1
|
Toorians MEM, Davies TJ, MacPherson A. Multi-host pathogen transmission and the disease-diversity relationship. Biol Rev Camb Philos Soc 2025. [PMID: 40374234 DOI: 10.1111/brv.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/17/2025]
Abstract
How diseases are transmitted within a multi-host community is a complex biological process with important ecological and societal consequences. The intricacies of interspecific disease transmission determine when a disease can spread to a novel host, including humans (zoonosis), and the severity of emerging epidemics. Interspecific disease transmission also mediates long-term disease prevalence within a multi-host community which is at the core of the disease-diversity relationship. Mathematical models play a central role in formulating predictions about spillover, prevalence, and the disease-diversity relationship. Yet, how the complexity of transmission is captured (or not) by the assumptions of these models is often unclear. Here, we decompose the transmission process into five biological stages using bovine tuberculosis (bTB) as an illustrative example of transmission in a multi-host system. We then examine the often-implicit assumptions that classic compartmental models make about this process. We use the intuition gained from this decomposition to formulate hypotheses for how transmission can mediate outbreak potential, infection prevalence, and the amplifying or diluting effects of host diversity on disease prevalence. We further illustrate the key principles and implications of transmission with a diverse array of examples of multi-host pathogens. Throughout we emphasise the role of evolution in shaping interspecific transmission, from the evolutionary relatedness of the hosts themselves to the adaptation of the pathogen to novel hosts.
Collapse
Affiliation(s)
- Marjolein E M Toorians
- Department of Botany, Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - T Jonathan Davies
- Department of Botany, Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, 2092, South Africa
- Department Forest & Conservation Sciences, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ailene MacPherson
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
2
|
Wallace MA, Wille M, Geoghegan J, Imrie RM, Holmes EC, Harrison XA, Longdon B. Making sense of the virome in light of evolution and ecology. Proc Biol Sci 2025; 292:20250389. [PMID: 40169018 PMCID: PMC11961256 DOI: 10.1098/rspb.2025.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the patterns and drivers of viral prevalence and abundance is of key importance for understanding pathogen emergence. Over the last decade, metagenomic sequencing has exponentially expanded our knowledge of the diversity and evolution of viruses associated with all domains of life. However, as most of these 'virome' studies are primarily descriptive, our understanding of the predictors of virus prevalence, abundance and diversity, and their variation in space and time, remains limited. For example, we do not yet understand the relative importance of ecological predictors (e.g. seasonality and habitat) versus evolutionary predictors (e.g. host and virus phylogenies) in driving virus prevalence and diversity. Few studies are set up to reveal the factors that predict the virome composition of individual hosts, populations or species. In addition, most studies of virus ecology represent a snapshot of single species viromes at a single point in time and space. Fortunately, recent studies have begun to use metagenomic data to directly test hypotheses about the evolutionary and ecological factors which drive virus prevalence, sharing and diversity. By synthesizing evidence across studies, we present some over-arching ecological and evolutionary patterns in virome composition, and illustrate the need for additional work to quantify the drivers of virus prevalence and diversity.
Collapse
Affiliation(s)
- Megan A. Wallace
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jemma Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
3
|
Xu Y, Han Y, Xu P, Zhou S, Zhao P, Wang Y, Hu J, Ma M, Li Z, Bo S, Zhao C, Ji L, Yuan Y, Zhao W, Wang J, Jin Q, He G, Wu Z. Avian Migration-Mediated Transmission and Recombination Driving the Diversity of Gammacoronaviruses and Deltacoronaviruses. Mol Biol Evol 2025; 42:msaf045. [PMID: 39963938 PMCID: PMC11886833 DOI: 10.1093/molbev/msaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 03/08/2025] Open
Abstract
In the wake of pandemics like COVID-19, which have zoonotic origins, the role of wildlife as reservoirs for emerging infectious diseases has garnered heightened attention. Migratory birds, traversing continents, represent a potent but under-researched vector for the spread of infectious diseases, including novel coronaviruses. This study delves into the genetic diversity and transmission dynamics of coronaviruses in migratory birds, presenting pivotal findings. From April 2019 to April 2023, we screened 5,263 migratory bird samples collected from Shanghai, China, identifying 372 coronavirus-positive samples belonging to five avian-related coronavirus subgenera and subsequently obtaining 120 complete genome sequences. To facilitate further research with a global perspective, the study curated all available 19,000 avian-associated coronaviruses and expanded the original 12 species to 16, including three novel coronavirus species identified in our study and one re-classified species from the public domain. The study illuminates the intricate genetic evolution and transmission dynamics of birds-related coronaviruses on a global scale. A notable aspect of our research is the identification of complex recombination patterns within the spike protein across different virus species and subgenera, highlighting migratory birds as a reservoir of coronavirus. Notably, the coronaviruses found in migratory birds, predominantly from the orders Anseriformes, Charadriiformes, and Pelecaniformes, with domestic ducks from Anseriformes playing a key role in bridging the transmission of coronaviruses between migratory and non-migratory birds. These findings reveal the genetic and recombination characteristics of coronaviruses in migratory birds, emphasizing the critical role of ecologically pivotal bird species in coronavirus transmission and genetic diversity shaping.
Collapse
Affiliation(s)
- Yuting Xu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jie Hu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Min Ma
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zirong Li
- Shanghai Forestry Station, Shanghai, PR China
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, PR China
| | | | - Lei Ji
- Shanghai Forestry Station, Shanghai, PR China
| | - Yue Yuan
- Shanghai Chongming Dongtan Nature Reserve Administration Center, Shanghai, PR China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai, PR China
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, PR China
- Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai, PR China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
4
|
Müller‐Theissen ML, Gottdenker NL, Altizer SM. Resistance and Tolerance to Imperfectly Specialized Parasites: Milkweed Butterflies and Their Protozoan Parasites. Ecol Evol 2025; 15:e70979. [PMID: 40040934 PMCID: PMC11879272 DOI: 10.1002/ece3.70979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Understanding host specificity and cross-species transmission of parasites is crucial for predicting the risk and consequences of parasite spillover. We experimentally examined these dynamics in two closely related, sympatric, milkweed butterfly hosts: monarchs (Danaus plexippus) and queens (D. gilippus). The debilitating protozoan Ophryocystis elektroscirrha (OE) infects wild monarchs throughout their range, and similar neogregarine parasites have been reported from queens. We compared host resistance and tolerance to infection between hosts exposed to parasites of conspecific and heterospecific origin and examined whether differences in immune investment reflected variation in infection outcomes. Results showed that monarchs were highly susceptible to both conspecific and heterospecific parasites. In contrast, queens were susceptible almost exclusively to conspecific parasites. Queens showed greater tolerance to infection and greater immune defense in the form of melanization activity and concentration of encapsulating hemocytes. Additionally, monarch parasites caused higher pre-adult mortality and more wing deformities than queen parasites. Given that OE can reduce monarch abundance and migratory performance, quantifying cross-infection outcomes is important for conservation management of these two butterfly species. The greater susceptibility and costs of infection in monarchs suggest potential fitness trade-offs against resistance and tolerance to infection in migratory hosts and underscore the need to identify factors that limit hosts' adaptation to parasites.
Collapse
Affiliation(s)
- Maria L. Müller‐Theissen
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
| | - Nicole L. Gottdenker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
- Department of PathologyCollege of Veterinary Medicine, University of GeorgiaAthensGAUSA
| | - Sonia M. Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
5
|
Zalewski A, Kołodziej-Sobocińska M, Virtanen JME, Zalewska H, Sironen T, Zub K, Nieoczym M, Popiołek M, Wereszczuk A. Drivers Shaping Spillover of Aleutian Mink Disease Virus Introduced With American Mink Among Native Mustelids. Transbound Emerg Dis 2025; 2025:3184679. [PMID: 40302756 PMCID: PMC12017014 DOI: 10.1155/tbed/3184679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025]
Abstract
Invasive alien species pose a major threat to ecosystems by outcompeting native species for resources, altering habitats, enabling potential genetic hybridisation and introducing pathogens into the environment. An understanding of the factors that determine virus transfer between invasive and native species is crucial to the mitigation of the negative impact of the pathogens introduced. This study presents a comprehensive analysis of factors influencing Aleutian mink disease virus (AMDV) infection in native mustelids in Poland, following its introduction by feral American mink. AMDV seroprevalence in American mink varied spatially from 0 in the central and southern regions to 0.8 in the northern regions. Antibodies to AMDV were detected in all six studied mustelids, including a novel finding in weasels. AMDV seroprevalence in other mustelids correlated positively with its occurrence in American mink, and reached 0.54 in areas with the highest mink AMDV seroprevalence. Furthermore, in native mustelids, more closely phylogenetically related to mink, AMDV seroprevalence was higher (0.68 in polecats and weasels) compared to more distantly related species (0.37 in badgers). Over the 27-year study period, AMDV seroprevalence in mustelids has increased from 0.04 to 0.60, despite a decline in seroprevalence in feral mink in subsequent years. These findings suggest that the spread of viral infections as a result of the introduction of invasive species could affect mustelid species and may intensify over time.
