications and biomedical research. A continuing challenge is the segmentation of dense touching cells and deforming cells with indistinct boundaries, in low signal-to-noise-ratio images. In this paper, we present a dual-stream marker-guided network (DMNet) for segmentation of touching cells in microscopy videos of many cell types. DMNet uses an explicit cell marker-detection stream, with a separate mask-prediction stream using a distance map penalty function, which enables supervised training to focus attention on touching and nearby cells. For multi-object cell tracking we use M2Track tracking-by-detection approach with multi-step data association. Our M2Track with mask overlap includes short term track-to-cell association followed by track-to-track association to re-link tracklets with missing segmentation masks over a short sequence of frames. Our combined detection, segmentation and tracking algorithm has proven its potential on the IEEE ISBI 2021 6th Cell Tracking Challenge (CTC-6) where we achieved multiple top three rankings for diverse cell types. Our team name is MU-Ba-US, and the implementation of DMNet is available at, http://celltrackingchallenge.net/participants/MU-Ba-US/.
Collapse
Affiliation(s)
- Rina Bao
- University of Missouri-Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
27
|
Hirose S, Tabata Y, Sone K, Takahashi N, Yoshino D, Funamoto K. P21-activated kinase regulates oxygen-dependent migration of vascular endothelial cells in monolayers. Cell Adh Migr 2021; 15:272-284. [PMID: 34550057 PMCID: PMC8475594 DOI: 10.1080/19336918.2021.1978368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The collective migration of vascular endothelial cells plays important roles in homeostasis and angiogenesis. Oxygen tension in vivo is a key factor affecting the cellular dynamics. We previously reported hypoxic conditions promote the internalization of vascular endothelial (VE)-cadherin and increase the collective migration of vascular endothelial cells. However, the mechanism through which cells regulate collective migration as affected by oxygen tension is not fully understood. Here, we investigated oxygen-dependent collective migration, focusing on intracellular protein p21-activated kinase (PAK) and hypoxia-inducing factor (HIF)-1α. The results indicate that the oxygen-dependent variation of the migration speed of vascular endothelial cells is mediated by the regulation of VE-cadherin through the PAK pathway, as well as other mechanisms via HIF-1α, especially under extreme hypoxic conditions.
Collapse
Affiliation(s)
- Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Miyagi Japan
| | - Yugo Tabata
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Miyagi Japan
| | - Kazuki Sone
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Miyagi Japan
| | - Naoyuki Takahashi
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Miyagi Japan
| | - Daisuke Yoshino
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo Japan
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, Miyagi Japan.,Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi Japan
| |
Collapse
|
28
|
Trela E, Lan Q, Myllymäki SM, Villeneuve C, Lindström R, Kumar V, Wickström SA, Mikkola ML. Cell influx and contractile actomyosin force drive mammary bud growth and invagination. J Cell Biol 2021; 220:e202008062. [PMID: 34042944 PMCID: PMC8164091 DOI: 10.1083/jcb.202008062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.
Collapse
MESH Headings
- Actomyosin/metabolism
- Animals
- Cell Movement
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Gestational Age
- Hypertrophy
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/ultrastructure
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Morphogenesis
- Mice
Collapse
Affiliation(s)
- Ewelina Trela
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Lindström
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vinod Kumar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara A. Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marja L. Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
30
|
Pal J, Becker AC, Dhamija S, Seiler J, Abdelkarim M, Sharma Y, Behr J, Meng C, Ludwig C, Kuster B, Diederichs S. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol 2021; 15:1797-1817. [PMID: 33934493 PMCID: PMC8253088 DOI: 10.1002/1878-0261.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Abstract
Cell migration is an essential process in health and in disease, including cancer metastasis. A comprehensive inventory of migration factors is nonetheless lacking-in part due to the difficulty in assessing migration using high-throughput technologies. Hence, there are currently very few screens that systematically reveal factors controlling cell migration. Here, we introduce MigExpress as a platform for the 'identification of Migration control genes by differential Expression'. MigExpress exploits the combination of in-depth molecular profiling and the robust quantitative analysis of migration capacity in a broad panel of samples and identifies migration-associated genes by their differential expression in slow- versus fast-migrating cells. We applied MigExpress to investigate non-small cell lung cancer (NSCLC), which is the most frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC cell lines, we comprehensively determined mRNA and protein expression. Correlating the transcriptome and proteome profiles with the quantified migration properties led to the discovery and validation of FLNC, DSE, CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells, which were also negatively correlated with patient survival. Notably, FLNC was the least expressed filamin in NSCLC, but the only one controlling cell migration and correlating with patient survival and metastatic disease stage. In our study, we present MigExpress as a new method for the systematic analysis of migration factors and provide a comprehensive resource of transcriptomic and proteomic data of NSCLC cell lines related to cell migration.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Abdelkarim
