1
|
Sun S, Meng J, Zhang W, Li A, Niu L, Pan L, Duan W, Yao JL, Cui G, Wang Z, Zeng W. A translocation between chromosome 6 and 8 influences lncRNA_MYB114 and PpRPP13 expression and underpins red leaf trait and powdery mildew resistance in peach. THE NEW PHYTOLOGIST 2025; 246:1198-1216. [PMID: 40035425 DOI: 10.1111/nph.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Red leaf peach has important ornamental value owing to its characteristic leaf coloration. However, this species is highly susceptible to powdery mildew, and the mechanisms of red leaf formation, resistance to powdery mildew, and their relationship remain unclear. We performed population genetic analyses of red leaf peach, revealing that the translocation of chromosomes 6 and 8 is genetically linked to both the red leaf trait and powdery mildew resistance. Bulk segregant analysis-sequencing, genome resequencing, and expression analysis indicated that the PpMYB114 and the resistance gene PpRPP13 are responsible for the red leaf phenotype and powdery mildew resistance, respectively. The chromosomal translocation causes a promoter fragment of PpRPP13 on chromosome 8 to integrate into the antisense chain of PpMYB114 on chromosome 6, thereby enhancing the expression of PpMYB114 and inhibiting the expression of PpRPP13. Further, lncRNA-seq identified a new antisense lncRNA, lncRNA_MYB114, which is generated by the translocation and can activate PpMYB114 expression to synthesize anthocyanin. Moreover, the overexpression of PpRPP13 resulted in enhanced resistance to powdery mildew. In summary, these results revealed the molecular mechanism of a chromosomal translocation altering the expression of PpMYB114 and PpRPP13 to form the red leaf phenotype that is linked to powdery mildew susceptibility.
Collapse
Affiliation(s)
- Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Junren Meng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Horticulture, Anhui Agricultural University, West Changjiang Road 130, Hefei, 230036, China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Jia-Long Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- The New Zealand Institute for Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Zhiqiang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| |
Collapse
|
2
|
Wang L, Jiang Y, Hao Y, Yu L, Zhao S, Wu H, Long X, Zhang Z, Zhao T, Geng S, Guan X. Integrated transcriptomics and metabolomics analyses reveal jasmonic acid metabolic pathways for improving the chilling tolerance in cotton seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109935. [PMID: 40286456 DOI: 10.1016/j.plaphy.2025.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Cotton (Gossypium spp.) originated in tropical and subtropical regions, spreading to higher latitudes through domestication while retaining thermophilic characteristics. Xinjiang, a major cotton-producing area in China, frequently experiences 'late spring cold snaps' due to its location, causing chilling injury during critical sowing periods. Current research on cotton chilling stress primarily focuses on physiological studies such as evaluations of chilling stress and biochemical indices but lacks systematic investigation into the difference among varieties. Phenotypic screening across seed germination, cotyledon, and seedling stages identified upland cotton (Gossypium hirsutum) cultivar, Junmian1 exhibits superior cold tolerance relative to the sensitive genotype C1470. Under chilling stress, Junmian1 protects chloroplasts and other cellular structures in its first true leaf to survive the chilling stress. Weighted gene co-expression network analysis (WGCNA) analysis pinpointed Module Brown as a chilling-tolerance responsive hub, with subsequent validation via virus-induced gene silencing (VIGS) confirming the regulatory roles of GhRBL (Ribulose-bisphosphate carboxylase), GhGI (GIGANTEA), and lncRNA MSTR.1631 in cold tolerance. Additionally, integrated metabolomic and transcriptomic analyses demonstrated that jasmonic acid plays a crucial role in enhancing cotton's chilling tolerance at seedling stage. The primary difference in chilling tolerance between Junmian1 and C1470 is attributed to the signaling efficiency of the jasmonic acid synthesis and metabolism pathways. These findings establish JA metabolic engineering as a viable approach for enhancing cold resilience in early-stage cotton seedlings.
Collapse
Affiliation(s)
- Luyao Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China
| | - Yaping Jiang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yupeng Hao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Li Yu
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shengjun Zhao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongyu Wu
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Long
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China
| | - Ting Zhao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiwei Geng
- Xinjiang Cotton Technology Innovation Center/Xinjiang Key Laboratory of Cotton Genetic Improvement and Intelligent Production/National Cotton Engineering Technology Research Center, Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences, Wulumuqi, 830091, Xinjiang, China
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Zhenzhou Road, Yazhou District, Sanya, Hainan, 572025, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, The Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Aizaz M, Lubna, Hashmi SS, Khan MA, Jan R, Bilal S, Kim KM, Al-Harrasi A, Asaf S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1131. [PMID: 40219203 PMCID: PMC11991662 DOI: 10.3390/plants14071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant-microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Salman Hashmi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Technology, Peshawar 25000, Pakistan;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
4
|
Zhao Z, Tan C, Zhang J, Zhang L, Hou Q, Tang T, Wang B, Zhang Y, Ye X, Zhang Y, Liu Z. BrSWN mutation reduces the H3K27me3 level at the BrFLC2 and BrFLC3 loci and confers a late-bolting phenotype in Chinese cabbage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70151. [PMID: 40226975 DOI: 10.1111/tpj.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Flowering is an important developmental transition from the vegetative to the reproductive phase in plants. The role of histone modifications in the regulation of flowering time is well documented; however, their role in Chinese cabbage remains unclear. In the present study, we investigated a Chinese cabbage late-bolting mutant, M1407, which displayed a late-bolting time phenotype after vernalization. MutMap, kompetitive allele-specific PCR (KASP), and RNA interference (RNAi) analyses demonstrated that BrSWN, which encodes a catalytic subunit of the Polycomb repressive complex 2 (PRC2), mediates the flowering time in Chinese cabbage. BrSWN was functionally conserved and localized to the nucleus. Both BrSWN and Brswn interacted with BrVRN2 to form PRC2-like complexes. The BrSWN mutation decreased the global histone H3 lysine 27 trimethylation (H3K27me3) level and impaired the enrichment of H3K27me3 in the regions of flowering repressors, BrFLC2 and BrFLC3. This study demonstrates that BrSWN mediates the regulation of bolting time modulated by H3K27me3 deposition, providing insights into the epigenetic mechanisms regulating flowering time in Chinese cabbage.
