1
|
Wang H, Liu R, Yu Y, Xue H, Shen R, Zhang Y, Ding J. Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns. Biomaterials 2025; 317:123013. [PMID: 39733514 DOI: 10.1016/j.biomaterials.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way. Cell elongation was modulated via microwell aspect ratios (ARs), and nuclear deformation was generated through a micropillar array in the microwell. Human non-small cell lung cancer cells (A549) were cultured on the quasi-three dimensional micropatterned surfaces, and transforming growth factor-β1 (TGF-β1) was added to induce EMT. We found that chimeric micropatterns upregulated EMT with an increase of cellular AR and nuclear indentation under given TGF-β1. The subsequent assessment of the contractility and oriented assembly of microfilaments elucidated the key role of mechanotransduction in cell elongation and EMT, as proved by myosin inhibition, while it was obstructed by micropillars in the chimeric micropattern. Hence, the micropillar array possessed a nonmonotonic influence, enhancing the EMT of cells with AR of 1, but hindering the EMT with an impact more significant on microwells with large ARs due to the impeded cytoskeleton assembly. This fundamental research has illustrated the complex of cellular and subcellular geometries on cell behaviors including phenotype transition in cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongrui Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanshuang Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Oliver S, Williams M, Jolly MK, Gonzalez D, Powathil G. Exploring the role of EMT in ovarian cancer progression using a multiscale mathematical model. NPJ Syst Biol Appl 2025; 11:36. [PMID: 40246908 PMCID: PMC12006308 DOI: 10.1038/s41540-025-00508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a key role in the progression of cancer tumours, significantly reducing the success of treatment. EMT occurs when a cell undergoes phenotypical changes, resulting in enhanced drug resistance, higher cell plasticity, and increased metastatic abilities. Here, we employ a 3D agent-based multiscale modelling framework using PhysiCell to explore the role of EMT over time in two cell lines, OVCAR-3 and SKOV-3. This approach allows us to investigate the spatiotemporal progression of ovarian cancer and the impacts of the conditions in the microenvironment. OVCAR-3 and SKOV-3 cell lines possess highly contrasting tumour layouts, allowing a wide range of different tumour dynamics and morphologies to be tested and studied. Along with performing sensitivity analysis on the model, simulation results capture the biological observations and trends seen in tumour growth and development, thus helping to obtain further insights into OVCAR-3 and SKOV-3 cell line dynamics.
Collapse
Affiliation(s)
- Samuel Oliver
- Department of Mathematics, Swansea University, Swansea, UK.
| | - Michael Williams
- Department of Biomedical Sciences, Swansea University, Swansea, UK
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| | | | - Gibin Powathil
- Department of Mathematics, Swansea University, Swansea, UK.
| |
Collapse
|
3
|
Xie Y, Wang X, Wang W, Pu N, Liu L. Epithelial-mesenchymal transition orchestrates tumor microenvironment: current perceptions and challenges. J Transl Med 2025; 23:386. [PMID: 40176117 PMCID: PMC11963649 DOI: 10.1186/s12967-025-06422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, facilitating tumor cells to develop invasive traits and augmenting their migratory capabilities. EMT is primed by tumor microenvironment (TME)-derived signals, whereupon cancer cells undergoing EMT in turn remodel the TME, thereby modulating tumor progression and therapeutic response. This review discusses the mechanisms by which EMT coordinates TME dynamics, including secretion of soluble factors, direct cell contact, release of exosomes and enzymes, as well as metabolic reprogramming. Recent evidence also indicates that cells undergoing EMT may differentiate into cancer-associated fibroblasts, thereby establishing themselves as functional constituents of the TME. Elucidating the relationship between EMT and the TME offers novel perspectives for therapeutic strategies to enhance cancer treatment efficacy. Although EMT-directed therapies present significant therapeutic potential, the current lack of effective targeting approaches-attributable to EMT complexity and its microenvironmental context dependency-underscores the necessity for mechanistic investigations and translational clinical validation.
Collapse
Affiliation(s)
- Yuqi Xie
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ren BX, Zeng ZL, Deng L, Hu JM, Chen MZ, Jiang HW, Zang CZ, Fang ST, Weiss SJ, Liu J, Fu R, Wu ZQ. Genetic and pharmacological targeting of Snail inhibits atherosclerosis by relieving intraplaque endothelium dysfunction and associated inflammation. Acta Pharmacol Sin 2025:10.1038/s41401-025-01519-5. [PMID: 40133628 DOI: 10.1038/s41401-025-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
The intraplaque endothelium dysfunction and associated inflammation contribute to the progression of atherosclerosis. We previously show that zinc-finger transcription factor Snail is predominantly expressed in embryonic vascular endothelial cells (ECs), and deletion of Snail in ECs induces severe defects in vascular development and thus causes embryonic lethality. Snail is essentially absent at postnatal stage, and inducible deletion of Snail in ECs has no impact on physiological angiogenesis in postnatally developing or adult mice. In this study we investigated whether Snail was reactivated in vascular ECs during pathologically angiogenic process (e.g. the formation of atherosclerotic plaque) or could play a functional role in atherosclerosis progression. We showed that the expression levels of Snail were significantly elevated in ECs of human and mouse atherosclerotic plaques, and associated with the disease severity. In the accelerated and canonical mouse models of atherosclerosis, tamoxifen-inducible, EC-specific Snail deletion significantly reduced intraplaque endothelial dysfunction, inflammation and lipid uptake accompanied by enhanced plaque stability. By conducting scRNA-sequencing in ECs of ApoE-/-SnailiΔEC versus ApoE-/-Snailfl/fl arterial vessels, we demonstrated that Snail deletion significantly decreased histone acetylation on Ccl5 and Cxcl10 promoters, thereby decreased CCL5/CXCL10-driven vascular damage and inflammation. Administration with recombinant CXCL10 protein (2 μg/kg, i.v., once per week for three weeks) efficiently restored atherosclerosis in EC-specific Snail-deleted mice. Finally, we developed an orally bioavailable small-molecule Snail inhibitor LFW273 that displayed potent anti-atherosclerotic effects in mice. These results reveal Snail as a promising therapeutic target in atherosclerotic disease.
Collapse
Affiliation(s)
- Bo-Xue Ren
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhao-Lan Zeng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Deng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jia-Meng Hu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ming-Zhen Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hao-Wei Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen-Zi Zang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shen-Tong Fang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Stephen J Weiss
- The Life Sciences Institute, Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Neahring L, Zallen JA. Three-dimensional rosettes in epithelial formation. Cells Dev 2025:204022. [PMID: 40120722 DOI: 10.1016/j.cdev.2025.204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Epithelia are ubiquitous tissues with essential structural, signaling, and barrier functions. How cells transition from individual to collective behaviors as they build and remodel epithelia throughout development is a fundamental question in developmental biology. Recent studies show that three-dimensional multicellular rosettes are key intermediates that provide a solution to the challenge of building tissue-scale epithelia by coordinating local interactions in small groups of cells. These radially polarized rosette structures facilitate epithelial formation by providing a protected environment for cells to acquire apical-basal polarity, establish cell adhesion, and coordinate intercellular signaling. Once formed, rosettes can dynamically expand, move, coalesce, and interact with surrounding tissues to generate a wide range of structures with specialized functions, including epithelial sheets, tubes, cavities, and branched networks. In this review, we describe the mechanisms that regulate rosette assembly and dynamics, and discuss how rosettes serve as versatile intermediates in epithelial morphogenesis. In addition, we present open questions about the molecular, cellular, and biophysical mechanisms that drive rosette behaviors, and discuss the implications of this widely used mode of epithelial formation for understanding embryonic development and human disease.