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Yogita Sharma
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.,Chair of Proteomics and Bioanalytics, DKTK Partner Site Munich, Freising, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Kim K, Min S, Kim D, Kim H, Roh S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021; 26:molecules26092658. [PMID: 34062818 PMCID: PMC8124333 DOI: 10.3390/molecules26092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland stem cells (SGSCs) are potential cell sources for the treatment of salivary gland diseases. The control of cell survival is an essential factor for applying stem cells to regenerative medicine or stem cell-based research. The purpose of this study was to investigate the effects of the ROCK inhibitor Y-27632 on the survival of SGSCs and its underlying mechanisms. SGSCs were isolated from mouse submandibular glands and cultured in suspension. Treatment with Y-27632 restored the viability of SGSCs that was significantly decreased during isolation and the subsequent culture. Y-27632 upregulated the expression of anti-apoptotic protein BCL-2 in SGSCs and, in the apoptosis assay, significantly reduced apoptotic and necrotic cell populations. Matrigel was used to mimic the extracellular environment of an intact salivary gland. The expression of genes regulating apoptosis and the ROCK signaling pathway was significantly reduced when SGSCs were embedded in Matrigel. SGSCs cultured in Matrigel and treated with Y-27632 showed no difference in the total numbers of spheroids and expression levels of apoptosis-regulating genes. Matrigel-embedded SGSCs treated with Y-27632 increased the number of spheroids with budding structures and the expression of acinar cell-specific marker AQP5. We demonstrate the protective effects of Y-27632 against dissociation-induced apoptosis of SGSCs during their culture in vitro.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA;
| | - Hyewon Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-880-2333
| |
Collapse
|
32
|
Yu J, Cai P, Zhang X, Zhao T, Liang L, Zhang S, Liu H, Chen X. Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS NANO 2021; 15:7618-7627. [PMID: 33844497 DOI: 10.1021/acsnano.1c01165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluid-to-solid phase transition in multicellular assembly is crucial in many developmental biological processes, such as embryogenesis and morphogenesis. However, biomechanical studies in this area are limited, and little is known about factors governing the transition and how cell behaviors are regulated. Due to different stresses present, cells could behave distinctively depending on the nature of tissue. Here we report a fluid-to-solid transition in geometrically confined multicellular assemblies. Under circular confinement, Madin-Darby canine kidney (MDCK) monolayers undergo spatiotemporally oscillatory motions that are strongly dependent on the confinement size and distance from the periphery of the monolayers. Nanomechanical mapping reveals that epithelial tensional stress and traction forces on the substrate are both dependent on confinement size. The oscillation pattern and cellular nanomechanics profile appear well correlated with stress fiber assembly and cell polarization. These experimental observations imply that the confinement size-dependent surface tension regulates actin fiber assembly, cellular force generation, and cell polarization. Our analyses further suggest a characteristic confinement size (approximates to MDCK's natural correlation length) below which surface tension is sufficiently high and triggers a fluid-to-solid transition of the monolayers. Our findings may shed light on the geometrical and nanomechanical control of tissue morphogenesis and growth.
Collapse
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaoqian Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
33
|
Abstract
Over 50 years after its discovery in early chick embryos, the concept of epithelial-mesenchymal transition (EMT) is now widely applied to morphogenetic studies in both physiological and pathological contexts. Indeed, the EMT field has witnessed exponential growth in recent years, driven primarily by a rapid expansion of cancer-oriented EMT research. This has led to EMT-based therapeutic interventions that bear the prospect of fighting cancer, and has given developmental biologists new impetus to investigate EMT phenomena more closely and to find suitable models to address emerging EMT-related questions. Here, and in the accompanying poster, I provide a brief summary of the current status of EMT research and give an overview of EMT models that have been used in developmental studies. I also highlight dynamic epithelialization and de-epithelialization events that are involved in many developmental processes and that should be considered to provide a broader perspective of EMT. Finally, I put forward a set of criteria to separate morphogenetic phenomena that are EMT-related from those that are not.
