1
|
Hellweger FL. Extracellular vesicles as viral countermeasures: dampening of oscillations and reduction of extinction risk. FEMS Microbiol Ecol 2025; 101:fiaf030. [PMID: 40221136 PMCID: PMC11995696 DOI: 10.1093/femsec/fiaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 04/11/2025] [Indexed: 04/14/2025] Open
Abstract
Microbes produce extracellular vesicles (EVs, tiny membrane enclosures) that can transport some "cargo" (signaling molecules, proteins/enzymes, toxins, and nucleic acids) away from themselves or to other cells. EVs have also been shown to adsorb virus (phage) particles and inhibit infection, so another potential function is to serve as decoys for virus infection. However, the fitness benefit has not been explored quantitatively. Here, three existing mathematical models are extended to include EVs and parameterized based on literature. Simulations include a number of environments (lab culture and ambient), conditions (equilibrium and oscillating, i.e. predator-prey cycles), and bacteria (including enteric Escherichia coli and marine Prochlorococcus). Hosts invest, on average, ∼10% of resources into EV production. The models predict that producing EVs typically results in relatively minor increases in average host concentration (average ∼4.3% of log concentration). However, under oscillating conditions, EVs can substantially dampen and, in most cases, completely eliminate fluctuations, thereby increasing the minimum concentration and reducing extinction risk. These results provide insights into the fitness benefit of EVs as viral countermeasures, and they constitute a starting point for including EVs in ecosystem models.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, 10623 Berlin, Germany
| |
Collapse
|
2
|
Di Naro M, Petronio Petronio G, Mukhtar F, Cutuli MA, Magnifico I, Falcone M, Brancazio N, Guarnieri A, Di Marco R, Nicolosi D. Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications. Microorganisms 2025; 13:636. [PMID: 40142528 PMCID: PMC11944275 DOI: 10.3390/microorganisms13030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Living organisms must adapt and communicate effectively in their environment to survive. Cells communicate through various mechanisms, including releasing growth factors, chemokines, small bioactive molecules, and cell-cell contact. In recent years, a new and sophisticated cell communication mechanism based on extracellular vesicles (EVs) has been described in all three domains of life: archaea, bacteria, and eukaryotes. EVs are small, bilayer proteolipid vesicles released by cells into the extracellular space. This review aims to analyze and compare the current literature on bacterial, archaeal, and eukaryotic EVs and their possible clinical applications. This framework will address three key points: (a) The role of EVs in bacteria, eukaryotes, and archaea. (b) What is the impact of EVs in archaea on disease?
Collapse
Affiliation(s)
- Maria Di Naro
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | | | - Irene Magnifico
- Aileens Pharma S.r.l., 20834 Nova Milanese, Monza and Brianza, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Roberto Di Marco
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Sicily, Italy
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Sicily, Italy
| |
Collapse
|
3
|
Biller SJ, Ryan MG, Li J, Burger A, Eppley JM, Hackl T, DeLong EF. Distinct horizontal gene transfer potential of extracellular vesicles versus viral-like particles in marine habitats. Nat Commun 2025; 16:2126. [PMID: 40032822 DOI: 10.1038/s41467-025-57276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Horizontal gene transfer (HGT) is enabled in part through the movement of DNA within two broad groups of small (<0.2 µm), diffusible nanoparticles: extracellular vesicles (EVs) and virus-like particles (VLPs; including viruses, gene transfer agents, and phage satellites). The information enclosed within these structures represents a substantial portion of the HGT potential available in planktonic ecosystems, but whether some genes might be preferentially transported through one type of nanoparticle versus another is unknown. Here we use long-read sequencing to compare the genetic content of EVs and VLPs from the oligotrophic North Pacific. Fractionated EV-enriched and VLP-enriched subpopulations contain diverse DNA from the surrounding microbial community, but differ in their capacity and encoded functions. The sequences carried by both particle types are enriched in mobile genetic elements (MGEs) as compared with other cellular chromosomal regions, and we highlight how this property enables novel MGE discovery. Examining the Pelagibacter mobilome reveals >7200 distinct chromosomal fragments and MGEs, many differentially partitioned between EVs and VLPs. Together these results suggest that distinctions in nanoparticle contents contribute to the mode and trajectory of microbial HGT networks and evolutionary dynamics in natural habitats.
Collapse
Affiliation(s)
- Steven J Biller
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| | - M Gray Ryan
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Jasmine Li
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Andrew Burger
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, USA
| | - John M Eppley
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Thomas Hackl
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Edward F DeLong
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, USA
| |
Collapse
|
4
|
Jo SH, Kim SH, Heo SC, Cho H, Esfahani IJ, Park SH. Exploring the Therapeutic Potential of Extracellular Vesicles Anchored to the Sea Cucumber Extracellular Matrix for Treating Atopic Dermatitis. Biomater Res 2025; 29:0154. [PMID: 39990978 PMCID: PMC11842673 DOI: 10.34133/bmr.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Extracellular vesicles (EVs) are crucial for intercellular communication and affect various physiological and pathological processes. Although terrestrial EVs have been extensively studied, marine-derived EVs have yet to be explored. This study investigated the therapeutic potential of sea cucumbers, known for their regenerative and immune abilities. Sea cucumber extracellular matrix (ECM)-anchored EVs (SEVs) were isolated and characterized using physical and electrophoretic analyses. Morphological assessments have shown that SEVs have shape and size distributions similar to mammalian EVs. Internal cargo analysis revealed the encapsulation of diverse proteins and genetic molecules. In anti-inflammatory tests with a lipopolysaccharide (LPS)-induced macrophage model, the results have shown that SEVs can alleviate inflammation factors regarding inducible nitric oxide synthase (iNOS) protein and immune-related mRNA expression. Microarray analysis was conducted to elucidate SEV's pharmacological efficacy and anti-inflammatory mechanisms, showing that SEVs inhibit the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway. An in vivo study using a mouse model of atopic dermatitis (AD) induced by 2,4-dinitrochlorobenzene (DNCB) involved subcutaneous SEV administration, followed by severity scoring and histological analyses. Therapeutic efficacy analysis indicated improvements in the AD mouse models, including reduced skin thickness and mast cell numbers. These findings indicate their potential for treating AD. This study highlights the potential clinical applications of marine-derived EVs and offers important implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan, Republic of Korea
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104-6081, USA
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan, Republic of Korea
| | - Su Chin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104-6081, USA
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering,
University of Memphis, Memphis, TN, USA
| | | | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence,
Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
6
|
Long L, Xu XL, Duan YF, Long L, Chen JY, Yin YH, Zhu YG, Huang Q. Extracellular Vesicles Are Prevalent and Effective Carriers of Environmental Allergens in Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1969-1983. [PMID: 39711517 PMCID: PMC11800389 DOI: 10.1021/acs.est.4c10056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The global incidence of allergic diseases is rising and poses a substantial threat to human health. Allergenic proteins released by various allergenic species play a critical role in the pathogenesis of allergic diseases and have been widely detected in the environmental matrix. However, the release, presence and interaction of environmental allergens with human body remain to be elucidated. In this study, we reported the widespread of allergen-harboring extracellular vesicles (EVs) in indoor dust from 75 households across five provinces in China. Particle size and abundance of EVs were correlated with specific environmental factors. EVs showed long persistence and high resistance to environmental stress. Metagenomics and metaproteomics data revealed that most indoor allergenic species released allergens within the EVs into dust. A higher abundance of allergenic species and their derived EVs was observed in urban areas compared to rural areas. ELISA confirmed the allergenic activity of the EV-associated allergens. Allergens are common components and even markers of EVs, as evidenced by the data compilation of various allergenic species. The proportion of EV-associated allergens varied across species. EVs facilitated allergen entry into epithelial cells. Intranasally administered EVs can be rapidly transported to the lungs and gastrointestinal tract. EV-associated allergens exhibited higher allergenicity compared with non-EV allergens. Our findings elucidate a vesicle pathway through which environmental allergens are released, persist, and trigger allergic responses within EVs.
