1
|
Harrison TE, Alam N, Farrell B, Quinkert D, Lias AM, King LDW, Barfod LK, Draper SJ, Campeotto I, Higgins MK. Rational structure-guided design of a blood stage malaria vaccine immunogen presenting a single epitope from PfRH5. EMBO Mol Med 2024; 16:2539-2559. [PMID: 39223355 PMCID: PMC11473951 DOI: 10.1038/s44321-024-00123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
There is an urgent need for improved malaria vaccine immunogens. Invasion of erythrocytes by Plasmodium falciparum is essential for its life cycle, preceding symptoms of disease and parasite transmission. Antibodies which target PfRH5 are highly effective at preventing erythrocyte invasion and the most potent growth-inhibitory antibodies bind a single epitope. Here we use structure-guided approaches to design a small synthetic immunogen, RH5-34EM which recapitulates this epitope. Structural biology and biophysics demonstrate that RH5-34EM is correctly folded and binds neutralising monoclonal antibodies with nanomolar affinity. In immunised rats, RH5-34EM induces PfRH5-targeting antibodies that inhibit parasite growth. While PfRH5-specific antibodies were induced at a lower concentration by RH5-34EM than by PfRH5, RH5-34EM induced antibodies that were a thousand-fold more growth-inhibitory as a factor of PfRH5-specific antibody concentration. Finally, we show that priming with RH5-34EM and boosting with PfRH5 achieves the best balance between antibody quality and quantity and induces the most effective growth-inhibitory response. This rationally designed vaccine immunogen is now available for use as part of future malaria vaccines, alone or in combination with other immunogens.
Collapse
Affiliation(s)
- Thomas E Harrison
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Nawsad Alam
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Brendan Farrell
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Doris Quinkert
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Amelia M Lias
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Lloyd D W King
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Lea K Barfod
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Ivan Campeotto
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
- School of Biosciences, Division of Microbiology, Brewing and Biotechnology, University of Nottingham, Sutton Bonnington Campus, Sutton Bonington, LE12 5RD, UK.
| | - Matthew K Higgins
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Listov D, Goverde CA, Correia BE, Fleishman SJ. Opportunities and challenges in design and optimization of protein function. Nat Rev Mol Cell Biol 2024; 25:639-653. [PMID: 38565617 PMCID: PMC7616297 DOI: 10.1038/s41580-024-00718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities. Additionally, protein optimization methods have improved the stability and activity of complex eukaryotic proteins. Thanks to their increased reliability, computational design methods have been applied to improve therapeutics and enzymes for green chemistry and have generated vaccine antigens, antivirals and drug-delivery nano-vehicles. Moreover, the high success of design methods reflects an increased understanding of basic rules that govern the relationships among protein sequence, structure and function. However, de novo design is still limited mostly to α-helix bundles, restricting its potential to generate sophisticated enzymes and diverse protein and small-molecule binders. Designing complex protein structures is a challenging but necessary next step if we are to realize our objective of generating new-to-nature activities.
Collapse
Affiliation(s)
- Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sarel Jacob Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D, Huang X. Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv Healthc Mater 2024; 13:e2302755. [PMID: 38733291 PMCID: PMC11305917 DOI: 10.1002/adhm.202302755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/04/2024] [Indexed: 05/13/2024]
Abstract
More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Po-Han Lin
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Benha University, Benha, 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Rashidi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nachy Soloff
- Hatzalah of Michigan, 13650 Oak Park Blvd., Oak Park, MI, 48237, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 250100, China
| | - Steven Bolin
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Ma Z, Lieutenant K, Voigt J, Schrader TE, Gutberlet T. Conceptual design of a macromolecular diffractometer for the Jülich high brilliance source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:065104. [PMID: 38832850 DOI: 10.1063/5.0203509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
In this work, a concept for a neutron diffractometer for high-resolution macromolecular structures has been developed within the Jülich High Brilliance Neutron Source (HBS) project. The SELENE optics are adapted to the requirements of the instrument to achieve a tunable low background neutron beam at mm2 scale sample area. With the optimized guide geometry, a low background neutron beam can be achieved at the small sample area with tunable divergence and size. For the 1 × 1 mm2 sample, a flux of 1.10 × 107 n/s/cm2 for 0.38° divergence is calculated in the 2-4 Å wavelength range, which is about 84.6% of the flux at MaNDi of the high-power spallation source SNS at ORNL. Virtual neutron scattering experiments have been performed to demonstrate the instrument's capabilities for studies of mm scale samples with large unit cells. Results of Vitesse simulations indicate that unit cell sizes of up to 200 Å are possible to be resolved with the proposed instrument.
Collapse
Affiliation(s)
- Z Ma
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52425 Jülich, Germany
- Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - K Lieutenant
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J Voigt
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - T E Schrader
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748 Garching, Germany
| | - T Gutberlet
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
5
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
6
|
Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Nat Commun 2023; 14:7897. [PMID: 38036525 PMCID: PMC10689493 DOI: 10.1038/s41467-023-43638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel J Marston
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Caitlin Harris
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kaitlyn Winters
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dieter Mielke
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
| | - Lu Xiaozhi
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Qi Yin
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Eaton
- Department of Surgery, Duke University, Durham, NC, USA
| | - Justine Mae Flores
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Austin Harner
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa D Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Beverly
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Elizabeth Van Itallie
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Pranay Vure
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University, Durham, NC, USA
| | - Taylor Keyes
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Elizabeth A Petzold
- Center for Infectious Diseases and Diagnostic Innovation, Duke University Medical Center, Durham, NC, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Kapingidza B, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Cantazaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Itallie EV, Vure P, Manness B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori D, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Engineered Immunogens to Elicit Antibodies Against Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530277. [PMID: 36909627 PMCID: PMC10002628 DOI: 10.1101/2023.02.27.530277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.