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
34
|
Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med Image Anal 2021; 71:102048. [PMID: 33872961 DOI: 10.1016/j.media.2021.102048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Recently, single-stage embedding based deep learning algorithms gain increasing attention in cell segmentation and tracking. Compared with the traditional "segment-then-associate" two-stage approach, a single-stage algorithm not only simultaneously achieves consistent instance cell segmentation and tracking but also gains superior performance when distinguishing ambiguous pixels on boundaries and overlaps. However, the deployment of an embedding based algorithm is restricted by slow inference speed (e.g., ≈1-2 min per frame). In this study, we propose a novel Faster Mean-shift algorithm, which tackles the computational bottleneck of embedding based cell segmentation and tracking. Different from previous GPU-accelerated fast mean-shift algorithms, a new online seed optimization policy (OSOP) is introduced to adaptively determine the minimal number of seeds, accelerate computation, and save GPU memory. With both embedding simulation and empirical validation via the four cohorts from the ISBI cell tracking challenge, the proposed Faster Mean-shift algorithm achieved 7-10 times speedup compared to the state-of-the-art embedding based cell instance segmentation and tracking algorithm. Our Faster Mean-shift algorithm also achieved the highest computational speed compared to other GPU benchmarks with optimized memory consumption. The Faster Mean-shift is a plug-and-play model, which can be employed on other pixel embedding based clustering inference for medical image analysis. (Plug-and-play model is publicly available: https://github.com/masqm/Faster-Mean-Shift).
Collapse
|
35
|
Vafa F, Bowick MJ, Shraiman BI, Marchetti MC. Fluctuations can induce local nematic order and extensile stress in monolayers of motile cells. SOFT MATTER 2021; 17:3068-3073. [PMID: 33596291 DOI: 10.1039/d0sm02027c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent experiments in various cell types have shown that two-dimensional tissues often display local nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects. Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce local nematic order and an extensile internal stress. A key element of the model is the assumption that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis, resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or contractile stresses in tissue, depending on the relative strength of the contractility of the cortical cytoskeleton and tractions by cells on the extracellular matrix.
Collapse
Affiliation(s)
- Farzan Vafa
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
The epithelial to mesenchymal transition (EMT) is an enticingly simple mechanism that converts stationary epithelial cells into migratory mesenchymal cells. EMT is meant to provide a unified explanation for phenomena as complex as gastrulation and metastasis. However, cell movements turn out to be diverse, and many are collective. Cells commonly migrate in clusters, strands, sheets, elongating tubes, or in fluid-like masses. Moreover, plenty of cells move without activating the EMT program. Here I propose that EMT can be understood as one of many types of transitions in a broader landscape-or phase space-of cell morphologies and behaviors. Throughout biology, and at multiple scales, complexity arises from the combinatorial deployment of simple, modular components. I propose that diversity of cell shapes and behaviors similarly arises from combinatorial use of modular biomechanical properties.
Collapse
Affiliation(s)
- Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
37
|
Cui X, Tong J, Yau J, Bajpai A, Yang J, Peng Y, Singh M, Qian W, Ma X, Chen W. Mechanical Forces Regulate Asymmetric Vascular Cell Alignment. Biophys J 2020; 119:1771-1780. [PMID: 33086046 PMCID: PMC7677134 DOI: 10.1016/j.bpj.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
Mechanical forces between cells and their microenvironment critically regulate the asymmetric morphogenesis and physiological functions in vascular systems. Here, we investigated the asymmetric cell alignment and cellular forces simultaneously in micropatterned endothelial cell ring-shaped sheets and studied how the traction and intercellular forces are involved in the asymmetric vascular morphogenesis. Tuning the traction and intercellular forces using different topographic geometries of symmetric and asymmetric ring-shaped patterns regulated the vascular asymmetric morphogenesis in vitro. Moreover, pharmacologically suppressing the cell traction force and intercellular force disturbed the force-dependent asymmetric cell alignment. We further studied this phenomenon by modeling the vascular sheets with a mechanical force-propelled active particle model and confirmed that mechanical forces synergistically drive the asymmetric endothelial cell alignments in different tissue geometries. Further study using mouse diabetic aortic endothelial cells indicated that diseased endothelial cells exhibited abnormal cell alignments, traction, and intercellular forces, indicating the importance of mechanical forces in physiological vascular morphogenesis and functions. Overall, we have established a controllable micromechanical platform to study the force-dependent vascular asymmetric morphogenesis and thus provide a direct link between single-cell mechanical processes and collective behaviors in a multicellular environment.
