1
|
Qian Y, Mahmoud TI. Molecule Formats of B-Cell Targeting Biologics: Applications in Autoimmune Disease Treatment and Impacts on Manufacturability. Pharmaceutics 2025; 17:495. [PMID: 40284490 PMCID: PMC12030081 DOI: 10.3390/pharmaceutics17040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
The targeting of B-lymphocyte cells has emerged as one of the most pivotal strategies in the management of autoimmune diseases. This review provides an overview of protein therapeutics illustrating their direct and indirect effects on B-cells using different molecule formats. The design and format of these molecules influence their mode of action and affect their manufacturing strategies. Manufacturability should be assessed at an early stage and continuously through collaboration between discovery and development teams. Scalability evaluations should encompass not only process development and facility compatibility but also cell line development. Examples of format-specific manufacturability of biologics are reviewed to offer general insights into enhancing productivity and quality in a cost-effective manner.
Collapse
Affiliation(s)
- Yueming Qian
- Pre-Pivotal Drug Substance Technologies, Amgen Inc., Rockville, MD 20850, USA
| | | |
Collapse
|
2
|
Simpson AP, Oldham RJ, Cox KL, Taylor MC, James S, White AL, Bogdanov Y, Glennie MJ, Frendeus B, Cragg MS, Roghanian A. FcγRIIB (CD32B) antibodies enhance immune responses through activating FcγRs. Clin Exp Immunol 2025; 219:uxaf015. [PMID: 40089806 PMCID: PMC12046127 DOI: 10.1093/cei/uxaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
Fc receptors (FcR) play a key role in coordinating responses from both the innate and adaptive immune system. The inhibitory Fc gamma receptor (FcγRIIB/CD32B; referred to as FcγRII/CD32 in mice) restrains the immune response, specifically through regulating immunoglobulin G (IgG) effector functions. FcγRII-deficient mice demonstrate elevated incidence and severity of autoimmunity and increased responses to immunization and infections. To explore the potential of FcγRIIB as a target for augmenting vaccines, we tested the ability of monoclonal antibodies (mAb) against mouse FcγRII and human FcγRIIB to enhance humoral responses in preclinical models. We used wild-type (WT), FcγR-deficient, and human FcγRIIB transgenic (Tg) mice with either a functional intracellular domain (hFcγRIIB Tg) or lacking immunoreceptor tyrosine-based inhibitory motif (ITIM) signalling capacity (NoTIM). Targeting mouse FcγRII and human FcγRIIB with antibodies significantly augmented humoral immune responses against experimental antigens and enhanced tumour clearance in vivo. Surprisingly, mAbs without a functional Fc (N297Q; referred to as Fc-null) lacked efficacy. Similarly, blocking FcγRII in mice lacking activating FcγRs failed to enhance immune responses. Conversely, blocking both signalling-competent and signalling-defective (NoTIM) FcγRIIB in Tg mice with a WT, but not Fc-null, FcγRIIB mAb equally enhanced immunity. These data indicate the redundancy of inhibitory signalling in potentiating immune responses in vivo. Collectively, our data suggest that mAb-targeting of FcγRIIB stabilizes mAb Fc and enhances immune responses via Fc-mediated crosslinking of activating FcγRs, irrespective of the inhibitory function of FcγRIIB. These findings support a strategy to boost immune responses in immunization protocols.
Collapse
Affiliation(s)
- Alexander P Simpson
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Martin C Taylor
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Sonya James
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Ann L White
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Yury Bogdanov
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
| | - Björn Frendeus
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
- BioInvent International AB, Sölvegatan 41, Lund, Sweden
| | - Mark S Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
- Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, School of Cancer Sciences, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, Hampshire, UK
- Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK
| |
Collapse
|
3
|
Chen C, Tang T, Chen Z, Chen L, Cheng J, Li F, Sun J, Zhao J, Wang Y, Yan Q, Zhao J, Zhu A. Antibody dynamics for heterologous boosters with aerosolized Ad5-nCoV following inactivated COVID-19 vaccines. Hum Vaccin Immunother 2024; 20:2423466. [PMID: 39535117 PMCID: PMC11562911 DOI: 10.1080/21645515.2024.2423466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The COVID-19 pandemic has underscored vaccination as a crucial strategy for reducing disease severity and preventing hospitalizations. Heterologous boosters using aerosolized Ad5-nCoV following two doses of inactivated vaccine have demonstrated superior antibody responses. However, the comprehensive dynamics of this antibody boost and the optimal timing for heterologous boosters are still not fully understood. In this study, we investigated the dynamics of neutralizing antibody (nAb) responses in recipients of heterologous booster vaccinations with aerosolized Ad5-nCoV following either two (I-I-A) or three (I-I-I-A) doses of COVID-19 inactivated vaccines. The findings indicate that a booster dose of aerosolized Ad5-nCoV vaccine induced robust and durable nAb responses comparable to those elicited in BA.5 breakthrough infections with similar doses of inactivated vaccine. Notably, group I-I-A showed higher peak nAb titers against the WT strain, BA.5, and XBB.1 variants compared to group I-I-I-A, inversely correlating with the prior nAb levels. This suggesting the possible efficacy of the heterologous aerosolized Ad5-nCoV booster and indicates that pre-boost antibody levels may be related to the outcomes of booster vaccination.
Collapse
Affiliation(s)
- Canjie Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, Shang-haiTech University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, and The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
5
|
Heyman B. Antibody feedback regulation. Immunol Rev 2024; 328:126-142. [PMID: 39180190 PMCID: PMC11659925 DOI: 10.1111/imr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies are able to up- or downregulate antibody responses to the antigen they bind. Two major mechanisms can be distinguished. Suppression is most likely caused by epitope masking and can be induced by all isotypes tested (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgE). Enhancement is often caused by the redistribution of antigen in a favorable way, either for presentation to B cells via follicular dendritic cells (IgM and IgG3) or to CD4+ T cells via dendritic cells (IgE, IgG1, IgG2a, and IgG2b). IgM and IgG3 complexes activate complement and are transported from the marginal zone to follicles by marginal zone B cells expressing complement receptors. IgE-antigen complexes are captured by CD23+ B cells in the blood and transported to follicles, delivered to CD8α+ conventional dendritic cells, and presented to CD4+ T cells. Enhancement of antibody responses by IgG1, IgG2a, and IgG2b in complex with proteins requires activating FcγRs. These immune complexes are captured by dendritic cells and presented to CD4+ T cells, subsequently helping cognate B cells. Endogenous feedback regulation influences the response to booster doses of vaccines and passive administration of anti-RhD antibodies is used to prevent alloimmunization of RhD-negative women carrying RhD-positive fetuses.