Collapse
Affiliation(s)
- Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża 17-230, Poland
| | | | - Jenni M. E. Virtanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, Helsinki 00790, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| | - Hanna Zalewska
- Mammal Research Institute, Polish Academy of Sciences, Białowieża 17-230, Poland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, Helsinki 00790, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Białowieża 17-230, Poland
| | - Marek Nieoczym
- Mammal Research Institute, Polish Academy of Sciences, Białowieża 17-230, Poland
- Department of Zoology and Animal Ecology, University of Life Sciences, Akademicka 13, Lublin 20-950, Poland
| | - Marcin Popiołek
- Department of Parasitology, University of Wrocław, Przybyszewskiego 63, Wrocław 51-148, Poland
| | - Anna Wereszczuk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża 17-230, Poland
| |
Collapse
|
6
|
Mackelprang R, Barbato RA, Ramey AM, Schütte UME, Waldrop MP. Cooling perspectives on the risk of pathogenic viruses from thawing permafrost. mSystems 2025; 10:e0004224. [PMID: 39772968 PMCID: PMC11834396 DOI: 10.1128/msystems.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Climate change is inducing wide-scale permafrost thaw in the Arctic and subarctic, triggering concerns that long-dormant pathogens could reemerge from the thawing ground and initiate epidemics or pandemics. Viruses, as opposed to bacterial pathogens, garner particular interest because outbreaks cannot be controlled with antibiotics, though the effects can be mitigated by vaccines and newer antiviral drugs. To evaluate the potential hazards posed by viral pathogens emerging from thawing permafrost, we review information from a diverse range of disciplines. This includes efforts to recover infectious virus from human remains, studies on disease occurrence in polar animal populations, investigations into viral persistence and infectivity in permafrost, and assessments of human exposure to the enormous viral diversity present in the environment. Based on currently available knowledge, we conclude that the risk posed by viruses from thawing permafrost is no greater than viruses in other environments such as temperate soils and aquatic systems.
Collapse
Affiliation(s)
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA
| | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center, Anchorage, Alaska, USA
| | - Ursel M. E. Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, Moffett Field, California, USA
| |
Collapse
|
7
|
Vieira CJSP, Onn MB, Shivas MA, Shearman D, Darbro JM, Graham M, Freitas L, van den Hurk AF, Frentiu FD, Wallau GL, Devine GJ. Long-term co-circulation of multiple arboviruses in southeast Australia revealed by xeno-monitoring and viral whole-genome sequencing. Virus Evol 2024; 10:0. [PMID: 39678352 PMCID: PMC11646120 DOI: 10.1093/ve/veae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Arbovirus surveillance of wild-caught mosquitoes is an affordable and sensitive means of monitoring virus transmission dynamics at various spatial-temporal scales, and emergence and re-emergence during epidemic and interepidemic periods. A variety of molecular diagnostics for arbovirus screening of mosquitoes (known as xeno-monitoring) are available, but most provide limited information about virus diversity. Polymerase chain reaction (PCR)-based screening coupled with RNA sequencing is an increasingly affordable and sensitive pipeline for integrating complete viral genome sequencing into surveillance programs. This enables large-scale, high-throughput arbovirus screening from diverse samples. We collected mosquitoes in CO2-baited light traps from five urban parks in Brisbane from March 2021 to May 2022. Mosquito pools of ≤200 specimens were screened for alphaviruses and flaviviruses using virus genus-specific primers and reverse transcription quantitative PCR (qRT-PCR). A subset of virus-positive samples was then processed using a mosquito-specific ribosomal RNA depletion method and then sequenced on the Illumina NextSeq. Overall, 54,670 mosquitoes representing 26 species were screened in 382 pools. Thirty detections of arboviruses were made in 28 pools. Twenty of these positive pools were further characterized using RNA sequencing generating 18 full-length genomes. These full-length sequences belonged to four medically relevant arboviruses: Barmah Forest, Ross River, Sindbis-like, and Stratford viruses. Phylogenetic and evolutionary analyses revealed the evolutionary progression of arbovirus lineages over the last 100 years, demonstrating that different epidemiological, immunological, and evolutionary processes may actively shape the evolution of Australian arboviruses. These results underscore the need for more genomic surveillance data to explore the complex evolutionary pressures acting on arboviruses. Overall, our findings highlight the effectiveness of our methodology, which can be applied broadly to enhance arbovirus surveillance in various ecological contexts and improve understanding of transmission dynamics.
Collapse
Affiliation(s)
- Carla Julia S. P Vieira
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Michael B Onn
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Martin A Shivas
- Entomology Laboratory, Public Space Operations, Brisbane City Council, 20 Tradecoast Dr, Eagle Farm, QLD 4009, Australia
| | - Damien Shearman
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Jonathan M Darbro
- Metro North Public Health Unit, Queensland Health, Briden Street, Windsor, QLD 4030, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD 4051, Australia
| | - Lucas Freitas
- Global Data Science Initiative (GISAID) at, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Francesca D Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, 300 Herston Road, Herston, QLD 4006, Australia
| | - Gabriel L Wallau
- Department of Entomology and Bioinformatic Core, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Professor Moraes Rego, Recife, PE 50740-465, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Street 74, Hamburg 20359, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
8
|
Bardhan M, Ray I, Roy S, Roy P, Thanneeru P, Twayana AR, Prasad S, Bardhan M, Anand A. Disease X and COVID-19: turning lessons from India and the world into policy recommendations. Ann Med Surg (Lond) 2024; 86:5914-5921. [PMID: 39359799 PMCID: PMC11444564 DOI: 10.1097/ms9.0000000000002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/10/2024] [Indexed: 10/04/2024] Open
Abstract
Disease X is caused by pathogen X, an unknown infectious agent that can potentially trigger an epidemic or pandemic. Pathogen X might be any pathogen, including bacteria, viruses, parasites, fungi, and prions. WHO uses the term 'Disease X' for any new emerging disease caused by an unknown pathogen X. Disease X stands for any possible future pandemic in WHO's shortlist of high-priority diseases. This review looks at the manifestations of the recent COVID-19 epidemic as the first Disease X to evaluate what has happened and to learn from what went wrong in India and worldwide. To this end, a summary is presented of response measures by governments, often lacking flows of information, discrepancies in the views of experts and decisions of policymakers, and undesirable variations in individual and collective behavior and their consequences. The elements of combating Disease X in a world with considerable inequalities in relevant knowledge, expertise, information, quality of governance, and financial possibilities are discussed. Based on this, recommendations are given for an innovative global pandemic preparedness system.
Collapse
Affiliation(s)
- Mainak Bardhan
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata
- Miami Cancer Institute, Baptist Health South Florida, USA
| | - Ishita Ray
- Mahatma Gandhi Memorial Medical College, Indore
| | - Shubhajeet Roy
- Faculty of Medical Sciences, King George’s Medical University, Lucknow
| | - Priyanka Roy
- Chief Inspector of Factories/ Deputy Director (Medical) and Certifying Surgeon, Directorate of Factories, Department of Labor, Government of West Bengal
| | | | | | - Sakshi Prasad
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | | | - Ayush Anand
- Miami Cancer Institute, Baptist Health South Florida, USA
| |
Collapse
|
9
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
10
|
Caraballo DA, Vico ML, Piccirilli MG, Hirmas Riade SM, Russo S, Martínez G, Beltrán FJ, Cisterna DM. Bat Rabies in the Americas: Is Myotis the Main Ancestral Spreader? Viruses 2024; 16:1302. [PMID: 39205276 PMCID: PMC11359690 DOI: 10.3390/v16081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The rabies virus (RABV) is the exclusive lyssavirus affecting both wild and domestic mammalian hosts in the Americas, including humans. Additionally, the Americas stand out as the sole region where bat rabies occurs. While carnivore rabies is being increasingly managed across the region, bats are emerging as significant reservoirs of RABV infection for humans and domestic animals. Knowledge of the bat species maintaining rabies and comprehending cross-species transmission (CST) and host shift processes are pivotal for directing surveillance as well as ecological research involving wildlife reservoir hosts. Prior research indicates that bat RABV CST is influenced by host genetic similarity and geographic overlap, reflecting host adaptation. In this study, we compiled and analyzed a comprehensive nucleoprotein gene dataset representing bat-borne RABV diversity in Argentina and the broader Americas using Bayesian phylogenetics. We examined the association between host genus and geography, finding both factors shaping the global phylogenetic structure. Utilizing a phylogeographic approach, we inferred CST and identified key bat hosts driving transmission. Consistent with CST determinants, we observed monophyletic/paraphyletic clustering of most bat genera in the RABV phylogeny, with stronger CST evidence between host genera of the same family. We further discuss Myotis as a potential ancestral spreader of much of RABV diversity.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - María Lorena Vico
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| | - María Guadalupe Piccirilli
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Stella Maris Hirmas Riade
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Susana Russo
- Dirección General de Laboratorio y Control Técnico (DILAB), Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires B1640CZT, Argentina
| | - Gustavo Martínez
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Luis Pasteur”, Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - Daniel M. Cisterna
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| |
Collapse
|
11
|
Gilbert AT, Van Pelt LI, Hastings LA, Gigante CM, Orciari LA, Kelley S, Fitzpatrick K, Condori REC, Li Y, Brunt S, Davis A, Hopken MW, Mankowski CCP, Wallace RM, Rupprecht CE, Chipman RB, Bergman DL. Reemergence of a Big Brown Bat Lyssavirus rabies Variant in Striped Skunks in Flagstaff, Arizona, USA, 2021-2023. Vector Borne Zoonotic Dis 2024; 24:552-562. [PMID: 38775097 DOI: 10.1089/vbz.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background: Throughout the Americas, Lyssavirus rabies (RV) perpetuates as multiple variants among bat and mesocarnivore species. Interspecific RV spillover occurs on occasion, but clusters and viral host shifts are rare. The spillover and host shift of a big brown bat (Eptesicus fuscus) RV variant Ef-W1 into mesocarnivores was reported previously on several occasions during 2001-2009 in Flagstaff, Arizona, USA, and controlled through rabies vaccination of target wildlife. During autumn 2021, a new cluster of Ef-W1 RV cases infecting striped skunks (Mephitis mephitis) was detected from United States Department of Agriculture enhanced rabies surveillance in Flagstaff. The number of Ef-W1 RV spillover cases within a short timeframe suggested the potential for transmission between skunks and an emerging host shift. Materials and Methods: Whole and partial RV genomic sequencing was performed to evaluate the phylogenetic relationships of the 2021-2023 Ef-W1 cases infecting striped skunks with earlier outbreaks. Additionally, real-time reverse-transcriptase PCR (rtRT-PCR) was used to opportunistically compare viral RNA loads in brain and salivary gland tissues of naturally infected skunks. Results: Genomic RV sequencing revealed that the origin of the 2021-2023 epizootic of Ef-W1 RV was distinct from the multiple outbreaks detected from 2001-2009. Naturally infected skunks with the Ef-W1 RV showed greater viral RNA loads in the brain, but equivalent viral RNA loads in the mandibular salivary glands, compared to an opportunistic sample of skunks naturally infected with a South-Central skunk RV from northern Colorado, USA. Conclusion: Considering a high risk for onward transmission and spread of the Ef-W1 RV in Flagstaff, public outreach, enhanced rabies surveillance, and control efforts, focused on education, sample characterization, and vaccination, have been ongoing since 2021 to mitigate and prevent the spread and establishment of Ef-W1 RV in mesocarnivores.