Collapse
Affiliation(s)
- Lu Long
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Li Xu
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Fang Duan
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Long
- Health
Management Center, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jing-Yu Chen
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yu-Han Yin
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Xiamen
Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment
and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
7
|
Peng Z, Liu Y, Ma H, Xiao S, Au-Yeung A, Zhang L, Zeng Q, Guo Y. Characterization of extracellular vesicles released from Prochlorococcus MED4 at the steady state and under a light-dark cycle. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230339. [PMID: 39842488 PMCID: PMC11753881 DOI: 10.1098/rstb.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 01/24/2025] Open
Abstract
Bacterial extracellular vesicles (EVs) are vesicles secreted by bacteria into the extracellular environment. Containing DNA, RNA and proteins, EVs are implicated to mediate intercellular communications. The marine cyanobacterium Prochlorococcus, the most abundant photosynthetic organism in marine ecosystems, has been shown to generate EVs continuously during cell growth. However, biogenesis and functions of EVs released by Prochlorococcus remain largely unclear. Here, we isolated and characterized EVs released by Prochlorococcus MED4 culture. We found that the majority of MED4 EVs are elliptical and enriched with specific proteins performing particular cellular functions. The light-dark cycle has been demonstrated to affect the cell cycle of Prochlorococcus, with cell division occurring at night time. Interestingly, we found that the net production of MED4 EVs was faster during the night time. Moreover, we revealed that MED4 EVs that are released or absorbed in the night time are enriched with distinct proteins, suggesting the release and absorbance of EVs are influenced by the diel cycle. We found that inhibiting cell division decreased the net production of MED4 EVs during the night time, suggesting that cell division is important for the biogenesis of MED4 EVs. These analyses provide novel insights into biogenesis and functions of EVs released from bacteria.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Ziqing Peng
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yaxin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Haiying Ma
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Shiwei Xiao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Allan Au-Yeung
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China
- Thrust of Bioscience and Biomedical Engineering, Hong Kong University of Science and Technology, Guangzhou, China
| |
Collapse
|
8
|
Wu Z, He L, Yan L, Tan B, Ma L, He G, Dai Z, Sun R, Li C. Hydrogels Treat Atopic Dermatitis by Transporting Marine-Derived miR-100-5p-Abundant Extracellular Vesicles. ACS Biomater Sci Eng 2024; 10:7667-7682. [PMID: 39585960 DOI: 10.1021/acsbiomaterials.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Atopic dermatitis (AD) is a prevalent skin disorder worldwide. However, many AD medications are unsuitable for long-term use due to low therapeutic efficacy and side effects. Extracellular vesicles (EVs) extracted from Pinctada martensii mucus have demonstrated therapeutic efficacy in AD. It is hypothesized that EVs may exert their activity on mammalian cells through their specific contents. In this study, we analyzed the results of miRNA sequencing of the EVs and investigated the potency of highly expressed miR-100-5p in treating AD. To enhance the therapeutic efficiency of the EVs in AD, we developed oxidized sodium alginate (OSA)-carboxymethyl chitosan (CMCS) self-cross-linked hydrogels as a vehicle to deliver the EVs to BALB/c mice with dermatitis. The miR-100-5p in EVs exhibited a favorable anti-inflammatory function, while the hydrogels provided enhanced skin residency. Additionally, its efficacy in inflammation inhibition and collagen synthesis was demonstrated in in vivo experiments. Mechanistically, miR-100-5p in EVs exerted anti-inflammatory effects by inhibiting the expression of FOXO3, consequently suppressing the activation of the downstream NLRP3 signaling pathway. This study underscores the significance of utilizing OSA-CMCS hydrogels as a vehicle for delivering miR-100-5p in P. martensii mucus-derived EVs for the treatment of AD.
Collapse
Affiliation(s)
- Zijie Wu
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Baoyi Tan
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoli He
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Ruikun Sun
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Chengyong Li
- School of Chemistry and Environment, Analytical and Testing Center, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
9
|
Sharifpour MF, Sikder S, Wong Y, Koifman N, Thomas T, Courtney R, Seymour J, Loukas A. Characterization of Spirulina-derived extracellular vesicles and their potential as a vaccine adjuvant. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70025. [PMID: 39676887 PMCID: PMC11635480 DOI: 10.1002/jex2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Spirulina is an edible cyanobacterium that increasingly gaining recognition for it untapped potential in the biomanufacturing of pharmaceuticals. Despite the rapidly accumulating information on extracellular vesicles (EVs) from most other bacteria, nothing is known about Spirulina extracellular vesicles (SPEVs). This study reports the successful isolation, characterization and visualization of SPEVs for the first time and it further investigates the potential therapeutic benefits of SPEVs using a mouse model. SPEVs were isolated using ultracentrifugation and size-exclusion-chromatography. Cryo-Transmission Electron Microscopy revealed pleomorphic outer-membrane-vesicles and outer-inner-membrane-vesicles displaying diverse shapes, sizes and corona densities. To assess short- and long-term immune responses, mice were injected intraperitoneally with SPEVs, which demonstrated a significant increase in neutrophils and M1 macrophages at the injection site, indicating a pro-inflammatory effect induced by SPEVs without clinical signs of toxicity or hypersensitivity. Furthermore, SPEVs demonstrated potent adjuvanticity by enhancing antigen-specific IgG responses in mice by over 100-fold compared to an unadjuvanted model vaccine antigen. Mass-spectrometry identified 54 proteins within SPEVs, including three protein superfamily members linked to the observed pro-inflammatory effects. Our findings highlight the potential of SPEVs as a new class of vaccine adjuvant and warrant additional studies to further characterize the nature of the immune response.