Collapse
Affiliation(s)
- Birgitta Heyman
- Department of Medical Biochemistry and MicrobiologyUppsala University, (BMC)UppsalaSweden
| |
Collapse
|
6
|
Hollis WC, Farooq S, Khoshi MR, Patel M, Karnaukhova E, Eller N, Holada K, Scott DE, Simak J. Submicron immunoglobulin particles exhibit FcγRII-dependent toxicity linked to autophagy in TNFα-stimulated endothelial cells. Cell Mol Life Sci 2024; 81:376. [PMID: 39212707 PMCID: PMC11364738 DOI: 10.1007/s00018-024-05342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC). IVIG products (1-20 mg/mL), bare SiMPs or SiMPs with IVIG-corona, did not display significant toxicity to unstimulated HUVEC. In contrast, in TNFα-stimulated HUVEC, IVIG-SiMPs induced decrease of HUVEC viability compared to HSA-SiMPs, while no toxicity of soluble IVIG was observed. 200 nm IVIG-SiMPs after 24 h treatment further increased ICAM1 (intercellular adhesion molecule 1) and tissue factor surface expression, apoptosis, mammalian target of rapamacin (mTOR)-dependent activation of autophagy, and release of extracellular vesicles, positive for mitophagy markers. Toxic effects of IVIG-SiMPs were most prominent for 200 nm SiMPs and decreased with larger SiMP size. Using blocking antibodies, toxicity of IVIG-SiMPs was found dependent on FcγRII receptor expression on HUVEC, which increased after TNFα-stimulation. Similar results were observed with different IVIG products and research grade IgG preparations. In conclusion, submicron particles with immunoglobulin corona induced size-dependent toxicity in TNFα-stimulated HUVEC via FcγRII receptors, associated with apoptosis and mTOR-dependent activation of autophagy. Testing of IVIG toxicity in endothelial cells prestimulated with proinflammatory cytokines is relevant to clinical conditions. Our results warrant further studies on endothelial toxicity of sub-visible immunoglobulin particles.
Collapse
Affiliation(s)
- Wanida C Hollis
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Sehrish Farooq
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - M Reza Khoshi
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Mehulkumar Patel
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Nancy Eller
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dorothy E Scott
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Jan Simak
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA.
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, OBRR, 10903 New Hampshire Avenue, WO Bldg. 52/72, Rm. 4210, Silver Spring, MD, USA.
| |
Collapse
|
7
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
8
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
9
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
10
|
Lassaunière R, Tiemessen CT. FcγR Genetic Variation and HIV-1 Vaccine Efficacy: Context And Considerations. Front Immunol 2021; 12:788203. [PMID: 34975881 PMCID: PMC8714752 DOI: 10.3389/fimmu.2021.788203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcγ receptors (FcγRs), link the humoral and cellular arms of the immune response, providing a diverse armamentarium of antimicrobial effector functions. Findings from HIV-1 vaccine efficacy trials highlight the need for further study of Fc-FcR interactions in understanding what may constitute vaccine-induced protective immunity. These include host genetic correlates identified within the low affinity Fcγ-receptor locus in three HIV-1 efficacy trials – VAX004, RV144, and HVTN 505. This perspective summarizes our present knowledge of FcγR genetics in the context of findings from HIV-1 efficacy trials, and draws on genetic variation described in other contexts, such as mother-to-child HIV-1 transmission and HIV-1 disease progression, to explore the potential contribution of FcγR variability in modulating different HIV-1 vaccine efficacy outcomes. Appreciating the complexity and the importance of the collective contribution of variation within the FCGR gene locus is important for understanding the role of FcγRs in protection against HIV-1 acquisition.
Collapse
Affiliation(s)
- Ria Lassaunière
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| | - Caroline T. Tiemessen
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| |
Collapse
|
11
|
Zuo Y, Deng GM. Fc Gamma Receptors as Regulators of Bone Destruction in Inflammatory Arthritis. Front Immunol 2021; 12:688201. [PMID: 34248975 PMCID: PMC8262610 DOI: 10.3389/fimmu.2021.688201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bone erosion is one of the primary features of inflammatory arthritis and is caused by excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcγRs) have been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcγRI is required for RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We reviewed the results of studies that analyzed the association between FcγRs and bone erosion in inflammatory arthritis. The analysis revealed the dual roles of FcγRs in bone destruction in inflammatory arthritis. Thus, IgG/FcγR signaling molecules may serve as potential therapeutic targets against bone erosion.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
13
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
14
|
Dixon KJ, Wu J, Walcheck B. Engineering Anti-Tumor Monoclonal Antibodies and Fc Receptors to Enhance ADCC by Human NK Cells. Cancers (Basel) 2021; 13:312. [PMID: 33467027 PMCID: PMC7829765 DOI: 10.3390/cancers13020312] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-targeting monoclonal antibodies (mAbs) are the most widely used and characterized immunotherapy for hematologic and solid tumors. The significance of this therapy is their direct and indirect effects on tumor cells, facilitated by the antibody's antigen-binding fragment (Fab) and fragment crystallizable region (Fc region), respectively. The Fab can modulate the function of cell surface markers on tumor cells in an agonistic or antagonistic manner, whereas the Fc region can be recognized by an Fc receptor (FcR) on leukocytes through which various effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), can be elicited. This process is a key cytolytic mechanism of natural killer (NK) cells. These innate lymphocytes in the human body recognize tumor-bound antibodies exclusively by the IgG Fc receptor CD16A (FcγRIIIA). Two allelic versions of CD16A bind IgG with either lower or higher affinity. Cancer patients homozygous for the higher affinity allele of CD16A have been reported to respond significantly better to mAb therapies for various malignancies. These studies revealed that mAb therapy efficacy positively correlates with higher affinity binding to CD16A. Approaches to enhance tumor antigen targeting by NK cells by modifying the Fc portion of antibodies or the FcR on NK cells are the focus of this review.