Collapse
Affiliation(s)
- Zifan Zhao
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chong Tan
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiamei Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Luyao Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingli Hou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tianer Tang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bei Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yike Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueling Ye
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yun Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
5
|
Yuan H, Liu S, Yan R, Liu Z, Xu K, Huang D, Zhang N, Wu Y, Lan X, Yukawa Y, Wu J. AtR8 lncRNA integrates WRKY46 into ABA signaling to regulate seed and seeding growth in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109732. [PMID: 40118010 DOI: 10.1016/j.plaphy.2025.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
Seed germination plays a vital role in ensuring plant survival under unfavorable conditions. Abscisic acid (ABA) signaling is important for integrating environmental information to regulate seed germination. Despite the identification of numerous regulatory factors in ABA signaling pathways during seed germination, the transcriptional regulatory mechanisms influencing ABA signaling remain largely uncharacterized. Long non-coding RNAs (lncRNAs) have many physiological functions in diverse organisms. To date, only a few seed germination-related lncRNAs have been reported. The AtR8 lncRNA (259 nt) in Arabidopsis is transcribed by the RNA polymerase III. We previously determined that the AtR8 lncRNA affects the innate immunity of seedlings as well as hypocotyl elongation. It is also highly expressed in the germinating seeds and induced by ABA. In this study, its loss-of-function mutant (atr8) had incompletely formed siliques and seeds and a relatively low germination rate. The germination efficiency and primary root elongation were strongly affected by the ABA level. In addition, ABA signaling and AtEM6 expression were significantly induced in the atr8 mutant. Moreover, the AtEM6-overexpressing Arabidopsis plants and the atr8 mutant had similar ABA-dependent phenotypes. Genetic analyses clarified the relationship between AtR8 and AtEM6 during ABA signaling. The stress-dependent transcription of WRKY46 in the germinating atr8 seeds was significantly upregulated by ABA. AtEM6 expression increased in a wrky46 background. WRKY46 promoted AtEM6 expression by binding to the gene promoter W-boxes in a yeast one-hybrid assay. These results suggest the AtR8 lncRNA integrates WRKY46 into the ABA signaling pathway to regulate AtEM6 expression and influences seed germination and silique development in Arabidopsis. The study elucidated the mechanism of AtR8 lncRNA in regulating seed germination and seedling growth through mediate ABA signaling.
Collapse
Affiliation(s)
- Hongli Yuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Shengyi Liu
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 467-8501, Japan
| | - Rong Yan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, PR, Harbin, 150040, China
| | - Kai Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Di Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Nan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China; Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Ying Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| | - Yasushi Yukawa
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan.
| | - Juan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
7
|
Zhu C, Chen C, Gong X, Li H, Li Y, Zhang B, Zhang H, Yuan W. TOUSLED KINASE INTERACTING PROTEIN 1 (TKI1) interacts with SIN3-LIKES (SNLs) to promote flowering in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109761. [PMID: 40080969 DOI: 10.1016/j.plaphy.2025.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
TOUSLED KINASE INTERACTING PROTEIN 1 (TKI1) is a SANT/Myb domain-containing protein, which binds DNA and may function as a transcription factor, and is characterized as an interacting protein with TOUSLED (TSL) in Arabidopsis. However, it remains largely unknown what biological functions of TKI1 for few reports about TKI1 in the literature. Here we first identified that TKI1 interacts with SIN3-LIKEs (SNLs) and the responsible interaction domains are the C-terminal domain of TKI1 and the PAH (Paired Amphipathic Helix) domains of SNLs respectively in yeast. Then, we further confirmed the interactions between TKI1 and SNLs (SNL1-SNL6) in vitro or in vivo using multiple different protein-protein interaction methods. In addition, TKI1 and SNL3 are co-expressed in all the examined tissues here, and TKI1 and SNL3 are co-localized in the nucleus, indicating they may function together in plant. Furthermore, Genetic analysis with knockout mutants showed that both TKI1 and SNLs promote flowering with an additive effect in long days (LDs), however TKI1 induces flowering but SNLs inhibit flowering in short days (SDs). Finally, the flowering repressor FLOWERING LOCUS C (FLC) and its homolog MADS AFFECTING FLOWERING 4 (MAF4) were up-regulated, and the flowering activator FLOWERING LOCUS T (FT) and CONSTANS (CO) were down-regulated in tki1, snl1/2/3/4/5 and snl1/2/3/4/5 tki1 mutants, compared with Col-0. Therefore, our results increase our understanding of the biological functions of TKI1, and reveal that TKI1 physically interacts with SNLs and they both induce flowering in LDs, and indicate that TKI1 and SNLs may function together to regulate flowering gene expression to promote flowering in Arabidopsis.
Collapse
Affiliation(s)
- Chengcheng Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chuanyou Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xia Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
8
|
Lin Y, Chen C, Chen W, Liu H, Xiao R, Ji H, Li X. A Comprehensive Transcriptome Atlas Reveals the Crucial Role of LncRNAs in Maintaining Nodulation Homeostasis in Soybean. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412104. [PMID: 39716953 PMCID: PMC11831499 DOI: 10.1002/advs.202412104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited. Here, this work conducts a comprehensive RNA-seq of the roots, cotyledons and leaves of inoculated-soybean. This work finds 88,814 mRNAs and 6,156 noncoding RNAs (ncRNAs) across various organs. Notably, this work identifies 6,679 nodulation-regulated mRNAs (NR-mRNAs), 1,681 long noncoding RNAs (lncRNAs) (NR-lncRNAs), and 59 miRNAs (NR-miRNAs). The majority of these NR-RNAs are associated with plant-microbial interaction and exhibit high organ specificity. Roots display the highest abundance of NR-ncRNAs and the most dynamic crosstalk between NR-lncRNAs and NR-miRNAs in a GmNARK-dependent manner. This indicates that while each tissue responds uniquely, GmNARK serves as a primary regulator of the transcriptional control of nodulated-plants. Furthermore, this work proves that lnc-NNR6788 and lnc-NNR7059 promote nodulation by regulating their target genes. This work also shows that the nodulation- and GmNARK-regulated (NNR) lnc-NNR4481 negatively regulates nodulation through miR172c within a competing endogenous RNA (ceRNA) network. The spatial organ-type transcriptomic atlas establishes a benchmark and provides a valuable resource for integrative analyses of the mechanism underlying of nodulation and plant growth balance.
Collapse
Affiliation(s)
- Yanru Lin
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Chong Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Weizhen Chen
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hangcheng Liu
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
9
|
Gong L, Zou C, Zhang H, Yang F, Qi G, Ma Z. Landscape of Noncoding RNA in the Hypoxic Tumor Microenvironment. Genes (Basel) 2025; 16:140. [PMID: 40004471 PMCID: PMC11855738 DOI: 10.3390/genes16020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Amidst the prevalent and notable characteristic of a hypoxic microenvironment present in the majority of solid tumors, a burgeoning number of studies have revealed the significance of noncoding RNAs (ncRNAs) in hypoxic tumor regions. The transcriptome of cancers is highly heterogeneous, with noncoding transcripts playing crucial roles. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are two distinctive classes of ncRNA that are garnering increasing attention. Biologically, they possess intriguing properties and possess significant regulatory functions. Clinically, they present as promising biomarkers and therapeutic targets. Additionally, recent research has evaluated the clinical applications of these ncRNAs in RNA-based treatments and noninvasive liquid biopsies. This review provides a comprehensive summary of recent studies on lncRNAs and circRNAs within the hypoxic tumor microenvironment. Furthermore, the clinical significance of lncRNAs and circRNAs in cancer diagnosis and treatment is emphasized, which could pave the way for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (L.G.); (C.Z.); (H.Z.); (F.Y.); (G.Q.)