Collapse
|
8
|
Cummins MC, Tripathy A, Sondek J, Kuhlman B. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. Protein Sci 2023; 32:e4713. [PMID: 37368504 PMCID: PMC10360382 DOI: 10.1002/pro.4713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gαq and its effector PLC-β isozymes. Several of the designed proteins remain folded above 90°C and bind to Gαq with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gαq , the designed proteins inhibit activation of PLC-β isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Ashutosh Tripathy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - John Sondek
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Kalita P, Tripathi T, Padhi AK. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS CENTRAL SCIENCE 2023; 9:602-613. [PMID: 37122454 PMCID: PMC10042144 DOI: 10.1021/acscentsci.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
As the world struggles with the ongoing COVID-19 pandemic, unprecedented obstacles have continuously been traversed as new SARS-CoV-2 variants continually emerge. Infectious disease outbreaks are unavoidable, but the knowledge gained from the successes and failures will help create a robust health management system to deal with such pandemics. Previously, scientists required years to develop diagnostics, therapeutics, or vaccines; however, we have seen that, with the rapid deployment of high-throughput technologies and unprecedented scientific collaboration worldwide, breakthrough discoveries can be accelerated and insights broadened. Computational protein design (CPD) is a game-changing new technology that has provided alternative therapeutic strategies for pandemic management. In addition to the development of peptide-based inhibitors, miniprotein binders, decoys, biosensors, nanobodies, and monoclonal antibodies, CPD has also been used to redesign native SARS-CoV-2 proteins and human ACE2 receptors. We discuss how novel CPD strategies have been exploited to develop rationally designed and robust COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Parismita Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Regional
Director’s Office, Indira Gandhi
National Open University, Regional Centre Kohima, Kenuozou, Kohima 797001, India
| | - Aditya K. Padhi
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Rahman MA, Becerra-Flores M, Patskovsky Y, Silva de Castro I, Bissa M, Basu S, Shen X, Williams LD, Sarkis S, N’guessan KF, LaBranche C, Tomaras GD, Aye PP, Veazey R, Paquin-Proulx D, Rao M, Franchini G, Cardozo T. Cholera toxin B scaffolded, focused SIV V2 epitope elicits antibodies that influence the risk of SIV mac251 acquisition in macaques. Front Immunol 2023; 14:1139402. [PMID: 37153584 PMCID: PMC10160393 DOI: 10.3389/fimmu.2023.1139402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction An efficacious HIV vaccine will need to elicit a complex package of innate, humoral, and cellular immune responses. This complex package of responses to vaccine candidates has been studied and yielded important results, yet it has been a recurring challenge to determine the magnitude and protective effect of specific in vivo immune responses in isolation. We therefore designed a single, viral-spike-apical, epitope-focused V2 loop immunogen to reveal individual vaccine-elicited immune factors that contribute to protection against HIV/SIV. Method We generated a novel vaccine by incorporating the V2 loop B-cell epitope in the cholera toxin B (CTB) scaffold and compared two new immunization regimens to a historically protective 'standard' vaccine regimen (SVR) consisting of 2xDNA prime boosted with 2xALVAC-SIV and 1xΔV1gp120. We immunized a cohort of macaques with 5xCTB-V2c vaccine+alum intramuscularly simultaneously with topical intrarectal vaccination of CTB-V2c vaccine without alum (5xCTB-V2/alum). In a second group, we tested a modified version of the SVR consisting of 2xDNA prime and boosted with 1xALVAC-SIV and 2xALVAC-SIV+CTB-V2/alum, (DA/CTB-V2c/alum). Results In the absence of any other anti-viral antibodies, V2c epitope was highly immunogenic when incorporated in the CTB scaffold and generated highly functional anti-V2c antibodies in the vaccinated animals. 5xCTB-V2c/alum vaccination mediated non-neutralizing ADCC activity and efferocytosis, but produced low avidity, trogocytosis, and no neutralization of tier 1 virus. Furthermore, DA/CTB-V2c/alum vaccination also generated lower total ADCC activity, avidity, and neutralization compared to the SVR. These data suggest that the ΔV1gp120 boost in the SVR yielded more favorable immune responses than its CTB-V2c counterpart. Vaccination with the SVR generates CCR5- α4β7+CD4+ Th1, Th2, and Th17 cells, which are less likely to be infected by SIV/HIV and likely contributed to the protection afforded in this regimen. The 5xCTB-V2c/alum regimen likewise elicited higher circulating CCR5- α4β7+ CD4+ T cells and mucosal α4β7+ CD4+ T cells compared to the DA/CTB-V2c/alum regimen, whereas the first cell type was associated with reduced risk of viral acquisition. Conclusion Taken together, these data suggest that individual viral spike B-cell epitopes can be highly immunogenic and functional as isolated immunogens, although they might not be sufficient on their own to provide full protection against HIV/SIV infection.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Manuel Becerra-Flores
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Yury Patskovsky
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Shraddha Basu
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - LaTonya D. Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Pyone Pyone Aye
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Ronald Veazey
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Timothy Cardozo
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Cummins MC, Tripathy A, Sondek J, Kuhlman B. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534629. [PMID: 37034763 PMCID: PMC10081213 DOI: 10.1101/2023.03.28.534629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gα q and its effector PLC-β isozymes. Several of the designed proteins remain folded above 90°C and bind to Gα q with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gα q , the designed proteins inhibit activation of PLC-β isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection. statement for broader audience Engineered proteins that bind to specific target proteins are useful as research reagents, diagnostics, and therapeutics. We used computational protein design to engineer de novo proteins that bind and competitively inhibit the G protein, Gα q , which is an oncogene for uveal melanomas. This computational method is a general approach that should be useful for designing competitive inhibitors against other proteins of interest.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John Sondek
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Tobin AR, Crow R, Urusova DV, Klima JC, Tolia NH, Strauch E. Inhibition of a malaria host-pathogen interaction by a computationally designed inhibitor. Protein Sci 2023; 32:e4507. [PMID: 36367441 PMCID: PMC9793980 DOI: 10.1002/pro.4507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Malaria is a substantial global health burden with 229 million cases in 2019 and 450,000 deaths annually. Plasmodium vivax is the most widespread malaria-causing parasite putting 2.5 billion people at risk of infection. P. vivax has a dormant liver stage and therefore can exist for long periods undetected. Its blood-stage can cause severe reactions and hospitalization. Few treatment and detection options are available for this pathogen. A unique characteristic of P. vivax is that it depends on the Duffy antigen/receptor for chemokines (DARC) on the surface of host red blood cells for invasion. P. vivax employs the Duffy binding protein (DBP) to bind to DARC. We first de novo designed a three helical bundle scaffolding database which was screened via protease digestions for stability. Protease-resistant scaffolds highlighted thresholds for stability, which we utilized for selecting DARC mimetics that we subsequentially designed through grafting and redesign of these scaffolds. The optimized design small helical protein disrupts the DBP:DARC interaction. The inhibitor blocks the receptor binding site on DBP and thus forms a strong foundation for a therapeutic that will inhibit reticulocyte infection and prevent the pathogenesis of P. vivax malaria.