Collapse
Affiliation(s)
- Xin Cui
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Jimmy Yau
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Jing Yang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Yansong Peng
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Mrinalini Singh
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Xiao Ma
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
38
|
How Exactly Did the Nose Get That Long? A Critical Rethinking of the Pinocchio Effect and How Shape Changes Relate to Landmarks. Evol Biol 2020. [DOI: 10.1007/s11692-020-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThe Pinocchio effect has long been discussed in the literature on geometric morphometrics. It denotes the observation that Procrustes superimposition tends to distribute shape changes over many landmarks, even though a different superimposition may exist for the same landmark configurations that concentrates changes in just one or a few landmarks. This is widely seen as a flaw of Procrustes methods. Visualizations illustrating the Pinocchio effect use a comparison of the same pair of shapes superimposed in two different ways: in a resistant-fit superimposition that concentrates the shape difference in just one or a few landmarks, and in Procrustes superimposition, which distributes differences over most or all landmarks. Because these superimpositions differ only in the non-shape aspects of size, position and orientation, they are equivalent from the perspective of shape analysis. Simulation studies of the Pinocchio effect usually generate data, either single pairs or larger samples of landmark configurations, in a particular superimposition so that differences occur mostly or exclusively at just one or a few landmarks, but no steps are taken to remove variation from size, position and orientation. When these configurations are then compared with Procrustes-superimposed data, differences appear and are attributed to the Pinocchio effect. Overall, it is ironic that all manifestations of the Pinocchio effect in one way or another rely on differences in the non-shape properties of position and orientation. Rigorous thinking about shape variation and careful choice of visualization methods can prevent confusion over this issue.
Collapse
|
39
|
Mitchel JA, Das A, O'Sullivan MJ, Stancil IT, DeCamp SJ, Koehler S, Ocaña OH, Butler JP, Fredberg JJ, Nieto MA, Bi D, Park JA. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nat Commun 2020; 11:5053. [PMID: 33028821 PMCID: PMC7542457 DOI: 10.1038/s41467-020-18841-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.
Collapse
Affiliation(s)
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Ian T Stancil
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - James P Butler
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
40
|
Rezk R, Jia BZ, Wendler A, Dimov I, Watts C, Markaki AE, Franze K, Kabla AJ. Spatial heterogeneity of cell-matrix adhesive forces predicts human glioblastoma migration. Neurooncol Adv 2020; 2:vdaa081. [PMID: 32793884 PMCID: PMC7415261 DOI: 10.1093/noajnl/vdaa081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Glioblastoma (GBM) is a highly aggressive incurable brain tumor. The main cause of mortality in GBM patients is the invasive rim of cells migrating away from the main tumor mass and invading healthy parts of the brain. Although the motion is driven by forces, our current understanding of the physical factors involved in glioma infiltration remains limited. This study aims to investigate the adhesion properties within and between patients' tumors on a cellular level and test whether these properties correlate with cell migration. Methods Six tissue samples were taken from spatially separated sections during 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. Navigated biopsy samples were collected from strongly fluorescent tumor cores, a weak fluorescent tumor rim, and nonfluorescent tumor margins. A microfluidics device was built to induce controlled shear forces to detach cells from monolayer cultures. Cells were cultured on low modulus polydimethylsiloxane representative of the stiffness of brain tissue. Cell migration and morphology were then obtained using time-lapse microscopy. Results GBM cell populations from different tumor fractions of the same patient exhibited different migratory and adhesive behaviors. These differences were associated with sampling location and amount of 5-ALA fluorescence. Cells derived from weak- and nonfluorescent tumor tissue were smaller, adhered less well, and migrated quicker than cells derived from strongly fluorescent tumor mass. Conclusions GBM tumors are biomechanically heterogeneous. Selecting multiple populations and broad location sampling are therefore important to consider for drug testing.