Collapse
Affiliation(s)
| | | | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (K.J.D.); (J.W.)
| |
Collapse
|
15
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
16
|
Ito T, Kometani K, Minato N, Hamazaki Y. Bone Marrow Endothelial Cells Take Up Blood-Borne Immune Complexes via Fcγ Receptor IIb2 in an Erythropoietin-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:2008-2015. [PMID: 32907997 DOI: 10.4049/jimmunol.1901101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
Immune complexes (ICs) in blood are efficiently removed mainly by liver reticuloendothelial systems consisting of sinusoidal endothelial cells and Kupffer cells expressing FcγR. The bone marrow (BM) also has sinusoidal vasculatures, and sinusoidal BM endothelial cells (BMECs) bear unique function, including hematopoietic niches and traffic regulation of hematopoietic cells. In this study, we found that sinusoidal BMECs express FcγRIIb2, which is markedly increased in anemic conditions or by the administration of erythropoietin (Epo) in healthy mice. BMECs expressed Epo receptor (EpoR), and the Epo-induced increase in FcγRIIb2 expression was abolished in Epor-/- ::HG1-Epor transgenic mice, which lack EpoR in BMECs except for BM erythroblasts, suggesting the effect was directly mediated via EpoR on BMECs. Further, although BMECs hardly captured i.v.-injected soluble ICs in healthy mice, Epo administration induced a remarkable increase in the uptake of ICs in a FcγRIIb-dependent manner. Enhancement of the IC incorporation capacity by Epo was also observed in cultured BMECs in vitro, suggesting the direct effect of Epo on BMECs. Moreover, we found that i.v.-injected ICs in Epo-treated mice were more rapidly removed from the circulation than in PBS-treated mice. These results reveal a novel function of BMECs to efficiently remove circulating blood-borne ICs in an FcγRIIb2-mediated manner.
Collapse
Affiliation(s)
- Takeshi Ito
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| | - Kohei Kometani
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoko Hamazaki
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| |
Collapse
|
17
|
Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol 2020; 20:633-643. [PMID: 32782358 PMCID: PMC7418887 DOI: 10.1038/s41577-020-00410-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic. Antibody-dependent enhancement (ADE) has been described as a mechanism that contributes to the pathogenesis of dengue virus infection. Limited evidence also suggests that it can also occur in other viral infections. Here, the authors explore the history of the ADE phenomenon, discuss the diversity of Fc effector functions and consider its potential relevance in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Aaron Gupta
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol 2020; 11:873. [PMID: 32848838 PMCID: PMC7396565 DOI: 10.3389/fphys.2020.00873] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the most abundant non-parenchymal cells lining the sinusoidal capillaries of the hepatic system. LSECs are characterized with numerous fenestrae and lack basement membrane as well as a diaphragm. These unique morphological characteristics of LSECs makes them the most permeable endothelial cells of the mammalian vasculature and aid in regulating flow of macromolecules and small lipid-based structures between sinusoidal blood and parenchymal cells. LSECs have a very high endocytic capacity aided by scavenger receptors (SR), such as SR-A, SR-B (SR-B1 and CD-36), SR-E (Lox-1 and mannose receptors), and SR-H (Stabilins). Other high-affinity receptors for mediating endocytosis include the FcγRIIb, which assist in the antibody-mediated removal of immune complexes. Complemented with intense lysosomal activity, LSECs play a vital role in the uptake and degradation of many blood borne waste macromolecules and small (<280 nm) colloids. Currently, seven Toll-like receptors have been investigated in LSECs, which are involved in the recognition and clearance of pathogen-associated molecular pattern (PAMPs) as well as damage associated molecular pattern (DAMP). Along with other SRs, LSECs play an essential role in maintaining lipid homeostasis with the low-density lipoprotein receptor-related protein-1 (LRP-1), in juxtaposition with hepatocytes. LSECs co-express two surface lectins called L-Specific Intercellular adhesion molecule-3 Grabbing Non-integrin Receptor (L-SIGN) and liver sinusoidal endothelial cell lectin (LSECtin). LSECs also express several adhesion molecules which are involved in the recruitment of leukocytes at the site of inflammation. Here, we review these cell surface receptors as well as other components expressed by LSECs and their functions in the maintenance of liver homeostasis. We further discuss receptor expression and activity and dysregulation associated with the initiation and progression of many liver diseases, such as hepatocellular carcinoma, liver fibrosis, and cirrhosis, alcoholic and non-alcoholic fatty liver diseases and pseudocapillarization with aging.
Collapse
Affiliation(s)
- Ekta Pandey
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Aiah S Nour
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| | - Edward N Harris
- Department of Biochemistry, Universityof Nebraska, Lincoln, NE, United States
| |
Collapse
|
19
|
Heitmann JS, Hagelstein I, Hinterleitner C, Osburg L, Salih HR, Kauer J, Märklin M. Fc gamma receptor expression serves as prognostic and diagnostic factor in AML. Leuk Lymphoma 2020; 61:2466-2474. [PMID: 32543333 DOI: 10.1080/10428194.2020.1775208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Risk assessment in acute myeloid leukemia (AML) mainly relies on (cyto-)genetic and morphologic features. Nonetheless, further markers are needed to allow for accurate risk stratification. Type I Fc gamma receptors (FcγRs) such as CD16, CD32, and CD64 play an important role in mediating immunomodulatory functions in different myeloid cell types as well as NK and B cells. We here evaluated expression of the three FcγR on peripheral blood AML blasts. Using flow cytometry, we found heterogeneous expression of the FcγR throughout the patient cohort. Correlation of expression levels with disease outcome revealed significantly shorter OS in patients with CD16+ blasts at first diagnosis. CD32 and CD64 expression showed no association with survival but correlated with a mature phenotype and FAB M6. Our data provide clear evidence for the value of immunophenotyping FcγR expression on leukemic cells using peripheral blood, which is rapidly available and improves risk stratification in AML.