Collapse
Affiliation(s)
- Lila Neahring
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America
| | - Jennifer A Zallen
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America.
| |
Collapse
|
6
|
Li Y, Wang H, Mao D, Che X, Chen Y, Liu Y. Understanding pre-metastatic niche formation: implications for colorectal cancer liver metastasis. J Transl Med 2025; 23:340. [PMID: 40098140 PMCID: PMC11912654 DOI: 10.1186/s12967-025-06328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
The liver is the most commonly metastasized organ in colorectal cancer (CRC), and distant metastasis is the primary cause of mortality from CRC. In recent years, researchers have discovered that tumor cells create a "pre-metastatic niche (PMN)" favorable to metastasis before reaching the metastatic location. This review discusses the many processes and mechanisms that lead to PMN formation in CRC, including gut microbiota, stem cell stimulation, immunocyte interactions, and the induction of extracellular vesicles that carry important information. It examines research methods and diagnostic and therapeutic approaches for treating metastatic CRC with PMN. The crucial significance of PMN formation in metastatic CRC is also highlighted.
Collapse
Affiliation(s)
- Yaqin Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| |
Collapse
|
7
|
Hu Q, Lu X, Xue Z, Wang R. Gene regulatory network inference during cell fate decisions by perturbation strategies. NPJ Syst Biol Appl 2025; 11:23. [PMID: 40032872 DOI: 10.1038/s41540-025-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
With rapid advances in biological technology and computational approaches, inferring specific gene regulatory networks from data alone during cell fate decisions, including determining direct regulations and their intensities between biomolecules, remains one of the most significant challenges. In this study, we propose a general computational approach based on systematic perturbation, statistical, and differential analyses to infer network topologies and identify network differences during cell fate decisions. For each cell fate state, we first theoretically show how to calculate local response matrices based on perturbation data under systematic perturbation analysis, and we also derive the wild-type (WT) local response matrix for specific ordinary differential equations. To make the inferred network more accurate and eliminate the impact of perturbation degrees, the confidence interval (CI) of local response matrices under multiple perturbations is applied, and the redefined local response matrix is proposed in statistical analysis to determine network topologies across all cell fates. Then in differential analysis, we introduce the concept of relative local response matrix, which enables us to identify critical regulations governing each cell state and dominant cell states associated with specific regulations. The epithelial to mesenchymal transition (EMT) network is chosen as an illustrative example to verify the feasibility of the approach. Largely consistent with experimental observations, the differences of inferred networks at the three cell states can be quantitatively identified. The approach presented here can be also applied to infer other regulatory networks related to cell fate decisions.
Collapse
Affiliation(s)
- Qing Hu
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Xiaoqi Lu
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Zhuozhen Xue
- Department of Mathematics, Shanghai University, Shanghai, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, China.
| |
Collapse
|
8
|
Wang M, Di Pietro-Torres A, Feregrino C, Luxey M, Moreau C, Fischer S, Fages A, Ritz D, Tschopp P. Distinct gene regulatory dynamics drive skeletogenic cell fate convergence during vertebrate embryogenesis. Nat Commun 2025; 16:2187. [PMID: 40038298 DOI: 10.1038/s41467-025-57480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being crucial to evolutionary success. A prime example are the skeletogenic cells of vertebrates. Depending on anatomical location, these cells originate from three different precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, their 'skeletogenic competency' arose at distinct evolutionary timepoints, thus questioning to what extent different skeletal body parts rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties are integrated at the gene regulatory level, to allow for skeletogenic cell fate convergence. Using single-cell functional genomics, we find that distinct transcription factor profiles are inherited from the three precursor states and incorporated at lineage-specific enhancer elements. This lineage-specific regulatory logic suggests that these regionalized skeletogenic cells are distinct cell types, rendering them amenable to individualized selection, to define adaptive morphologies and biomaterial properties in different parts of the vertebrate skeleton.
Collapse
Affiliation(s)
- Menghan Wang
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana Di Pietro-Torres
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christian Feregrino
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maëva Luxey
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MeLis, CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Institut NeuroMyo Gène, Lyon, France
| | - Chloé Moreau
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Sabrina Fischer
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Antoine Fages
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Francis SS, Sharma S. Tumour budding in invasive ductal breast carcinomas: correlation with clinicopathological prognostic parameters and hormone receptor status. Pathol Oncol Res 2025; 31:1611983. [PMID: 40012857 PMCID: PMC11862687 DOI: 10.3389/pore.2025.1611983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
Introduction Breast cancer is a leading cause of morbidity and mortality among women. Advances in molecular biology have improved detection and treatment, but conventional histopathological factors remain crucial for prognosis. Tumour budding, defined as clusters of less than 5 tumour cells detached from the main tumour, has been linked to poor prognosis in several cancers. This study explores the association between intra-tumoral budding (ITB) and peripheral tumour budding (PTB) with known prognostic factors in Invasive Breast Carcinoma of no special type (IBC NST). Materials and methods This retrospective study analysed 70 cases of IBC NST diagnosed at Kasturba Medical College, Manipal, between January 2020 and December 2021. Tumour budding was classified as high-grade or low-grade based on density, which denotes the number of buds per x20 field. Clinicopathological data, including hormone receptor status, Ki-67 index, lymphovascular invasion (LVI), perineural invasion (PNI), and axillary lymph node involvement, were obtained. Statistical analyses were performed to identify a significant association between tumour budding and these factors. Univariate and multivariate logistic regression analyses were also done to demonstrate the significance of association. Results High-grade PTB showed significant associations with LVI (p = 0.046), PNI (p = 0.017), and axillary lymph node involvement (p = 0.021). In contrast, high-grade ITB was only significantly correlated with axillary lymph node involvement (p = 0.044). LVI (p-value = 0.240) and axillary lymph node involvement (p-value = 0.142) did not show any association with PTB on multivariate analysis and PNI (p-value = 0.074) near significant association with PTB). A significant inverse association was observed between PTB and Ki-67 (p = 0.012), which remained significant in univariate and multivariate analysis (p-value = 0.017). No significant associations were found between tumour budding and hormone receptor status or menopausal status. Conclusion Peripheral tumour budding (PTB) is significantly associated with several poor prognostic factors in IBC NST, while intra-tumoral budding (ITB) correlates primarily with axillary lymph node involvement. Tumor budding, particularly PTB, could serve as an important prognostic marker in breast cancer. Further research is needed to standardize tumour budding assessment in clinical practice.