| |
Collapse
|
10
|
Xuan L, Tian Y, Chen X, Gao L, Wang M, Wu H. Endogenous H 2S promotes Arabidopsis flowering through the regulation of GA20ox4 in the gibberellin pathway. PHYSIOLOGIA PLANTARUM 2025; 177:e70084. [PMID: 39901639 DOI: 10.1111/ppl.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Flowering time is a critical determinant of plant reproductive success and agricultural yield. Hydrogen sulfide (H₂S), as a signaling molecule, regulates various aspects of plant growth and development. In this study, we examined the role of endogenous H₂S in regulating flowering time in Arabidopsis. The O-acetylserine thiol lyase a1 (oasa1) mutant, which has elevated H₂S levels due to impaired OASA1 activity that catalyzes the synthesis of Cys from H2S, flowers earlier than wild type (WT). The OASA1 overexpression lines (OE-OASA1-#33/#142), characterized by reduced H₂S levels, show delayed flowering, accompanied by decreased expression of key flowering regulators, FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and AGAMOUS-LIKE24 (AGL24). Notably, vernalization and short-day (SD) conditions did not affect their flowering patterns. Exogenous H₂S and GA₃ treatment rescued the delayed flowering phenotype of OE-OASA1-#33/#142. In oasa1, levels of GA intermediates (GA15 and GA53) were elevated, while their levels were reduced in OE-OASA1-#33/#142. RT-qPCR analysis showed a significant reduction in the expression of GIBBERELLIN 20-OXIDASE 4 (GA20ox4) in OE-OASA1-#33/#142 compared to WT. Overexpression of GA20ox4 (OE-GA20ox4-#20/#30) resulted in earlier flowering and partially rescued the delayed flowering phenotype of OE-OASA1-#33/#142. Additionally, the expression of age pathway-related genes, including miRNA172b and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3/4/5/9/15 (SPL3/4/5/9/15), was significantly reduced in OE-OASA1-#33/#142 seedlings. These findings suggest that endogenous H₂S positively regulates GA20ox4 expression, thereby promoting gibberellin synthesis and advancing flowering in Arabidopsis through the GA pathway. Furthermore, the promotion of flowering by H₂S appears to be linked to the age pathway.
Collapse
Affiliation(s)
- Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yongke Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Present address: Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Pressent address: School of Life Sciences, Tsinghua University, Beijing, Beijing, China
| | - Le Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
12
|
Gao L, Li S, Chang HS, Kim YJ. Sequencing CURLY LEAF-associated RNAs in Arabidopsis revealed prevalent intergenic RNAs from the nuclear mitochondrial sequence. Mol Cells 2024; 47:100131. [PMID: 39427743 PMCID: PMC11605418 DOI: 10.1016/j.mocell.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Polycomb group (PcG) proteins play key roles in development by repressing thousands of targets through histone modifications. However, how PcG is recruited to specific targets is poorly understood. In Arabidopsis, certain noncoding RNAs are necessary for recruiting the PcG protein CURLY LEAF (CLF) to its target sites. However, RNAs associated with CLF have not been analyzed on a genomic scale; thus, it is unknown whether long noncoding RNA (lncRNA)-mediated PcG recruitment is a widespread mechanism. Here, we systematically searched for CLF-associated RNAs by RNA immunoprecipitation followed by deep sequencing. We identified 1,299 genic and 138 intergenic regions that produced CLF-associated mRNAs and putative lncRNAs, respectively. The genes producing CLF-associated RNAs are depleted in PcG targets, carry active chromatin marks, and are highly expressed, suggesting that CLF may have a nonspecific or promiscuous RNA-binding affinity, similar to animal PcG proteins. Notably, a significant portion of the CLF-associated lncRNAs is derived from the nuclear mitochondrial sequence, which is extensively marked by H3K27me3. These findings indicate that, while CLF-RNA interactions are widespread, they may not always correlate with PcG target sites, highlighting the complexity of PcG recruitment mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shengben Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hyun Suh Chang
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
13
|
Kiger NM, Schroeder SJ. SVALKA: A Long Noncoding Cis-Natural Antisense RNA That Plays a Role in the Regulation of the Cold Response of Arabidopsis thaliana. Noncoding RNA 2024; 10:59. [PMID: 39728604 DOI: 10.3390/ncrna10060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
RNA plays important roles in the regulation of gene expression in response to environmental stimuli. SVALKA, a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in Arabidopsis thaliana. There are three mechanisms through which SVALKA fine tunes the transcriptional response to cold temperatures. SVALKA regulates the expression of the CBF1 (C-Repeat Dehydration Binding Factor 1) transcription factor through a collisional transcription mechanism and a dsRNA and DICER mediated mechanism. SVALKA also interacts with Polycomb Repressor Complex 2 to regulate the histone methylation of CBF3. Both CBF1 and CBF3 are key components of the COLD REGULATED (COR) regulon that direct the plant's response to cold temperature over time, as well as plant drought adaptation, pathogen responses, and growth regulation. The different isoforms of SVALKA and its potential to form dynamic RNA conformations are important features in regulating a complex gene network in concert with several other noncoding RNA. This review will summarize the three mechanisms through which SVALKA participates in gene regulation, describe the ways that dynamic RNA structures support the function of regulatory noncoding RNA, and explore the potential for improving agricultural genetic engineering with a better understanding of the roles of noncoding RNA.
Collapse
Affiliation(s)
- Nicholas M Kiger
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Susan J Schroeder
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
14
|
Sahraei S, Mahdinezhad N, Emamjomeh A, Kavousi K, Solouki M, Delledonne M. Transcriptomic analysis reveals role of lncRNA LOC100257036 to regulate AGAMOUS during cluster compactness of Vitis vinifera cv. sistan yaghooti. Sci Rep 2024; 14:28331. [PMID: 39550496 PMCID: PMC11569177 DOI: 10.1038/s41598-024-79890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Yaghooti grape, as the earliest grape variety in Iran, is considered as more resistant to heat, drought, and salinity than other cultivars. Cluster compactness is regarded as an inappropriate feature for the productivity of Yaghooti grape as a critical commercial and nutritional product. In plants, lncRNAs play a critical role in regulating biological processes related to growth and development. However, the potential role of lncRNAs was not assessed in cluster compactness. Totally, 1549 lncRNAs were identified by RNA-Seq data analysis in three steps of cluster formation, berry formation, and final cluster size after a thorough screening process. In addition, 229 lncRNAs were differentially expressed in the cluster development steps. Based on the functional analysis, lncRNAs are related to AG and MYB, bHLH, LBD, NAC, and WRKY TFs. Further, the target genes enrichment analysis revealed a relationship between lncRNAs with grape growth and development, as well as resistance to abiotic stresses such as heat and drought, plant defense against pathogens, and early grapes ripening. The study identified four lncRNAs as precursors of miRNAs, predicting that 112 other lncRNAs could potentially be targeted by 166 miRNAs. The results provide new insights into the regulatory functions of lncRNAs in Yaghooti grape to improve overall understanding of the molecular mechanisms related to grape compactness.
Collapse
Affiliation(s)
- Shahla Sahraei
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Nafiseh Mahdinezhad
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran.