Collapse
Affiliation(s)
- Amy T Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Lolita I Van Pelt
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| | - Lias A Hastings
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| | - Crystal M Gigante
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lillian A Orciari
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sabrina Kelley
- Coconino County Health and Human Services, Flagstaff, Arizona, USA
| | | | - Rene E Condori Condori
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yu Li
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Brunt
- New York State Department of Health, Wadsworth Center Rabies Laboratory, Slingerlands, New York, USA
| | - April Davis
- New York State Department of Health, Wadsworth Center Rabies Laboratory, Slingerlands, New York, USA
| | - Matthew W Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Clara C P Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Ryan M Wallace
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles E Rupprecht
- Auburn University, College of Forestry, Wildlife, and the Environment, Auburn, Alabama, USA
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, New Hampshire, USA
| | - David L Bergman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| |
Collapse
|
12
|
Pan YF, Zhao H, Gou QY, Shi PB, Tian JH, Feng Y, Li K, Yang WH, Wu D, Tang G, Zhang B, Ren Z, Peng S, Luo GY, Le SJ, Xin GY, Wang J, Hou X, Peng MW, Kong JB, Chen XX, Yang CH, Mei SQ, Liao YQ, Cheng JX, Wang J, Chaolemen, Wu YH, Wang JB, An T, Huang X, Eden JS, Li J, Guo D, Liang G, Jin X, Holmes EC, Li B, Wang D, Li J, Wu WC, Shi M. Metagenomic analysis of individual mosquito viromes reveals the geographical patterns and drivers of viral diversity. Nat Ecol Evol 2024; 8:947-959. [PMID: 38519631 DOI: 10.1038/s41559-024-02365-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.
Collapse
Affiliation(s)
- Yuan-Fei Pan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hailong Zhao
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Qin-Yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Pei-Bo Shi
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei-Hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guangpeng Tang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Bing Zhang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Zirui Ren
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Shiqin Peng
- BGI Research, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Geng-Yan Luo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin Hou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Min-Wu Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jian-Bin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin-Xin Chen
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chun-Hui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shi-Qiang Mei
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yu-Qi Liao
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jing-Xia Cheng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Chaolemen
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir, China
| | - Yu-Hui Wu
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir, China
| | - Jian-Bo Wang
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyi Huang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Ministry of Education Key Laboratory for Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Daxi Wang
- BGI Research, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China.
| | - Junhua Li
- BGI Research, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China.
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
13
|
Shaw CL, Bilich R, Duffy MA. A common multi-host parasite shows genetic structuring at the host species and population levels. Parasitology 2024; 151:557-566. [PMID: 38616414 PMCID: PMC11427981 DOI: 10.1017/s0031182024000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Although individual parasite species commonly infect many populations across physical space as well as multiple host species, the extent to which parasites traverse physical and phylogenetic distances is unclear. Population genetic analyses of parasite populations can reveal how parasites move across space or between host species, including helping assess whether a parasite is more likely to infect a different host species in the same location or the same host species in a different location. Identifying these transmission barriers could be exploited for effective disease control. Here, we analysed population genetic structuring of the parasite Pasteuria ramosa in daphniid host species from different lakes. Outbreaks occurred most often in the common host species Daphnia dentifera and Daphnia retrocurva. The genetic distance between parasite samples tended to be smaller when samples were collected from the same lake, the same host species and closer in time. Within lakes, the parasite showed structure by host species and sampling date; within a host species, the parasite showed structure by lake and sampling date. However, despite this structuring, we found the same parasite genotype infecting closely related host species, and we sometimes found the same genotype in nearby lakes. Thus, P. ramosa experiences challenges infecting different host species and moving between populations, but doing so is possible. In addition, the structuring by sampling date indicates potential adaptation to or coevolution with host populations and supports prior findings that parasite population structure is dynamic during outbreaks.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Lehun AL, Muniz CM, Silva JOS, Cavalcanti LD, Takemoto RM. The functional traits of host fish can act as good predictors for parasite composition in a neotropical floodplain. JOURNAL OF FISH BIOLOGY 2024; 104:206-215. [PMID: 37807892 DOI: 10.1111/jfb.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Parasite diversity can be influenced by the interaction of environmental factors and host traits, but understanding which traits can be decisive for the establishment of the parasite may provide subsidies for a better understanding of the host-parasite relationship. In this study, we investigated whether functional traits, diet, and host phylogeny can predict the similarity of the endoparasite composition of a fish assemblage in a Brazilian floodplain. Of the three evaluated components, the host's diet was the factor that showed the greatest influence on the composition and similarity of endoparasites, demonstrating the highest value of the explanation. The functional traits and phylogeny, despite presenting significant values (unique effect and global effect), showed low explainability in the composition of the endoparasites. When analyzing the joint effects, all components showed significant influence. Hosts that live in the same environment that are phylogenetically related and have a similar ecology have a certain degree of homogeneity in their parasite assemblages and, because they are endoparasites (which are acquired trophically along the chain), diet is the main driver of parasite richness and similarity. Overall, host traits can be one of the main determinants of parasite composition, so studies that address the functional traits of the host provide a representation of local diversity and define the possible patterns of these parasite communities.
Collapse
Affiliation(s)
- Atsler Luana Lehun
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Brazil
| | - Carolina Mendes Muniz
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Brazil
| | - João Otávio Santos Silva
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lidiany Doreto Cavalcanti
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Brazil
| | - Ricardo Massato Takemoto
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
15
|
Li KSM, Lau SKP, Woo PCY. Bats-The Magnificent Virus Player: SARS, MERS, COVID-19 and Beyond. Viruses 2023; 15:2342. [PMID: 38140583 PMCID: PMC10747191 DOI: 10.3390/v15122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Irrespective of whether COVID-19 originated from a natural or a genetically engineered virus, the ultimate source of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is bats [...].
Collapse
Affiliation(s)
- Kenneth S. M. Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (K.S.M.L.); (S.K.P.L.)
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
16
|
French RK, Anderson SH, Cain KE, Greene TC, Minor M, Miskelly CM, Montoya JM, Wille M, Muller CG, Taylor MW, Digby A, Holmes EC. Host phylogeny shapes viral transmission networks in an island ecosystem. Nat Ecol Evol 2023; 7:1834-1843. [PMID: 37679456 PMCID: PMC10627826 DOI: 10.1038/s41559-023-02192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
Virus transmission between host species underpins disease emergence. Both host phylogenetic relatedness and aspects of their ecology, such as species interactions and predator-prey relationships, may govern rates and patterns of cross-species virus transmission and hence zoonotic risk. To address the impact of host phylogeny and ecology on virus diversity and evolution, we characterized the virome structure of a relatively isolated island ecological community in Fiordland, New Zealand, that are linked through a food web. We show that phylogenetic barriers that inhibited cross-species virus transmission occurred at the level of host phyla (between the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic levels. By contrast, host ecology, manifest as predator-prey interactions and diet, had a smaller influence on virome composition, especially at higher taxonomic levels. The virus-host community comprised a 'small world' network, in which hosts with a high diversity of viruses were more likely to acquire new viruses, and generalist viruses that infect multiple hosts were more likely to infect additional species compared to host specialist viruses. Such a highly connected ecological community increases the likelihood of cross-species virus transmission, particularly among closely related species, and suggests that host generalist viruses present the greatest risk of disease emergence.