Collapse
Affiliation(s)
| | - Swati Sharma
- Department of Pathology, Center of Basic Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Kanwal R, Esposito JE, Jawed B, Zakir SK, Pulcini R, Martinotti R, Botteghi M, Gaudio F, Martinotti S, Toniato E. Exploring the Role of Epithelial-Mesenchymal Transcriptional Factors Involved in Hematological Malignancy and Solid Tumors: A Systematic Review. Cancers (Basel) 2025; 17:529. [PMID: 39941895 PMCID: PMC11817253 DOI: 10.3390/cancers17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The epithelial mesenchymal transition (EMT) is a biological process in which epithelial cells lose their polarity and adhesion characteristics, and adopt a mesenchymal phenotype. While the EMT naturally occurs during tissue fibrosis, wound healing, and embryonic development, it can be exploited by cancer cells and is strongly associated with cancer stem cell formation, tissue invasiveness, apoptosis, and therapy resistance. Transcription factors (TFs) such as SNAIL, ZEB, and TWIST play a pivotal role in driving the EMT. This systematic review aims to assess the impact of EMT-TFs on hematological malignancy and solid tumors. METHODS English-language literature published between 2010 and 2024 was systematically reviewed, utilizing databases such as PubMed and Google Scholar. RESULTS A total of 3250 studies were extracted. Of these, 92 publications meeting the inclusion criteria were analyzed to elucidate the role of EMT-TFs in cancer. The results demonstrated that the EMT-TFs play a critical role in both hematological and solid tumor development and progression. They promote invasive, migratory, and metastatic properties in these tumors, and contribute to therapeutic challenges by enhancing chemoresistance. A strong correlation between EMT-TFs and poor overall survival has been identified. CONCLUSIONS Our research concluded that EMT-TFs may serve as important predictive and prognostic factors, as well as potential therapeutic targets to mitigate cancer progression.
Collapse
Affiliation(s)
- Rimsha Kanwal
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Jessica Elisabetta Esposito
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Bilal Jawed
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Syed Khuram Zakir
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, 70021 Acquaviva delle Fonti, Italy
| | - Riccardo Pulcini
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| | - Riccardo Martinotti
- Residency Program in Clinical Oncology, Faculty of Medicine, Umberto I University Hospital, University of Rome “La Sapienza”, 00185 Rome, Italy;
| | - Matteo Botteghi
- Experimental Pathology Research Group, Department of Clinical and Molecular Sciences, Universita Politecnica delle Marche, 60126 Ancona, Italy;
| | - Francesco Gaudio
- Unit of Haematology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Stefano Martinotti
- Unit of Clinical Pathology, Department of Medicine and Surgeon, F. Miulli University Hospital, LUM University, Casamassima, 70010 Bari, Italy
| | - Elena Toniato
- Centre of Advanced Studies and Technology, Department of Innovative Technology in Medicine and Dentistry, G.d’ Annunzio University, 66100 Chieti, Italy; (R.K.); (J.E.E.); (B.J.); (S.K.Z.); (R.P.); (E.T.)
| |
Collapse
|
11
|
Jia Y, Sun J, Chen S, Bian Y, Jiang A, Liang H, Du X. Dedicator of cytokinesis protein 2 activates the epithelial-mesenchymal transition in renal fibrosis through the Rac1/PI3K/AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119894. [PMID: 39725220 DOI: 10.1016/j.bbamcr.2024.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Renal fibrosis is the most important feature of the progression of chronic kidney disease (CKD), and epithelial-mesenchymal transition (EMT) plays an important role in renal fibrosis. Dedicator of cytokinesis protein 2 (Dock2) is involved in the immune system and the development of a variety of fibrotic diseases. However, its specific role in renal fibrosis remains unclear. Therefore, in this study, we investigated the role and mechanism of Dock2 in renal fibrosis. We constructed an in vivo mouse model of unilateral ureteral obstruction (UUO) and an in vitro model of recombinant human transforming growth factor-β1 (TGF-β1)-induced HK-2 cells. The function and regulatory mechanism of Dock2 were studied via Western blotting, qRT-PCR, immunohistochemistry and immunofluorescence. First, Dock2 was more highly expressed in the kidneys of UUO mice than in those of sham-operated mice. A reduction in Dock2 can improve pathological changes in the kidney tissue of UUO mice, reduce the deposition of the extracellular matrix (ECM), and alleviate EMT. Silencing Dock2 reduced the activation of both the Rac1 pathway and the PI3K/AKT pathway. TGF-β1 promoted Dock2 expression in HK-2 cells in vitro. A decrease in Dock2 can inhibit the expression of Fibronectin, Collagen I, α-SMA and Vimentin and increase the level of E-cadherin. Treatment of HK-2 cells with the Rac1 activator 8-CPT or the PI3K/AKT pathway activator YS-49 inhibited the above changes induced by siDock2, indicating that Dock2 activates EMT in renal fibrosis through the Rac1/PI3K/AKT pathway. Our data suggest that Dock2 may be a potential target for renal fibrosis treatment.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Sun
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sha Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Bian
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Anni Jiang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haihai Liang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xuanyi Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
12
|
Cao R, Liu Y, Wei K, Jin N, Liang Y, Ao R, Pan W, Wang X, Wang X, Zhang L, Xie J. Genes related to neural tube defects and glioblastoma. Sci Rep 2025; 15:3777. [PMID: 39885289 PMCID: PMC11782569 DOI: 10.1038/s41598-025-86891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value. We performed bioinformatics analysis on transcriptome sequencing data of retinoic acid (RA)-induced NTDs mice, human NTDs samples and GBM samples. RT-qPCR, Western blot, and immunohistochemistry were used to validate the expression of candidate genes. Our results indicated that two genes at mRNA and protein levels have been well verified in both NTDs mouse and GBM human samples, namely, Poli and Fgf1. Molecular docking and validating in vitro were performed for FGF1 against pazopanib by using Autodock and Biacore. Cytological experiments showed that pazopanib significantly inhibited the proliferation of GBM tumor cells and mouse neural cells, promoted apoptosis, and had no effect on GBM tumor cells migration. Overall, our results demonstrated that Fgf1 abnormally expressed at different developmental stages, it may be a potentially prenatal biomarker for NTDs and potential therapeutic target for GBM. Pazopanib may be a new drug for the treatment of GBM tumors.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, 030000, China
| | - Yurong Liu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030000, China
| | - Kaixin Wei
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Ning Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China
| | - Weiwei Pan
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, 030006, China
| | - Xiang Wang
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, 030006, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Li Zhang
- Department of Hepatobiliary Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Yingze District, Taiyuan City, 030001, Shanxi Province, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
| |
Collapse
|
13
|
King KL, Abdollahi H, Dinkel Z, Akins A, Valafar H, Dunn H. Pilot study: Initial investigation suggests differences in EMT-associated gene expression in breast tumor regions. Comput Struct Biotechnol J 2025; 27:548-555. [PMID: 39981295 PMCID: PMC11840942 DOI: 10.1016/j.csbj.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype and disproportionately affects African American women. The development of breast cancer is highly associated with interactions between tumor cells and the extracellular matrix (ECM), and recent research suggests that cellular components of the ECM vary between racial groups. This pilot study aimed to evaluate gene expression in TNBC samples from patients who identified as African American and Caucasian using traditional statistical methods and emerging Machine Learning (ML) approaches. ML enables the analysis of complex datasets and the extraction of useful information from small datasets. We selected four regions of interest from tumor biopsy samples and used laser microdissection to extract tissue for gene expression characterization via RT-qPCR. Both parametric and non-parametric statistical analyses identified genes differentially expressed between the two ethnic groups. Out of 40 genes analyzed, 4 were differentially expressed in the edge of tumor (ET) region and 8 in the ECM adjacent to the tumor (ECMT) region. In addition to statistical approach, ML was used to generate decision trees (DT) for a broader analysis of gene expression and ethnicity. Our DT models achieved 83.33 % accuracy and identified the most significant genes, including CD29 and EGF from the ET region and SNAI1 and CHD2 from the ECMT region. All significant genes were analyzed for pathway enrichment using MSigDB and Gene Ontology databases, most notably the epithelial to mesenchymal transition and cell motility pathways. This pilot study highlights key genes of interest that are differentially expressed in African American and Caucasian TNBC samples.