Collapse
Affiliation(s)
- Autumn R. Tobin
- Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Rachel Crow
- Department of MicrobiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Darya V. Urusova
- Department of Molecular MicrobiologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Jason C. Klima
- Institute for Protein DesignUniversity of WashingtonSeattleWashingtonUSA
- Department of BiochemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Niraj H. Tolia
- Department of Molecular MicrobiologyWashington University School of MedicineSaint LouisMissouriUSA
- Host‐Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria, Immunology and Vaccinology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Eva‐Maria Strauch
- Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of BioinformaticsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
14
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
15
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
16
|
Castro KM, Scheck A, Xiao S, Correia BE. Computational design of vaccine immunogens. Curr Opin Biotechnol 2022; 78:102821. [PMID: 36279815 DOI: 10.1016/j.copbio.2022.102821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Computational protein engineering has enabled the rational design of customized proteins, which has propelled both sequence-based and structure-based immunogen engineering and delivery. By discerning antigenic determinants of viral pathogens, computational methods have been implemented to successfully engineer representative viral strains able to elicit broadly neutralizing responses or present antigenic sites of viruses for focused immune responses. Combined with improvements in customizable nanoparticle design, immunogens are multivalently displayed to enhance immune responses. These rationally designed immunogens offer unique and powerful approaches to engineer vaccines for pathogens, which have eluded traditional approaches.
Collapse
Affiliation(s)
- Karla M Castro
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Shuhao Xiao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
17
|
Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity. Int J Biol Macromol 2022; 222:2467-2478. [PMID: 36220405 PMCID: PMC9546781 DOI: 10.1016/j.ijbiomac.2022.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
SARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19. Although HR1 and HR2 have been described as transiently exposed during the fusion process, no significant antibody responses against these S2 regions have been reported. Here we designed chimeric proteins that imitate highly stable HR1 helical trimers and strongly bind to HR2. The proteins have broad inhibitory activity against WT B.1 and BA.1 viruses. Sera from COVID-19 convalescent donors showed significant levels of reactive antibodies (IgG and IgA) against the HR1 mimetic proteins, whereas these antibody responses were absent in sera from uninfected donors. Moreover, both inhibitory activity and antigenicity of the proteins correlate positively with their structural stability but not with the number of amino acid changes in their HR1 sequences, indicating a conformational and conserved nature of the involved epitopes. Our results reveal previously undetected spike epitopes that may guide the design of new robust COVID-19 vaccines and therapies.
Collapse
|
18
|
Burdukiewicz M, Rafacz D, Barbach A, Hubicka K, Bąkała L, Lassota A, Stecko J, Szymańska N, Wojciechowski J, Kozakiewicz D, Szulc N, Chilimoniuk J, Jęśkowiak I, Gąsior-Głogowska M, Kotulska M. AmyloGraph: a comprehensive database of amyloid-amyloid interactions. Nucleic Acids Res 2022; 51:D352-D357. [PMID: 36243982 PMCID: PMC9825533 DOI: 10.1093/nar/gkac882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023] Open
Abstract
Information about the impact of interactions between amyloid proteins on their fibrillization propensity is scattered among many experimental articles and presented in unstructured form. We manually curated information located in almost 200 publications (selected out of 562 initially considered), obtaining details of 883 experimentally studied interactions between 46 amyloid proteins or peptides. We also proposed a novel standardized terminology for the description of amyloid-amyloid interactions, which is included in our database, covering all currently known types of such a cross-talk, including inhibition of fibrillization, cross-seeding and other phenomena. The new approach allows for more specific studies on amyloids and their interactions, by providing very well-defined data. AmyloGraph, an online database presenting information on amyloid-amyloid interactions, is available at (http://AmyloGraph.com/). Its functionalities are also accessible as the R package (https://github.com/KotulskaLab/AmyloGraph). AmyloGraph is the only publicly available repository for experimentally determined amyloid-amyloid interactions.
Collapse
Affiliation(s)
| | - Dominik Rafacz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Agnieszka Barbach
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Hubicka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Laura Bąkała
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Anna Lassota
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jakub Stecko
- Faculty of Medicine, Wrocław Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Natalia Szymańska
- Faculty of Medicine, Wrocław Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Kozakiewicz
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jarosław Chilimoniuk
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Izabela Jęśkowiak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
19
|
Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022; 21:676-696. [PMID: 35725925 PMCID: PMC9207876 DOI: 10.1038/s41573-022-00495-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
Abstract
Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.
Collapse
Affiliation(s)
- Giuseppe Pantaleo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig Fenwick
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Victor S Joo
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Lausanne, Switzerland.
| |
Collapse
|
20
|
A Hemagglutinin Stem Vaccine Designed Rationally by AlphaFold2 Confers Broad Protection against Influenza B Infection. Viruses 2022; 14:v14061305. [PMID: 35746776 PMCID: PMC9229588 DOI: 10.3390/v14061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Two lineages of influenza B viruses (IBV) co-circulating in human beings have been posing a significant public health burden worldwide. A substantial number of broadly neutralizing antibodies (bnAbs) have been identified targeting conserved epitopes on hemagglutinin (HA) stem domain, posing great interest for universal influenza vaccine development. Various strategies to design immunogens that selectively present these conserved epitopes are being explored. However, it has been a challenge to retain native conformation of the HA stem region, especially for soluble expression in prokaryotic systems. Here, using a structure prediction tool AlphaFold2, we rationally designed a stable stem antigen “B60-Stem-8071”, an HA stem vaccine derived from B/Brisbane/60/2006 grafted with a CR8071 epitope as a linker. The B60-Stem-8071 exhibited better solubility and more stable expression in the E. coli system compared to the naïve HA stem antigen. Immunization with B60-Stem-8071 in mice generated cross-reactive antibodies and protected mice broadly against lethal challenge with Yamagata and Victoria lineages of influenza B virus. Notably, soluble expression of B60-stem-8071 in the E. coli system showed the potential to produce the influenza B vaccine in a low-cost way. This study represents a proof of concept for the rational design of HA stem antigen based on structure prediction and analysis.