Collapse
Affiliation(s)
- Rebecca K French
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Sandra H Anderson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Terry C Greene
- Biodiversity Group, Department of Conservation, Christchurch, New Zealand
| | - Maria Minor
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Colin M Miskelly
- Te Papa Tongarewa Museum of New Zealand, Wellington, New Zealand
| | - Jose M Montoya
- Theoretical and Experimental Ecology Station, National Centre for Scientific Research (CNRS), Moulis, France
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Chris G Muller
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Kākāpō Recovery Team, Department of Conservation, Invercargill, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Gamble A, Olarte-Castillo XA, Whittaker GR. Backyard zoonoses: The roles of companion animals and peri-domestic wildlife. Sci Transl Med 2023; 15:eadj0037. [PMID: 37851821 DOI: 10.1126/scitranslmed.adj0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The spillover of human infectious diseases from animal reservoirs is now well appreciated. However, societal and climate-related changes are affecting the dynamics of such interfaces. In addition to the disruption of traditional wildlife habitats, in part because of climate change and human demographics and behavior, there is an increasing zoonotic disease risk from companion animals. This includes such factors as the awareness of animals kept as domestic pets and increasing populations of free-ranging animals in peri-domestic environments. This review presents background and commentary focusing on companion and peri-domestic animals as disease risk for humans, taking into account the human-animal interface and population dynamics between the animals themselves.
Collapse
Affiliation(s)
- Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ximena A Olarte-Castillo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
de Souza DN, Oliveira RN, Asprino PF, Bettoni F, Macedo CI, Achkar SM, Fahl WO, Brandão PE, Castilho JG. Evolution and divergence of the genetic lineage Desmodus rotundus/Artibeus lituratus of rabies virus in São Paulo State. Arch Virol 2023; 168:266. [PMID: 37798456 DOI: 10.1007/s00705-023-05864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/27/2023] [Indexed: 10/07/2023]
Abstract
The last record of a rabies case caused by the dog-specific rabies virus (RABV) lineage in dogs or cats in São Paulo State was in 1998. From 2002 to 2021, 57 cases of rabies in these animals were reported, and the vast majority (51) were genetically characterized as belonging to the Desmodus rotundus/Artibeus lituratus RABV lineage. However, it is not currently possible to infer which of these bats is the source of infection by genome sequencing of RABV isolates. The aims of this study were (a) to characterize the Desmodus rotundus/Artibeus lituratus lineage to determine the relationships between the RABV lineages and each reservoir, (b) to assess the phylogeny and common ancestors of the RABV lineages found in D. rotundus and A. lituratus, and (c) to further understand the epidemiology and control of rabies. In this study, we genetically analyzed 70 RABV isolates from São Paulo State that were received by the Virology Laboratory of the Pasteur Institute of São Paulo between 2006 and 2015. Of these isolates, 33 were associated with the hematophagous bat D. rotundus and 37 with the fruit bat A. lituratus. A genomic approach using phylogenetic analysis and nucleotide sequence comparisons demonstrated that these isolates belonged to the same genetic lineage of RABV. We also found that, in São Paulo State, the D. rotundus/A. lituratus lineage could be subdivided into at least four phylogenetic sublineages: two associated with D. rotundus and two with A. lituratus. These results are of importance for the epidemiological surveillance of rabies in São Paulo.
Collapse
Affiliation(s)
| | | | - P F Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - F Bettoni
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - C I Macedo
- Pasteur Institute, São Paulo, SP, Brazil
| | - S M Achkar
- Pasteur Institute, São Paulo, SP, Brazil
| | - W O Fahl
- Pasteur Institute, São Paulo, SP, Brazil
| | - P E Brandão
- Departments of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
19
|
Yin S, Li N, Xu W, Becker DJ, de Boer WF, Xu C, Mundkur T, Fountain-Jones NM, Li C, Han GZ, Wu Q, Prosser DJ, Cui L, Huang ZYX. Functional traits explain waterbirds' host status, subtype richness, and community-level infection risk for avian influenza. Ecol Lett 2023; 26:1780-1791. [PMID: 37586885 DOI: 10.1111/ele.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.
Collapse
Affiliation(s)
- Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, China
| | - Wenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Taej Mundkur
- Wetlands International, Ede, The Netherlands
- Good Earth Environmental, Arnhem, The Netherlands
| | | | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiang Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Diann J Prosser
- Eastern Ecological Science Center, United States Geological Survey, Laurel, Maryland, USA
| | - Lijuan Cui
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zheng Y X Huang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
20
|
Pan YF, Zhao H, Gou QY, Shi PB, Tian JH, Feng Y, Li K, Yang WH, Wu D, Tang G, Zhang B, Ren Z, Peng S, Luo GY, Le SJ, Xin GY, Wang J, Hou X, Peng MW, Kong JB, Chen XX, Yang CH, Mei SQ, Liao YQ, Cheng JX, Wang J, Chaolemen, Wu YH, Wang JB, An T, Huang X, Eden JS, Li J, Guo D, Liang G, Jin X, Holmes EC, Li B, Wang D, Li J, Wu WC, Shi M. Metagenomic analysis of individual mosquitos reveals the ecology of insect viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555221. [PMID: 37732272 PMCID: PMC10508733 DOI: 10.1101/2023.08.28.555221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.
Collapse
Affiliation(s)
- Yuan-fei Pan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Hailong Zhao
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Qin-yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Pei-bo Shi
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Jun-hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei-hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Guangpeng Tang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China
| | - Bing Zhang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences Xinjiang Medical University, Urumqi 830011, China
| | - Zirui Ren
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Shiqin Peng
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Geng-yan Luo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Shi-jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Min-wu Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jian-bin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin-xin Chen
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun-hui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Shi-qiang Mei
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu-qi Liao
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jing-xia Cheng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - Chaolemen
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir 021500, China
| | - Yu-hui Wu
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir 021500, China
| | - Jian-bo Wang
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021008, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xinyi Huang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510000, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Daxi Wang
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Junhua Li
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Wei-chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
21
|
Silva LA, Souza MFS, Torquetti CG, Freitas DCO, Moreira LGA, Carvalho TP, Santana CH, Thompson JR, Rosa DCO, Jesus TR, Paixão TA, Santos RL. Antigenic and molecular evidence of Brucella sp.-associated epididymo-orchitis in frugivorous ( Artibeus lituratus) and nectarivorous ( Glossophaga soricina) bats in Brazil. Front Vet Sci 2023; 10:1235299. [PMID: 37701528 PMCID: PMC10493303 DOI: 10.3389/fvets.2023.1235299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
This study included 47 free-ranging bats from the State of Minas Gerais, Brazil. Six bats (12.8%) had genital inflammatory lesions, and two of them (one Artibeus lituratus and one Glossophaga soricina, a frugivorous and a nectarivorous, respectively) were diagnosed with Brucella sp. infection through PCR, and antigens in intralesional macrophages were detected using immunohistochemistry.
Collapse
Affiliation(s)
- Laice A. Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. S. Souza
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila G. Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele C. O. Freitas
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa G. A. Moreira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clarissa H. Santana
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia R. Thompson
- Sete Soluções e Tecnologia Ambiental, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela C. O. Rosa
- Sete Soluções e Tecnologia Ambiental, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiana R. Jesus
- Sete Soluções e Tecnologia Ambiental, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
D'Bastiani E, Princepe D, Marquitti FMD, Boeger WA, Campião KM, Araujo SBL. Effect of Host-Switching on the Ecological and Evolutionary Patterns of Parasites. Syst Biol 2023; 72:912-924. [PMID: 37097763 DOI: 10.1093/sysbio/syad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Speciation via host-switching is a macroevolutionary process that emerges from a microevolutionary dynamic where individual parasites switch hosts, establish a new association, and reduce reproductive contact with the original parasite lineage. Phylogenetic distance and geographic distribution of the hosts have been shown to be determinants of the capacity and opportunity of the parasite to change hosts. Although speciation via host-switching has been reported in many host-parasite systems, its dynamic on the individual, population and community levels is poorly understood. Here we propose a theoretical model to simulate parasite evolution considering host-switching events on the microevolutionary scale, taking into account the macroevolutionary history of the hosts, to evaluate how host-switching can affect ecological and evolutionary patterns of parasites in empirical communities at regional and local scales. In the model, parasite individuals can switch hosts under variable intensity and have their evolution driven by mutation and genetic drift. Mating is sexual and only individuals that are sufficiently similar can produce offspring. We assumed that parasite evolution occurs at the same evolutionary time scale as their hosts, and that the intensity of host-switching decreases as the host species differentiate. Ecological and evolutionary patterns were characterized by the turnover of parasite species among host species, and parasite evolutionary tree imbalance respectively. We found a range of host-switching intensity that reproduces ecological and evolutionary patterns observed in empirical communities. Our results showed that turnover decreased as host-switching intensity increased, with low variation among the model replications. On the other hand, tree imbalance showed wide variation and non-monotonic tendency. We concluded that tree imbalance was sensitive to stochastic events, whereas turnover may be a good indicator of host-switching. We found that local communities corresponded to higher host-switching intensity when compared to regional communities, highlighting that spatial scale is a limitation for host-switching. [Dispersal of parasites, opportunity and capacity of interaction, phylogenetic conservatism, and community structure.].