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Bioinformatics, University of Zabol, Zabol, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Postal Code: 9861753557, Zabol, Iran
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
15
|
Raingeval M, Leduque B, Baduel P, Edera A, Roux F, Colot V, Quadrana L. Retrotransposon-driven environmental regulation of FLC leads to adaptive response to herbicide. NATURE PLANTS 2024; 10:1672-1681. [PMID: 39333353 DOI: 10.1038/s41477-024-01807-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
The mobilization of transposable elements is a potent source of mutations. In plants, several stransposable elements respond to external cues, fuelling the hypothesis that natural transposition can create environmentally sensitive alleles for adaptation. Here we report on the detailed characterization of a retrotransposon insertion within the first intron of the Arabidopsis floral-repressor gene FLOWERING LOCUS C (FLC) and the discovery of its role for adaptation. The insertion mutation augments the environmental sensitivity of FLC by affecting the balance between coding and non-coding transcripts in response to stress, thus expediting flowering. This balance is modulated by DNA methylation and orchestrated by IBM2, a factor involved in the processing of intronic heterochromatic sequences. The stress-sensitive allele of FLC has spread across populations subjected to recurrent chemical weeding, and we show that retrotransposon-driven acceleration of the life cycle represents a rapid response to herbicide application. Our work provides a compelling example of a transposable element-driven environmentally sensitive allele that confers an adaptive response in nature.
Collapse
Affiliation(s)
- Mathieu Raingeval
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Toulouse, Castanet-Tolosan, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
16
|
Li R, Hu Y, Wang X, Liu C, Huang G. Full-length transcriptome characterization and analysis of Carrizo Citrange and molecular insights into pathogen defense. Mol Genet Genomics 2024; 299:104. [PMID: 39467857 DOI: 10.1007/s00438-024-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Citrus huanglongbing (HLB) is a major challenge that impacts the flourishing of the citrus industry. Therefore, analyzing the genomic information of HLB-resistant or tolerant citrus resources is crucial for breeding HLB-resistant citrus varieties. The Carrizo citrange, a hybrid of Citrus sinensis and Poncirus trifoliata, plays a pivotal role in citrus cultivation. However, its genetic explorations are difficult due to the absence of a reference genome or full-length transcriptome. In order to enhance our understanding of the genetic information of citrange, we conducted a full-length transcriptomic sequencing of multiple tissues from the Carrizo citrange using the PacBio Sequel II platform. Moreover, we performed gene ontology (GO) annotation, gene functional annotation, simple sequence repeats (SSR) types analysis, as well as identification of lncRNAs, alternative splicing events, and analysis of pathogen defense-related genes. Results showed that a total of 43,452 isoforms were generated, with 43,307 of them being annotated. GO annotation indicated the involvement of these isoforms in various biological processes, cellular components, and molecular functions. The coding sequence length of the isoforms ranged from 1,000 to 4,000 base pairs (bp). Moreover, we have discovered 54 varieties of transcription factors and regulators, along with 16 classifications of genes associated with resistance. Among all types of SSRs, trimer type SSRs were the most abundant. 130 lncRNAs were predicted to be highly reliable in the isoforms of the Carrizo citrange, with alternative splicing events identified, and the most frequent being retained intron. The analysis of gene family expansion and contraction revealed a significant increase in pathogen defense-related genes within the Carrizo citrange. The results of this study will be of great value for future investigations into gene function in citrange and for expanding the genetic pool for breeding citrus varieties resistant or tolerant to HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Chang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| |
Collapse
|
17
|
Chae J, Han SJ, Karthik S, Kim HJ, Kim JH, Yun HR, Chung YS, Sung S, Heo JB. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) partially inhibits the transcriptional activation of FT by MYB73 and regulates flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:187-198. [PMID: 39133829 PMCID: PMC11424248 DOI: 10.1111/tpj.16980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/27/2024]
Abstract
Polycomb group (PcG) proteins are essential gene repressors in higher eukaryotes. However, how PcG proteins mediate transcriptional regulation of specific genes remains unknown. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), as a component of Polycomb Repression Complexes (PRC), epigenetically mediates several plant developmental processes together with PcG proteins. We observed physical interaction between MYB73 and LHP1 in vitro and in vivo. Genetic analysis indicated that myb73 mutants showed slightly late flowering, and the lhp1-3 myb73-2 double mutant exhibited delayed flowering and downregulated FT expression compared to lhp1-3. Chromatin immunoprecipitation and yeast one-hybrid assays revealed that MYB73 preferentially binds to the FT promoter. Additionally, our protoplast transient assays demonstrated that MYB73 activates to the FT promoter. Interestingly, the LHP1-MYB73 interaction is necessary to repress the FT promoter, suggesting that the LHP1-MYB73 interaction prevents FT activation by MYB73 in Arabidopsis. Our results show an example in which a chromatin regulator affects transcriptional regulation by negatively regulating a transcription factor through direct interaction.
Collapse
Affiliation(s)
- Jia Chae
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Seong Ju Han
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sivabalan Karthik
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jeong Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Jee Hye Kim
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hee Rang Yun
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sibum Sung
- Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Jae Bok Heo
- Department of Molecular Genetic Engineering, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
18
|
Taghvimi S, Soltani Fard E, Khatami SH, Zafaranchi Z M S, Taheri-Anganeh M, Movahedpour A, Ghasemi H. lncRNA HOTAIR and Cardiovascular diseases. Funct Integr Genomics 2024; 24:165. [PMID: 39294422 DOI: 10.1007/s10142-024-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiovascular diseases (CVDs) a major contributor to global mortality rates, with a steadily rising prevalence observed across the world. Understanding the molecular mechanisms that underlie the signaling pathways implicated in the pathogenesis of CVDs represents a salient and advantageous avenue toward the development of precision and targeted therapeutics. A recent development in CVDs research is the discovery of long non-coding RNAs (lncRNAs), which are now understood to have crucial roles in the onset and development of several pathophysiological processes. The distinct expression patterns exhibited by lncRNAs in various CVDs contexts, present a significant opportunity for their utilization as both biomarkers and targets for therapeutic intervention. Among the various identified lncRNAs, HOX antisense intergenic RNA (HOTAIR) functions as signaling molecules that are significantly implicated in the pathogenesis of cardiovascular disorders in response to risk factors. HOTAIR has been observed to circulate within the bloodstream and possesses an integral epigenetic regulatory function in the transcriptional pathways of many diseases. Recent studies have suggested that HOTAIR offers promise as a biomarker for the detection and treatment of CVDs. The investigation on HOTAIR's role in CVDs, however, is still in its early phases. The goal of the current study is to give a thorough overview of recent developments in the field of analyzing the molecular mechanism of HOTAIR in controlling the pathophysiological processes of CVDs as well as its possible therapeutic uses.
Collapse
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Zafaranchi Z M
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
19
|
Li YH, Liu C, Xu RZ, Fan YP, Wang JY, Li H, Zhang J, Zhang HJ, Wang JJ, Li DK. Genome-wide analysis of long non-coding RNAs involved in the fruit development process of Cucumis melo Baogua. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1475-1491. [PMID: 39310708 PMCID: PMC11413265 DOI: 10.1007/s12298-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Melon (Cucumis melo L.) is a horticultural crop that is planted globally. Cucumis melo L. cv. Baogua is a typical melon that is suitable for studying fruit development because of its ability to adapt to different climatic conditions. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides, which play important roles in a wide range of biological processes by regulating gene expression. In this study, the transcriptome of the Baogua melon was sequenced at three stages of the process of fruit development (14 days, 21 days, and 28 days) to study the role of lncRNAs in fruit development. The cis and trans lncRNAs were subsequently predicted and identified to determine their target genes. Notably, 1716 high-confidence lncRNAs were obtained in the three groups. A subsequent differential expression analysis of the lncRNAs between the three groups revealed 388 differentially expressed lncRNAs. A total of 11 genes were analyzed further to validate the transcriptome sequencing results. Interestingly, the MELO3C001376.2 and MSTRG.571.2 genes were found to be significantly (P < 0.05) downregulated in the fruits. This study provides a basis to better understand the functions and regulatory mechanisms of lncRNAs during the development of melon fruit.