Collapse
Affiliation(s)
- Kylie L. King
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Hamed Abdollahi
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Zoe Dinkel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alannah Akins
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
| | - Heather Dunn
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
14
|
Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, Raza A, Mathkor DM, Haque S. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev 2025; 44:27. [PMID: 39856479 DOI: 10.1007/s10555-025-10244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Sarra Mestiri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ana Sami
- Queen Mary University of London, London, UK
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sabiha Khatoon
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Khadija Shafique
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
- Universidad Espiritu Santo, Samborondon, Ecuador.
| |
Collapse
|
15
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
16
|
Kuburich NA, Kiselka JM, den Hollander P, Karam AA, Mani SA. The Cancer Chimera: Impact of Vimentin and Cytokeratin Co-Expression in Hybrid Epithelial/Mesenchymal Cancer Cells on Tumor Plasticity and Metastasis. Cancers (Basel) 2024; 16:4158. [PMID: 39766058 PMCID: PMC11674825 DOI: 10.3390/cancers16244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is critical to metastatic cancer progression. EMT results in the expression of mesenchymal proteins and enhances migratory and invasive capabilities. In a small percentage of cells, EMT results in the expression of stemness-associated genes that provide a metastatic advantage. Although EMT had been viewed as a binary event, it has recently become clear that the program leads to a spectrum of phenotypes, including hybrid epithelial/mesenchymal (E/M) cells that have significantly greater metastatic capability than cells on the epithelial or mesenchymal ends of the spectrum. As hybrid E/M cells are rarely observed in physiological, non-diseased states in the adult human body, these cells are potential biomarkers and drug targets. Hybrid E/M cells are distinguished by the co-expression of epithelial and mesenchymal proteins, such as the intermediate filament proteins cytokeratin (CK; epithelial) and vimentin (VIM; mesenchymal). Although these intermediate filaments have been extensively used for pathological characterization and detection of aggressive carcinomas, little is known regarding the interactions between CK and VIM when co-expressed in hybrid E/M cells. This review describes the characteristics of hybrid E/M cells with a focus on the unique co-expression of VIM and CK. We will discuss the structures and functions of these two intermediate filament proteins and how they may interact when co-expressed in hybrid E/M cells. Additionally, we review what is known about cell-surface expression of these intermediate filament proteins and discuss their potential as predictive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nick A. Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Julia M. Kiselka
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Andrew A. Karam
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A. Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
17
|
Papargyriou A, Najajreh M, Cook DP, Maurer CH, Bärthel S, Messal HA, Ravichandran SK, Richter T, Knolle M, Metzler T, Shastri AR, Öllinger R, Jasper J, Schmidleitner L, Wang S, Schneeweis C, Ishikawa-Ankerhold H, Engleitner T, Mataite L, Semina M, Trabulssi H, Lange S, Ravichandra A, Schuster M, Mueller S, Peschke K, Schäfer A, Dobiasch S, Combs SE, Schmid RM, Bausch AR, Braren R, Heid I, Scheel CH, Schneider G, Zeigerer A, Luecken MD, Steiger K, Kaissis G, van Rheenen J, Theis FJ, Saur D, Rad R, Reichert M. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma. Nat Biomed Eng 2024:10.1038/s41551-024-01273-9. [PMID: 39658630 DOI: 10.1038/s41551-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Mulham Najajreh
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carlo H Maurer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sakthi K Ravichandran
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Till Richter
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Moritz Knolle
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Akul R Shastri
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jacob Jasper
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Laura Schmidleitner
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Schneeweis
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Mataite
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Mariia Semina
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Hussein Trabulssi
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aashreya Ravichandra
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Schuster
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Arlett Schäfer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Andreas R Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), München, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Institute for Machine Learning in Biomedical Imaging, Helmholtz Zentrum München, München, Germany
- Department of Computing, Imperial College London, London, UK
- Munich Center for Machine Learning (MCML), München, Germany
- School of Computation, Information and Technology, Technische Universität München, München, Germany
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany.
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany.
| |
Collapse
|
18
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
19
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma. Cell Signal 2024; 125:111501. [PMID: 39505287 DOI: 10.1016/j.cellsig.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling. METHODS We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and detected the expression of PDGFRB, p-PDGFRB, focal adhesion kinase (FAK), p-FAK, phosphorylated myosin light chain 2 (p-MLC2), and ras homolog family member A (RhoA) in each group. The effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS cell metastasis both in vitro and in vivo. RESULTS Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A upregulated PDGFRB, subsequently activated RhoA, and increased the phosphorylation of MLC2. PDGFRB also enhanced the phosphorylation of FAK. The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB promoted cell dedifferentiation and had a significant impact on the migration and invasion abilities of OS cells in vitro. In addition, PDGFRB increased pulmonary metastasis of OS cells in vivo. CONCLUSION Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton, a process likely linked to the activation of RhoA and the phosphorylation of, thereby promoting OS dedifferentiation and pulmonary metastasis.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
20
|
Hsieh HC, Chen CY, Chou CH, Peng BY, Sun YC, Lin TW, Chien Y, Chiou SH, Hung KF, Lu HHS. Deep learning-based automatic image classification of oral cancer cells acquiring chemoresistance in vitro. PLoS One 2024; 19:e0310304. [PMID: 39485749 PMCID: PMC11530068 DOI: 10.1371/journal.pone.0310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024] Open
Abstract
Cell shape reflects the spatial configuration resulting from the equilibrium of cellular and environmental signals and is considered a highly relevant indicator of its function and biological properties. For cancer cells, various physiological and environmental challenges, including chemotherapy, cause a cell state transition, which is accompanied by a continuous morphological alteration that is often extremely difficult to recognize even by direct microscopic inspection. To determine whether deep learning-based image analysis enables the detection of cell shape reflecting a crucial cell state alteration, we used the oral cancer cell line resistant to chemotherapy but having cell morphology nearly indiscernible from its non-resistant parental cells. We then implemented the automatic approach via deep learning methods based on EfficienNet-B3 models, along with over- and down-sampling techniques to determine whether image analysis of the Convolutional Neural Network (CNN) can accomplish three-class classification of non-cancer cells vs. cancer cells with and without chemoresistance. We also examine the capability of CNN-based image analysis to approximate the composition of chemoresistant cancer cells within a population. We show that the classification model achieves at least 98.33% accuracy by the CNN model trained with over- and down-sampling techniques. For heterogeneous populations, the best model can approximate the true proportions of non-chemoresistant and chemoresistant cancer cells with Root Mean Square Error (RMSE) reduced to 0.16 by Ensemble Learning (EL). In conclusion, our study demonstrates the potential of CNN models to identify altered cell shapes that are visually challenging to recognize, thus supporting future applications with this automatic approach to image analysis.