Collapse
|
21
|
Marchand A, Van Hall-Beauvais AK, Correia BE. Computational design of novel protein–protein interactions – An overview on methodological approaches and applications. Curr Opin Struct Biol 2022; 74:102370. [DOI: 10.1016/j.sbi.2022.102370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
|
22
|
Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathog 2022; 18:e1010518. [PMID: 35584193 PMCID: PMC9170092 DOI: 10.1371/journal.ppat.1010518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/06/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023] Open
Abstract
The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 -membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.
Collapse
Affiliation(s)
- Clara T. Schoeder
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Amandeep K. Sangha
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kaitlyn V. Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Delphine C. Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Xuan Zhang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jinhui Dong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Erica Armstrong
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Rachel Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, Unites States, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
23
|
Vishweshwaraiah YL, Dokholyan NV. Toward rational vaccine engineering. Adv Drug Deliv Rev 2022; 183:114142. [PMID: 35150769 PMCID: PMC8931536 DOI: 10.1016/j.addr.2022.114142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Technological revolutions in several fields have pushed the boundaries of vaccine design and provided new avenues for vaccine development. Next-generation vaccine platforms have shown promise in targeting challenging antigens, for which traditional approaches have been ineffective. With advances in protein engineering, structural biology, computational biology and immunology, the structural vaccinology approach, which uses protein structure information to develop immunogens, holds promise for future vaccine design. In this review, we highlight various vaccine development strategies, along with their advantages and limitations. We discuss the rational vaccine design approach, which focuses on structure-based vaccine design. Finally, we discuss antigen engineering using the epitope-scaffold approach, gaps in structural vaccinology, and remaining challenges in vaccine design.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
24
|
Sjöström DJ, Mohlin C, Ambrosetti E, Garforth SJ, Teixeira AI, Bjelic S. Motif-driven protein binder design towards transferrin receptor helical domain. FEBS J 2021; 289:2935-2947. [PMID: 34862739 DOI: 10.1111/febs.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Human transferrin receptor 1 (TfR) is necessary for the delivery of the iron carrier protein transferrin into cells and can be utilized for targeted delivery across cellular membranes. Binding of transferrin to the receptor is regulated by hereditary hemochromatosis protein (HFE), an iron regulatory protein that partly shares a binding site with transferrin on TfR. Here, we derived essential binding interactions from HFE and computationally grafted these into a library of small protein scaffolds. One of the designed proteins, TB08, was further optimized computationally and experimentally to identify variants with improved binding to TfR. The optimized variant, TB08 S3.1, expressed well in the E. coli expression system and had an affinity to TfR in the low micromolar range, Kd ≈ 1 μm, as determined by surface plasmon resonance. A binding competition assay with transferrin further confirmed the interaction of the evolved variant to TfR at the shared binding surface. Additionally, the GFP-tagged evolved variant of TB08 demonstrated cellular internalization as determined by fluorescent and confocal microscopy in HeLa cells. The designed protein is small, allows for robust cargo tagging, and interacts specifically with TfR, thus making it a valuable tool for the characterization of TfR-mediated cellular transport mechanisms and for the assessment of engineering strategies for cargo delivery across cell membranes.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Elena Ambrosetti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana I Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
25
|
Hussain M, Cummins MC, Endo-Streeter S, Sondek J, Kuhlman B. Designer proteins that competitively inhibit Gα q by targeting its effector site. J Biol Chem 2021; 297:101348. [PMID: 34715131 PMCID: PMC8633581 DOI: 10.1016/j.jbc.2021.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
During signal transduction, the G protein, Gαq, binds and activates phospholipase C-β isozymes. Several diseases have been shown to manifest upon constitutively activating mutation of Gαq, such as uveal melanoma. Therefore, methods are needed to directly inhibit Gαq. Previously, we demonstrated that a peptide derived from a helix-turn-helix (HTH) region of PLC-β3 (residues 852-878) binds Gαq with low micromolar affinity and inhibits Gαq by competing with full-length PLC-β isozymes for binding. Since the HTH peptide is unstructured in the absence of Gαq, we hypothesized that embedding the HTH in a folded protein might stabilize the binding-competent conformation and further improve the potency of inhibition. Using the molecular modeling software Rosetta, we searched the Protein Data Bank for proteins with similar HTH structures near their surface. The candidate proteins were computationally docked against Gαq, and their surfaces were redesigned to stabilize this interaction. We then used yeast surface display to affinity mature the designs. The most potent design bound Gαq/i with high affinity in vitro (KD = 18 nM) and inhibited activation of PLC-β isozymes in HEK293 cells. We anticipate that our genetically encoded inhibitor will help interrogate the role of Gαq in healthy and disease model systems. Our work demonstrates that grafting interaction motifs into folded proteins is a powerful approach for generating inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Mahmud Hussain
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Cummins
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stuart Endo-Streeter
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John Sondek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
26
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
27
|
Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, Rosen LE, di Iulio J, Jerak J, Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, Vetti E, Cassotta A, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, Riva A, Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, Corti D, Veesler D. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021; 373:1109-1116. [PMID: 34344823 PMCID: PMC9268357 DOI: 10.1126/science.abj3321] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.
Collapse
Affiliation(s)
- Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Coelmont
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pietro E. Cippà
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Samuele Ceruti
- Intensive Care Unit, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Matteo S. Pizzuto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Hong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | | | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- UT Southwestern Medical Center, Dallas, TX 75390, USA
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Sabban SS. Computationally grafting an IgE epitope onto a scaffold: Implications for a pan anti-allergy vaccine design. Comput Struct Biotechnol J 2021; 19:4738-4750. [PMID: 34504666 PMCID: PMC8403545 DOI: 10.1016/j.csbj.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/02/2022] Open
Abstract
Allergy is becoming an intensifying disease among the world population, particularly in the developed world. Once allergy develops, sufferers are permanently trapped in a hyper-immune response that makes them sensitive to innocuous substances. The immune pathway concerned with developing allergy is the Th2 immune pathway where the IgE antibody binds to its Fc ∊ RI receptor on Mast and Basophil cells. This paper discusses a protocol that could disrupt the binding between the antibody and its receptor for a potential permanent treatment. Ten proteins were computationally designed to display a human IgE motif very close in proximity to the IgE antibody's Fc ∊ RI receptor's binding site in an effort for these proteins to be used as a vaccine against our own IgE antibody. The motif of interest was the FG loop motif and it was excised and grafted onto a Staphylococcus aureus protein (PDB ID 1YN3), then the motif + scaffold structure had its sequence re-designed around the motif to find an amino acid sequence that would fold to the designed structure correctly. These ten computationally designed proteins showed successful folding when simulated using Rosetta's AbinitioRelax folding simulation and the IgE epitope was clearly displayed in its native three-dimensional structure in all of them. These designed proteins have the potential to be used as a pan anti-allergy vaccine. This work employedin silicobased methods for designing the proteins and did not include any experimental verifications.