Collapse
Affiliation(s)
| | - Suchandan Sikder
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yide Wong
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Na'ama Koifman
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tamara Thomas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Robert Courtney
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Jamie Seymour
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
10
|
Li J, Li C, Han Y, Yang J, Hu Y, Xu H, Zhou Y, Zuo J, Tang Y, Lei C, Li C, Wang H. Bacterial membrane vesicles from swine farm microbial communities harboring and safeguarding diverse functional genes promoting horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175639. [PMID: 39168346 DOI: 10.1016/j.scitotenv.2024.175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance (AMR) poses a significant global health challenge, with swine farms recognized as major reservoirs of antibiotic resistance genes (ARGs). Recently, bacterial membrane vesicles (BMVs) have emerged as novel carriers mediating horizontal gene transfer. However, little is known about the ARGs carried by BMVs in swine farm environments and their transfer potential. This study investigated the distribution, sources, and microbiological origins of BMVs in three key microbial habitats of swine farms (feces, soil, and fecal wastewater), along with the ARGs and mobile genetic elements (MGEs) they harbor. Characterization of BMVs revealed particle sizes ranging from 20 to 500 nm and concentrations from 108 to 1012 particles/g, containing DNA and proteins. Metagenomic sequencing identified BMVs predominantly composed of members of the Proteobacteria phyla, including Pseudomonadaceae, Moraxellaceae, and Enterobacteriaceae, carrying diverse functional genes encompassing resistance to 14 common antibiotics and 74,340 virulence genes. Notably, multidrug resistance, tetracycline, and chloramphenicol resistance genes were particularly abundant. Furthermore, BMVs harbored various MGEs, primarily plasmids, and demonstrated the ability to protect their DNA cargo from degradation and facilitate horizontal gene transfer, including the transmission of resistance genes. In conclusion, this study reveals widespread presence of BMVs carrying ARGs and potential virulence genes in swine farm feces, soil, and fecal wastewater. These findings not only provide new insights into the role of extracellular DNA in the environment but also highlight concerns regarding the gene transfer potential mediated by BMVs and associated health risks.
Collapse
Affiliation(s)
- Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650000, China.
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yulian Hu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yi Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jing Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
11
|
Eigemann F, Hoffmann J, Schampera C, Liu S, Bolaños LM, Heemeyer M, Carlson CA, Giovannoni S, Hellweger FL. Emergent ecology in a microscale model of the surface ocean. mBio 2024; 15:e0237224. [PMID: 39382297 PMCID: PMC11559031 DOI: 10.1128/mbio.02372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Microbial processes operate at the microscale, which is not resolved by existing ecosystem models. Here, we present a novel model that simulates a 1 mL three-dimensional cube using a hybrid Lagrangian-Eulerian approach, at ecologically relevant timescales. The model simulates individual microbes, including three phytoplankton size classes with healthy, senescent, and dead lifecycle stages; copiotrophic and oligotrophic heterotrophic bacteria; and dissolved organic matter at 50 µm resolution. Diffusion, shear, sedimentation, chemotaxis, and attachment processes are explicitly resolved. The emerging quantitative representation of the ecosystem shows that (1) copiotrophs grow mostly attached to eukaryotic phytoplankters and get almost all of their carbon from them vs. oligotrophs that grow on exudates and lysates of cyanobacteria; (2) contrasting diel patterns in substrate appearance in the phycosphere vs. ambient water and growth of particle-associated copiotrophs vs. free-living oligotrophs; (3) attached bacteria reduce carbon flux from the phycosphere, lowering chemotactic efficiency toward eukaryotes below that toward cyanobacteria; (4) shear reduces chemotactic efficiency and fitness of the copiotroph; and (5) the main benefit of chemotaxis is to locate attachment partners. These patterns are consistent with available observations. Our study provides insights into the microscale ecology of marine bacteria, and the open-source code is a tool for further research in this area.IMPORTANCEA large amount of global CO2 fixation is performed by marine phytoplankton, and a substantial fraction of that is released as dissolved organic carbon and further processed by heterotrophic bacteria. The interaction between phytoplankton and bacteria, i.e., the carbon flux between them, is therefore an important process in the global carbon and climate system. Some bacteria have developed specialized behavioral traits, like swimming and attachment, to increase their carbon acquisition. These interactions occur at the micrometer scale, for example, the immediate vicinity of phytoplankters (the phycosphere), but existing biogeochemical models typically only simulate down to the 1 meter vertical or ~100 kilometer horizontal scale. We present a new microscale model and use it to predict fluxes and other features in the surface ocean. The model makes important predictions about the fluxes between various types of phytoplankton and bacteria and the role of behavioral traits, and it provides a basis and tool for further research in this area.
Collapse
Affiliation(s)
- Falk Eigemann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Jutta Hoffmann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | | | - Shuting Liu
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Environmental & Sustainability Sciences, Kean University, Union, New Jersey, USA
| | - Luis M. Bolaños
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mats Heemeyer
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Craig A. Carlson
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Ferdi L. Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
12
|
De Langhe N, Van Dorpe S, Guilbert N, Vander Cruyssen A, Roux Q, Deville S, Dedeyne S, Tummers P, Denys H, Vandekerckhove L, De Wever O, Hendrix A. Mapping bacterial extracellular vesicle research: insights, best practices and knowledge gaps. Nat Commun 2024; 15:9410. [PMID: 39482295 PMCID: PMC11528011 DOI: 10.1038/s41467-024-53279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) enable communication between bacteria and their natural habitats, including multicellular organisms such as humans. Consequently, the study of BEVs has rapidly gained attention with recent research raising the prospect of developing BEVs as biomarkers and treatments to manage (mal)functioning of natural habitats. Although diverse technologies are available, the composition of their source, their heterogeneity in biophysical and biochemical features, and their multifaceted cargo composition challenges the analysis of BEVs. To map current practices in BEV research, we analyzed 845 publications released in 2015-2021, reporting 3338 BEV-related experiments. The extracted data are accessible via the publicly available EV-TRACK knowledgebase ( https://evtrack.org/ ). We identify the need for transparent reporting, delineate knowledge gaps, outline available best practices and define areas in need of guidance to ensure advances in BEV research and accelerate BEV applications.