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Débora Princepe
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
| | - Flavia M D Marquitti
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
- Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP-Campinas, São Paulo, Brasil
| | - Walter A Boeger
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Karla M Campião
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Zoologia, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| | - Sabrina B L Araujo
- Laboratório de Interações Biológicas, Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
- Departamento de Física, Universidade Federal do Paraná, UFPR-Curitiba, Paraná, Brasil
| |
Collapse
|
23
|
Hulse SV, Antonovics J, Hood ME, Bruns EL. Host-pathogen coevolution promotes the evolution of general, broad-spectrum resistance and reduces foreign pathogen spillover risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.548430. [PMID: 37577528 PMCID: PMC10418218 DOI: 10.1101/2023.08.04.548430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genetic variation for disease resistance within host populations can strongly impact the spread of endemic pathogens. In plants, recent work has shown that within-population variation in resistance can also affect the transmission of foreign spillover pathogens if that resistance is general. However, most hosts also possess specific resistance mechanisms that provide strong defenses against coevolved endemic pathogens. Here we use a modeling approach to ask how antagonistic coevolution between hosts and their endemic pathogen at the specific resistance locus can affect the frequency of general resistance, and therefore a host's vulnerability to foreign pathogens. We develop a two-locus model with variable recombination that incorporates both general (resistance to all pathogens) and specific (resistance to endemic pathogens only). We find that introducing coevolution into our model greatly expands the regions where general resistance can evolve, decreasing the risk of foreign pathogen invasion. Furthermore, coevolution greatly expands which conditions maintain polymorphisms at both resistance loci, thereby driving greater genetic diversity within host populations. This genetic diversity often leads to positive correlations between host resistance to foreign and endemic pathogens, similar to those observed in natural populations. However, if resistance loci become linked, the resistance correlations can shift to negative. If we include a third, linkage modifying locus into our model, we find that selection often favors complete linkage. Our model demonstrates how coevolutionary dynamics with an endemic pathogen can mold the resistance structure of host populations in ways that affect its susceptibility to foreign pathogen spillovers, and that the nature of these outcomes depends on resistance costs, as well as the degree of linkage between resistance genes.
Collapse
|
24
|
Wang J, Pan YF, Yang LF, Yang WH, Lv K, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen S, Shu YL, Guo D, Gao ZH, Liang G, Li J, Chen YQ, Holmes EC, Feng Y, Shi M. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat Commun 2023; 14:4079. [PMID: 37429936 DOI: 10.1038/s41467-023-39835-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Fen Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chu-Ming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guo-Peng Kuang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qin-Yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Huan-le Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shoudeng Chen
- Molecular Imaging Center, Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yue-Long Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong Province, China
| | - Zi-Hou Gao
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China.
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
25
|
Talbot B, Alanazi TJ, Albert V, Bordeleau É, Bouchard É, Leighton PA, Marshall HD, Rondeau-Geoffrion D, Simon A, Massé A. Low levels of genetic differentiation and structure in red fox populations in Eastern Canada and implications for Arctic fox rabies propagation potential. PLoS One 2023; 18:e0286784. [PMID: 37279210 DOI: 10.1371/journal.pone.0286784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Rabies is a lethal zoonosis present in most parts of the world which can be transmitted to humans through the bite from an infected mammalian reservoir host. The Arctic rabies virus variant (ARVV) persists mainly in populations of Arctic foxes (Vulpes lagopus), and to a lesser extent in red fox populations (Vulpes vulpes). Red foxes are thought to be responsible for sporadic southward movement waves of the ARVV outside the enzootic area of northern Canada. In this study, we wanted to investigate whether red foxes displayed notable levels of genetic structure across the Quebec-Labrador Peninsula, which includes portions of the provinces of Quebec and Newfoundland-Labrador in Canada, and is a region with a history of southward ARVV movement waves. We combined two datasets that were collected and genotyped using different protocols, totalling 675 red fox individuals across the whole region and genotyped across 13 microsatellite markers. We found two genetic clusters across the region, reflecting a latitudinal gradient, and characterized by low genetic differentiation. We also observed weak but significant isolation by distance, which seems to be marginally more important for females than for males. These findings suggest a general lack of resistance to movement in red fox populations across the Quebec-Labrador Peninsula, regardless of sex. Implications of these findings include additional support for the hypothesis of long-distance southward ARVV propagation through its red fox reservoir host.
Collapse
Affiliation(s)
- Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Thaneah J Alanazi
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bordeleau
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrick A Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Audrey Simon
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ariane Massé
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| |
Collapse
|
26
|
Černe D, Hostnik P, Toplak I, Presetnik P, Maurer-Wernig J, Kuhar U. Discovery of a novel bat lyssavirus in a Long-fingered bat (Myotis capaccinii) from Slovenia. PLoS Negl Trop Dis 2023; 17:e0011420. [PMID: 37384601 DOI: 10.1371/journal.pntd.0011420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Lyssaviruses are the causative agents of rabies, a zoonotic, fatal disease that is thought to be ancestral to bats. In the last decade, the detection of bat associated lyssaviruses is increasing also in Europe. Within a retrospective bat associated lyssavirus surveillance study a total of 225 dead bats of 21 bat species were collected in Slovenia between 2012 and 2019 and tested by specific real-time RT-PCR method. The first lyssavirus positive sample in bats in Slovenia was detected using the real-time RT-PCR, the fluorescent antibody test, and next generation sequencing, while the rabies tissue culture inoculation test was unsuccessful due to sample degradation and storage conditions. The nearly complete genome of Divača bat lyssavirus from Slovenia consists of 11,871 nucleotides and reflects the characteristic gene organization known for lyssaviruses, encoding the five viral proteins. Phylogenetic analysis of Divača bat lyssavirus revealed that it belongs to phylogroup I lyssaviruses and is most closely related to Kotalahti bat lyssavirus (KBLV) with 87.20% nucleotide and 99.22% amino acid identity. Together with KBLV, Khujand virus, European bat lyssavirus 2, Bakeloh bat lyssavirus, and Aravan virus, Divača bat lyssavirus was detected in the genus Myotis suggesting its key role in the transmission and maintenance of certain lyssaviruses.
Collapse
Affiliation(s)
- Danijela Černe
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Hostnik
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Ljubljana office, Ljubljana, Slovenia
| | - Jedrt Maurer-Wernig
- Administration of the Republic of Slovenia for food safety, veterinary sector, and plant protection, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Walsh SK, Imrie RM, Matuszewska M, Paterson GK, Weinert LA, Hadfield JD, Buckling A, Longdon B. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLoS Pathog 2023; 19:e1011433. [PMID: 37289828 PMCID: PMC10284401 DOI: 10.1371/journal.ppat.1011433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/21/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.
Collapse
Affiliation(s)
- Sarah K. Walsh
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ryan M. Imrie
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| | - Marta Matuszewska
- Department of Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute; University of Edinburgh;Edinburgh; United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology; The University of Edinburgh; Edinburgh; United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ben Longdon
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| |
Collapse
|
28
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
29
|
Rupprecht CE, Mshelbwala PP, Reeves RG, Kuzmin IV. Rabies in a postpandemic world: resilient reservoirs, redoubtable riposte, recurrent roadblocks, and resolute recidivism. ANIMAL DISEASES 2023; 3:15. [PMID: 37252063 PMCID: PMC10195671 DOI: 10.1186/s44149-023-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023] Open
Abstract
Rabies is an ancient disease. Two centuries since Pasteur, fundamental progress occurred in virology, vaccinology, and diagnostics-and an understanding of pathobiology and epizootiology of rabies in testament to One Health-before common terminological coinage. Prevention, control, selective elimination, and even the unthinkable-occasional treatment-of this zoonosis dawned by the twenty-first century. However, in contrast to smallpox and rinderpest, eradication is a wishful misnomer applied to rabies, particularly post-COVID-19 pandemic. Reasons are minion. Polyhostality encompasses bats and mesocarnivores, but other mammals represent a diverse spectrum of potential hosts. While rabies virus is the classical member of the genus, other species of lyssaviruses also cause the disease. Some reservoirs remain cryptic. Although global, this viral encephalitis is untreatable and often ignored. As with other neglected diseases, laboratory-based surveillance falls short of the notifiable ideal, especially in lower- and middle-income countries. Calculation of actual burden defaults to a flux within broad health economic models. Competing priorities, lack of defined, long-term international donors, and shrinking local champions challenge human prophylaxis and mass dog vaccination toward targets of 2030 for even canine rabies impacts. For prevention, all licensed vaccines are delivered to the individual, whether parenteral or oral-essentially 'one and done'. Exploiting mammalian social behaviors, future 'spreadable vaccines' might increase the proportion of immunized hosts per unit effort. However, the release of replication-competent, genetically modified organisms selectively engineered to spread intentionally throughout a population raises significant biological, ethical, and regulatory issues in need of broader, transdisciplinary discourse. How this rather curious idea will evolve toward actual unconventional prevention, control, or elimination in the near term remains debatable. In the interim, more precise terminology and realistic expectations serve as the norm for diverse, collective constituents to maintain progress in the field.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- College of Forestry, Wildlife & Environment, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton, Australia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - R. Guy Reeves
- Max Planck Institut Für Evolutionsbiologie, 24306 Plön, Germany
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
30
|
Hassall RMJ, Burthe SJ, Schäfer SM, Hartemink N, Purse BV. Using mechanistic models to highlight research priorities for tick-borne zoonotic diseases: Improving our understanding of the ecology and maintenance of Kyasanur Forest Disease in India. PLoS Negl Trop Dis 2023; 17:e0011300. [PMID: 37126514 PMCID: PMC10174626 DOI: 10.1371/journal.pntd.0011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/11/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The risk of spillover of zoonotic diseases to humans is changing in response to multiple environmental and societal drivers, particularly in tropical regions where the burden of neglected zoonotic diseases is highest and land use change and forest conversion is occurring most rapidly. Neglected zoonotic diseases can have significant impacts on poor and marginalised populations in low-resource settings but ultimately receive less attention and funding for research and interventions. As such, effective control measures and interventions are often hindered by a limited ecological evidence base, which results in a limited understanding of epidemiologically relevant hosts or vectors and the processes that contribute to the maintenance of pathogens and spillover to humans. Here, we develop a generalisable next generation matrix modelling framework to better understand the transmission processes and hosts that have the greatest contribution to the maintenance of tick-borne diseases with the aim of improving the ecological evidence base and framing future research priorities for tick-borne diseases. Using this model we explore the relative contribution of different host groups and transmission routes to the maintenance of a neglected zoonotic tick-borne disease, Kyasanur Forest Disease Virus (KFD), in multiple habitat types. The results highlight the potential importance of transovarial transmission and small mammals and birds in maintaining this disease. This contradicts previous hypotheses that primates play an important role influencing the distribution of infected ticks. There is also a suggestion that risk could vary across different habitat types but currently more research is needed to evaluate this relationship. In light of these results, we outline the key knowledge gaps for this system and future research priorities that could inform effective interventions and control measures.