Collapse
Affiliation(s)
- Sari S. Sabban
- King Abdulaziz University, Faculty of Science, Department of Biological Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Narkhede YB, Gonzalez KJ, Strauch EM. Targeting Viral Surface Proteins through Structure-Based Design. Viruses 2021; 13:v13071320. [PMID: 34372526 PMCID: PMC8310314 DOI: 10.3390/v13071320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.
Collapse
Affiliation(s)
- Yogesh B Narkhede
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Karen J Gonzalez
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
- Correspondence:
| |
Collapse
|
30
|
Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 2021; 28:478-486. [PMID: 33981021 DOI: 10.1038/s41594-021-00596-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023]
Abstract
Three highly pathogenic β-coronaviruses have crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. To evaluate the possibility of identifying antibodies with broad neutralizing activity, we isolated a monoclonal antibody, termed B6, that cross-reacts with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses. B6 broadly neutralizes entry of pseudotyped viruses from lineages A and C, but not from lineage B, and the latter includes SARS-CoV and SARS-CoV-2. Cryo-EM, X-ray crystallography and membrane fusion assays reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery. The data indicate that antibody binding sterically interferes with the spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages, along with a proof of concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-β-coronavirus vaccine.
Collapse
|
31
|
Bottom-up de novo design of functional proteins with complex structural features. Nat Chem Biol 2021; 17:492-500. [PMID: 33398169 DOI: 10.1038/s41589-020-00699-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023]
Abstract
De novo protein design has enabled the creation of new protein structures. However, the design of functional proteins has proved challenging, in part due to the difficulty of transplanting structurally complex functional sites to available protein structures. Here, we used a bottom-up approach to build de novo proteins tailored to accommodate structurally complex functional motifs. We applied the bottom-up strategy to successfully design five folds for four distinct binding motifs, including a bifunctionalized protein with two motifs. Crystal structures confirmed the atomic-level accuracy of the computational designs. These de novo proteins were functional as components of biosensors to monitor antibody responses and as orthogonal ligands to modulate synthetic signaling receptors in engineered mammalian cells. Our work demonstrates the potential of bottom-up approaches to accommodate complex structural motifs, which will be essential to endow de novo proteins with elaborate biochemical functions, such as molecular recognition or catalysis.
Collapse
|
32
|
Schoeder C, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Biochemistry 2021; 60:825-846. [PMID: 33705117 PMCID: PMC7992133 DOI: 10.1021/acs.biochem.0c00912] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Indexed: 01/16/2023]
Abstract
Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.
Collapse
Affiliation(s)
- Clara
T. Schoeder
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Samuel Schmitz
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jared Adolf-Bryfogle
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Alexander M. Sevy
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Jessica A. Finn
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Marion F. Sauer
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
| | - Nina G. Bozhanova
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Benjamin K. Mueller
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Amandeep K. Sangha
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Jaume Bonet
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jonathan H. Sheehan
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Georg Kuenze
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Brennica Marlow
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Shannon T. Smith
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Hope Woods
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Brian J. Bender
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Cristina E. Martina
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Diego del Alamo
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Pranav Kodali
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - Alican Gulsevin
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| | - William R. Schief
- Department
of Immunology and Microbiology, The Scripps
Research Institute, La Jolla, California 92037, United States
- IAVI
Neutralizing Antibody Center, The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Bruno E. Correia
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James E. Crowe
- Vanderbilt
Vaccine Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232-0417, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
- Institute
for Drug Discovery, University Leipzig Medical
School, 04103 Leipzig, Germany
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37212, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United States
| |
Collapse
|
33
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 PMCID: PMC7970853 DOI: 10.1038/s41598-021-84637-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
34
|
Magar R, Yadav P, Barati Farimani A. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Sci Rep 2021; 11:5261. [PMID: 33664393 DOI: 10.1101/2020.03.14.992156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023] Open
Abstract
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
Collapse
Affiliation(s)
- Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Prakarsh Yadav
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
35
|
Sormani G, Harteveld Z, Rosset S, Correia B, Laio A. A Rosetta-based protein design protocol converging to natural sequences. J Chem Phys 2021; 154:074114. [DOI: 10.1063/5.0039240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
| | - Zander Harteveld
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Stéphane Rosset
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Bruno Correia
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | | |
Collapse
|
36
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
37
|
Bonadio A, Shifman JM. Computational design and experimental optimization of protein binders with prospects for biomedical applications. Protein Eng Des Sel 2021; 34:gzab020. [PMID: 34436606 PMCID: PMC8388154 DOI: 10.1093/protein/gzab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
Protein-based binders have become increasingly more attractive candidates for drug and imaging agent development. Such binders could be evolved from a number of different scaffolds, including antibodies, natural protein effectors and unrelated small protein domains of different geometries. While both computational and experimental approaches could be utilized for protein binder engineering, in this review we focus on various computational approaches for protein binder design and demonstrate how experimental selection could be applied to subsequently optimize computationally-designed molecules. Recent studies report a number of designed protein binders with pM affinities and high specificities for their targets. These binders usually characterized with high stability, solubility, and low production cost. Such attractive molecules are bound to become more common in various biotechnological and biomedical applications in the near future.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
38
|
Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton O, Bowen J, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Structural basis for broad coronavirus neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.12.29.424482. [PMID: 33398277 PMCID: PMC7781312 DOI: 10.1101/2020.12.29.424482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three highly pathogenic β-coronaviruses crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. SARS-CoV-2 has infected more than 64 million people worldwide, claimed over 1.4 million lives and is responsible for the ongoing COVID-19 pandemic. We isolated a monoclonal antibody, termed B6, cross-reacting with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses, and broadly inhibiting entry of pseudotyped viruses from two coronavirus lineages. Cryo-electron microscopy and X-ray crystallography characterization reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery and indicate that antibody binding sterically interferes with spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages along with proof-of-concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - M. Alexandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leah Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Oliver Acton
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Chunyan Wang
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Xiaoli Xiong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Benjamin G. Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrew T. McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
39
|
Hertle R, Nazet J, Semmelmann F, Schlee S, Funke F, Merkl R, Sterner R. Reprogramming the Specificity of a Protein Interface by Computational and Data-Driven Design. Structure 2020; 29:292-304.e3. [PMID: 33296666 DOI: 10.1016/j.str.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
The formation of specific protein complexes in a cell is a non-trivial problem given the co-existence of thousands of different polypeptide chains. A particularly difficult case are two glutamine amidotransferase complexes (anthranilate synthase [AS] and aminodeoxychorismate synthase [ADCS]), which are composed of homologous pairs of synthase and glutaminase subunits. We have attempted to identify discriminating interface residues of the glutaminase subunit TrpG from AS, which are responsible for its specific interaction with the synthase subunit TrpEx and prevent binding to the closely related synthase subunit PabB from ADCS. For this purpose, TrpG-specific interface residues were grafted into the glutaminase subunit PabA from ADCS by two different approaches, namely a computational and a data-driven one. Both approaches resulted in PabA variants that bound TrpEx with higher affinity than PabB. Hence, we have accomplished a reprogramming of protein-protein interaction specificity that provides insights into the evolutionary adaptation of protein interfaces.