Collapse
Affiliation(s)
- Rasha Rezk
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Bill Zong Jia
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Astrid Wendler
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Ivan Dimov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Colin Watts
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
41
|
Pal DS, Li X, Banerjee T, Miao Y, Devreotes PN. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:407-416. [PMID: 31840779 DOI: 10.1387/ijdb.190265pd] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to a variety of external cues, eukaryotic cells display varied migratory modes to perform their physiological functions during development and in the adult. Aberrations in cell migration result in embryonic defects and cancer metastasis. The molecular components involved in cell migration are remarkably conserved between the social amoeba Dictyostelium and mammalian cells. This makes the amoeba an excellent model system for studies of eukaryotic cell migration. These migration-associated components can be grouped into three networks: input, signal transduction and cytoskeletal. In migrating cells, signal transduction events such as Ras or PI3K activity occur at the protrusion tips, referred to as 'front', whereas events such as dissociation of PTEN from these regions are referred to as 'back'. Asymmetric distribution of such front and back events is crucial for establishing polarity and guiding cell migration. The triggering of these signaling events displays properties of biochemical excitability including all-or-nothing responsiveness to suprathreshold stimuli, refractoriness, and wave propagation. These signal transduction waves originate from a point and propagate towards the edge of the cell, thereby driving cytoskeletal activity and cellular protrusions. Any change in the threshold for network activation alters the range of the propagating waves and the size of cellular protrusions which gives rise to various migratory modes in cells. Thus, this review highlights excitable signal transduction networks as key players for coordinating cytoskeletal activities to drive cell migration in all eukaryotes.
Collapse
Affiliation(s)
- Dhiman S Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
42
|
Ishida A, Oshikawa M, Ajioka I, Muraoka T. Sequence-Dependent Bioactivity and Self-Assembling Properties of RGD-Containing Amphiphilic Peptides as Extracellular Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3605-3611. [PMID: 35025230 DOI: 10.1021/acsabm.0c00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell adhesion is a fundamental biological process involved in a wide range of cellular and biological activity. Integrin-ligand binding is largely responsible for cell adhesion with an extracellular matrix, and the RGD sequence is an epitope in ligand proteins such as fibronectin. The extracellular matrix consists of fibrous proteins with embedded ligands for integrins. Such a biological architecture has been reconstructed for biochemical, pharmaceutical, and biomaterial studies using artificial supramolecular systems to reproduce cell adhesion functionality, and fiber-forming self-assembling peptides containing RGD are one such promising material for this purpose. In this study, using RADA16 as a model fiber-forming peptide, a series of RGD-containing variants have been synthesized by the replacement of one alanine with glycine at different positions, in which all the variants consist of identical amino acid components. The position of the RGD unit influenced the supramolecular self-assembly of the amphiphilic peptide to inhibit β-sheet formation (A6G) or twist the molecular alignment in β-sheet-type assemblies (A10G and A14G). Furthermore, A10G and A14G formed assembled nanofibers, which afforded hydrogels with higher viscoelasticities than other RGD-containing variants. In contrast to A10G and A14G, which exhibit substantial cell adhesion functionality, the cell adhesion efficiencies of the other RGD-containing variants were significantly reduced. This suggests that the higher order structure could strongly influence the cell adhesion functionality of RGD-containing supramolecular nanofibers.
Collapse
Affiliation(s)
- Atsuya Ishida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mio Oshikawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
43
|
Loewe B, Serafin F, Shankar S, Bowick MJ, Marchetti MC. Shape and size changes of adherent elastic epithelia. SOFT MATTER 2020; 16:5282-5293. [PMID: 32462170 DOI: 10.1039/d0sm00239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epithelial tissues play a fundamental role in various morphogenetic events during development and early embryogenesis. Although epithelial monolayers are often modeled as two-dimensional (2D) elastic surfaces, they distinguish themselves from conventional thin elastic plates in three important ways- the presence of an apical-basal polarity, spatial variability of cellular thickness, and their nonequilibrium active nature. Here, we develop a minimal continuum model of a planar epithelial tissue as an active elastic material that incorporates all these features. We start from a full three-dimensional (3D) description of the tissue and derive an effective 2D model that captures, through the curvature of the apical surface, both the apical-basal asymmetry and the spatial geometry of the tissue. Crucially, variations of active stresses across the apical-basal axis lead to active torques that can drive curvature transitions. By identifying four distinct sources of activity, we find that bulk active stresses arising from actomyosin contractility and growth compete with boundary active tensions due to localized actomyosin cables and lamellipodial activity to generate the various states spanning the morphospace of a planar epithelium. Our treatment hence unifies 3D shape deformations through the coupled mechanics of apical curvature change and in-plane expansion/contraction of substrate-adhered tissues. Finally, we discuss the implications of our results for some biologically relevant processes such as tissue folding at the onset of lumen formation.