Collapse
Affiliation(s)
- Hsing-Chuan Hsieh
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Sun
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Zhou R, Chen Z, Cai Y, Zhang H, Mao S, Zhuang Y, Zheng J. The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT in oral squamous cell carcinoma. J Appl Oral Sci 2024; 32:e20240215. [PMID: 39442128 DOI: 10.1590/1678-7757-2024-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE This study aims to explore the effects of miR-223-3p and miR-155-5p on epithelial-mesenchymal transition (EMT) and migration in oral squamous cell carcinoma (OSCC). METHODOLOGY EMT markers (E-cadherin, N-cadherin, P120 catenin (P120ctn), and vimentin) expression was determined by qRT-PCR and western blot analysis in SCC-9 cells which overexpress miR-155-5p and/or not express miR-223-3p. Scratch assays and Transwell migration assays were conducted to evaluate cell migration ability. RESULTS When miR-223-3p was inhibited in OSCC cells, P120ctn and E-cadherin mRNA levels were dramatically downregulated (P<0.05), while N-cadherin levels were significantly upregulated, and the migration ability of OSCC cells increased. The overexpression of miR-155-5p in OSCC cells upregulated miR-223-3p significantly (34-fold) compared to the control group. It also led to significant downregulation of the mRNA of P120ctn and E-cadherin and significant upregulation of the mRNA of N-cadherin and Vimentin (P<0.05). Meanwhile, the migratory ability of OSCC cells significantly increased. When miR-155-5p was overexpressed while miR-223-3p was inhibited, the highest expression of E-cadherin and P120ctn mRNA and the lowest expression of N-cadherin(P<0.05) was observed. Simultaneously, tumor cell migration was significantly facilitated. CONCLUSION miR-223-3p inhibits the migration of OSCC cells, while miR-155-5p can elevate the miR-223-3p mRNA expression. The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT, increasing OSCC migration in vitro. This provides a novel approach and potential target for the effective treatment of OSCC.
Collapse
Affiliation(s)
- Ruiman Zhou
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Zhong Chen
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Yihuang Cai
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Huilian Zhang
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Shunjie Mao
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| | - Yunan Zhuang
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| | - Jiacheng Zheng
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| |
Collapse
|
22
|
Bar-Hai N, Ben-Yishay R, Arbili-Yarhi S, Herman N, Avidan-Noy V, Menes T, Mansour A, Awwad F, Balint-Lahat N, Goldinger G, Hout-Siloni G, Adileh M, Berger R, Ishay-Ronen D. Modeling epithelial-mesenchymal transition in patient-derived breast cancer organoids. Front Oncol 2024; 14:1470379. [PMID: 39469640 PMCID: PMC11513879 DOI: 10.3389/fonc.2024.1470379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Cellular plasticity is enhanced by dedifferentiation processes such as epithelial-mesenchymal transition (EMT). The dynamic and transient nature of EMT-like processes challenges the investigation of cell plasticity in patient-derived breast cancer models. Here, we utilized patient-derived organoids (PDOs) as a model to study the susceptibility of primary breast cancer cells to EMT. Upon induction with TGF-β, PDOs exhibited EMT-like features, including morphological changes, E-cadherin downregulation and cytoskeletal reorganization, leading to an invasive phenotype. Image analysis and the integration of deep learning algorithms enabled the implantation of microscopy-based quantifications demonstrating repetitive results between organoid lines from different breast cancer patients. Interestingly, epithelial plasticity was also expressed in terms of alterations in luminal and myoepithelial distribution upon TGF-β induction. The effective modeling of dynamic processes such as EMT in organoids and their characteristic spatial diversity highlight their potential to advance research on cancer cell plasticity in cancer patients.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Naama Herman
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Vered Avidan-Noy
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Tehillah Menes
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Aiham Mansour
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | - Fahim Awwad
- Department of General Surgery, Shaba Medical Center, Ramat-Gan, Israel
| | | | - Gil Goldinger
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Shaba Medical Center, Ramat-Gan, Israel
| | | | - Mohammad Adileh
- Department of Surgery, Mount Scopus, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Raanan Berger
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Shaba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Ben-Yishay R, Globus O, Balint-Lahat N, Arbili-Yarhi S, Bar-Hai N, Bar V, Aharon S, Kosenko A, Zundelevich A, Berger R, Ishay-Ronen D. Class Effect Unveiled: PPARγ Agonists and MEK Inhibitors in Cancer Cell Differentiation. Cells 2024; 13:1506. [PMID: 39273076 PMCID: PMC11394433 DOI: 10.3390/cells13171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a major role in breast cancer progression and the development of drug resistance. We have previously demonstrated a trans-differentiation therapeutic approach targeting invasive dedifferentiated cancer cells. Using a combination of PPARγ agonists and MEK inhibitors, we forced the differentiation of disseminating breast cancer cells into post-mitotic adipocytes. Utilizing murine breast cancer cells, we demonstrated a broad class effect of PPARγ agonists and MEK inhibitors in inducing cancer cell trans-differentiation into adipocytes. Both Rosiglitazone and Pioglitazone effectively induced adipogenesis in cancer cells, marked by PPARγ and C/EBPα upregulation, cytoskeleton rearrangement, and lipid droplet accumulation. All tested MEK inhibitors promoted adipogenesis in the presence of TGFβ, with Cobimetinib showing the most prominent effects. A metastasis ex vivo culture from a patient diagnosed with triple-negative breast cancer demonstrated a synergistic upregulation of PPARγ with the combination of Pioglitazone and Cobimetinib. Our results highlight the potential for new therapeutic strategies targeting cancer cell plasticity and the dedifferentiation phenotype in aggressive breast cancer subtypes. Combining differentiation treatments with standard therapeutic approaches may offer a strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Opher Globus
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Nora Balint-Lahat
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262000, Israel;
| | - Sheli Arbili-Yarhi
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
| | - Neta Bar-Hai
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vered Bar
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | - Sara Aharon
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | - Anna Kosenko
- Curesponse Ltd., Rehovot 7670102, Israel; (V.B.); (A.K.)
| | | | - Raanan Berger
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Sheba Medical Center, Ramat Gan 5262000, Israel; (R.B.-Y.); (O.G.); (S.A.-Y.); (N.B.-H.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. A Boolean model explains phenotypic plasticity changes underlying hepatic cancer stem cells emergence. NPJ Syst Biol Appl 2024; 10:99. [PMID: 39223160 PMCID: PMC11369243 DOI: 10.1038/s41540-024-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.
Collapse
Affiliation(s)
- Alexis Hernández-Magaña
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | | | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
26
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
27
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
28
|
Wang S, Guo Y, Wang X, Zhang X, Yang T, Wang JH. Multiplex Sensing of Biomarkers on the Cancer Cell Surface by an Epithelial-Mesenchymal Transition (EMT) Sensing Panel Enables Precise Differentiating of Cancer Cells at Various EMT Stages. Anal Chem 2024; 96:13270-13277. [PMID: 39093913 DOI: 10.1021/acs.analchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.