Collapse
Affiliation(s)
- Jonas S Heitmann
- Department of Internal Medicine, Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tubingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Department of Internal Medicine, Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tubingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Clemens Hinterleitner
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany.,Department of Medical Oncology and Pulmonology, University Hospital Tubingen, Tübingen, Germany
| | - Lukas Osburg
- Department of Immunology, Interfaculty Institute for Cell Biology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Department of Internal Medicine, Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tubingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| | - Joseph Kauer
- Department of Internal Medicine, Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tubingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Department of Internal Medicine, Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tubingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Bakacs T, Moss RW, Kleef R, Szasz MA, Anderson CC. Exploiting autoimmunity unleashed by low-dose immune checkpoint blockade to treat advanced cancer. Scand J Immunol 2019; 90:e12821. [PMID: 31589347 DOI: 10.1111/sji.12821] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
As a result of the cancer immunotherapy revolution, more than 2000 immuno-oncology agents are currently being tested or are in use to improve responses. Not unexpectedly, the 2018 Nobel Prize in Physiology or Medicine was awarded to James P. Allison and Tasuku Honjo for their development of cancer therapy by the blockade of co-inhibitory signals. Unfortunately, manipulation of the co-inhibitory receptors has also resulted in a safety issue: widespread iatrogenic immune-related adverse events (irAEs). Autoimmunity is emerging as the nemesis of immunotherapy. Originally, it was assumed that CTLA-4 blockade selectively targets T cells relevant to the antitumour immune response. However, an uncontrolled pan T cell activation was induced compromising tolerance to healthy self-tissues. The irAEs are very similar to that of a chronic graft-versus-host-disease (GVHD) reaction following allogeneic bone marrow transplantation (BMT). We hypothesized that ipilimumab induced a graft-versus-malignancy (GVM) effect, which eradicated metastatic melanoma in a minority of patients, but also involved an auto-GVHD reaction that resulted in widespread autoimmunity in the majority. Therefore, we argued for a profound theoretical point against the consensus of experts. The task is not to desperately put the genie back in the bottle by immune-suppressive treatments, but instead to harness the autoimmune forces. In this way, the same goal could be achieved by an antibody as by the adoptive transfer of alloreactive donor lymphocytes, but without severe GVHD. The proof-of-principle of a low-dose-combination immune checkpoint therapy, consisting only of approved drugs and treatments, was demonstrated in 111 stage IV cancer patients.
Collapse
Affiliation(s)
| | | | - Ralf Kleef
- Immunology & Integrative Oncology, Kleef Hyperthermie, Vienna, Austria
| | | | - Colin C Anderson
- Departments of Surgery and Medical Microbiology & Immunology, Alberta Diabetes Institute, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
22
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|
23
|
Fridman WH, Teillaud JL. [From the time in the wilderness to the Nobel Prize in Physiology or Medicine awarded to James Allison and Tasuku Honjo: the Long March of cancer immunotherapy]. Med Sci (Paris) 2019; 35:367-373. [PMID: 31038116 DOI: 10.1051/medsci/2019074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Wolf Hervé Fridman
- Professeur émérite à l'université Paris-Descartes, président du cancéropôle Île-de-France, ancien président du conseil scientifique de l'association pour la recherche sur le cancer et ancien directeur du Centre de Recherche des Cordeliers et de l'unité Inserm 255
| | - Jean-Luc Teillaud
- Rédacteur en chef de médecine/sciences, Équipe « Microenvironnement immunitaire et immunothérapie », Centre d'Immunologie et des Maladies Infectieuses (CIMI) - Inserm UMRS 1135 - Sorbonne Université, 91, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
24
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Wieland A, Ahmed R. Fc Receptors in Antimicrobial Protection. Curr Top Microbiol Immunol 2019; 423:119-150. [DOI: 10.1007/82_2019_154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Holgado MP, Sananez I, Raiden S, Geffner JR, Arruvito L. CD32 Ligation Promotes the Activation of CD4 + T Cells. Front Immunol 2018; 9:2814. [PMID: 30555482 PMCID: PMC6284025 DOI: 10.3389/fimmu.2018.02814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Low affinity receptors for the Fc portion of IgG (FcγRs) represent a critical link between innate and adaptive immunity. Immune complexes (ICs) are the natural ligands for low affinity FcγRs, and high levels of ICs are usually detected in both, chronic viral infections and autoimmune diseases. The expression and function of FcγRs in myeloid cells, NK cells and B cells have been well characterized. By contrast, there are controversial reports about the expression and function of FcγRs in T cells. Here, we demonstrated that ~2% of resting CD4+ T cells express cell surface FcγRII (CD32). Analysis of CD32 expression in permeabilized cells revealed an increased proportion of CD4+CD32+ T cells (~9%), indicating that CD4+ T cells store a CD32 cytoplasmic pool. Activation of CD4+ T cells markedly increased the expression of CD32 either at the cell surface or intracellularly. Analysis of CD32 mRNA transcripts in activated CD4+ T cells revealed the presence of both, the stimulatory FcγRIIa (CD32a) and the inhibitory FcγRIIb (CD32b) isoforms of CD32, being the CD32a:CD32b mRNA ratio ~5:1. Consistent with this finding, we found not only that CD4+ T cells bind aggregated IgG, used as an IC model, but also that CD32 ligation by specific mAb induced a strong calcium transient in CD4+ T cells. Moreover, we found that pretreatment of CD4+ T cells with immobilized IgG as well as cross-linking of CD32 by specific antibodies increased both, the proliferative response of CD4+ T cells and the release of a wide pattern of cytokines (IL-2, IL-5, IL-10, IL-17, IFN-γ, and TNF-α) triggered by either PHA or anti-CD3 mAb. Collectively, our results indicate that ligation of CD32 promotes the activation of CD4+ T cells. These findings suggest that ICs might contribute to the perpetuation of chronic inflammatory responses by virtue of its ability to directly interact with CD4+ T cells through CD32a, promoting the activation of T cells into different inflammatory profiles.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Silvina Raiden