Collapse
Affiliation(s)
- Benjamin Loewe
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA.
| | - Francesco Serafin
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Suraj Shankar
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - Mark J Bowick
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA.
| |
Collapse
|
44
|
Moure A, Gomez H. Influence of myosin activity and mechanical impact on keratocyte polarization. SOFT MATTER 2020; 16:5177-5194. [PMID: 32459252 DOI: 10.1039/d0sm00473a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In cell migration, polarization is the process by which a stationary cell breaks symmetry and initiates motion. Although a lot is known about the mechanisms involved in cell polarization, the role played by myosin contraction remains unclear. In addition, cell polarization by mechanical impact has received little attention. Here, we study the influence of myosin activity on cell polarization and the initiation of motion induced by mechanical cues using a computational model for keratocytes. The model accounts for cell deformation, the dynamics of myosin and the signaling protein RhoA (a member of the Rho GTPases family), as well as the forces acting on the actomyosin network. Our results show that the attainment of a steady polarized state depends on the strength of myosin down- or up-regulation and that myosin upregulation favors cell polarization. Our results also confirm the existence of a threshold level for cell polarization, which is determined by the level of polarization of the Rho GTPases at the time the external stimuli vanish. In all, this paper shows that capturing the interactions between the signaling proteins (Rho GTPases for keratocytes) and the compounds of the motile machinery in a moving cell is crucial to study cell polarization.
Collapse
Affiliation(s)
- Adrian Moure
- School of Mechanical Engineering, Purdue University, West Lafayette, 47907 IN, USA.
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, 47907 IN, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907 IN, USA and Purdue University Center for Cancer Research, Purdue University, West Lafayette, 47906 IN, USA
| |
Collapse
|
45
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
46
|
Bajpai A, Tong J, Qian W, Peng Y, Chen W. The Interplay Between Cell-Cell and Cell-Matrix Forces Regulates Cell Migration Dynamics. Biophys J 2019; 117:1795-1804. [PMID: 31706566 DOI: 10.1016/j.bpj.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Cells in vivo encounter and exert forces as they interact with the extracellular matrix (ECM) and neighboring cells during migration. These mechanical forces play crucial roles in regulating cell migratory behaviors. Although a variety of studies have focused on describing single-cell or the collective cell migration behaviors, a fully mechanistic understanding of how the cell-cell (intercellular) and cell-ECM (extracellular) traction forces individually and cooperatively regulate single-cell migration and coordinate multicellular movement in a cellular monolayer is still lacking. Here, we developed an integrated experimental and analytical system to examine both the intercellular and extracellular traction forces acting on individual cells within an endothelial cell colony as well as their roles in guiding cell migratory behaviors (i.e., cell translation and rotation). Combined with force, multipole, and moment analysis, our results revealed that traction force dominates in regulating cell active translation, whereas intercellular force actively modulates cell rotation. Our findings advance the understanding of the intricacies of cell-cell and cell-ECM forces in regulating cellular migratory behaviors that occur during the monolayer development and may yield deeper insights into the single-cell dynamic behaviors during tissue development, embryogenesis, and wound healing.