Collapse
Affiliation(s)
- Siyi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yushuang Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
29
|
Kim B, Zhang S, Huang Y, Ko KP, Jung YS, Jang J, Zou G, Zhang J, Jun S, Kim KB, Park KS, Park JI. CRACD loss induces neuroendocrine cell plasticity of lung adenocarcinoma. Cell Rep 2024; 43:114286. [PMID: 38796854 PMCID: PMC11216895 DOI: 10.1016/j.celrep.2024.114286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinho Jang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Liu R, Wang H, Ding J. Epithelial-Mesenchymal Transition of Cancer Cells on Micropillar Arrays. ACS APPLIED BIO MATERIALS 2024; 7:3997-4006. [PMID: 38815185 DOI: 10.1021/acsabm.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-β1 (TGF-β1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-β1. Overall, the micropillar array exhibits a promoting effect on the EMT.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
31
|
Iavarone M, Nault JC, Cabibbo G, Torres F, Reig M. Indolent cancer and pattern of progression: Two missing parameters in trial design for hepatology. Hepatology 2024; 79:1452-1462. [PMID: 37399245 PMCID: PMC11095876 DOI: 10.1097/hep.0000000000000527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 07/05/2023]
Abstract
The indolent and aggressive behaviors of HCC might have a role in clinical trial (CT) results; however, the indolent HCC is less analyzed compared to others cancer. Indolent profile could be characterized as follows: (1) patients with low risk of progression itself due to the HCC molecular profile and/or due to the interaction between cancer cell their microenvironment; (2) patients who achieve objective response or present spontaneous regression; and (3) patients who develop radiological progression with no consequence on either the liver function or general status, and without trigger a change in the tumor stage. Patients with "indolent HCC" generally never develop cancer-related symptoms neither die for HCC-related causes. Thus, we hypothesize that the imbalance in the proportion of "indolent" versus "aggressive HCC" between arms or the underestimation/overestimation of HCC behavior at baseline in single-arm CT could be associated with CT failure or under-overestimation of trial results. The "indolent progression" may also explain the discrepancy between radiological progression-based end points and survival. Moreover, we discuss the related causes that explain the indolent profile of HCC and propose (1) refining the progression-related end point by the pattern of progression to minimize the limitations of the current end points; (2) considering alternative statistical tools for survival analysis such as milestone survival, or restricted mean survival time to capture the value of indolent HCC. According to these considerations, we propose incorporating novel end points into the single arm of phase I/II CT as exploratory analysis or as a secondary end point in phase III CT.
Collapse
Affiliation(s)
- Massimo Iavarone
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico—Division of Gastroenterology and Hepatology, Milan, Italy
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, team « Functional Genomics of Solid Tumors », Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris nord, Bobigny, France
| | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Ferran Torres
- Biostatistics Unit, Medical School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Reig
- Liver Oncology Unit. Liver Unit, Hospital Clínic Barcelona, Barcelona, Spain
- BCLC group, FUNDACIO/IDIBAPS, Barcelona, Spain
- CIBEREHD, Madrid, Spain
- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Huh HD, Park HW. Emerging paradigms in cancer cell plasticity. BMB Rep 2024; 57:273-280. [PMID: 38627950 PMCID: PMC11214895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions. [BMB Reports 2024; 57(6): 273-280].
Collapse
Affiliation(s)
- Hyunbin D. Huh
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyun Woo Park
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
33
|
Liu H, Lan T, Cai YS, Lyu YH, Zhu J, Xie SN, Hu FJ, Liu C, Wu H. Predicting prognosis in intrahepatic cholangiocarcinoma by the histopathological features. Asian J Surg 2024; 47:2589-2597. [PMID: 38604849 DOI: 10.1016/j.asjsur.2024.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous liver tumor. The associations between histopathological feature and prognosis of ICC are limited. The present study aimed to investigate the prognostic significance of glandular structure and tumor budding in ICC. METHODS Patients received radical hepatectomy for ICC were included. Glandular structure and tumor budding were detected by Hematoxylin-eosin staining. The Kaplan-Meier method and the Cox proportional hazards regression model were used to calculate the survival and hazard ratio. Based on the results of multivariate analysis, nomograms of OS and DFS were constructed. C-index and Akaike information criterion (AIC) were used to assess accuracy of models. RESULTS A total of 323 ICC patients who underwent surgery were included in our study. Glandular structure was associated with worse overall survival (OS) [hazard ratio (HR): 2.033, 95% confidence interval (CI): 1.047 to 3.945] and disease-free survival (DFS) [HR: 1.854, 95% CI: 1.082 to 3.176]. High tumor budding was associated with worse DFS [HR: 1.636, 95%CI: 1.060 to 2.525]. Multivariate analysis suggested that glandular structure, tumor number, lymph node metastasis, and CA19-9 were independent risk factors for OS. Independent predictor factors for DFS were tumor budding, glandular structure, tumor number, and lymph node metastasis. The c-index (0.641 and 0.642) and AIC (957.69 and 1188.52) showed that nomograms of OS and DFS have good accuracy. CONCLUSION High tumor budding and glandular structure are two important histopathological features that serve as prognostic factors for ICC patients undergoing hepatectomy.
Collapse
Affiliation(s)
- Hu Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun-Shi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Hao Lyu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiang Zhu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si-Nan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng-Juan Hu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Minimal Invasive Surgery, Shangjin Nanfu Hospital, Chengdu, 610037, China.
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China; Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Karras P, Black JRM, McGranahan N, Marine JC. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 2024; 629:543-554. [PMID: 38750233 DOI: 10.1038/s41586-024-07302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Collapse
Affiliation(s)
- Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - James R M Black
- Cancer Genome Evolution Research Group, UCL Cancer Institute, London, UK
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Böpple K, Oren Y, Henry WS, Dong M, Weller S, Thiel J, Kleih M, Gaißler A, Zipperer D, Kopp HG, Aylon Y, Oren M, Essmann F, Liang C, Aulitzky WE. ATF3 characterizes aggressive drug-tolerant persister cells in HGSOC. Cell Death Dis 2024; 15:290. [PMID: 38658567 PMCID: PMC11043376 DOI: 10.1038/s41419-024-06674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.
Collapse
Affiliation(s)
- Kathrin Böpple
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany.
| | - Yaara Oren
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, 455 Main St., Cambridge, MA, 02142, USA
| | - Meng Dong
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Sandra Weller
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Markus Kleih
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Damaris Zipperer
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Hans-Georg Kopp
- Robert Bosch Hospital, Auerbachstr. 110, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Yael Aylon
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Moshe Oren
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Frank Essmann
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter Am Hubland, University of Wuerzburg, 97074, Wuerzburg, Germany.