- Unidad I, Departamento de Clínica Médica, Hospital de Niños Pedro de Elizalde, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Anania JC, Trist HM, Palmer CS, Tan PS, Kouskousis BP, Chenoweth AM, Kent SJ, Mackay GA, Hoi A, Koelmeyer R, Slade C, Bryant VL, Hodgkin PD, Aui PM, van Zelm MC, Wines BD, Hogarth PM. The Rare Anaphylaxis-Associated FcγRIIa3 Exhibits Distinct Characteristics From the Canonical FcγRIIa1. Front Immunol 2018; 9:1809. [PMID: 30177930 PMCID: PMC6109644 DOI: 10.3389/fimmu.2018.01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 02/04/2023] Open
Abstract
FcγRIIa is an activating FcγR, unique to humans and non-human primates. It induces antibody-dependent proinflammatory responses and exists predominantly as FcγRIIa1. A unique splice variant, we designated FcγRIIa3, has been reported to be associated with anaphylactic reactions to intravenous immunoglobulins (IVIg) therapy. We aim to define the functional consequences of this FcγRIIa variant associated with adverse responses to IVIg therapy and evaluate the frequency of associated SNPs. FcγRIIa forms from macaque and human PBMCs were investigated for IgG-subclass specificity, biochemistry, membrane localization, and functional activity. Disease-associated SNPs were analyzed by sequencing genomic DNA from 224 individuals with immunodeficiency or autoimmune disease. FcγRIIa3 was identified in macaque and human PBMC. The FcγRIIa3 is distinguished from the canonical FcγRIIa1 by a unique 19-amino acid cytoplasmic insertion and these two FcγRIIa forms responded distinctly to antibody ligation. Whereas FcγRIIa1 was rapidly internalized, FcγRIIa3 was retained longer at the membrane, inducing greater calcium mobilization and cell degranulation. Four FCGR2A SNPs were identified including the previously reported intronic SNP associated with anaphylaxis, but in only 1 of 224 individuals. The unique cytoplasmic element of FcγRIIa3 delays internalization and is associated with enhanced cellular activation. The frequency of the immunodeficiency-associated SNP varies between disease populations but interestingly occurred at a lower frequency than previously reported. None-the-less enhanced FcγRIIa3 function may promote a proinflammatory environment and predispose to pathological inflammatory responses.
Collapse
Affiliation(s)
- Jessica C Anania
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Halina M Trist
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine S Palmer
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Peck Szee Tan
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Betty P Kouskousis
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Alicia M Chenoweth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Graham A Mackay
- Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Alberta Hoi
- Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Rachel Koelmeyer
- Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Charlotte Slade
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Pei Mun Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Liu XG, Liu Y, Chen F. Soluble fibrinogen like protein 2 (sFGL2), the novel effector molecule for immunoregulation. Oncotarget 2018; 8:3711-3723. [PMID: 27732962 PMCID: PMC5356913 DOI: 10.18632/oncotarget.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen-like protein 2 belonging to the fibrinogen-related protein superfamily. It is now well characterized that sFGL2 is mainly secreted by regulatory T cell (Treg) populations, and exerts potently immunosuppressive activities. By repressing not only the differentiation and proliferation of T cells but also the maturation of dendritic cells (DCs), sFGL2 acts largely as an immunosuppressant. Moreover, sFGL2 also induces apoptosis of B cells, tubular epithelial cells (TECs), sinusoidal endothelial cells (SECs), and hepatocytes. This mini-review focuses primarily on the recent literature with respect to the signaling mechanism of sFGL2 in immunomodulation, and discusses the clinical implications of sFGL2 in transplantation, hepatitis, autoimmunity, and tumors.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Feng Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China.,Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing, China
| |
Collapse
|
29
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 486] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
31
|
Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions. Sci Rep 2017; 7:17049. [PMID: 29213127 PMCID: PMC5719016 DOI: 10.1038/s41598-017-17255-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Engagement of Fcγ-receptors triggers a range of downstream signalling events resulting in a diverse array of immune functions. As a result, blockade of Fc-mediated function is an important strategy for the control of several autoimmune and inflammatory conditions. We have generated a hexameric-Fc fusion protein (hexameric-Fc) and tested the consequences of multi-valent Fcγ-receptor engagement in in vitro and in vivo systems. In vitro engagement of hexameric-Fc with FcγRs showed complex binding interactions that altered with receptor density and triggered the internalisation and degradation of Fcγ-receptors. This caused a disruption of Fc-binding and phagocytosis. In vivo, in a mouse ITP model we observed a short half-life of hexameric-Fc but were nevertheless able to observe inhibition of platelet phagocytosis several days after hexameric-Fc dosing. In cynomolgus monkeys, we again observed a short half-life, but were able to demonstrate effective FcγR blockade. These findings demonstrate the ability of multi-valent Fc-based therapeutics to interfere with FcγR function and a potential mechanism through which they could have a sustained effect; the internalisation and degradation of FcγRs.