Collapse
Affiliation(s)
- Ya-hui Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Chun Liu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Run-zhe Xu
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Yu-peng Fan
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Ji-yuan Wang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Hu Li
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jian Zhang
- Institute of Vegetables, Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction By Ministry and Province), Anhui Academy of Agricultural Sciences, Huaibei Normal University, Nongke South Road 40, Hefei, 230031 Anhui Province People’s Republic of China
| | - Hui-jun Zhang
- School of Life Sciences, Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, Huaibei Normal University, Huaibei, 235000 Anhui People’s Republic of China
| | - Jing-jing Wang
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| | - Da-kui Li
- Huinan Academy of Agricultural Sciences, Huainan, 232001 Anhui Province People’s Republic of China
| |
Collapse
|
20
|
Dhatterwal P, Sharma N, Prasad M. Decoding the functionality of plant transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4745-4759. [PMID: 38761104 DOI: 10.1093/jxb/erae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Transcription factors (TFs) intricately govern cellular processes and responses to external stimuli by modulating gene expression. TFs help plants to balance the trade-off between stress tolerance and growth, thus ensuring their long-term survival in challenging environments. Understanding the factors and mechanisms that define the functionality of plant TFs is of paramount importance for unravelling the intricate regulatory networks governing development, growth, and responses to environmental stimuli in plants. This review provides a comprehensive understanding of these factors and mechanisms defining the activity of TFs. Understanding the dynamic nature of TFs has practical implications for modern molecular breeding programmes, as it provides insights into how to manipulate gene expression to optimize desired traits in crops. Moreover, recent studies also report the functional duality of TFs, highlighting their ability to switch between activation and repression modes; this represents an important mechanism for attuning gene expression. Here we discuss what the possible reasons for the dual nature of TFs are and how this duality instructs the cell fate decision during development, and fine-tunes stress responses in plants, enabling them to adapt to various environmental challenges.
Collapse
Affiliation(s)
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
21
|
García-López IJ, Vélez-Ramírez AI, Gillmor CS, Fernandez-Valverde SL. lncRNAs involved in the Shade Avoidance Syndrome (SAS) in Arabidopsis thaliana. BMC Genomics 2024; 25:802. [PMID: 39183275 PMCID: PMC11346216 DOI: 10.1186/s12864-024-10718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plant long non-coding RNAs (lncRNAs) have important regulatory roles in responses to various biotic and abiotic stresses, including light quality. However, no lncRNAs have been specifically linked to the Shade Avoidance Response (SAS). RESULTS To better understand the involvement of lncRNAs in shade avoidance, we examined RNA-seq libraries for lncRNAs with the potential to function in the neighbor proximity phenomenon in Arabidopsis thaliana (A. thaliana). Using transcriptomes generated from seedlings exposed to high and low red/far-red (R/FR) light conditions, we identified 13 lncRNA genes differentially expressed in cotyledons and 138 in hypocotyls. To infer possible functions for these lncRNAs, we used a 'guilt-by-association' approach to identify genes co-expressed with lncRNAs in a weighted gene co-expression network. Of 34 co-expression modules, 10 showed biological functions related to differential growth. We identified three potential lncRNAs co-regulated with genes related to SAS. T-DNA insertions in two of these lncRNAs were correlated with morphological differences in seedling responses to increased FR light, supporting our strategy for computational identification of lncRNAs involved in SAS. CONCLUSIONS Using a computational approach, we identified multiple lncRNAs in Arabidopsis involved in SAS. T-DNA insertions caused altered phenotypes under low R/FR light, suggesting functional roles in shade avoidance. Further experiments are needed to determine the specific mechanisms of these lncRNAs in SAS.
Collapse
Affiliation(s)
| | - Aarón I Vélez-Ramírez
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, 37684, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, 37684, México
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, 36824, Guanajuato, México.
| | - Selene L Fernandez-Valverde
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
22
|
Schnepper AP, Marques LF, Wolf IR, Kubo AMS, Valente GT. Potential global cis and trans regulation of lncRNAs in Saccharomyces cerevisiae subjected to ethanol stress. Gene 2024; 920:148521. [PMID: 38703868 DOI: 10.1016/j.gene.2024.148521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Long noncoding RNAs (lncRNAs) are regulatory RNAs. Saccharomyces cerevisiae strains transcribe hundreds of lncRNAs. LncRNAs can regulate the expression of adjacent genes (cis-regulation) or distant genes from lncRNAs (trans-regulation). Here, we analyzed the potential global cis and trans-regulation of lncRNAs of yeast subjected to ethanol stress. For potential cis regulation, for BMA641-A and S288C strains, we observed that most lncRNA-neighbor gene pairs increased the expression at a certain point followed by a decrease, and vice versa. Based on the transcriptome profile and triple helix prediction between lncRNAs and promoters of coding genes, we observed nine different ways of potential trans regulation that work in a strain-specific manner. Our data provide an initial landscape of potential cis and trans regulation in yeast, which seems to be strain-specific.
Collapse
Affiliation(s)
- Amanda Piveta Schnepper
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Farinazzo Marques
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Agatha M S Kubo
- Laboratory of Applied Biotechnology, Sāo Paulo State University (UNESP), Botucatu, SP, Brazil
| | | |
Collapse
|
23
|
Hu Z, Wu Z, Zhu Q, Ma M, Li Y, Dai X, Han S, Xiang S, Yang S, Luo J, Kong Q, Ding J. Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:3181-3197. [PMID: 38712996 DOI: 10.1111/pce.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For trees originating from boreal and temperate regions, the dormancy-to-active transition, also known as bud dormancy release and bud break, are crucial processes that allow trees to reactive growth in the spring. The molecular mechanisms underlying these two processes remain poorly understood. Here, through integrative multiomics analysis of the transcriptome, DNA methylome, and proteome, we gained insights into the reprogrammed cellular processes associated with bud dormancy release and bud break. Our findings revealed multilayer regulatory landscapes governing bud dormancy release and bud break regulation, providing a valuable reference framework for future functional studies. Based on the multiomics analysis, we have determined a novel long intergenic noncoding RNA named Phenology Responsive Intergenic lncRNA 1 (PRIR1) plays a role in the activation of bud break. that the molecular mechanism of PRIR1 has been preliminary explored, and it may partially promote bud break by activating its neighbouring gene, EXORDIUM LIKE 5 (PtEXL5), which has also been genetically confirmed as an activator for bud break. This study has revealed a lncRNA-mediated regulatory mechanism for the control of bud break in Populus, operating independently of known regulatory pathways.