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Leutragraben 3, 07743, Jena, Germany.
| | | |
Collapse
|
36
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
37
|
Hong T, Xing J. Data- and theory-driven approaches for understanding paths of epithelial-mesenchymal transition. Genesis 2024; 62:e23591. [PMID: 38553870 PMCID: PMC11017362 DOI: 10.1002/dvg.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial-mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville TN, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Fustaino V, Papoff G, Ruberti F, Ruberti G. Co-Expression Network Analysis Unveiled lncRNA-mRNA Links Correlated to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance and/or Intermediate Epithelial-to-Mesenchymal Transition Phenotypes in a Human Non-Small Cell Lung Cancer Cellular Model System. Int J Mol Sci 2024; 25:3863. [PMID: 38612674 PMCID: PMC11011530 DOI: 10.3390/ijms25073863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Campus Adriano Buzzati Traverso, Via E. Ramarini 32, 00015 Monterotondo (Roma), Italy; (G.P.); (F.R.)
| | | | | | | |
Collapse
|
39
|
Du YQ, Yuan B, Ye YX, Zhou FL, Liu H, Huang JJ, Wei YF. Plumbagin Regulates Snail to Inhibit Hepatocellular Carcinoma Epithelial-Mesenchymal Transition in vivo and in vitro. J Hepatocell Carcinoma 2024; 11:565-580. [PMID: 38525157 PMCID: PMC10960549 DOI: 10.2147/jhc.s452924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
Background/Aims Plumbagin (PL) has been shown to effe ctively inhibit autophagy, suppressing invasion and migration of hepatocellular carcinoma (HCC) cells. However, the specific mechanism remains unclear. This study aimed to investigate the effect of PL on tumor growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) in HCC. Methods Huh-7 cells were cultured, and in vivo models of EMT and HCC-associated lung metastasis were developed through tail vein and in situ injections of tumor cells. In vivo imaging and hematoxylin and eosin staining were used to evaluate HCC modeling and lung metastasis. After PL intervention, the expression levels of Snail, vimentin, E-cadherin, and N-cadherin in the liver were evaluated through immunohistochemistry and Western blot. An in vitro TGF-β-induced cell EMT model was used to detect Snail, vimentin, E-cadherin, and N-cadherin mRNA levels through a polymerase chain reaction. Their protein levels were detected by immunofluorescence staining and Western blot. Results In vivo experiments demonstrated that PL significantly reduced the expression of Snail, vimentin, and N-cadherin, while increasing the expression of E-cadherin at the protein levels, effectively inhibiting HCC and lung metastasis. In vitro experiments confirmed that PL up-regulated epithelial cell markers, down-regulated mesenchymal cell markers, and inhibited EMT levels in HCC cells. Conclusion PL inhibits Snail expression, up-regulates E-cadherin expression, and down-regulates N-cadherin and vimentin expression, preventing EMT in HCC cells and reducing lung metastasis.
Collapse
Affiliation(s)
- Yuan-Qin Du
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Bin Yuan
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Yi-Xian Ye
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Feng-ling Zhou
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Hong Liu
- Graduate School, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
| | - Jing-Jing Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530024, People’s Republic of China
| | - Yan-Fei Wei
- Department of Physiology, Guangxi University of Traditional Chinese Medicine, Nanning, 530200, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, 530200, People’s Republic of China
| |
Collapse
|
40
|
Lin Z, Roche ME, Díaz-Barros V, Domingo-Vidal M, Whitaker-Menezes D, Tuluc M, Uppal G, Caro J, Curry JM, Martinez-Outschoorn U. MiR-200c reprograms fibroblasts to recapitulate the phenotype of CAFs in breast cancer progression. Cell Stress 2024; 8:1-20. [PMID: 38476765 PMCID: PMC10927306 DOI: 10.15698/cst2024.03.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 03/14/2024] Open
Abstract
Mesenchymal-epithelial plasticity driving cancer progression in cancer-associated fibroblasts (CAFs) is undetermined. This work identifies a subgroup of CAFs in human breast cancer exhibiting mesenchymal-to-epithelial transition (MET) or epithelial-like profile with high miR-200c expression. MiR-200c overexpression in fibroblasts is sufficient to drive breast cancer aggressiveness. Oxidative stress in the tumor microenvironment induces miR-200c by DNA demethylation. Proteomics, RNA-seq and functional analyses reveal that miR-200c is a novel positive regulator of NFκB-HIF signaling via COMMD1 downregulation and stimulates pro-tumorigenic inflammation and glycolysis. Reprogramming fibroblasts toward MET via miR-200c reduces stemness and induces a senescent phenotype. This pro-tumorigenic profile in CAFs fosters carcinoma cell resistance to apoptosis, proliferation and immunosuppression, leading to primary tumor growth, metastases, and resistance to immuno-chemotherapy. Conversely, miR-200c inhibition in fibroblasts restrains tumor growth with abated oxidative stress and an anti-tumorigenic immune environment. This work determines the mechanisms by which MET in CAFs via miR-200c transcriptional enrichment with DNA demethylation triggered by oxidative stress promotes cancer progression. CAFs undergoing MET trans-differentiation and senescence coordinate heterotypic signaling that may be targeted as an anti-cancer strategy.
Collapse
Affiliation(s)
- Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan E. Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Víctor Díaz-Barros
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marina Domingo-Vidal
- Immunology, Microenvironment & Metastasis Program, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Guldeep Uppal
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jaime Caro
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph M. Curry
- Department of Otolaryngology-Head and Neck Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
41
|
Mistry T, Nath A, Pal R, Ghosh S, Mahata S, Kumar Sahoo P, Sarkar S, Choudhury T, Nath P, Alam N, Nasare VD. Emerging Futuristic Targeted Therapeutics: A Comprising Study Towards a New Era for the Management of TNBC. Am J Clin Oncol 2024; 47:132-148. [PMID: 38145412 DOI: 10.1097/coc.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Triple-negative breast cancer is characterized by high lethality attributed to factors such as chemoresistance, transcriptomic, and genomic heterogeneity, leading to a poor prognosis and limiting available targeted treatment options. While the identification of molecular targets remains pivotal for therapy involving chemo drugs, the current challenge lies in the poor response rates, low survival rates, and frequent relapses. Despite various clinical investigations exploring molecular targeted therapies in conjunction with conventional chemo treatment, the outcomes have been less than optimal. The critical need for more effective therapies underscores the urgency to discover potent novel treatments, including molecular and immune targets, as well as emerging strategies. This review provides a comprehensive analysis of conventional treatment approaches and explores emerging molecular and immune-targeted therapeutics, elucidating their mechanisms to address the existing obstacles for a more effective management of triple-negative breast cancer.
Collapse
Affiliation(s)
- Tanuma Mistry
- Departments of Pathology and Cancer Screening
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal
| | - Arijit Nath
- Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, School of Biotechnology, Bhubaneswar, Odisha, India
| | - Ranita Pal
- Departments of Pathology and Cancer Screening
| | | | | | | | | | | | | | - Neyaz Alam
- Surgical Oncology, Chittaranjan National Cancer Institute
| | | |
Collapse
|
42
|
Xie Q, Liu S, Zhang S, Liao L, Xiao Z, Wang S, Zhang P. Research progress on the multi-omics and survival status of circulating tumor cells. Clin Exp Med 2024; 24:49. [PMID: 38427120 PMCID: PMC10907490 DOI: 10.1007/s10238-024-01309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.