Collapse
|
32
|
Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 2017; 130:2121-2130. [PMID: 28899854 DOI: 10.1182/blood-2017-05-784876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/06/2017] [Indexed: 01/21/2023] Open
Abstract
Red blood cell (RBC) transfusions are of vital importance in patients with sickle cell disease (SCD). However, a major complication of transfusion therapy is alloimmunization. The low-affinity Fcγ receptors, expressed on immune cells, are important regulators of antibody responses. Genetic variation in FCGR genes has been associated with various auto- and alloimmune diseases. The aim of this study was to evaluate the association between genetic variation of FCGR and RBC alloimmunization in SCD. In this case-control study, DNA samples from 2 cohorts of transfused SCD patients were combined (France and The Netherlands). Cases had a positive history of alloimmunization, having received ≥1 RBC unit. Controls had a negative history of alloimmunization, having received ≥20 RBC units. Single nucleotide polymorphisms and copy number variation of the FCGR2/3 gene cluster were studied in a FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared using logistic regression. Two hundred seventy-two patients were included (130 controls, 142 cases). The nonclassical open reading frame in the FCGR2C gene (FCGR2C.nc-ORF) was strongly associated with a decreased alloimmunization risk (odds ratio [OR] 0.26, 95% confidence [CI] 0.11-0.64). This association persisted when only including controls with exposure to ≥100 units (OR 0.30, CI 0.11-0.85) and appeared even stronger when excluding cases with Rh or K antibodies only (OR 0.19, CI 0.06-0.59). In conclusion, SCD patients with the FCGR2Cnc-ORF polymorphism have over a 3-fold lower risk for RBC alloimmunization in comparison with patients without this mutation. This protective effect was strongest for exposure to antigens other than the immunogenic Rh or K antigens.
Collapse
|
33
|
Abstract
The antiviral activity of antibodies reflects the bifunctional properties of these molecules. While the Fab domains mediate highly specific antigenic recognition to block virus entry, the Fc domain interacts with diverse types of Fcγ receptors (FcγRs) expressed on the surface of effector leukocytes to induce the activation of distinct immunomodulatory pathways. Fc-FcγR interactions are tightly regulated to control IgG-mediated inflammation and immunity and are largely determined by the structural heterogeneity of the IgG Fc domain, stemming from differences in the primary amino acid sequence of the various subclasses, as well as the structure and composition of the Fc-associated N-linked glycan. Engagement of specific FcγR types on effector leukocytes has diverse consequences that affect several aspects of innate and adaptive immunity. In this review, we provide an overview of the complexity of FcγR-mediated pathways, discussing their role in the in vivo protective activity of anti-HIV-1 antibodies. We focus on recent studies on broadly neutralizing anti-HIV-1 antibodies that revealed that Fc-FcγR interactions are required to achieve full therapeutic activity through clearance of IgG-opsonized virions and elimination of HIV-infected cells. Manipulation of Fc-FcγR interactions to specifically activate distinct FcγR-mediated pathways has the potential to affect downstream effector responses, influencing thereby the in vivo protective activity of anti-HIV-1 antibodies; a strategy that has already been successfully applied to other IgG-based therapeutics, substantially improving their clinical efficacy.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
34
|
Abstract
A key determinant for the survival of organisms is their capacity to recognize and respond efficiently to foreign antigens. This is largely accomplished by the orchestrated activity of the innate and adaptive branches of the immune system. Antibodies are specifically generated in response to foreign antigens, facilitating thereby the specific recognition of antigens of almost infinite diversity. Receptors specific for the Fc domain of antibodies, Fc receptors, are expressed on the surface of the various myeloid leukocyte populations and mediate the binding and recognition of antibodies by innate leukocytes. By directly linking the innate and the adaptive components of immunity, Fc receptors play a central role in host defense and the maintenance of tissue homeostasis through the induction of diverse proinflammatory, anti-inflammatory, and immunomodulatory processes that are initiated upon engagement by the Fc domain. In this chapter, we discuss the mechanisms that regulate Fc domain binding to the various types of Fc receptors and provide an overview of the astonishing diversity of effector functions that are mediated through Fc-FcR interactions on myeloid cells. Lastly, we discuss the impact of FcR-mediated interactions in the context of IgG-mediated inflammation, autoimmunity, susceptibility to infection, and responsiveness to antibody-based therapeutics.
Collapse
|
35
|
Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017; 29:303-310. [PMID: 28472280 PMCID: PMC5890892 DOI: 10.1093/intimm/dxx025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
36
|
Lehmann CHK, Baranska A, Heidkamp GF, Heger L, Neubert K, Lühr JJ, Hoffmann A, Reimer KC, Brückner C, Beck S, Seeling M, Kießling M, Soulat D, Krug AB, Ravetch JV, Leusen JHW, Nimmerjahn F, Dudziak D. DC subset-specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo. J Exp Med 2017; 214:1509-1528. [PMID: 28389502 PMCID: PMC5413326 DOI: 10.1084/jem.20160951] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Lehmann et al. targeted antigens to Fcγ receptors expressed on various antigen-presenting cells. Induced CD4+ and CD8+ T cell responses were solely dependent on CD11b+ and CD8+ DC subsets, respectively, but independent of receptor intrinsic ITAM or ITIM signaling domains. Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation of T cell responses. By targeting antigens to select activating and the inhibitory FcγR in vivo, we show that antigen uptake under steady-state conditions results in a short-term expansion of antigen-specific T cells, whereas under inflammatory conditions especially, the activating FcγRIV is able to induce superior CD4+ and CD8+ T cell responses. Of note, this effect was independent of FcγR intrinsic activating signaling pathways. Moreover, despite the expression of FcγRIV on both conventional splenic DC subsets, the induction of CD8+ T cell responses was largely dependent on CD11c+CD8+ DCs, whereas CD11c+CD8− DCs were critical for priming CD4+ T cell responses.