Collapse
Affiliation(s)
- Nele De Langhe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sofie Van Dorpe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Niké Guilbert
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Amélie Vander Cruyssen
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- CRCI²NA, Nantes Université, INSERM, CNRS, Nantes, France
| | - Sarah Deville
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Sándor Dedeyne
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Philippe Tummers
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
13
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
14
|
Verma A, Amnebrink D, Lee CC, Wai SN, Sandblad L, Pinhassi J, Wikner J. Prokaryotic morphological features and maintenance activities governed by seasonal productivity conditions. FEMS Microbiol Ecol 2024; 100:fiae121. [PMID: 39264060 PMCID: PMC11556340 DOI: 10.1093/femsec/fiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Abstract
Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles, and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| | - Dennis Amnebrink
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Cheng Choo Lee
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- Umeå Centre for Electron Microscopy, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems – EEMiS, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, Norrbyn 557, SE-905 71 Hörnefors, Sweden
| |
Collapse
|
15
|
Wen AX, Herman C. Horizontal gene transfer and beyond: the delivery of biological matter by bacterial membrane vesicles to host and bacterial cells. Curr Opin Microbiol 2024; 81:102525. [PMID: 39190937 PMCID: PMC11444307 DOI: 10.1016/j.mib.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Membrane vesicles (MVs) are produced in all domains of life. In eukaryotes, extracellular vesicles have been shown to mediate the horizontal transfer of biological material between cells [1]. Therefore, bacterial MVs are also thought to mediate horizontal material transfer to host cells and other bacteria, especially in the context of cell stress. In this review, we discuss the mechanisms of bacterial MV production, evidence that their contents can be trafficked to host cells and other bacteria, and the biological relevance of horizontal material transfer by bacterial MVs.
Collapse
Affiliation(s)
- Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Zhang H, Mou J, Ding J, Qin W. Peptide-Driven Assembly of Magnetic Beads for Potentiometric Sensing of Bacterial Enzyme at a Subcellular Level. ACS Sens 2024; 9:4947-4955. [PMID: 39180154 DOI: 10.1021/acssensors.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Bacterial enzymes with different subcellular localizations play a critical ecological role in biogeochemical processing. However, precisely quantifying enzymes localized at certain subcellular levels, such as extracellular enzymes, has not yet been fully realized due to the complexity and dynamism of the bacterial outer membrane. Here we present a magneto-controlled potentiometric sensing platform for the specific detection of extracellular enzymatic activity. Alkaline phosphatase (ALP), which is one of the crucial hydrolytic enzymes in the ocean, was selected as the target enzyme. Magnetic beads functionalized with an ALP-responsive self-assembled peptide (GGGGGFFFpYpYEEE, MBs-peptides) prevent negatively charged peptides from entering the bacterial outer membrane, thereby enabling direct potentiometric sensing of extracellular ALP both attached to the bacterial cell surface and released into the surrounding environment. The dephosphorylation-triggered assembly of peptide-coupled magnetic beads can be directly and sensitively measured by using a magneto-controlled sensor. In this study, extracellular ALP activity of Pseudomonas aeruginosa at concentrations ranging from 10 to 1.0 × 105 CFU mL-1 was specifically and sensitively monitored. Moreover, this magneto-controlled potentiometric method enabled a simple and accurate assay of ALP activity across different subcellular localizations.
Collapse
Affiliation(s)
- Han Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junsong Mou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P.R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
17
|
Xuan S, Xuan G. Bacterial membrane vesicles: formation, functions, and roles in bacterial-phage interactions. World J Microbiol Biotechnol 2024; 40:329. [PMID: 39304539 DOI: 10.1007/s11274-024-04148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Outer membrane vesicles (OMVs) are nano-sized vesicles actively released by Gram-negative bacteria, playing a crucial role in bacterial survival and interactions with phages. This review focuses on OMVs and succinctly delineates the stimuli instigating OMV formation, their functional repertoire, and their involvement in bacterial-phage interplays. Initially, the discussion centers on the drivers prompting OMV genesis, encompassing both extrinsic environmental pressures and intrinsic regulatory mechanisms within bacterial systems. Subsequently, a comprehensive examination of OMVs' multifaceted functions in bacterial physiology ensues, spanning signaling cascades, nutrient transport, antibiotic resilience, and evasion of immune surveillance. Particular emphasis is placed on elucidating the paramount significance of OMVs in mediating bacterial-phage dynamics. OMVs function as decoys, providing protection to bacterial hosts against phages, and concurrently promoting the spread of phage receptors, thereby rendering phage-resistant strains susceptible to phage invasion. This comprehensive review deepens our comprehension of membrane vesicles biogenesis in bacteria and their pivotal role in microbial community dynamics.
Collapse
Affiliation(s)
- Shichao Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China
| | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266400, China.
| |
Collapse
|
18
|
Gasser MT, Liu A, Altamia M, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587001. [PMID: 38585906 PMCID: PMC10996688 DOI: 10.1101/2024.03.27.587001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Annie Liu
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Marvin Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Bryan R. Brensinger
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Sarah L. Brewer
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Ron Flatau
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | | | - Claire Marie Filone
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Dan L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| |
Collapse
|
19
|
Deng Y, Yu R, Grabe V, Sommermann T, Werner M, Vallet M, Zerfaß C, Werz O, Pohnert G. Bacteria modulate microalgal aging physiology through the induction of extracellular vesicle production to remove harmful metabolites. Nat Microbiol 2024; 9:2356-2368. [PMID: 39143356 PMCID: PMC11371645 DOI: 10.1038/s41564-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
The bloom and bust patterns of microalgae in aquatic systems contribute massively to global biogeochemical cycles. The decline of algal blooms is mainly caused by nutrient limitation resulting in cell death, the arrest of cell division and the aging of surviving cells. Nutrient intake can re-initiate proliferation, but the processes involved are poorly understood. Here we characterize how the bloom-forming diatom Coscinodiscus radiatus recovers from starvation after nutrient influx. Rejuvenation is mediated by extracellular vesicles that shuttle reactive oxygen species, oxylipins and other harmful metabolites out of the old cells, thereby re-enabling their proliferation. By administering nutrient pulses to aged cells and metabolomic monitoring of the response, we show that regulated pathways are centred around the methionine cycle in C. radiatus. Co-incubation experiments show that bacteria mediate aging processes and trigger vesicle production using chemical signalling. This work opens new perspectives on cellular aging and rejuvenation in complex microbial communities.
Collapse
Affiliation(s)
- Yun Deng
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Balance of the Microverse Cluster of Excellence, Friedrich Schiller University Jena, Jena, Germany
| | - Ruyi Yu
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Veit Grabe
- Imaging Platform, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Sommermann
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Markus Werner
- Department for Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Marine Vallet
- Max Planck Fellow Group Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Zerfaß
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department for Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
- Balance of the Microverse Cluster of Excellence, Friedrich Schiller University Jena, Jena, Germany.