Collapse
Affiliation(s)
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering
| | - Yansong Peng
- Department of Mechanical and Aerospace Engineering
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
47
|
Dasgupta I, McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem 2019; 294:17693-17706. [PMID: 31594864 DOI: 10.1074/jbc.rev119.007963] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To perceive their three-dimensional environment, cells and tissues must be able to sense and interpret various physical forces like shear, tensile, and compression stress. These forces can be generated both internally and externally in response to physical properties, like substrate stiffness, cell contractility, and forces generated by adjacent cells. Mechanical cues have important roles in cell fate decisions regarding proliferation, survival, and differentiation as well as the processes of tissue regeneration and wound repair. Aberrant remodeling of the extracellular space and/or defects in properly responding to mechanical cues likely contributes to various disease states, such as fibrosis, muscle diseases, and cancer. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical signals, like activation of specific genes and signaling cascades that enable cells to adapt to their physical environment. The signaling pathways involved in mechanical signaling are highly complex, but numerous studies have highlighted a central role for the Hippo pathway and other signaling networks in regulating the YAP and TAZ (YAP/TAZ) proteins to mediate the effects of mechanical stimuli on cellular behavior. How mechanical cues control YAP/TAZ has been poorly understood. However, rapid progress in the last few years is beginning to reveal a surprisingly diverse set of pathways for controlling YAP/TAZ. In this review, we will focus on how mechanical perturbations are sensed through changes in the actin cytoskeleton and mechanosensors at focal adhesions, adherens junctions, and the nuclear envelope to regulate YAP/TAZ.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
48
|
Oelz D, Khataee H, Czirok A, Neufeld Z. Polarization wave at the onset of collective cell migration. Phys Rev E 2019; 100:032403. [PMID: 31640045 PMCID: PMC6894614 DOI: 10.1103/physreve.100.032403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 01/08/2023]
Abstract
Collective cell migration underlies morphogenesis, tissue regeneration, and cancer progression. How the biomechanical coupling between epithelial cells triggers and coordinates the collective migration is an open question. Here, we develop a one-dimensional model for an epithelial monolayer which predicts that after the onset of migration at an open boundary, cells in the bulk of the epithelium are gradually recruited into outward-directed motility, exhibiting traveling-wave-like behavior. We find an exact formula for the speed of this motility wave proportional to the square root of the cells' contractility, which accounts for cortex tension and adhesion between adjacent cells.
Collapse
Affiliation(s)
- Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
49
|
Park J, Kim T, Choi JC, Doh J. In Situ Subcellular Detachment of Cells Using a Cell-Friendly Photoresist and Spatially Modulated Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900566. [PMID: 31380216 PMCID: PMC6661940 DOI: 10.1002/advs.201900566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Dynamic adhesion and detachment of subcellular regions occur during cell migration, thus a technique allowing precise control of subcellular detachment of cells will be useful for cell migration study. Previous methods for cell detachment were developed either for harvesting cells or cell sheets attached on surfaces with low resolution patterning capability, or for detaching subcellular regions located on predefined electrodes. In this paper, a method that allows in situ subcellular detachment of cells with ≈1.5 µm critical feature size while observing cells under a fluorescence microscope is introduced using a cell-friendly photoresist and spatially modulated light. Using this method, a single cell, regions in cell sheets, and a single focal adhesion complex within a cell are successfully detached. Furthermore, different subcellular regions of migrating cells are detached and changes in cell polarity and migration direction are quantitatively analyzed. This method will be useful for many applications in cell detachment, in particular when subcellular resolution is required.
Collapse
Affiliation(s)
- Jeehun Park
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio)Pohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Taeyup Kim
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Jong Chul Choi
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Junsang Doh
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐roGwanak‐guSeoul08826South Korea
| |
Collapse
|
50
|
Payer C, Štern D, Feiner M, Bischof H, Urschler M. Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks. Med Image Anal 2019; 57:106-119. [PMID: 31299493 DOI: 10.1016/j.media.2019.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
Differently to semantic segmentation, instance segmentation assigns unique labels to each individual instance of the same object class. In this work, we propose a novel recurrent fully convolutional network architecture for tracking such instance segmentations over time, which is highly relevant, e.g., in biomedical applications involving cell growth and migration. Our network architecture incorporates convolutional gated recurrent units (ConvGRU) into a stacked hourglass network to utilize temporal information, e.g., from microscopy videos. Moreover, we train our network with a novel embedding loss based on cosine similarities, such that the network predicts unique embeddings for every instance throughout videos, even in the presence of dynamic structural changes due to mitosis of cells. To create the final tracked instance segmentations, the pixel-wise embeddings are clustered among subsequent video frames by using the mean shift algorithm. After showing the performance of the instance segmentation on a static in-house dataset of muscle fibers from H&E-stained microscopy images, we also evaluate our proposed recurrent stacked hourglass network regarding instance segmentation and tracking performance on six datasets from the ISBI celltracking challenge, where it delivers state-of-the-art results.
Collapse
Affiliation(s)
- Christian Payer
- Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | - Darko Štern
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria
| | - Marlies Feiner
- Division of Phoniatrics, Medical University Graz, Graz, Austria
| | - Horst Bischof
- Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
| | - Martin Urschler
- Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria; Department of Computer Science, The University of Auckland, New Zealand.
| |
Collapse
|