Collapse
Affiliation(s)
- Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique, 13288 Marseille-Luminy, France
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kirsten Neubert
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alana Hoffmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katharina C Reimer
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christin Brückner
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Simone Beck
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michaela Seeling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Melissa Kießling
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jeffrey V Ravetch
- Leonard Wagner Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, 3584 Utrecht, Netherlands
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany .,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Merlo LMF, Grabler S, DuHadaway JB, Pigott E, Manley K, Prendergast GC, Laury-Kleintop LD, Mandik-Nayak L. Therapeutic antibody targeting of indoleamine-2,3-dioxygenase (IDO2) inhibits autoimmune arthritis. Clin Immunol 2017; 179:8-16. [PMID: 28223071 DOI: 10.1016/j.clim.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a debilitating inflammatory autoimmune disease with no known cure. Recently, we identified the immunomodulatory enzyme indoleamine-2,3-dioxygenase 2 (IDO2) as an essential mediator of autoreactive B and T cell responses driving RA. However, therapeutically targeting IDO2 has been challenging given the lack of small molecules that specifically inhibit IDO2 without also affecting the closely related IDO1. In this study, we develop a novel monoclonal antibody (mAb)-based approach to therapeutically target IDO2. Treatment with IDO2-specific mAb alleviated arthritis in two independent preclinical arthritis models, reducing autoreactive T and B cell activation and recapitulating the strong anti-arthritic effect of genetic IDO2 deficiency. Mechanistic investigations identified FcγRIIb as necessary for mAb internalization, allowing targeting of an intracellular antigen traditionally considered inaccessible to mAb therapy. Taken together, our results offer preclinical proof of concept for antibody-mediated targeting of IDO2 as a new therapeutic strategy to treat RA and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Samantha Grabler
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Elizabeth Pigott
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Kaylend Manley
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA; Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St. #100, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St. Suite 1050, Philadelphia, PA 19107, USA
| | - Lisa D Laury-Kleintop
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Laura Mandik-Nayak
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA.
| |
Collapse
|
38
|
Liu Y, Gong Y, Qu C, Zhang Y, You R, Yu N, Lu G, Huang Y, Zhang H, Gao Y, Gao Y, Guo X. CD32b expression is down-regulated on double-negative memory B cells in patients with Hashimoto's thyroiditis. Mol Cell Endocrinol 2017; 440:1-7. [PMID: 27832986 DOI: 10.1016/j.mce.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/10/2016] [Accepted: 11/05/2016] [Indexed: 01/09/2023]
Abstract
Inhibitory CD32b receptors on B cells are critical for humoral immunity. The humoral response plays a role in the pathogenesis of Hashimoto's thyroiditis (HT). This study aimed to investigate B cell subset distribution and CD32b expression within these subsets in HT patients. B cell subset distribution and CD32b expression were analyzed in 60 HT patients and 21 healthy donors. Subset distribution and CD32b expression following stimulation with α-Ig and α-CD40 were also assessed. The percentage of double-negative (DN) memory cells was increased in the HT patients, while the expression level of CD32b on DN memory cells was decreased. Redistribution of B cell subsets was detected in response to stimulation with α-Ig. In addition, the expression level of CD32b was reduced following α-CD40 stimulation. These results suggest that abnormal B cell subset distribution and decreased CD32b expression on DN memory cells might be involved in the pathogenesis of HT.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, PR China.
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, PR China.
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, 100034, PR China.
| | - Nan Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Hong Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Yanming Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, PR China.
| |
Collapse
|
39
|
Nemoto T, Shibata Y, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Sato M, Sato K, Nakano H, Abe S, Nishiwaki M, Kubota I. MafB enhances the phagocytic activity of RAW264.7 macrophages by promoting Fcgr3 expression. Biochem Biophys Res Commun 2017; 482:375-381. [DOI: 10.1016/j.bbrc.2016.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 11/16/2022]
|
40
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
41
|
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β. Virology 2016; 499:9-22. [PMID: 27632561 DOI: 10.1016/j.virol.2016.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression.
Collapse
Affiliation(s)
- Jessica L Rastad
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| |
Collapse
|
42
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
43
|
Abstract
IgG antibodies are actively produced in response to antigenic challenge or passively administered as an effective form of immunotherapy to confer immunity against foreign antigens. Their protective activity is mediated through their bifunctional nature: a variable Fab domain mediates antigen-binding specificity, whereas the constant Fc domain engages Fcγ receptors (FcγRs) expressed on the surface of leukocytes to mediate effector functions. While traditionally considered the invariant domain of an IgG molecule, the Fc domain displays remarkable structural heterogeneity determined primarily by differences in the amino acid sequence of the various IgG subclasses and by the composition of the complex, Fc-associated biantennary N-linked glycan. These structural determinants regulate the conformational flexibility of the IgG Fc domain and affect its capacity to interact with distinct types of FcγRs (type I or type II FcγRs). FcγR engagement activates diverse downstream immunomodulatory pathways with pleiotropic functional consequences including cytotoxicity and phagocytosis of IgG-coated targets, differentiation and activation of antigen presenting cells, modulation of T-cell activation, plasma cell survival, and regulation of antibody responses. These functions highlight the importance of FcγR-mediated pathways in the modulation of adaptive immune responses and suggest a central role for IgG-FcγR interactions during active and passive immunization.
Collapse
Affiliation(s)
- Stylianos Bournazos
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| | - Jeffrey V. Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Ave, New York, NY 10065
| |
Collapse
|
44
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
45
|
Bernardo L, Yu H, Amash A, Zimring JC, Lazarus AH. IgG-Mediated Immune Suppression to Erythrocytes by Polyclonal Antibodies Can Occur in the Absence of Activating or Inhibitory Fcγ Receptors in a Full Mouse Model. THE JOURNAL OF IMMUNOLOGY 2015; 195:2224-30. [PMID: 26188060 DOI: 10.4049/jimmunol.1500790] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Polyclonal anti-D has been used to prevent RhD-negative mothers from becoming immunized against RhD positive fetal erythrocytes, and this mechanism has been referred as Ab or IgG-mediated immune suppression (AMIS). Although anti-D has been highly successful, the inhibitory mechanisms remain poorly understood. Two major theories behind AMIS involve the binding of IgG to activating or inhibitory FcγR, which can induce either erythrocyte clearance or immune inhibition, respectively. In this work, we explored the absolute role of activating and inhibitory FcγR in the AMIS mechanism using the HOD mouse model of RBC immunization. HOD mice contain a RBC-specific recombinant protein composed of hen egg lysozyme (HEL), OVA and human transmembrane Duffy Ag, and erythrocytes from HOD mice can stimulate an immune response to HEL. To assess the contribution of activating and inhibitory FcγR to AMIS, C57BL/6 versus FcRγ-chain(-/-) or FcγRIIB(-/-) mice were used as recipients of HOD-RBC alone or together with anti-HEL Abs (i.e., AMIS) and the resulting immune response to HEL evaluated. We show that anti-HEL polyclonal Abs induce the same degree of AMIS effect in mice lacking these IgG binding receptors as compared with wild-type mice. In agreement with this, F(ab')2 fragments of the AMIS Ab also significantly reduced the Ab response to the HOD cells. In conclusion, successful inhibition of in vivo Ab responses to HOD-RBC by polyclonal IgG can occur independently of activating or inhibitory FcγR involvement. These results may have implications for the understanding of RhD prophylaxis.