Collapse
Affiliation(s)
- Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Xiao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
43
|
Chen Z, Li Z, Zong Y, Xia B, Luo S, Deng G, Gao J. Exosome-delivered miR-410-3p reverses epithelial-mesenchymal transition, migration and invasion of trophoblasts in spontaneous abortion. J Cell Mol Med 2024; 28:e18097. [PMID: 38164738 PMCID: PMC10844701 DOI: 10.1111/jcmm.18097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Current studies have indicated that insufficient trophoblast epithelial-mesenchymal transition (EMT), migration and invasion are crucial for spontaneous abortion (SA) occurrence and development. Exosomal miRNAs play significant roles in embryonic development and cellular communication. Hereon, we explored the roles of serum exosomes derived from SA patients on trophoblast EMT, migration and invasion. Exosomes were isolated from normal control (NC) patients with abortion for unplanned pregnancy and SA patients, then characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. Exosomal miRNA profiles were identified by miRNA sequencing. The effects of serum exosomes on trophoblast migration and invasion were detected by scratch wound healing and transwell assays, and other potential mechanisms were revealed by quantitative real-time PCR (RT-PCR), western blotting and dual-luciferase reporter assay. Finally, animal experiments were used to explore the effects of exosomal miR-410-3p on embryo absorption in mice. The serum exosomes from SA patients inhibited trophoblast EMT and reduced their migration and invasion ability in vitro. The miRNA sequencing showed that miR-410-3p was upregulated in SA serum exosomes. The functional experiments showed that SA serum exosomes restrained trophoblast EMT, migration and invasion by releasing miR-410-3p. Mechanistically, SA serum exosomal miR-410-3p inhibited trophoblast cell EMT, migration and invasion by targeting TNF receptor-associated factor 6 (TRAF6) at the post-transcriptional level. Besides, SA serum exosomal miR-410-3p inhibited the p38 MAPK signalling pathway by targeting TRAF6 in trophoblasts. Moreover, milk exosomes loaded with miR-410-3p mimic reached the maternal-fetal interface and aggravated embryo absorption in female mice. Clinically, miR-410-3p and TRAF6 expression were abnormal and negatively correlated in the placental villi of SA patients. Our findings indicated that exosome-derived miR-410-3p plays an important role between SA serum and trophoblasts in intercellular communication, suggesting a novel mechanism by which serum exosomal miRNA regulates trophoblasts in SA patients.
Collapse
Affiliation(s)
- Zhen‐yue Chen
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhen Li
- The Second Clinical College of Guangzhou University of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yun Zong
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bo Xia
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Song‐ping Luo
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Gao‐pi Deng
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Jie Gao
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
44
|
Fujii S, Hasegawa K, Maehara T, Kurppa KJ, Heikinheimo K, Warner KA, Maruyama S, Tajiri Y, Nör JE, Tanuma JI, Kawano S, Kiyoshima T. Wnt/β-catenin-C-kit axis may play a role in adenoid cystic carcinoma prognostication. Pathol Res Pract 2024; 254:155148. [PMID: 38277753 DOI: 10.1016/j.prp.2024.155148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common malignant salivary gland tumors. ACC is composed of myoepithelial and epithelial neoplastic cells which grow slowly and have a tendency for neural invasion. The long term prognosis is still relatively poor. Although several gene abnormalities, such as fusions involving MYB or MYBL1 oncogenes and the transcription factor gene NFIB, and overexpression of KIT have been reported in ACC, their precise functions in the pathogenesis of ACC remain unclear. We recently demonstrated that the elevated expression of Semaphorin 3A (SEMA3A), specifically expressed in myoepithelial neoplastic cells, might function as a novel oncogene-related molecule to enhance cell proliferation through activated AKT signaling in 9/10 (90%) ACC cases. In the current study, the patient with ACC whose tumor was negative for SEMA3A in the previous study, revisited our hospital with late metastasis of ACC to the cervical lymph node eight years after surgical resection of the primary tumor. We characterized this recurrent ACC, and compared it with the primary ACC using immunohistochemical methods. In the recurrent ACC, the duct lining epithelial cells, not myoepithelial neoplastic cells, showed an elevated Ki-67 index and increased cell membrane expression of C-kit, along with the expression of phosphorylated ERK. Late metastasis ACC specimens were not positive for β-catenin and lymphocyte enhancer binding factor 1 (LEF1), which were detected in the nuclei of perineural infiltrating cells in primary ACC cells. In addition, experiments with the GSK-3 inhibitor revealed that β-catenin pathway suppressed not only KIT expression but also proliferation of ACC cells. Moreover, stem cell factor (SCF; also known as KIT ligand, KITL) induced ERK activation in ACC cells. These results suggest that inactivation of Wnt/β-catenin signaling may promote C-kit-ERK signaling and cell proliferation of in metastatic ACC.
Collapse
Affiliation(s)
- Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Maehara
- Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kari J Kurppa
- Institute of Biomedicine and MediCity Research Laboratories, University of Turku, and Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, FI-20520, Finland
| | - Kristy A Warner
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| | - Yudai Tajiri
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Dentistry and Oral Surgery, National Hospital Organization, Fukuokahigashi Medical Center, 1-1-1 Chidori, Koga, Fukuoka 811-3195, Japan
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Otolaryngology-Head & Neck Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jun-Ichi Tanuma
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan; Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
45
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
46
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
47
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
48
|
Yıldırım MR, Kırbaş OK, Abdik H, Şahin F, Avşar Abdik E. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 2023; 41:30. [PMID: 38148465 DOI: 10.1007/s12032-023-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.
Collapse
Affiliation(s)
- Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
49
|
Zhan Q, Liu B, Situ X, Luo Y, Fu T, Wang Y, Xie Z, Ren L, Zhu Y, He W, Ke Z. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct Target Ther 2023; 8:465. [PMID: 38129401 PMCID: PMC10739776 DOI: 10.1038/s41392-023-01725-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.
Collapse
Affiliation(s)
- Qinru Zhan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Bixia Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yuting Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yanxia Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Zhongpeng Xie
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Lijuan Ren
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| | - Weiling He
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, 361000, Xiamen, Fujian, P.R. China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
50
|
Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300253. [PMID: 37589213 DOI: 10.1002/jbio.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Lung cancer is the leading killer among all types of cancer globally. As a key factor, epithelial-mesenchymal transition (EMT) plays a crucial role in pathological fibrosis and lung cancer metastasis. This study endeavors to investigate the effect of blue light at specific wavelengths of 405 nm and 415 nm (54 J/cm2 ) on EMT induced by TGF-β1 in A549 cells. The results revealed that the blue light irradiation reduced the morphological characteristics of EMT in the A549 cells, and cell-to-cell connections were weakened significantly. Molecular analysis showed upregulation of epithelial marker E-cadherin and downregulation of EMT marker vimentin. Additionally, exposure to blue light irradiation at 405 nm and 415 nm significantly decelerated the ability of invasion and migration. Moreover, cell viability was also investigated. Based on these findings, blue light can serve as a useful therapeutic option for inhibiting EMT in cases of lung cancer and fibrotic lung disease.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Future Science and Engineering, Soochow University, Suzhou, China
| |
Collapse
|