Collapse
Affiliation(s)
- Regina Hertle
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Julian Nazet
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Florian Semmelmann
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Sandra Schlee
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany.
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
40
|
Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies. Sci Rep 2020; 10:21191. [PMID: 33273506 PMCID: PMC7713239 DOI: 10.1038/s41598-020-78136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Protein aggregation is a major concern in biotherapeutic applications of monoclonal antibodies. Introducing charged mutations is among the promising strategies to improve aggregation resistance. However, the impact of such mutations on solubilizing activity depends largely on the inserting location, whose mechanism is still not well understood. Here, we address this issue from a solvation viewpoint, and this is done by analyzing how the change in solvation free energy upon charged mutation is composed of individual contributions from constituent residues. To this end, we perform molecular dynamics simulations for a number of antibody mutants and carry out the residue-wise decomposition of the solvation free energy. We find that, in addition to the previously identified “global” principle emphasizing the key role played by the protein total net charge, a local net charge within \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼15 Å from the mutation site exerts significant effects. For example, when the net charge of an antibody is positive, the global principle states that introducing a positively charged mutation will lead to more favorable solvation. Our finding further adds that an even more optimal mutation can be done at the site around which more positively charged residues and fewer negatively charged residues are present. Such a “local” design principle accounts for the location dependence of charged mutations, and will be useful in producing aggregation-resistant antibodies.
Collapse
|
41
|
Plaks JG, Brewer JA, Jacobsen NK, McKenna M, Uzarski JR, Lawton TJ, Filocamo SF, Kaar JL. Rosetta-Enabled Structural Prediction of Permissive Loop Insertion Sites in Proteins. Biochemistry 2020; 59:3993-4002. [PMID: 32970423 DOI: 10.1021/acs.biochem.0c00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While loop motifs frequently play a major role in protein function, our understanding of how to rationally engineer proteins with novel loop domains remains limited. In the absence of rational approaches, the incorporation of loop domains often destabilizes proteins, thereby requiring massive screening and selection to identify sites that can accommodate loop insertion. We developed a computational strategy for rapidly scanning the entire structure of a scaffold protein to determine the impact of loop insertion at all possible amino acid positions. This approach is based on the Rosetta kinematic loop modeling protocol and was demonstrated by identifying sites in lipase that were permissive to insertion of the LAP peptide. Interestingly, the identification of permissive sites was dependent on the contribution of the residues in the near-loop environment on the Rosetta score and did not correlate with conventional structural features (e.g., B-factors). As evidence of this, several insertion sites (e.g., following residues 17, 47-49, and 108), which were predicted and confirmed to be permissive, interrupted helices, while others (e.g., following residues 43, 67, 116, 119, and 121), which are situated in loop regions, were nonpermissive. This approach was further shown to be predictive for β-glucosidase and human phosphatase and tensin homologue (PTEN), and to facilitate the engineering of insertion sites through in silico mutagenesis. By enabling the design of loop-containing protein libraries with high probabilities of soluble expression, this approach has broad implications in many areas of protein engineering, including antibody design, improving enzyme activity, and protein modification.
Collapse
Affiliation(s)
- Joseph G Plaks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Jeff A Brewer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Nicole K Jacobsen
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Michael McKenna
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Joshua R Uzarski
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, Massachusetts 01760, United States
| | - Timothy J Lawton
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, Massachusetts 01760, United States
| | - Shaun F Filocamo
- U.S. Army Combat Capabilities Development Command Soldier Center, Natick, Massachusetts 01760, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Sabban S, Markovsky M. RamaNet: Computational de novo helical protein backbone design using a long short-term memory generative neural network. F1000Res 2020. [DOI: 10.12688/f1000research.22907.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to perform de novo protein design will allow researchers to expand the variety of available proteins. By designing synthetic structures computationally, they can utilise more structures than those available in the Protein Data Bank, design structures that are not found in nature, or direct the design of proteins to acquire a specific desired structure. While some researchers attempt to design proteins from first physical and thermodynamic principals, we decided to attempt to test whether it is possible to perform de novo helical protein design of just the backbone statistically using machine learning by building a model that uses a long short-term memory (LSTM) architecture. The LSTM model used only the φ and ψ angles of each residue from an augmented dataset of only helical protein structures. Though the network’s generated backbone structures were not perfect, they were idealised and evaluated post generation where the non-ideal structures were filtered out and the adequate structures kept. The results were successful in developing a logical, rigid, compact, helical protein backbone topology. This paper is a proof of concept that shows it is possible to generate a novel helical backbone topology using an LSTM neural network architecture using only the φ and ψ angles as features. The next step is to attempt to use these backbone topologies and sequence design them to form complete protein structures.