- Max Planck Fellow Group Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
20
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Li Y, Wang Y, Lin X, Sun S, Wu A, Ge Y, Yuan M, Wang J, Deng X, Tian Y. Algicidal bacteria-derived membrane vesicles as shuttles mediating cross-kingdom interactions between bacteria and algae. SCIENCE ADVANCES 2024; 10:eadn4526. [PMID: 39110793 PMCID: PMC11305373 DOI: 10.1126/sciadv.adn4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Bacterial membrane vesicles (BMVs) are crucial biological vehicles for facilitating interspecies and interkingdom interactions. However, the extent and mechanisms of BMV involvement in bacterial-algal communication remain elusive. This study provides evidence of BMVs delivering cargos to targeted microalgae. Membrane vesicles (MVs) from Chitinimonas prasina LY03 demonstrated an algicidal profile similar to strain LY03. Further investigation revealed Tambjamine LY2, an effective algicidal compound, selectively packaged into LY03-MVs. Microscopic imaging demonstrated efficient delivery of Tambjamine LY2 to microalgae Heterosigma akashiwo and Thalassiosira pseudonana through membrane fusion. In addition, the study demonstrated the versatile cargo delivery capabilities of BMVs to algae, including the transfer of MV-carried nucleic acids into algal cells and the revival of growth in iron-depleted microalgae by MVs. Collectively, our findings reveal a previously unknown mechanism by which algicidal bacteria store hydrophobic algicidal compounds in MVs to trigger target microalgae death and highlight BMV potency in understanding and engineering bacterial-algae cross-talk.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaolan Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuqian Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Anan Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yintong Ge
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Menghui Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianhua Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| |
Collapse
|
22
|
Casillo A, D'Amico R, Lanzetta R, Corsaro MM. Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles. Mar Drugs 2024; 22:363. [PMID: 39195479 DOI: 10.3390/md22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Raffaele D'Amico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| |
Collapse
|
23
|
Wang K, Jia C, Zhang B, Chen J, Zhao J. Outer membrane vesicles from commensal microbes contribute to the sponge Tedania sp. development by regulating the expression level of apoptosis-inducing factor (AIF). Commun Biol 2024; 7:952. [PMID: 39107427 PMCID: PMC11303789 DOI: 10.1038/s42003-024-06622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The transition from the swimming larval stage to the settlement stage represents a significant node in the marine sponge developmental process. Previous research has shown that the outer membrane vesicles (OMVs) from the bacterial species Tenacibaculum mesophilum associated with the sponge Tedania sp. influence larval settlement: low concentrations of OMVs increase the attachment rate, whereas high concentrations decrease the attachment rate. Here, by comparing the transcriptomes of sponge larvae in filtered seawater (FSW group) and in FSW supplemented with OMVs (FSW-OMV group), the results indicated that bacterial OMVs affected larval settlement by modulating the expression levels of apoptosis-inducing factor (AIF) in the host. Subsequently, quantitative real-time PCR revealed a decrease in aif expression near the time of settlement (SE) compared to that in the control group. RNA interference (RNAi) was used to target the aif gene, and the rate of larval settlement was significantly reduced, confirming the inhibitory effect of high concentrations of OMVs. Moreover, small RNA (sRNA) sequencing of OMVs revealed the existence of abundant AIF-sRNAs of 30 nt, further suggesting that one pathway for the involvement of sponge-associated bacteria in host development is the transport of OMVs and the direct function of cargo loading.
Collapse
Affiliation(s)
- Kai Wang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Chenzheng Jia
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Beibei Zhang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jun Chen
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
24
|
Schiera G, Di Liegro CM, Vento F, Di Liegro I. Role of Extracellular Vesicles in the Progression of Brain Tumors. BIOLOGY 2024; 13:586. [PMID: 39194524 DOI: 10.3390/biology13080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Brain tumors, and, in particular, glioblastoma (GBM), are among the most aggressive forms of cancer. In spite of the advancement in the available therapies, both diagnosis and treatments are still unable to ensure pathology-free survival of the GBM patients for more than 12-15 months. At the basis of the still poor ability to cope with brain tumors, we can consider: (i) intra-tumor heterogeneity; (ii) heterogeneity of the tumor properties when we compare different patients; (iii) the blood-brain barrier (BBB), which makes difficult both isolation of tumor-specific biomarkers and delivering of therapeutic drugs to the brain. Recently, it is becoming increasingly clear that cancer cells release large amounts of extracellular vesicles (EVs) that transport metabolites, proteins, different classes of RNAs, DNA, and lipids. These structures are involved in the pathological process and characterize any particular form of cancer. Moreover, EVs are able to cross the BBB in both directions. Starting from these observations, researchers are now evaluating the possibility to use EVs purified from organic fluids (first of all, blood and saliva), in order to obtain, through non-invasive methods (liquid biopsy), tumor biomarkers, and, perhaps, also for obtaining nanocarriers for the targeted delivering of drugs.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Francesco Vento
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
25
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
26
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
27
|
Givati S, Forchielli E, Aharonovich D, Barak N, Weissberg O, Belkin N, Rahav E, Segrè D, Sher D. Diversity in the utilization of different molecular classes of dissolved organic matter by heterotrophic marine bacteria. Appl Environ Microbiol 2024; 90:e0025624. [PMID: 38920365 PMCID: PMC11267927 DOI: 10.1128/aem.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms. Bulk bacterial activity increased after 24 h for all treatments relative to the control, while glucose and ATP uptake decreased or remained unchanged. Moreover, while the per-cell uptake rate of glucose and ATP decreased, that of Leucin significantly increased for amino acids, reflecting their importance as common metabolic currencies in the marine environment. Pseudoalteromonadaceae dominated the peptides treatment, while different Vibrionaceae strains became dominant in response to amino acids and amino sugars. Marinomonadaceae grew well on organic acids, and Alteromonadaseae on disaccharides. A comparison with a recent laboratory-based study reveals similar peptide preferences for Pseudoalteromonadaceae, while Alteromonadaceae, for example, grew well in the lab on many substrates but dominated in seawater samples only when disaccharides were added. We further demonstrate a potential correlation between the genetic capacity for degrading amino sugars and the dominance of specific clades in these treatments. These results highlight the diversity in DOM utilization among heterotrophic bacteria and complexities in the response of natural communities. IMPORTANCE A major goal of microbial ecology is to predict the dynamics of natural communities based on the identity of the organisms, their physiological traits, and their genomes. Our results show that several clades of heterotrophic bacteria each grow in response to one or more specific classes of organic matter. For some clades, but not others, growth in a complex community is similar to that of isolated strains in laboratory monoculture. Additionally, by measuring how the entire community responds to various classes of organic matter, we show that these results are ecologically relevant, and propose that some of these resources are utilized through common uptake pathways. Tracing the path between different resources to the specific microbes that utilize them, and identifying commonalities and differences between different natural communities and between them and lab cultures, is an important step toward understanding microbial community dynamics and predicting how communities will respond to perturbations.