Collapse
Affiliation(s)
- Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Xiaokang Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaopeng Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Songzhu Xiang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Siting Yang
- Shennongjia Academy of Forestry, Shennongjia Forestry District, Hubei, China
| | - Jie Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Centre for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Zhao Q, Zhao D, Wang Y, Li Y, Ni C, Su Z, Lian P, Liu S, Liu H, Zhang J, Yao D. Exploration of GmDof11- lncRNA13082 Module Regulating Oil Synthesis in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16889-16899. [PMID: 39021146 DOI: 10.1021/acs.jafc.4c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soybean (Glycine max [Linn.] Merr.) is an important oilseed crop. Although transcription factors (TFs) can coordinate the expression of mRNA and lncRNA, their coordination in the soybean oil synthesis pathway remains unclear. This study examined the interaction between the TF GmDof11 and lncRNA13082 and found that overexpression of GmDof11 led to an increase in the number of Arabidopsis seeds, thousand seed weight, crude protein, hydrolysis amino acid, and soluble sugar. Additionally, it reduced the triglyceride and starch contents and affected the proportion of fatty acids, increasing the contents of palmitic acid, stearic acid, and linolenic acid. The yeast two-hybrid experiments revealed that GmDof11 interacts with GmBCCP1, GmLEC1b, and GmFAB2 proteins. In the RT-qPCR analysis of transgenic soybean roots, it was found that GmDof11 can activate the production of lncRNA13082 and work in conjunction with lncRNA13082 to oversee oil synthesis and nutrient storage. Our research provides robust theoretical evidence for a comprehensive resolution of TF-lncRNA regulation in the soybean oil synthesis network.
Collapse
Affiliation(s)
- Qiuzhu Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Dingyi Zhao
- College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yashuo Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yuxin Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chang Ni
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zitong Su
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Panhang Lian
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
25
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Jiang T, Jiao T, Hu Y, Li T, Liu C, Liu Y, Jiang X, Xia T, Gao LP. Evolutionarily conserved 12-oxophytodienoate reductase trans-lncRNA pair affects disease resistance in tea ( Camellia sinensis) via the jasmonic acid signaling pathway. HORTICULTURE RESEARCH 2024; 11:uhae129. [PMID: 38966865 PMCID: PMC11220176 DOI: 10.1093/hr/uhae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/25/2024] [Indexed: 07/06/2024]
Abstract
Long non-coding RNAs (lncRNAs) have gathered significant attention due to their pivotal role in plant growth, development, and biotic and abiotic stress resistance. Despite this, there is still little understanding regarding the functions of lncRNA in these domains in the tea plant (Camellia sinensis), mainly attributable to the insufficiencies in gene manipulation techniques for tea plants. In this study, we designed a novel strategy to identify evolutionarily conserved trans-lncRNA (ECT-lncRNA) pairs in plants. We used highly consistent base sequences in the exon-overlapping region between trans-lncRNAs and their target gene transcripts. Based on this method, we successfully screened 24 ECT-lncRNA pairs from at least two or more plant species. In tea, as observed in model plants such as Arabidopsis, alfalfa, potatoes, and rice, there exists a trans-lncRNA capable of forming an ECT-lncRNA pair with transcripts of the 12-oxophytodienoate reductase (OPR) family, denoted as the OPRL/OPR pair. Considering evolutionary perspectives, the OPRL gene cluster in each species likely originates from a replication event of the OPR gene cluster. Gene manipulation and gene expression analysis revealed that CsOPRL influences disease resistance by regulating CsOPR expression in tea plants. Furthermore, the knockout of StOPRL1 in Solanum tuberosum led to aberrant growth characteristics and strong resistance to fungal infection. This study provides insights into a strategy for the screening and functional verification of ECT-lncRNA pairs.
Collapse
Affiliation(s)
- Ting Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tianming Jiao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Yingbang Hu
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Cheng Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Xiaolan Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 Anhui, China
| | - Li-Ping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036 Anhui, China
| |
Collapse
|
27
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
28
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Cheng B, Pei W, Wan K, Pan R, Zhang W. LncRNA cis- and trans-regulation provides new insight into drought stress responses in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14424. [PMID: 38973627 DOI: 10.1111/ppl.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Drought is one of the most common abiotic stresses that affect barley productivity. Long noncoding RNA (lncRNA) has been reported to be widely involved in abiotic stress, however, its function in the drought stress response in wild barley remains unclear. In this study, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNA) among two wild barley and two cultivated barley genotypes. Then, the cis-regulatory networks were according to the chromosome position and the expression level correction. The GO annotation indicates that these cis-target genes are mainly involved in "ion transport transporter activity" and "metal ion transport transporter activity". Through weighted gene co-expression network analysis (WGCNA), 10 drought-related modules were identified to contract trans-regulatory networks. The KEGG annotation demonstrated that these trans-target genes were enriched for photosynthetic physiology, brassinosteroid biosynthesis, and flavonoid metabolism. In addition, we constructed the lncRNA-mediated ceRNA regulatory network by predicting the microRNA response elements (MREs). Furthermore, the expressions of lncRNAs were verified by RT-qPCR. Functional verification of a candidate lncRNA, MSTRG.32128, demonstrated its positive role in drought response and root growth and development regulation. Hormone content analysis provided insights into the regulatory mechanisms of MSTRG.32128 in root development, revealing its involvement in auxin and ethylene signal transduction pathways. These findings advance our understanding of lncRNA-mediated regulatory mechanisms in barley under drought stress. Our results will provide new insights into the functions of lncRNAs in barley responding to drought stress.
Collapse
Affiliation(s)
- Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenyu Pei
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Kui Wan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, China
| |
Collapse
|
30
|
Numan M, Sun Y, Li G. Exploring the emerging role of long non-coding RNAs (lncRNAs) in plant biology: Functions, mechanisms of action, and future directions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108797. [PMID: 38850732 DOI: 10.1016/j.plaphy.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts that surpass 200 nucleotides in length and lack discernible coding potential. LncRNAs that have been functionally characterized have pivotal functions in several plant processes, including the regulation of flowering, and development of lateral roots. It also plays a crucial role in the plant's response to abiotic stressors and exhibits vital activities in environmental adaptation. The progress in NGS (next-generation sequencing) and functional genomics technology has facilitated the discovery of lncRNA in plant species. This review is a brief explanation of lncRNA genomics, its molecular role, and the mechanism of action in plants. The review also addresses the challenges encountered in this field and highlights promising molecular and computational methodologies that can aid in the comparative and functional analysis of lncRNAs.
Collapse
Affiliation(s)
- Mian Numan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yuge Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
31
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
32
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
33
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
34
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
35
|
Zheng Z, Li W, Ding Y, Wu Y, Jiang Q, Wang Y. Integrative transcriptome analysis uncovers common components containing CPS2 regulated by maize lncRNA GARR2 in gibberellin response. PLANTA 2024; 259:146. [PMID: 38713242 DOI: 10.1007/s00425-024-04425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
MAIN CONCLUSION The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.