Collapse
Affiliation(s)
- Lidice Bernardo
- Canadian Blood Services, Ottawa, Ontario K1G 4J5, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Honghui Yu
- Canadian Blood Services, Ottawa, Ontario K1G 4J5, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Alaa Amash
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - James C Zimring
- Bloodworks Northwest Research Institute, South Lake Union, Seattle, WA 98102
| | - Alan H Lazarus
- Canadian Blood Services, Ottawa, Ontario K1G 4J5, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A1, Canada; and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
46
|
Fuertes Marraco SA, Neubert NJ, Verdeil G, Speiser DE. Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol 2015; 6:310. [PMID: 26167163 PMCID: PMC4481276 DOI: 10.3389/fimmu.2015.00310] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
Inhibitory receptors (iRs) are frequently associated with "T cell exhaustion". However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as "checkpoint blockade", is showing -unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with "T cell exhaustion" and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are "downtuned" in order to limit tissue damage. Furthermore, we review the novel "checkpoint blockade" treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.
Collapse
Affiliation(s)
- Silvia A. Fuertes Marraco
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natalie J. Neubert
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Grégory Verdeil
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniel E. Speiser
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
47
|
Liu Y, Liu M, Zhang Y, Qu C, Lu G, Huang Y, Zhang H, Yu N, Yuan S, Gao Y, Gao Y, Guo X. The expression of Fcγ receptors in Hashimoto's thyroiditis. Cell Immunol 2015; 294:33-8. [PMID: 25670392 DOI: 10.1016/j.cellimm.2015.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/08/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
The pathophysiological mechanism underlying Hashimoto's thyroiditis (HT) is still unclear. Thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) are diagnostic hallmarks of HT. These IgG antibodies regulate the balance of immunologic tolerance and autoimmunity via Fcγ receptors (FcγRs). The aim of our study was to investigate the role of FcγRs in the pathogenesis of HT. The percentage of peripheral blood mononuclear cells (PBMCs) from HT patients bearing FcγRII was significantly lower than that seen in healthy donors, and the mean fluorescence intensity (MFI) value of FcγRII on PBMCs from HT patients was significantly higher. The percentage of PBMCs positive for FcγRIII also was significantly higher in HT patients, and the percentage of B cells bearing FcγRIIB in HT patients was significantly lower than that seen in healthy donors. Our study therefore provides evidence for FcγRs, especially FcγRIIB, being involved in the pathogenesis of HT.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Mingming Liu
- Institute of Microcirculation, Chinese Academy of Medical Science, Beijing 100005, PR China.
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, PR China.
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Hong Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Nan Yu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Shanshan Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Yanming Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, PR China.
| |
Collapse
|
48
|
Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. SELF NONSELF 2014; 1:314-322. [PMID: 21487506 DOI: 10.4161/self.1.4.13904] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/20/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022]
Abstract
The immunogenicity of protein therapeutics has so far proven to be difficult to predict in patients, with many biologics inducing undesirable immune responses directed towards the therapeutic resulting in reduced efficacy, anaphylaxis and occasionally life threatening autoimmunity. The most common effect of administrating an immunogenic protein therapeutic is the development of a high affinity anti-therapeutic antibody response. Furthermore, it is clear from clinical studies that protein therapeutics derived from endogenous human proteins are capable of stimulating undesirable immune responses in patients, and as a consequence, the prediction and reduction of immunogenicity has been the focus of intense research. This review will outline the principle causes of the immunogenicity in protein therapeutics, and describe the development of pre-clinical models that can be used to aid in the prediction of the immunogenic potential of novel protein therapeutics prior to administration in man.
Collapse
Affiliation(s)
- Matthew P Baker
- Antitope Ltd.; Babraham Research Campus; Babraham, Cambridge UK
| | | | | | | |
Collapse
|
49
|
The role of soluble fibrinogen-like protein 2 in transplantation: protection or damage. Transplantation 2014; 97:1201-6. [PMID: 24717224 DOI: 10.1097/tp.0000000000000116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen like protein 2. As a novel immunoregulatory molecule, sFGL2 is secreted mainly by T cells, especially regulatory T cells, and exerts an immunoregulatory property rather than a prothrombinase function in the immune system. sFGL2 changes not only the proliferation and differentiation of T cells but also the maturation of antigen presenting cells. Besides its innate and adaptive immunoregulatory functions, sFGL2 also induces apoptosis in cells including renal tubular epithelial cells through Fcγ receptors (FcγRs). It may affect transplantation via regulation of immunity and induction of apoptosis of different cells in a spatiotemporal manner. Here, we review the research progresses on sFGL2 including its structure, functions, and molecular mechanisms via which sFGL2 might affect organ transplantation, as well as discuss its characteristics and potential of becoming a therapeutic target in patients with rejection.
Collapse
|
50
|
Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol 2014; 5:254. [PMID: 24910634 PMCID: PMC4038777 DOI: 10.3389/fimmu.2014.00254] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 104 to 8 × 107 M−1. The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.
Collapse
Affiliation(s)
- Caitlin Gillis
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Aurélie Gouel-Chéron
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France ; Department of Anesthesia and Intensive Care, Hospital of Bichat-Claude Bernard, Public Assistance-Hospitals of Paris , Paris , France
| | - Friederike Jönsson
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Pierre Bruhns
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| |
Collapse
|