Collapse
Affiliation(s)
- Shira Givati
- Department of Marine Biology, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Elena Forchielli
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | | - Noga Barak
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Osnat Weissberg
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Natalia Belkin
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Daniel Segrè
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Department of Physics, Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
28
|
Fernández-Rhodes M, Lorca C, Lisa J, Batalla I, Ramos-Miguel A, Gallart-Palau X, Serra A. New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery. Int J Mol Sci 2024; 25:7151. [PMID: 39000260 PMCID: PMC11241179 DOI: 10.3390/ijms25137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Cristina Lorca
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Julia Lisa
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Iolanda Batalla
- Psychiatry Unit, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 48940 Leioa, Spain
| | - Xavier Gallart-Palau
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| |
Collapse
|
29
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
30
|
Johnston EL, Guy-Von Stieglitz S, Zavan L, Cross J, Greening DW, Hill AF, Kaparakis-Liaskos M. The effect of altered pH growth conditions on the production, composition, and proteomes of Helicobacter pylori outer membrane vesicles. Proteomics 2024; 24:e2300269. [PMID: 37991474 DOI: 10.1002/pmic.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.
Collapse
Affiliation(s)
- Ella L Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Sebastian Guy-Von Stieglitz
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| |
Collapse
|
31
|
Angulo-Cánovas E, Bartual A, López-Igual R, Luque I, Radzinski NP, Shilova I, Anjur-Dietrich M, García-Jurado G, Úbeda B, González-Reyes JA, Díez J, Chisholm SW, García-Fernández JM, del Carmen Muñoz-Marín M. Direct interaction between marine cyanobacteria mediated by nanotubes. SCIENCE ADVANCES 2024; 10:eadj1539. [PMID: 38781331 PMCID: PMC11114229 DOI: 10.1126/sciadv.adj1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.
Collapse
Affiliation(s)
- Elisa Angulo-Cánovas
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Ana Bartual
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Nikolai P. Radzinski
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Maya Anjur-Dietrich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gema García-Jurado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Bárbara Úbeda
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| | - María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba 14014, Spain
| |
Collapse
|
32
|
Hu Q, Wang Y, Wang C, Yan X. Comparative Proteome Profiling of Extracellular Vesicles from Three Growth Phases of Haematococcus pluvialis under High Light and Sodium Acetate Stresses. Int J Mol Sci 2024; 25:5421. [PMID: 38791459 PMCID: PMC11121785 DOI: 10.3390/ijms25105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.
Collapse
Affiliation(s)
- Qunju Hu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Yuanyuan Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Chaogang Wang
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yan
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| |
Collapse
|
33
|
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater 2024; 180:18-45. [PMID: 38641182 DOI: 10.1016/j.actbio.2024.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Chun Liu
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Negar Yazdani
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029 Australia
| | - Chaminda Jayampath Seneviratne
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| |
Collapse
|
34
|
Li J, Guo A, Huang S, Azam F, Sun X, Zhang J, Long L, Zhang S. Outer membrane vesicles produced by coral-associated Vibrio coralliilyticus inhibit bacteriophage infection and its ecological implications. Microbiol Res 2024; 281:127607. [PMID: 38228019 DOI: 10.1016/j.micres.2024.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
The potential to produce and release outer membrane vesicles (OMVs) is evolutionarily conserved among bacteria, facilitating interactions between microbes. OMV release and its ecological significance have rarely been reported in coral holobionts. Here, via transmission electron microscopy (TEM), we discovered that the coral-associated strain Vibrio coralliilyticus DSM 19607 produced OMVs in culture. OMVs purified from V. coralliilyticus DSM 19607 inhibited the bacteriophage (phage) SBM1 infection of the V. coralliilyticus host, which was impaired by elevated temperature. Observation via TEM showed that sequestrating phages was a potential approach for V. coralliilyticus OMVs protection against phage infection. Furthermore, detection in coral mucus showed that interactions between membrane vesicles and phages potentially occurred in the natural environment. These results imply that OMVs regulate the coral microbiome and may have important implications for our mechanistic understanding of coral health and disease in the face of climate change.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Anjie Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Xinyuanyuan Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Fang Z, Zhao X, Zhang Z, Wu J, Cheng J, Lei D, Li N, Ge R, He QY, Sun X. Unveiling a novel mechanism for competitive advantage of ciprofloxacin-resistant bacteria in the environment through bacterial membrane vesicles. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133453. [PMID: 38246062 DOI: 10.1016/j.jhazmat.2024.133453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Ciprofloxacin (CIP) is a prevalent environmental contaminant that poses a high risk of antibiotic resistance. High concentrations of antibiotics can lead to the development of resistant bacteria with high fitness costs, which often face a competitive disadvantage. However, it is unclear whether low-cost resistant bacteria formed by exposure to sub-MIC CIP in the environment can evolve competitive mechanisms against sensitive Escherichia coli (SEN) other than stronger resistance to CIP. Our study exposed E. coli to sub-MIC CIP levels, resulting in the development of CIP-resistant E. coli (CIPr). In antibiotic-free co-culture assays, CIPr outcompeted SEN. This indicates that CIPr is very likely to continue to develop and spread in antibiotic-free environments such as drinking water and affect human health. Further mechanism investigation revealed that bacterial membrane vesicles (BMVs) in CIPr, functioning as substance delivery couriers, mediated a cleavage effect on SEN. Proteomic analysis identified Entericidin B (EcnB) within CIPr-BMVs as a key factor in this competitive interaction. RT-qPCR analysis showed that the transcription of its negative regulator ompR/envZ was down-regulated. Moreover, EcnB plays a crucial role in the development of CIP resistance, and some resistance-related proteins and pathways have also been discovered. Metabolomics analysis highlighted the ability of CIPr-BMVs to acidify SEN, increasing the lytic efficiency of EcnB through cationization. Overall, our study reveals the importance of BMVs in mediating bacterial resistance and competition, suggesting that regulating BMVs production may be a new strategy for controlling the spread of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ziyuan Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Lei
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
36
|
Mansky J, Wang H, Wagner-Döbler I, Tomasch J. The effect of site-specific recombinases XerCD on the removal of over-replicated chromosomal DNA through outer membrane vesicles in bacteria. Microbiol Spectr 2024; 12:e0234323. [PMID: 38349173 PMCID: PMC10913375 DOI: 10.1128/spectrum.02343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Outer membrane vesicles (OMVs) are universally produced by Gram-negative bacteria and play important roles in symbiotic and pathogenic interactions. The DNA from the lumen of OMVs from the Alphaproteobacterium Dinoroseobacter shibae was previously shown to be enriched for the region around the terminus of replication ter and specifically for the recognition sequence dif of the two site-specific recombinases XerCD. These enzymes are highly conserved in bacteria and play an important role in the last phase of cell division. Here, we show that a similar enrichment of ter and dif is found in the DNA inside OMVs from Prochlorococcus marinus, Pseudomonas aeruginosa, Vibrio cholerae, and Escherichia coli. The deletion of xerC or xerD in E. coli reduced the enrichment peak directly at the dif sequence, while the enriched DNA region around ter became broader, demonstrating that either enzyme influences the DNA content inside the lumen of OMVs. We propose that the intra-vesicle DNA originated from over-replication repair and the XerCD enzymes might play a role in this process, providing them with a new function in addition to resolving chromosome dimers.IMPORTANCEImprecise termination of replication can lead to over-replicated parts of bacterial chromosomes that have to be excised and removed from the dividing cell. The underlying mechanism is poorly understood. Our data show that outer membrane vesicles (OMVs) from diverse Gram-negative bacteria are enriched for DNA around the terminus of replication ter and the site-specific XerCD recombinases influence this enrichment. Clearing the divisome from over-replicated parts of the bacterial chromosome might be a so far unrecognized and conserved function of OMVs.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science–Centre Algatech, Třeboň, Czech Republic
| |
Collapse
|
37
|
Mills J, Gebhard LJ, Schubotz F, Shevchenko A, Speth DR, Liao Y, Duggin IG, Marchfelder A, Erdmann S. Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase. Proc Natl Acad Sci U S A 2024; 121:e2311321121. [PMID: 38408251 DOI: 10.1073/pnas.2311321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024] Open
Abstract
Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.