Collapse
|
43
|
Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y, Chiang CI, Abriata LA, Kucharska I, Castoro G, Vollers SS, Galloux M, Dheilly E, Rosset S, Corthésy P, Georgeon S, Villard M, Richard CA, Descamps D, Delgado T, Oricchio E, Rameix-Welti MA, Más V, Ervin S, Eléouët JF, Riffault S, Bates JT, Julien JP, Li Y, Jardetzky T, Krey T, Correia BE. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 2020; 368:eaay5051. [PMID: 32409444 PMCID: PMC7391827 DOI: 10.1126/science.aay5051] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/30/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
De novo protein design has been successful in expanding the natural protein repertoire. However, most de novo proteins lack biological function, presenting a major methodological challenge. In vaccinology, the induction of precise antibody responses remains a cornerstone for next-generation vaccines. Here, we present a protein design algorithm called TopoBuilder, with which we engineered epitope-focused immunogens displaying complex structural motifs. In both mice and nonhuman primates, cocktails of three de novo-designed immunogens induced robust neutralizing responses against the respiratory syncytial virus. Furthermore, the immunogens refocused preexisting antibody responses toward defined neutralization epitopes. Overall, our design approach opens the possibility of targeting specific epitopes for the development of vaccines and therapeutic antibodies and, more generally, will be applicable to the design of de novo proteins displaying complex functional motifs.
Collapse
Affiliation(s)
- Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Che Yang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Johannes T Cramer
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Xiaolin Wen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yimeng Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Luciano A Abriata
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Iga Kucharska
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Giacomo Castoro
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Sabrina S Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Elie Dheilly
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Patricia Corthésy
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sandrine Georgeon
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Mélanie Villard
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | | | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Teresa Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | | | - Vicente Más
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Sean Ervin
- Wake Forest Baptist Medical Center, Winston Salem, NC 27157, USA
| | | | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - John T Bates
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Microbiology and Immunology & Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Theodore Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Luebeck, D-23538 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| |
Collapse
|
44
|
Deng H, Yu S, Guo Y, Gu L, Wang G, Ren Z, Li Y, Li K, Li R. Development of a multivalent enterovirus subunit vaccine based on immunoinformatic design principles for the prevention of HFMD. Vaccine 2020; 38:3671-3681. [PMID: 32247566 DOI: 10.1016/j.vaccine.2020.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 02/05/2023]
Abstract
Hand, foot and mouth disease (HFMD) is mainly caused by EV-A71 and CV-A16. An increasing number of cases have been found to be caused by CV-A10, CV-A6, CV-B3 and the outbreaks are becoming increasingly more complex, often accompanied by the prevalence of a variety of enteroviruses. Based on the principle of synthetic peptide vaccines, we applied immune-informatics to design a highly efficient and safe multivalent epitope-based vaccine against EV-A71, CV-A16, CV-A10, CV-A6 and CV-B3. By screening B-cells, HTL and CTL cell antigen epitopes with high conservativity and immunogenicity that have no toxic effect on the host, further analysis confirmed that the vaccine built was IFN-γ inductive and IL-4 non-inductive HTL cell epitopes and had population coverage corresponding to MHC molecular alleles associated with T-cell phenotype. The multivalent enterovirus vaccine was constructed to connect the 50 s ribosomal protein L7/L12 adjuvant and candidate epitopes sequentially through appropriate linkers. Then, the antigenic, allergen and physical properties of the vaccine were evaluated, followed by a secondary structure analysis and tertiary structure modeling, disulfide engineering, refinement and validation. Moreover, the conformational B cell epitope of the vaccine was analyzed. The stability of the TLR4/MD2/Vaccine complex and details at atomic level were investigated by docking and molecular dynamics simulation. Finally, in silico immune simulation and in vivo immune experiments were done. This study provides a high cost-effective method of designing a multivalent enterovirus vaccine protect against a wide range of enterovirus pathogens.
Collapse
Affiliation(s)
- Huixiong Deng
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Shun Yu
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Yingzhu Guo
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Liming Gu
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Gefei Wang
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China.
| | - Zhihui Ren
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yanlei Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Kangsheng Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China
| | - Rui Li
- Center of Pathogen Biology and Immunology, Department of Microbiology and Immunology, Shantou University Medical College, Shantou 505041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 505041, Guangdong, China.
| |
Collapse
|
45
|
Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell 2020; 178:567-584.e19. [PMID: 31348886 DOI: 10.1016/j.cell.2019.06.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.
Collapse
Affiliation(s)
- Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John P Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Malladi SK, Schreiber D, Pramanick I, Sridevi MA, Goldenzweig A, Dutta S, Fleishman SJ, Varadarajan R. One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Curr Res Struct Biol 2020; 2:45-55. [PMID: 33688632 PMCID: PMC7939140 DOI: 10.1016/j.crstbi.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stabilization of the metastable envelope glycoprotein (Env) of HIV-1 is hypothesized to improve induction of broadly neutralizing antibodies. We improved the expression yield and stability of the HIV-1 envelope glycoprotein BG505SOSIP.664 gp140 by means of a previously described automated sequence and structure-guided computational thermostabilization approach, PROSS. This combines sequence conservation information with computational assessment of mutant stabilization, thus taking advantage of the extensive natural sequence variation present in HIV-1 Env. PROSS is used to design three gp140 variants with 17–45 mutations relative to the parental construct. One of the designs is experimentally observed to have a fourfold improvement in yield and a 4 °C increment in thermostability. In addition, the designed immunogens have similar antigenicity profiles to the native flexible linker version of wild type, BG505SOSIP.664 gp140 (NFL Wt) to major epitopes targeted by broadly neutralizing antibodies. PROSS eliminates the laborious process of screening many variants for stability and functionality, providing a proof of principle of the method for stabilization and improvement of yield without compromising antigenicity for next generation complex, highly glycosylated vaccine candidates. One-step stabilization of HIV-1 Env gp140. One-step yield improvement of HIV-1 Env gp140. Native-like oligomeric conformation of designed vaccine candidates. Unaltered antigenicity of designed vaccine candidates.
Collapse
Affiliation(s)
| | - David Schreiber
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ishika Pramanick
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Adi Goldenzweig
- Department of BioMolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Somnath Dutta
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, India
| |
Collapse
|
47
|
Dosenovic P, Pettersson AK, Wall A, Thientosapol ES, Feng J, Weidle C, Bhullar K, Kara EE, Hartweger H, Pai JA, Gray MD, Parks KR, Taylor JJ, Pancera M, Stamatatos L, Nussenzweig MC, McGuire AT. Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses. J Exp Med 2019; 216:2316-2330. [PMID: 31345931 PMCID: PMC6780999 DOI: 10.1084/jem.20190446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Human anti-HIV-1 broadly neutralizing antibodies (bNAbs) protect against infection in animal models. However, bNAbs have not been elicited by vaccination in diverse wild-type animals or humans, in part because B cells expressing the precursors of these antibodies do not recognize most HIV-1 envelopes (Envs). Immunogens have been designed that activate these B cell precursors in vivo, but they also activate competing off-target responses. Here we report on a complementary approach to expand specific B cells using an anti-idiotypic antibody, iv8, that selects for naive human B cells expressing immunoglobulin light chains with 5-amino acid complementarity determining region 3s, a key feature of anti-CD4 binding site (CD4bs)-specific VRC01-class antibodies. In mice, iv8 induced target cells to expand and mature in the context of a polyclonal immune system and produced serologic responses targeting the CD4bs on Env. In summary, the results demonstrate that an anti-idiotypic antibody can specifically recognize and expand rare B cells that express VRC01-class antibodies against HIV-1.