Collapse
Affiliation(s)
- Zhongtian Zheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Ding
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yinting Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Qinyue Jiang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
36
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
37
|
Traubenik S, Charon C, Blein T. From environmental responses to adaptation: the roles of plant lncRNAs. PLANT PHYSIOLOGY 2024; 195:232-244. [PMID: 38246143 DOI: 10.1093/plphys/kiae034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
As sessile organisms, plants are continuously exposed to heterogeneous and changing environments and constantly need to adapt their growth strategies. They have evolved complex mechanisms to recognize various stress factors, activate appropriate signaling pathways, and respond accordingly by reprogramming the expression of multiple genes at the transcriptional, post-transcriptional, and even epigenome levels to tolerate stressful conditions such as drought, high temperature, nutrient deficiency, and pathogenic interactions. Apart from protein-coding genes, long non-coding RNAs (lncRNAs) have emerged as key players in plant adaptation to environmental stresses. They are transcripts larger than 200 nucleotides without protein-coding potential. Still, they appear to regulate a wide range of processes, including epigenetic modifications and chromatin reorganization, as well as transcriptional and post-transcriptional modulation of gene expression, allowing plant adaptation to various environmental stresses. LncRNAs can positively or negatively modulate stress responses, affecting processes such as hormone signaling, temperature tolerance, and nutrient deficiency adaptation. Moreover, they also seem to play a role in stress memory, wherein prior exposure to mild stress enhances plant ability to adapt to subsequent stressful conditions. In this review, we summarize the contribution of lncRNAs in plant adaptation to biotic and abiotic stresses, as well as stress memory. The complex evolutionary conservation of lncRNAs is also discussed and provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Soledad Traubenik
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Céline Charon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Xu WB, Cao F, Liu P, Yan K, Guo QH. The multifaceted role of RNA-based regulation in plant stress memory. FRONTIERS IN PLANT SCIENCE 2024; 15:1387575. [PMID: 38736453 PMCID: PMC11082352 DOI: 10.3389/fpls.2024.1387575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.
Collapse
Affiliation(s)
- Wei-Bo Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Qian-Huan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
39
|
Xu F, Dong H, Guo W, Le L, Jing Y, Fletcher JC, Sun J, Pu L. The trxG protein ULT1 regulates Arabidopsis organ size by interacting with TCP14/15 to antagonize the LIM peptidase DA1 for H3K4me3 on target genes. PLANT COMMUNICATIONS 2024; 5:100819. [PMID: 38217289 PMCID: PMC11009162 DOI: 10.1016/j.xplc.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis. Loss of ULT1 function significantly increases rosette leaf, petal, silique, and seed size, whereas overexpression of ULT1 results in reduced organ size. ULT1 associates with TCP14 and TCP15 to co-regulate cell size by affecting cellular endoreduplication. Transcriptome analysis revealed that ULT1 and TCP14/15 regulate common target genes involved in endoreduplication and leaf development. ULT1 can be recruited by TCP14/15 to promote lysine 4 of histone H3 trimethylation at target genes, activating their expression to determine final cell size. Furthermore, we found that ULT1 influences the interaction of DA1 and TCP14/15 and antagonizes the effect of DA1 on TCP14/15 degradation. Collectively, our findings reveal a novel epigenetic mechanism underlying the regulation of organ size in Arabidopsis.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service, Albany, CA 94710, USA
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
40
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
41
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
42
|
Zhao Y, Liu Y, Zhang F, Wang ZY, Mysore KS, Wen J, Zhou C. The long noncoding RNA LAL contributes to salinity tolerance by modulating LHCB1s' expression in Medicago truncatula. Commun Biol 2024; 7:289. [PMID: 38459083 PMCID: PMC10923924 DOI: 10.1038/s42003-024-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.
Collapse
Affiliation(s)
- Yang Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Feiran Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, P.R. China.
| |
Collapse
|
43
|
Wang H, Jia Y, Bai X, Gong W, Liu G, Wang H, Xin J, Wu Y, Zheng H, Liu H, Wang J, Zou D, Zhao H. Whole-Transcriptome Profiling and Functional Prediction of Long Non-Coding RNAs Associated with Cold Tolerance in Japonica Rice Varieties. Int J Mol Sci 2024; 25:2310. [PMID: 38396991 PMCID: PMC10889138 DOI: 10.3390/ijms25042310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant.
Collapse
Affiliation(s)
| | - Yan Jia
- Correspondence: (Y.J.); (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (H.W.); (X.B.); (W.G.); (G.L.); (H.W.); (J.X.); (Y.W.); (H.Z.); (H.L.); (J.W.); (D.Z.)
| |
Collapse
|
44
|
Liu J, Zhong X. Epiallelic variation of non-coding RNA genes and their phenotypic consequences. Nat Commun 2024; 15:1375. [PMID: 38355746 PMCID: PMC10867003 DOI: 10.1038/s41467-024-45771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epigenetic variations contribute greatly to the phenotypic plasticity and diversity. Current functional studies on epialleles have predominantly focused on protein-coding genes, leaving the epialleles of non-coding RNA (ncRNA) genes largely understudied. Here, we uncover abundant DNA methylation variations of ncRNA genes and their significant correlations with plant adaptation among 1001 natural Arabidopsis accessions. Through genome-wide association study (GWAS), we identify large numbers of methylation QTL (methylQTL) that are independent of known DNA methyltransferases and enriched in specific chromatin states. Proximal methylQTL closely located to ncRNA genes have a larger effect on DNA methylation than distal methylQTL. We ectopically tether a DNA methyltransferase MQ1v to miR157a by CRISPR-dCas9 and show de novo establishment of DNA methylation accompanied with decreased miR157a abundance and early flowering. These findings provide important insights into the genetic basis of epigenetic variations and highlight the contribution of epigenetic variations of ncRNA genes to plant phenotypes and diversity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
45
|
He Z, Lan Y, Zhou X, Yu B, Zhu T, Yang F, Fu LY, Chao H, Wang J, Feng RX, Zuo S, Lan W, Chen C, Chen M, Zhao X, Hu K, Chen D. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100717. [PMID: 37715446 PMCID: PMC10873878 DOI: 10.1016/j.xplc.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The plant genome produces an extremely large collection of long noncoding RNAs (lncRNAs) that are generally expressed in a context-specific manner and have pivotal roles in regulation of diverse biological processes. Here, we mapped the transcriptional heterogeneity of lncRNAs and their associated gene regulatory networks at single-cell resolution. We generated a comprehensive cell atlas at the whole-organism level by integrative analysis of 28 published single-cell RNA sequencing (scRNA-seq) datasets from juvenile Arabidopsis seedlings. We then provided an in-depth analysis of cell-type-related lncRNA signatures that show expression patterns consistent with canonical protein-coding gene markers. We further demonstrated that the cell-type-specific expression of lncRNAs largely explains their tissue specificity. In addition, we predicted gene regulatory networks on the basis of motif enrichment and co-expression analysis of lncRNAs and mRNAs, and we identified putative transcription factors orchestrating cell-type-specific expression of lncRNAs. The analysis results are available at the single-cell-based plant lncRNA atlas database (scPLAD; https://biobigdata.nju.edu.cn/scPLAD/). Overall, this work demonstrates the power of integrative single-cell data analysis applied to plant lncRNA biology and provides fundamental insights into lncRNA expression specificity and associated gene regulation.