Collapse
Affiliation(s)
| | - Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | - Nienke Hartemink
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
31
|
Hulse SV, Antonovics J, Hood ME, Bruns EL. Specific resistance prevents the evolution of general resistance and facilitates disease emergence. J Evol Biol 2023; 36:753-763. [PMID: 36971466 DOI: 10.1111/jeb.14170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
Host-shifts, where pathogens jump from an ancestral host to a novel host, can be facilitated or impeded by standing variation in disease resistance, but only if resistance provides broad-spectrum general resistance against multiple pathogen species. Host resistance comes in many forms and includes both general resistance, as well as specific resistance, which may only be effective against a single pathogen species or even genotype. However, most evolutionary models consider only one of these forms of resistance, and we have less understanding of how these two forms of resistance evolve in tandem. Here, we develop a model that allows for the joint evolution of specific and general resistance and asks if the evolution of specific resistance drives a decrease in the evolution of general resistance. We also explore how these evolutionary outcomes affect the risk of foreign pathogen invasion and persistence. We show that in the presence of a single endemic pathogen, the two forms of resistance are strongly exclusionary. Critically, we find that specific resistance polymorphisms can prevent the evolution of general resistance, facilitating the invasion of foreign pathogens. We also show that specific resistance polymorphisms are a necessary condition for the successful establishment of foreign pathogens following invasion, as they prevent the exclusion of the foreign pathogen by the more transmissible endemic pathogen. Our results demonstrate the importance of considering the joint evolution of multiple forms of resistance when evaluating a population's susceptibility to foreign pathogens.
Collapse
Affiliation(s)
- Samuel V Hulse
- University of Maryland at College Park, College Park, Maryland, USA
| | | | | | - Emily L Bruns
- University of Maryland at College Park, College Park, Maryland, USA
| |
Collapse
|
32
|
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, Varsani A. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 2023; 580:98-111. [PMID: 36801670 DOI: 10.1016/j.virol.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.
Collapse
Affiliation(s)
- Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ahva L Potticary
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; University of Georgia in the Department of Entomology, Athens, GA, 30602, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
33
|
Wallau GL, Barbier E, Tomazatos A, Schmidt-Chanasit J, Bernard E. The Virome of Bats Inhabiting Brazilian Biomes: Knowledge Gaps and Biases towards Zoonotic Viruses. Microbiol Spectr 2023; 11:e0407722. [PMID: 36625641 PMCID: PMC9927472 DOI: 10.1128/spectrum.04077-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Bats host a large variety of viruses, including some that may infect other vertebrates and humans. Research on bat-borne viruses attracted significant attention in recent years mainly due to epizootics caused by viruses having bats as hosts. The characterization of the viral communities of bats was then prioritized, but despite increasing efforts, there are large disparities in the geographical ranges covered and the methodologies employed around the world. As a result, large gaps remain in our current understanding of bat viromes and their role in disease emergence. This is particularly true for megadiverse regions in Latin America. This review aims to summarize the current understanding about bat viruses that inhabit Brazilian biomes, one of the most bat species-rich and diverse regions of the globe. Taking into account all known bat-associated viral families studied in Brazilian biomes, we found that almost half of all bat species (86/181 species) were not investigated for viruses at all. Moreover, only a small fraction of viral lineages or families have been studied more in depth, usually employing targeted methods with limited power to characterize a broad virus diversity. Additionally, these studies relied on limited spatiotemporal sampling and small sample sizes. Therefore, our current understanding of bat viral communities in the Brazilian biomes is limited and biased at different levels, limiting zoonotic risk assessments of bat-borne viruses. Considering these limitations, we propose strategies to bridge the existing gaps in the near future. IMPORTANCE Bat-borne viruses have attracted much attention due to zoonotic outbreaks with large consequences to humans. Because of that, virus characterization in bats has been prioritized in tropical regions of the globe. However, bat-virus research in Latin America and particularly in Brazil, which are among the most bat species-rich regions of the world, are highly biased toward zoonotic viruses and known bat reservoir species. These results have direct implication for virus studies in general but also for new zoonotic virus and spillover events characterization. The limited knowledge we currently have about the virome of Brazilian bats drastically limits any broad assessment of zoonotic viruses they carry and calls for coordinated and large-scale studies to fill this crucial knowledge gap.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Departamento de Entomologia and Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM) - Fundação Oswaldo Cruz (Fiocruz), Cidade Universitária, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - Eder Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Brazil
| | - Alexandru Tomazatos
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Enrico Bernard
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Brazil
| |
Collapse
|
34
|
Escobar LE, Velasco-Villa A, Satheshkumar PS, Nakazawa Y, Van de Vuurst P. Revealing the complexity of vampire bat rabies "spillover transmission". Infect Dis Poverty 2023; 12:10. [PMID: 36782311 PMCID: PMC9924873 DOI: 10.1186/s40249-023-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The term virus 'spillover' embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place. MAIN TEXT The scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological-natural and expansional-overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables. CONCLUSIONS The continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe.
Collapse
Affiliation(s)
- Luis E. Escobar
- grid.438526.e0000 0001 0694 4940Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Virginia Tech Graduate School, Translational Biology, Medicine, and Health Program, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Global Change Center, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA ,grid.442163.60000 0004 0486 6813Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Andres Velasco-Villa
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Panayampalli S. Satheshkumar
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Yoshinori Nakazawa
- grid.416738.f0000 0001 2163 0069Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Paige Van de Vuurst
- grid.438526.e0000 0001 0694 4940Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Virginia Tech Graduate School, Translational Biology, Medicine, and Health Program, Blacksburg, VA USA ,grid.438526.e0000 0001 0694 4940Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
35
|
Genetic diversity, phylogenetic position, and co-phylogenetic relationships of Karyolysus, a common blood parasite of lizards in the western Mediterranean. Int J Parasitol 2023; 53:185-196. [PMID: 36736608 DOI: 10.1016/j.ijpara.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
The genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group. We therefore surveyed 28 localities and collected blood samples from 828 lizards of 23 species including lacertids, skinks, and geckoes in the western Mediterranean, North Africa, and Macaronesia, where species of Karyolysus and other adeleorine parasites have been described. We combined molecular and microscopic methods to analyze the samples, including those from the host type species and the type locality of Karyolysus bicapsulatus. The phylogenetic relationship of these parasites was analyzed based on the 18S rRNA gene and the co-phylogenetic relationship with their vertebrate hosts was reconstructed. We molecularly detected adeleorine parasites in 37.9% of the blood samples and found 22 new parasite haplotypes. A phylogenetic reconstruction with 132 sequences indicated that 20 of the newly detected haplotypes clustered in a well-supported clade with another 18 sequences that included Karyolysus galloti and Karyolysus lacazei. Morphological evidence also supported that K. bicapsulatus clustered in this monophyletic clade. These results supported the taxonomic validity of the genus. In addition, we found some parasite haplotypes that infected different lizard host genera with ancient diverging histories, which suggested that Karyolysus is less host-specific than other blood parasites of lizards in the region. A co-phylogenetic analysis supported this interpretation because no significant co-speciation signal was shown between Karyolysus and lizard hosts.
Collapse
|
36
|
Gaczorek TS, Marszałek M, Dudek K, Arntzen JW, Wielstra B, Babik W. Interspecific introgression of MHC genes in Triturus newts: Evidence from multiple contact zones. Mol Ecol 2023; 32:867-880. [PMID: 36458894 PMCID: PMC10108261 DOI: 10.1111/mec.16804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.