Collapse
Affiliation(s)
- Joshua Mills
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - L Johanna Gebhard
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daan R Speth
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Yan Liao
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Iain G Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Susanne Erdmann
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| |
Collapse
|
38
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
39
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Stein AM, Biller SJ. An ocean of diffusible information. Trends Genet 2024; 40:209-210. [PMID: 38310066 DOI: 10.1016/j.tig.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
In the ocean, free-living bacteria exist in a dilute world where direct physical interactions between cells are relatively rare. How then do they exchange genetic information via horizontal gene transfer (HGT)? Lücking et al. have explored the world of marine 'protected extracellular DNA' (peDNA), and find that extracellular vesicles (EVs) are likely to play an important role.
Collapse
Affiliation(s)
- Ashley M Stein
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA.
| |
Collapse
|
41
|
Yu MSC, Edelbacher TV, Grätz C, Chiang DM, Reithmair M, Pfaffl MW. Summary report of the 1st MOVE symposium in Málaga from 24-27th October 2023 - Foster the European mobility for young scientists in extracellular vesicles research. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:95-113. [PMID: 39698417 PMCID: PMC11648475 DOI: 10.20517/evcna.2024.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Mia S. C. Yu
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Authors contributed equally
| | - Tanja V. Edelbacher
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Division of Functional Microbiology, Institute for Microbiology, Center for Pathobiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Authors contributed equally
| | - Christian Grätz
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Dapi M. Chiang
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
42
|
Zhang B, Jia C, Li M, Wang K, Chen J, Zhao J. Multiomics integration for the function of bacterial outer membrane vesicles in the larval settlement of marine sponges. Front Microbiol 2024; 15:1268813. [PMID: 38468855 PMCID: PMC10925772 DOI: 10.3389/fmicb.2024.1268813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bacterial outer membrane vesicles (OMVs) contain a variety of chemical compounds and play significant roles in maintaining symbiotic relationships in a changing ocean, but little is known about their function, particularly in sponge larval development. During the growth of sponge Tedania sp., OMVs from Bacteroidetes species significantly promoted larval settlement, and Tenacibaculum mesophilum SP-7-OMVs were selected as a representative strain for further investigation. According to OMVs metabolomics, larval settlement might be connected to organic acids and derivatives. The multiomics analysis of the T. mesophilum genome, SP-7-OMVs metabolome, and larval transcriptome revealed 47 shared KEGG pathways. Among the number of candidate metabolites, arginine was chosen for its greater ability to increase the settlement rate and its role as the principal substrate for nitric oxide (NO) synthesis of sponge larvae. In summary, these results demonstrated that sponge-associated bacteria might utilize OMVs and their cargo to support host development and make up for host metabolic pathway deficiencies. This study enhances our fundamental knowledge of OMVs in interactions between metazoan hosts and microorganisms that are crucial in the coevolution of marine ecosystems and the complex marine environment.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Chenzheng Jia
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Mingyu Li
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Kai Wang
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jun Chen
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Xaimen, Fujian, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
43
|
Lee JJ, Abdullah M, Liu J, Carvalho IA, Junior AS, Moreira MAS, Mohammed H, DeLisa MP, McDonough SP, Chang YF. Proteomic profiling of membrane vesicles from Mycobacterium avium subsp. paratuberculosis: Navigating towards an insilico design of a multi-epitope vaccine targeting membrane vesicle proteins. J Proteomics 2024; 292:105058. [PMID: 38065354 DOI: 10.1016/j.jprot.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
Bacteria typically produce membrane vesicles (MVs) at varying levels depending on the surrounding environments. Gram-negative bacterial outer membrane vesicles (OMVs) have been extensively studied for over 30 years, but MVs from Gram-positive bacteria only recently have been a focus of research. In the present study, we isolated MVs from Mycobacterium avium subsp. paratuberculosis (MAP) and analyzed their protein composition using LC-MS/MS. A total of 316 overlapping proteins from two independent preparations were identified in our study, and topology prediction showed these cargo proteins have different subcellular localization patterns. When MVs were administered to bovine-derived macrophages, significant up-regulation of pro-inflammatory cytokines was observed via qRT-PCR. Proteome functional annotation revealed that many of these proteins are involved in the cellular protein metabolic process, tRNA aminoacylation, and ATP synthesis. Secretory proteins with high antigenicity and adhesion capability were mapped for B-cell and T-cell epitopes. Antigenic, Immunogenic and IFN-γ inducing B-cell, MHC-I, and MHC-II epitopes were stitched together through linkers to form multi-epitope vaccine (MEV) construct against MAP. Strong binding energy was observed during the docking of the 3D structure of the MEV with the bovine TLR2, suggesting that the putative MEV may be a promising vaccine candidate against MAP. However, in vitro and in vivo analysis is required to prove the immunogenic concept of the MEV which we will follow in our future studies. SIGNIFICANCE: Johne's disease is a chronic infection caused by Mycobacterium avium subsp. paratuberculosis that has a potential link to Crohn's disease in humans. The disease is characterized by persistent diarrhea and enteritis, resulting in significant economic losses due to reduced milk yield and premature culling of infected animals. The dairy industry in the United States alone experiences losses of approximately USD 250 million due to Johne's disease. The current vaccine against Johne's disease is limited by several factors, including variable efficacy, limited duration of protection, interference with diagnostic tests, inability to prevent infection, and logistical and cost-related challenges. Nevertheless, a multiepitope vaccine design approach targeting M. avium subsp. paratuberculosis has the potential to overcome these challenges and offer improved protection against Johne's disease.