Collapse
Affiliation(s)
- Zhaohui He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yangming Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bianjiong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liang-Yu Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Rong-Xu Feng
- Zhejiang Zhoushan High School, Zhoushan 316099, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Dai Y, Gao X, Zhang S, Li F, Zhang H, Li G, Sun R, Zhang S, Hou X. Exploring the Regulatory Dynamics of BrFLC-Associated lncRNA in Modulating the Flowering Response of Chinese Cabbage. Int J Mol Sci 2024; 25:1924. [PMID: 38339202 PMCID: PMC10856242 DOI: 10.3390/ijms25031924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Vernalization plays a crucial role in the flowering and yield of Chinese cabbage, a process intricately influenced by long non-coding RNAs (lncRNAs). Our research focused on lncFLC1, lncFLC2a, and lncFLC2b, which emerged as key players in this process. These lncRNAs exhibited an inverse expression pattern to the flowering repressor genes FLOWERING LOCUS C 1 (BrFLC1) and FLOWERING LOCUS C 2 (BrFLC2) during vernalization, suggesting a complex regulatory mechanism. Notably, their expression in the shoot apex and leaves was confirmed through in fluorescent in situ hybridization (FISH). Furthermore, when these lncRNAs were overexpressed in Arabidopsis, a noticeable acceleration in flowering was observed, unveiling functional similarities to Arabidopsis's COLD ASSISTED INTRONIC NONCODING RNA (COOLAIR). This resemblance suggests a potentially conserved regulatory mechanism across species. This study not only enhances our understanding of lncRNAs in flowering regulation, but also opens up new possibilities for their application in agricultural practices.
Collapse
Affiliation(s)
- Yun Dai
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Xinyu Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
47
|
Cai J, Zhang Y, He R, Jiang L, Qu Z, Gu J, Yang J, Legascue MF, Wang ZY, Ariel F, Adelson DL, Zhu Y, Wang D. LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO Rep 2024; 25:796-812. [PMID: 38177920 PMCID: PMC10897447 DOI: 10.1038/s44319-023-00030-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.
Collapse
Affiliation(s)
- Jingjing Cai
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Yongdi Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China.
| |
Collapse
|
48
|
Ahn JY, Subburaj S, Yan F, Yao J, Chandrasekaran A, Ahn KG, Lee GJ. Molecular Evaluation of the Effects of FLC Homologs and Coordinating Regulators on the Flowering Responses to Vernalization in Cabbage ( Brassica oleracea var. capitata) Genotypes. Genes (Basel) 2024; 15:154. [PMID: 38397144 PMCID: PMC10887945 DOI: 10.3390/genes15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The flowering loci of cabbage must be understood to boost their productivity. In this study, to clarify the flowering mechanisms of cabbage, we examined the three flowering repressors BoFLC1, 2 and 3, and the flowering regulators BoGI, BoCOOLAIR, and BoVIN3 of early (CAB1), middle (CAB3), and late (CAB5) flowering cabbage genotypes. Analysis of allele-specifically amplified genomic DNA and various sequence alignments demonstrated that maximal insertions and deletions influenced cabbage flowering behavior, notably in CAB3 and CAB5. Phylogenetic studies showed that BoFLC1, 2, and 3 in the CAB1, 3, and 5 genotypes had the highest homologies to other Brassica species, with CAB3 and 5 the most similar. Although CAB3 and CAB5 have comparable genetic patterns, flowering repressors and flowering regulators were investigated individually with and without vernalization to determine their minor flowering differences. The expression investigation revealed that vernalized CAB5 downregulated all BoFLC genes compared to CAB3 and, in contrast, CAB3 exhibited upregulated BoCOOLAIR. We hypothesized that the CAB3 BoFLC locus' additional insertions may have led to BoCOOLAIR overexpression and BoFLC downregulation. This study sheds light on cabbage genotypes-particularly those of CAB1 and CAB5-and suggests that structural variations in BoFLC2 and 3 bind flowering regulators, such as COOLAIR, which may affect cabbage flowering time.
Collapse
Affiliation(s)
- Ju-Young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Jian Yao
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Kyoung-Gu Ahn
- Joen Seed Co., Ltd., Goesan 28051, Republic of Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| |
Collapse
|
49
|
Nielsen M, Menon G, Zhao Y, Mateo-Bonmati E, Wolff P, Zhou S, Howard M, Dean C. COOLAIR and PRC2 function in parallel to silence FLC during vernalization. Proc Natl Acad Sci U S A 2024; 121:e2311474121. [PMID: 38236739 PMCID: PMC10823242 DOI: 10.1073/pnas.2311474121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Noncoding transcription induces chromatin changes that can mediate environmental responsiveness, but the causes and consequences of these mechanisms are still unclear. Here, we investigate how antisense transcription (termed COOLAIR) interfaces with Polycomb Repressive Complex 2 (PRC2) silencing during winter-induced epigenetic regulation of Arabidopsis FLOWERING LOCUS C (FLC). We use genetic and chromatin analyses on lines ineffective or hyperactive for the antisense pathway in combination with computational modeling to define the mechanisms underlying FLC repression. Our results show that FLC is silenced through pathways that function with different dynamics: a COOLAIR transcription-mediated pathway capable of fast response and in parallel a slow PRC2 switching mechanism that maintains each allele in an epigenetically silenced state. Components of both the COOLAIR and PRC2 pathways are regulated by a common transcriptional regulator (NTL8), which accumulates by reduced dilution due to slow growth at low temperature. The parallel activities of the regulatory steps, and their control by temperature-dependent growth dynamics, create a flexible system for registering widely fluctuating natural temperature conditions that change year on year, and yet ensure robust epigenetic silencing of FLC.
Collapse
Affiliation(s)
- Mathias Nielsen
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Govind Menon
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Yusheng Zhao
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Eduardo Mateo-Bonmati
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Philip Wolff
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Shaoli Zhou
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
50
|
He Z, Li M, Pan X, Peng Y, Shi Y, Han Q, Shi M, She L, Borovskii G, Chen X, Gu X, Cheng X, Zhang W. R-loops act as regulatory switches modulating transcription of COLD-responsive genes in rice. THE NEW PHYTOLOGIST 2024; 241:267-282. [PMID: 37849024 DOI: 10.1111/nph.19315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
COLD is a major naturally occurring stress that usually causes complex symptoms and severe yield loss in crops. R-loops function in various cellular processes, including development and stress responses, in plants. However, how R-loops function in COLD responses is largely unknown in COLD susceptible crops like rice (Oryza sativa L.). We conducted DRIP-Seq along with other omics data (RNA-Seq, DNase-Seq and ChIP-Seq) in rice with or without COLD treatment. COLD treatment caused R-loop reprogramming across the genome. COLD-biased R-loops had higher GC content and novel motifs for the binding of distinct transcription factors (TFs). Moreover, R-loops can directly/indirectly modulate the transcription of a subset of COLD-responsive genes, which can be mediated by R-loop overlapping TF-centered or cis-regulatory element-related regulatory networks and lncRNAs, accounting for c. 60% of COLD-induced expression of differential genes in rice, which is different from the findings in Arabidopsis. We validated two R-loop loci with contrasting (negative/positive) roles in the regulation of two individual COLD-responsive gene expression, as potential targets for enhanced COLD resistance. Our study provides detailed evidence showing functions of R-loop reprogramming during COLD responses and provides some potential R-loop loci for genetic and epigenetic manipulation toward breeding of rice varieties with enhanced COLD tolerance.
Collapse
Affiliation(s)
- Zexue He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiucai Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei Province, 441057, China
| | - Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Qi Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Manli Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Linwei She
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, 664033, Russia
| | - Xiaojun Chen
- Key Lab of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, YinChuan, 750002, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|