Collapse
Affiliation(s)
- Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Eddy S Thientosapol
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Komal Bhullar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ervin E Kara
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
- University of Washington University of Washington, Department of Immunology, Seattle, WA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| |
Collapse
|
48
|
Choi Y, Furlon JM, Amos RB, Griswold KE, Bailey-Kellogg C. DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Bioinformatics 2019; 34:i245-i253. [PMID: 29949961 PMCID: PMC6022686 DOI: 10.1093/bioinformatics/bty274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Motivation Disruption of protein–protein interactions can mitigate antibody recognition of therapeutic proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among other applications. While designing affinity-enhancing mutations remains generally quite challenging, both statistically and physically based computational methods can precisely identify affinity-reducing mutations. In order to leverage this ability to design variants of a target protein with disrupted interactions, we developed the DisruPPI protein design method (DISRUpting Protein–Protein Interactions) to optimize combinations of mutations simultaneously for both disruption and stability, so that incorporated disruptive mutations do not inadvertently affect the target protein adversely. Results Two existing methods for predicting mutational effects on binding, FoldX and INT5, were demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind databases of experimentally determined changes in binding free energy. DisruPPI was implemented to use an INT5-based disruption score integrated with an AMBER-based stability assessment and was applied to disrupt protein interactions in a set of different targets representing diverse applications. In retrospective evaluation with three different case studies, comparison of DisruPPI-designed variants to published experimental data showed that DisruPPI was able to identify more diverse interaction-disrupting and stability-preserving variants more efficiently and effectively than previous approaches. In prospective application to an interaction between enhanced green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants, all of which were shown to have significantly reduced nanobody binding while maintaining function and thermostability. This demonstrates that DisruPPI may be readily utilized for effective removal of known epitopes of therapeutically relevant proteins. Availability and implementation DisruPPI is implemented in the EpiSweep package, freely available under an academic use license. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jacob M Furlon
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Ryan B Amos
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center at Dartmouth, Lebanon, NH, USA.,Department of Biological Sciences, Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
49
|
Sharma M, Krammer F, García-Sastre A, Tripathi S. Moving from Empirical to Rational Vaccine Design in the 'Omics' Era. Vaccines (Basel) 2019; 7:vaccines7030089. [PMID: 31416125 PMCID: PMC6789792 DOI: 10.3390/vaccines7030089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
An ideal vaccine provides long lasting protection against a pathogen by eliciting a well-rounded immune response which engages both innate and adaptive immunity. However, we have a limited understanding of how components of innate immunity, antibody and cell-mediated adaptive immunity interact and function together at a systems level. With advances in high-throughput ‘Omics’ methodologies it has become possible to capture global changes in the host, at a cellular and molecular level, that are induced by vaccination and infection. Analysis of these datasets has shown the promise of discovering mechanisms behind vaccine mediated protection, immunological memory, adverse effects as well as development of more efficient antigens and adjuvants. In this review, we will discuss how systems vaccinology takes advantage of new technology platforms and big data analysis, to enable the rational development of better vaccines.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India.
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
50
|
Identification of an Immunogenic Broadly Inhibitory Surface Epitope of the Plasmodium vivax Duffy Binding Protein Ligand Domain. mSphere 2019; 4:4/3/e00194-19. [PMID: 31092602 PMCID: PMC6520440 DOI: 10.1128/msphere.00194-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vivax malaria is the second leading cause of malaria worldwide and the major cause of non-African malaria. Unfortunately, efforts to develop antimalarial vaccines specifically targeting Plasmodium vivax have been largely neglected, and few candidates have progressed into clinical trials. The Duffy binding protein is considered a leading blood-stage vaccine candidate because this ligand’s recognition of the Duffy blood group reticulocyte surface receptor is considered essential for infection. This study identifies a new target epitope on the ligand’s surface that may serve as the target of vaccine-induced binding-inhibitory antibody (BIAb). Understanding the potential targets of vaccine protection will be important for development of an effective vaccine. The Plasmodium vivax Duffy binding protein region II (DBPII) is a vital ligand for the parasite’s invasion of reticulocytes, thereby making this molecule an attractive vaccine candidate against vivax malaria. However, strain-specific immunity due to DBPII allelic variation in Bc epitopes may complicate vaccine efficacy, suggesting that an effective DBPII vaccine needs to target conserved epitopes that are potential targets of strain-transcending neutralizing immunity. The minimal epitopes reactive with functionally inhibitory anti-DBPII monoclonal antibody (MAb) 3C9 and noninhibitory anti-DBPII MAb 3D10 were mapped using phage display expression libraries, since previous attempts to deduce the 3C9 epitope by cocrystallographic methods failed. Inhibitory MAb 3C9 binds to a conserved conformation-dependent epitope in subdomain 3, while noninhibitory MAb 3D10 binds to a linear epitope in subdomain 1 of DBPII, consistent with previous studies. Immunogenicity studies using synthetic linear peptides of the minimal epitopes determined that the 3C9 epitope, but not the 3D10 epitope, could induce functionally inhibitory anti-DBPII antibodies. Therefore, the highly conserved binding-inhibitory 3C9 epitope offers the potential as a component in a broadly inhibitory, strain-transcending DBP subunit vaccine. IMPORTANCE Vivax malaria is the second leading cause of malaria worldwide and the major cause of non-African malaria. Unfortunately, efforts to develop antimalarial vaccines specifically targeting Plasmodium vivax have been largely neglected, and few candidates have progressed into clinical trials. The Duffy binding protein is considered a leading blood-stage vaccine candidate because this ligand’s recognition of the Duffy blood group reticulocyte surface receptor is considered essential for infection. This study identifies a new target epitope on the ligand’s surface that may serve as the target of vaccine-induced binding-inhibitory antibody (BIAb). Understanding the potential targets of vaccine protection will be important for development of an effective vaccine.
Collapse
|