Collapse
Affiliation(s)
- Tomasz S Gaczorek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
37
|
Wang YXG, Matson KD, Prins HHT, Xu Y, Huang ZYX, de Boer WF. Risk factors for Lyme disease: A scale-dependent effect of host species diversity and a consistent negative effect of host phylogenetic diversity. Ticks Tick Borne Dis 2023; 14:102073. [PMID: 36345067 DOI: 10.1016/j.ttbdis.2022.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Biodiversity can influence disease risk. One example of a diversity-disease relationship is the dilution effect, which suggests higher host species diversity (often indexed by species richness) reduces disease risk. While numerous studies support the dilution effect, its generality remains controversial. Most studies of diversity-disease relationships have overlooked the potential importance of phylogenetic diversity. Furthermore, most studies have tested diversity-disease relationships at one spatial scale, even though such relationships are likely scale dependent. Using Lyme disease as a model system, we investigated the effects of host species richness and phylogenetic relatedness on the number of reported Lyme disease cases in humans in the U.S.A. at two spatial scales (the county level and the state level) using piecewise structural equation modelling. We also accounted for relevant climatic and habitat-related factors and tested their correlations with the number of Lyme disease cases. We found that species assemblages with more related species (i.e., host species in the order Rodentia) were associated with more Lyme disease cases in humans. Host species richness correlated negatively with the number of Lyme disease cases at the state level (i.e., a dilution effect), a pattern that might be explained by the higher number of reservoir-incompetent species at high levels of species richness at this larger spatial scale. In contrast, a positive correlation was found between species richness and the number of Lyme disease cases at the county level, where a higher proportion of rodent species was associated with higher levels of species richness, potentially amplifying the disease risk. Our results highlight that analyse at a single spatial scale can miss some impacts of biodiversity on human health. Thus, multi-scale analyses with consideration of host phylogenetic diversity are critical for improving our understanding of diversity-disease relationships.
Collapse
Affiliation(s)
- Yingying X G Wang
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| | - Herbert H T Prins
- Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, Netherlands
| | - Yanjie Xu
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands; Finnish Museum of Natural History, University of Helsinki, 17, 00014, Finland
| | - Zheng Y X Huang
- College of Life Sciences, Nanjing Normal University, 210046 Nanjing, China.
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, Netherlands
| |
Collapse
|
38
|
Thakor JC, Dinesh M, Manikandan R, Bindu S, Sahoo M, Sahoo D, Dhawan M, Pandey MK, Tiwari R, Emran TB, Dhama K, Chaicumpa W. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns. Vet Q 2022; 42:125-147. [PMID: 35584308 PMCID: PMC9225692 DOI: 10.1080/01652176.2022.2079756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.
Collapse
Affiliation(s)
- Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Diptimayee Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Megha Katare Pandey
- Department of Translational Medicine Center, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Griffin JS, Gerth M, Hurst GDD. Rapid divergence in independent aspects of the compatibility phenotype in a Spiroplasma-Drosophila interaction. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748550 DOI: 10.1099/mic.0.001281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heritable symbionts represent important components of the biology, ecology and evolution of their arthropod hosts. Particular microbial taxa have become common across arthropods as a consequence of their ability to establish in new host species. For a host shift to occur, the symbiont must be exposed to a novel host and then be compatible: it must not cause excess pathology, must have good vertical transmission and must possess a drive phenotype that enables spread. Here we investigate the lability of compatibility to symbiosis with Spiroplasma. We used transinfection to establish the protective Spiroplasma symbiont from Drosophila hydei in two closely related novel hosts, Drosophila simulans and Drosophila melanogaster. The Spiroplasma had contrasting compatibility in the two species, exhibiting pathology and low vertical transmission but delivering protection from wasp attack in D. melanogaster but being asymptomatic and transmitted with high efficiency but with lower protection in D. simulans. Further work indicated that pathological interactions occurred in two other members of the melanogaster species group, such that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasizes the rapidity with which host-symbiont compatibility evolves, despite compatibility itself not being subject to direct selection. Further, the requirement to fit three independent components of compatibility (pathology, transmission, protection) is probably to be a major feature limiting the rate of host shifts that will likely impact on the utility of Spiroplasma in pest and vector control. Moving forward, the variation between sibling species pairs provides an opportunity to identify the mechanisms behind variable compatibility, which will drive hypotheses as to the evolutionary drivers of compatibility variation.
Collapse
Affiliation(s)
- Joanne S Griffin
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Michael Gerth
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Gregory D D Hurst
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| |
Collapse
|
40
|
Zhang Y, Xin X, Matthew C, Christensen MJ, Nan Z. Pathogen Identification and Factors Influencing Infection Frequency and Severity of Fungal Rust in Four Native Grasses in Hulunber Grassland, China. PLANT DISEASE 2022; 106:3040-3049. [PMID: 35596246 DOI: 10.1094/pdis-08-21-1802-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A serious rust infection present in 2014 and 2015 on the dominant grass species (Leymus chinensis) in the Hulunber grassland of Inner Mongolia, China, and also present on three other grass species (Agropyron cristatum [wheat grass], Bromus inermis, and Festuca ovina) was investigated. Field surveys, laboratory determination of morphological characteristics, pathogenicity tests, and molecular identification methods were integrated to identify two rust-causing pathogens on L. chinensis. It was found that Puccinia elymi was the major pathogen of L. chinensis, and also infected A. cristatum and F. ovina. This is the first report of P. elymi on A. cristatum in China. P. striiformis caused stripe rust on L. chinensis and B. inermis. The incidence and severity of rust infection increased through the growing season, presumably from asexual spread by urediniospores, and was higher on grass species phylogenetically more closely related to common crop hosts of the pathogens. High host grass density and presence of a potential alternate host for P. elymi, Thalictrum squarrosum, were two further factors promoting rust incidence. These results provide insight into ecological factors linked to the rust epidemic and provide a theoretical basis for the formulation of control strategies.
Collapse
Affiliation(s)
- Yawen Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, P.R. China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiaoping Xin
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Science, Beijing 10081, P.R. China
| | - Cory Matthew
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Michael J Christensen
- AgResearch, Grasslands Research Centre, Private Bag 11-008, Palmerston North 4442, New Zealand (Retired)
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, P.R. China
| |
Collapse
|
41
|
Wang J, Pan YF, Yang LF, Yang WH, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen YQ, Shu YL, Guo D, Gao ZH, Liang G, Li J, Holmes EC, Feng Y, Shi M. Individual bat viromes reveal the co-infection, spillover and emergence risk of potential zoonotic viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517609. [PMID: 36451889 PMCID: PMC9709790 DOI: 10.1101/2022.11.23.517609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.
Collapse
|
42
|
Wang Z, Huang G, Huang M, Dai Q, Hu Y, Zhou J, Wei F. Global patterns of phylogenetic diversity and transmission of bat coronavirus. SCIENCE CHINA LIFE SCIENCES 2022; 66:861-874. [PMID: 36378474 PMCID: PMC9664035 DOI: 10.1007/s11427-022-2221-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Bats are reservoirs for multiple coronaviruses (CoVs). However, the phylogenetic diversity and transmission of global bat-borne CoVs remain poorly understood. Here, we performed a Bayesian phylogeographic analysis based on 3,594 bat CoV RdRp gene sequences to study the phylogenetic diversity and transmission of bat-borne CoVs and the underlying driving factors. We found that host-switching events occurred more frequently for α-CoVs than for β-CoVs, and the latter was highly constrained by bat phylogeny. Bat species in the families Molossidae, Rhinolophidae, Miniopteridae, and Vespertilionidae had larger contributions to the cross-species transmission of bat CoVs. Regions of eastern and southern Africa, southern South America, Western Europe, and Southeast Asia were more frequently involved in cross-region transmission events of bat CoVs than other regions. Phylogenetic and geographic distances were the most important factors limiting CoV transmission. Bat taxa and global geographic hotspots associated with bat CoV phylogenetic diversity were identified, and bat species richness, mean annual temperature, global agricultural cropland, and human population density were strongly correlated with the phylogenetic diversity of bat CoVs. These findings provide insight into bat CoV evolution and ecological transmission among bat taxa. The identified hotspots of bat CoV evolution and transmission will guide early warnings of bat-borne CoV zoonotic diseases.
Collapse
Affiliation(s)
- Zhilin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingpan Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang, 550000, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
43
|
Jacquot M, Wallace MA, Streicker DG, Biek R. Geographic Range Overlap Rather than Phylogenetic Distance Explains Rabies Virus Transmission among Closely Related Bat Species. Viruses 2022; 14:2399. [PMID: 36366496 PMCID: PMC9697534 DOI: 10.3390/v14112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
The cross-species transmission (CST) of pathogens can have dramatic consequences, as highlighted by recent disease emergence events affecting human, animal and plant health. Understanding the ecological and evolutionary factors that increase the likelihood of disease agents infecting and establishing in a novel host is therefore an important research area. Previous work across different pathogens, including rabies virus (RABV), found that increased evolutionary distance between hosts reduces the frequency of cross-species transmission and of permanent host shifts. However, whether this effect of host relatedness still holds for transmission among recently diverged hosts is not well understood. We aimed to ask if high host relatedness can still increase the probability of a host shift between more recently diverged hosts, and the importance of this effect relative to ecological predictors. We first addressed this question by quantifying the CST frequency of RABV between North American bat species within the genus Myotis, using a multi-decade data set containing 128 nucleoprotein (N) RABV sequences from ten host species. We compared RABV CST frequency within Myotis to the rates of CST between nine genera of North American bat species. We then examined whether host relatedness or host range overlap better explains the frequency of CST seen between Myotis species. We found that at the within genus scale, host range overlap, rather than host relatedness best explains the frequency of CST events. Moreover, we found evidence of CST occurring among a higher proportion of species, and CST more frequently resulting in sustained transmission in the novel host in the Myotis dataset compared to the multi-genus dataset. Our results suggest that among recently diverged species, the ability to infect a novel host is no longer restricted by physiological barriers but instead is limited by physical contact. Our results improve predictions of where future CST events for RABV might occur and clarify the relationship between host divergence and pathogen emergence.