Collapse
Affiliation(s)
- Jen-Jie Lee
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Mohd Abdullah
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Jinjing Liu
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Isabel Azevedo Carvalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Abelardo Silva Junior
- Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL CEP 57072-900, Brazil
| | | | - Hussni Mohammed
- Departement of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States; Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, United States; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Sean P McDonough
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
44
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
45
|
Nieuwland R, Enciso-Martinez A, Bracht JWP. Clinical applications and challenges in the field of extracellular vesicles. MED GENET-BERLIN 2023; 35:251-258. [PMID: 38835736 PMCID: PMC11006345 DOI: 10.1515/medgen-2023-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Body fluids contain cell-derived particles called extracellular vesicles (EVs). EVs are released by cells and are present in all body fluids (i. e. liquid biopsies). EVs contribute to physiology and pathology and offer a plethora of potential clinical applications, ranging from biomarkers to therapeutic applications. In this manuscript we provide an overview of this new and rapidly growing research field, along with its challenges and opportunities.
Collapse
Affiliation(s)
- Rienk Nieuwland
- Amsterdam UMC, location University of Amsterdam Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| | - Agustin Enciso-Martinez
- Amsterdam UMC location University of Amsterdam, Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| | - Jillian W P Bracht
- Amsterdam UMC, location AMC Amsterdam Vesicle Center, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry Amsterdam The Netherlands
| |
Collapse
|
46
|
Warsi OM, Gedda L, Edwards K, Andersson DI. Vesicle-enriched secretomes alter bacterial competitive abilities and are drivers of evolution in microbial communities. FEMS Microbiol Ecol 2023; 99:fiad141. [PMID: 37884450 PMCID: PMC10653989 DOI: 10.1093/femsec/fiad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Microbial membrane vesicles can carry compounds that inhibit bacterial growth, but how they impact the fitness of the vesicle-producing bacterial species and influence community dynamics remain unexplored questions. To address these questions, we examined the effect of vesicle-enriched secretomes (VESs) in different single-species and multi-species systems. Effects of VESs on single-species growth dynamics were determined for nine bacterial species belonging to four genera (Escherichia, Salmonella, Pseudomonas and Bacillus) in nutrient-rich and poor growth media. Results showed both species-specific and nutrient-dependent effects of the VESs on bacterial growth. The strongest antagonistic effects were observed for VES isolated from the natural isolates of E. coli, while those isolated from P. aeruginosa PA14 affected the highest number of species. We further demonstrated that these VESs altered the competitive abilities of the species involved in two-species (S. Typhimurium LT2 and S. arizonae) and three-species systems (E. coli, S. Typhimurium LT2 and B. subtilis). Finally, using experimental evolution we showed that different bacterial species could rapidly acquire mutations that abrogated the antagonistic effects of VESs. This study demonstrates how VESs can contribute in shaping microbial communities, both by increasing the competitive ability of a given bacterial species and as a driver of genetic adaptation.
Collapse
Affiliation(s)
- Omar M Warsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Lars Gedda
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75237, Sweden
| | - Katarina Edwards
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75237, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
47
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 PMCID: PMC11623402 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
48
|
Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME COMMUNICATIONS 2023; 3:112. [PMID: 37848554 PMCID: PMC10582014 DOI: 10.1038/s43705-023-00317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Environmental virus metagenomes, commonly referred to as "viromes", are typically generated by physically separating virus-like particles (VLPs) from the microbial fraction based on their size and mass. However, most methods used to purify VLPs, enrich extracellular vesicles (EVs) and gene transfer agents (GTAs) simultaneously. Consequently, the sequence space traditionally referred to as a "virome" contains host-associated sequences, transported via EVs or GTAs. We therefore propose to call the genetic material isolated from size-fractionated (0.22 µm) and DNase-treated samples protected environmental DNA (peDNA). This sequence space contains viral genomes, DNA transduced by viruses and DNA transported in EVs and GTAs. Since there is no genetic signature for peDNA transported in EVs, GTAs and virus particles, we rely on the successful removal of contaminating remaining cellular and free DNA when analyzing peDNA. Using marine samples collected from the North Sea, we generated a thoroughly purified peDNA dataset and developed a bioinformatic pipeline to determine the potential origin of the purified DNA. This pipeline was applied to our dataset as well as existing global marine "viromes". Through this pipeline, we identified known GTA and EV producers, as well as organisms with actively transducing proviruses as the source of the peDNA, thus confirming the reliability of our approach. Additionally, we identified novel and widespread EV producers, and found quantitative evidence suggesting that EV-mediated gene transfer plays a significant role in driving horizontal gene transfer (HGT) in the world's oceans.
Collapse
Affiliation(s)
- Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Coraline Mercier
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
49
|
Hufsky F, Abecasis AB, Babaian A, Beck S, Brierley L, Dellicour S, Eggeling C, Elena SF, Gieraths U, Ha AD, Harvey W, Jones TC, Lamkiewicz K, Lovate GL, Lücking D, Machyna M, Nishimura L, Nocke MK, Renard BY, Sakaguchi S, Sakellaridi L, Spangenberg J, Tarradas-Alemany M, Triebel S, Vakulenko Y, Wijesekara RY, González-Candelas F, Krautwurst S, Pérez-Cataluña A, Randazzo W, Sánchez G, Marz M. The International Virus Bioinformatics Meeting 2023. Viruses 2023; 15:2031. [PMID: 37896809 PMCID: PMC10612056 DOI: 10.3390/v15102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Ana B. Abecasis
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Artem Babaian
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sebastian Beck
- Leibniz Institute of Virology, Department Viral Zoonoses—One Health, 20251 Hamburg, Germany;
| | - Liam Brierley
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
| | - Simon Dellicour
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Christian Eggeling
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Santiago F. Elena
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
| | - Udo Gieraths
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Will Harvey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Terry C. Jones
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute of Virology, Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Gabriel L. Lovate
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dominik Lücking
- Max-Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Martin Machyna
- Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Luca Nishimura
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Maximilian K. Nocke
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Department for Molecular & Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernard Y. Renard
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Digital Engineering Faculty, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan;
| | - Lygeri Sakellaridi
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Jannes Spangenberg
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Maria Tarradas-Alemany
- Computational Genomics Lab., Department of Genetics, Microbiology and Statistics, Institut de Biomedicina UB (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sandra Triebel
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Yulia Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rajitha Yasas Wijesekara
- Institute for Bioinformatics, University of Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Fernando González-Candelas
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- Institute for Integrative Systems Biology (I2SysBio), CSIC-Universitat de Valencia, Catedratico Agustin Escardino 9, 46980 Valencia, Spain
- Joint Research Unit “Infection and Public Health” FISABIO, University of Valencia, 46010 Valencia, Spain
| | - Sarah Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Alba Pérez-Cataluña
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Walter Randazzo
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Gloria Sánchez
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, 46980 Valencia, Spain
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany (A.B.A.); (L.B.); (S.D.); (C.E.); (S.F.E.); (T.C.J.); (K.L.); (G.L.L.); (M.K.N.); (B.Y.R.); (F.G.-C.); (A.P.-C.); (W.R.); (G.S.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Michael Stifel Center Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745 Jena, Germany
- Leibniz Institute for Age Research—Fritz Lippman Institute, 07745 Jena, Germany
| |
Collapse
|
50
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|