Collapse
Affiliation(s)
- Maude Jacquot
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Megan A. Wallace
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK
| | - Roman Biek
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
44
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
45
|
Caraballo DA. Cross-Species Transmission of Bat Coronaviruses in the Americas: Contrasting Patterns between Alphacoronavirus and Betacoronavirus. Microbiol Spectr 2022; 10:e0141122. [PMID: 35770987 PMCID: PMC9431099 DOI: 10.1128/spectrum.01411-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 01/09/2023] Open
Abstract
Bats harbor the largest number of coronavirus (CoV) species among mammals, serving as major reservoirs of alphaCoVs and betaCoVs, which can jump between bat species or to different mammalian hosts, including humans. Bat-CoV diversity is correlated with host taxonomic diversity, with the highest number of CoV species found in areas with the highest levels of bat species richness. Although the Americas harbor a unique and distinctive CoV diversity, no cross-species transmission (CST) or phylogeographic analysis has yet been performed. This study analyzes a large sequence data set from across the Americas through a Bayesian framework to understand how codivergence and cross-species transmission have shaped long-term bat-CoV evolution and ultimately identify bat hosts and regions where the risk of CST is the highest. Substantial levels of CST were found only among alphaCoVs. In contrast, cospeciation prevailed along the evolution of betaCoVs. Brazil is the center of diversification for both alpha and betaCoVs, with the highest levels of bat species richness. The bat family Phyllostomidae has played a key role in the evolution of American bat-CoVs, supported by the highest values of host transition rates. Although the conclusions drawn from this study are supported by biological/ecological evidence, it is likely that novel lineages will be discovered, which could also reveal undetected CSTs given that sequences are available from 11 of the 35 countries encompassing the Americas. The findings of this study can be useful for conducting targeted discovery of bat-CoVs in the region, especially in countries of the Americas with no reported sequences. IMPORTANCE Coronaviruses (CoVs) have a strong zoonotic potential due to their high rates of evolvability and their capacity for overcoming host-specific barriers. Bats harbor the largest number of CoV species among mammals, with the highest CoV diversity found in areas with the highest levels of bat species richness. Understanding their origin and patterns of cross-species transmission is crucial for pandemic preparedness. This study aims to understand how bat-CoVs diversify in the Americas, circulate among and transmit between bat families and genera, and ultimately identify bat hosts and regions where the risk of CoV spillover is the highest.
Collapse
Affiliation(s)
- Diego A. Caraballo
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria-Pabellón II, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
46
|
Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal S. Climate change increases cross-species viral transmission risk. Nature 2022; 607:555-562. [PMID: 35483403 DOI: 10.1101/2020.01.24.918755] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/21/2022] [Indexed: 05/28/2023]
Abstract
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA.
- Center for Global Health Science & Security, Georgetown University, Washington, DC, USA.
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.
- EcoHealth Alliance, New York, NY, USA.
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| | - Casey M Zipfel
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Evan A Eskew
- EcoHealth Alliance, New York, NY, USA
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | | | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
47
|
Pigeault R, Chevalier M, Cozzarolo CS, Baur M, Arlettaz M, Cibois A, Keiser A, Guisan A, Christe P, Glaizot O. Determinants of haemosporidian single- and co-infection risks in western palearctic birds. Int J Parasitol 2022; 52:617-627. [PMID: 35760376 DOI: 10.1016/j.ijpara.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviors influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Laboratoire EBI, Equipe EES, UMR CNRS 7267, 86000 Poitiers, France.
| | - Mathieu Chevalier
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Ifremer, Centre de Bretagne, DYNECO-LEBCO, CS 10070, 29280 Plouzané, France
| | - Camille-Sophie Cozzarolo
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Biogéosciences, UMR 6282 CNRS, université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Molly Baur
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | | | - Alice Cibois
- Natural History Museum of Geneva, C.P. 6434, CH-1211 Genève 6, Switzerland
| | - André Keiser
- Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| |
Collapse
|
48
|
Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand. Viruses 2022; 14:v14071364. [PMID: 35891346 PMCID: PMC9321414 DOI: 10.3390/v14071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
New Zealand/Aotearoa has many endemic passerine birds vulnerable to emerging infectious diseases. Yet little is known about viruses in passerines, and in some countries, including New Zealand, the virome of wild passerines has been only scarcely researched. Using metatranscriptomic sequencing we characterised the virome of New Zealand endemic and introduced species of passerine. Accordingly, we identified 34 possible avian viruses from cloacal swabs of 12 endemic and introduced bird species not showing signs of disease. These included a novel siadenovirus, iltovirus, and avastrovirus in the Eurasian blackbird (Turdus merula, an introduced species), song thrush (Turdus philomelos, introduced) and silvereye/tauhou (Zosterops lateralis, introduced), respectively. This is the first time novel viruses from these genera have been identified in New Zealand, likely reflecting prior undersampling. It also represents the first identification of an iltovirus and siadenovirus in blackbirds and thrushes globally. These three viruses were only found in introduced species and may pose a risk to endemic species if they were to jump species boundaries, particularly the iltoviruses and siadenoviruses that have a prior history of disease associations. Further virus study and surveillance are needed in New Zealand avifauna, particularly in Turdus populations and endemic species.
Collapse
|
49
|
Mull N, Carlson CJ, Forbes KM, Becker DJ. Virus isolation data improve host predictions for New World rodent orthohantaviruses. J Anim Ecol 2022; 91:1290-1302. [PMID: 35362148 DOI: 10.1111/1365-2656.13694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Identifying reservoir host species is crucial for understanding the ecology of multi-host pathogens and predicting risks of pathogen spillover from wildlife to people. Predictive models are increasingly used for identifying ecological traits and prioritizing surveillance of likely zoonotic reservoirs, but these often employ different types of evidence for establishing host associations. Comparisons between models with different infection evidence are necessary to guide inferences about the trait profiles of likely hosts and identify which hosts and geographical regions are likely sources of spillover. Here, we use New World rodent-orthohantavirus associations to explore differences in the performance and predictions of models trained on two types of evidence for infection and onward transmission: RT-PCR and live virus isolation data, representing active infections versus host competence, respectively. Orthohantaviruses are primarily carried by muroid rodents and cause the diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. We show that although boosted regression tree (BRT) models trained on RT-PCR and live virus isolation data both performed well and capture generally similar trait profiles, rodent phylogeny influenced previously collected RT-PCR data, and BRTs using virus isolation data displayed a narrower list of predicted reservoirs than those using RT-PCR data. BRT models trained on RT-PCR data identified 138 undiscovered hosts and virus isolation models identified 92 undiscovered hosts, with 27 undiscovered hosts identified by both models. Distributions of predicted hosts were concentrated in several different regions for each model, with large discrepancies between evidence types. As a form of validation, virus isolation models independently predicted several orthohantavirus-rodent host associations that had been previously identified through empirical research using RT-PCR. Our model predictions provide a priority list of species and locations for future orthohantavirus sampling. More broadly, these results demonstrate the value of multiple data types for predicting zoonotic pathogen hosts. These methods can be applied across a range of systems to improve our understanding of pathogen maintenance and increase efficiency of pathogen surveillance.
Collapse
Affiliation(s)
- Nathaniel Mull
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Kristian M Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
50
|
Condori RE, Aragon A, Breckenridge M, Pesko K, Mower K, Ettestad P, Melman S, Velasco-Villa A, Orciari LA, Yager P, Streicker DG, Gigante CM, Morgan C, Wallace R, Li Y. Divergent Rabies Virus Variant of Probable Bat Origin in 2 Gray Foxes, New Mexico, USA. Emerg Infect Dis 2022; 28:1137-1145. [PMID: 35608558 PMCID: PMC9155866 DOI: 10.3201/eid2806.211718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the Western Hemisphere, bat-associated rabies viruses (RABVs) have established independent transmission cycles in multiple mammal hosts, forming genetically distinct lineages. In New Mexico, USA, skunks, bats, and gray foxes are rabies reservoir hosts and represent a public health risk because of encounters with humans. During 2015 and 2019, two previously undescribed RABVs were detected in 2 gray foxes (Urocyon cinereoargenteus) in Lincoln County, New Mexico. Phylogenetic analysis of the nucleoprotein gene indicated that the isolates are a novel RABV variant. These 2 cases probably represent repeated spillover events from an unknown bat reservoir to gray foxes. Molecular analysis of rabies cases across New Mexico identified that other cross-species transmission events were the result of viral variants previously known to be enzootic to New Mexico. Despite a robust rabies public health surveillance system in the United States, advances in testing and surveillance techniques continue to identify previously unrecognized zoonotic pathogens.
Collapse
|