1
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
2
|
Magtoto PD, Arruda BL, Magtoto RL, Mora-Díaz JC, Opulencia RB, Baum DH, Zimmerman JJ, Giménez-Lirola LG. Differential antigenicity of individual Mycoplasma hyorhinis variable lipoproteins. Vet Immunol Immunopathol 2024; 272:110768. [PMID: 38703559 DOI: 10.1016/j.vetimm.2024.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.
Collapse
Affiliation(s)
- Precy D Magtoto
- College of Veterinary Medicine, Pampanga State Agricultural University, Pampanga, the Philippines; College of Arts and Sciences, University of the Philippines Los Baños, Laguna, the Philippines
| | - Bailey L Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA; Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA
| | - Ronaldo L Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Rina B Opulencia
- College of Arts and Sciences, University of the Philippines Los Baños, Laguna, the Philippines
| | - David H Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Jeff J Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
3
|
Predominant Single Stable VpmaV Expression in Strain GM139 and Major Differences with Mycoplasma agalactiae Type Strain PG2. Animals (Basel) 2022; 12:ani12030265. [PMID: 35158589 PMCID: PMC8833448 DOI: 10.3390/ani12030265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary MALDI-ToF MS analysis demonstrates major differences between Mycoplasma agalactiae type strain PG2 and strain GM139. Evaluation of the Vpma (variable proteins of M. agalactiae) phenotypic profiles of these two strains reveals that unlike PG2, GM139 expresses a single Vpma, namely VpmaV, and without any visible phase variation. Although the presence of only one Vpma seems to be sufficient for the pathogenesis of the GM139 strain, the absence of phase variation can compromise immune system evasion and spread to other anatomical sites in the host. Abstract Although mycoplasmas have a reduced genome and no cell wall, they have important mechanisms for the antigenic variation in surface lipoproteins that modulate their interactions with the host. Mycoplasma agalactiae, the main etiological agent of contagious agalactia, has a multigene family involved in the high-frequency phase variation in surface lipoproteins called variable proteins of M. agalactiae (Vpmas). The Vpma lipoproteins are involved in the immune evasion, colonization, dissemination, and persistence of M. agalactiae in the host. In this paper, we evaluate the Vpma phenotypic profiles of two different strains of M. agalactiae, namely, GM139 and the type strain PG2, to assess possible correlations between Vpma phase variability and the geographic localization, animal origin, and pathogenicity of these two strains. Using monospecific Vpma antibodies against individual Vpmas in immunoblots, we demonstrate that, unlike PG2, which expresses six Vpma proteins with high-frequency phase variation, colonies of GM139 predominantly express VpmaV and do not exhibit any sectoring phenotype for any Vpma. Since VpmaV is one of the most important Vpmas for cell adhesion and invasion, its predominant sole expression in GM139 without high-frequency variation may be the basis of the differential pathogenicity of GM139 and PG2. Additionally, MALDI-ToF MS analysis also demonstrates significant differences between these two strains and their relatedness with other M. agalactiae strains.
Collapse
|
4
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
5
|
Cheaib B, Yang P, Kazlauskaite R, Lindsay E, Heys C, Dwyer T, De Noa M, Schaal P, Sloan W, Ijaz U, Llewellyn M. Genome erosion and evidence for an intracellular niche - exploring the biology of mycoplasmas in Atlantic salmon. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736772. [PMID: 34471330 PMCID: PMC8192413 DOI: 10.1016/j.aquaculture.2021.736772] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 05/09/2023]
Abstract
Mycoplasmas are the smallest autonomously self-replicating life form on the planet. Members of this bacterial genus are known to parasitise a wide array of metazoans including vertebrates. Whilst much research has been significant targeted at parasitic mammalian mycoplasmas, very little is known about their role in other vertebrates. In the current study, we aim to explore the biology of mycoplasmas in Atlantic Salmon, a species of major significance for aquaculture, including cellular niche, genome size structure and gene content. Using fluorescent in-situ hybridisation (FISH), mycoplasmas were targeted in epithelial tissues across the digestive tract (stomach, pyloric caecum and midgut) from different development stages (eggs, parr, subadult) of farmed Atlantic salmon (Salmo salar), and we present evidence for an intracellular niche for some of the microbes visualised. Via shotgun metagenomic sequencing, a nearly complete, albeit small, genome (~0.57 MB) as assembled from a farmed Atlantic salmon subadult. Phylogenetic analysis of the recovered genome revealed taxonomic proximity to other salmon derived mycoplasmas, as well as to the human pathogen Mycoplasma penetrans (~1.36 Mb). We annotated coding sequences and identified riboflavin pathway encoding genes and sugar transporters, the former potentially consistent with micronutrient provisioning in salmonid development. Our study provides insights into mucosal adherence, the cellular niche and gene catalog of Mycoplasma in the gut ecosystem of the Atlantic salmon, suggesting a high dependency of this minimalist bacterium on its host. Further study is required to explore and functional role of Mycoplasma in the nutrition and development of its salmonid host.
Collapse
Affiliation(s)
- B. Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Corresponding author at: Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - P. Yang
- Laboratory of Aquaculture, nutrition and feed, Fisheries College, Ocean University of China, Hongdao Rd, Shinan District, Qingdao, Shandong, China
| | - R. Kazlauskaite
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - E. Lindsay
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - C. Heys
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - T. Dwyer
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - M. De Noa
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Patrick Schaal
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - W. Sloan
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - U.Z. Ijaz
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - M.S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
6
|
Evaluation of colonization, variable lipoprotein-based serological response, and cellular immune response of Mycoplasma hyorhinis in experimentally infected swine. Vet Microbiol 2021; 260:109162. [PMID: 34217902 DOI: 10.1016/j.vetmic.2021.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Mycoplasma hyorhinis (Mhr) is a commensal of the upper respiratory tract that can be shed by nasal secretions and transmitted by direct contact in neonatal and nursery pigs. Lesions associated with Mhr infection include polyserositis and arthritis; however, systemic Mhr disease pathogenesis is not well characterized. This study aimed to investigate the immunopathogenesis and bacterial dissemination pattern of Mhr using single and multiple inoculation approaches in a caesarian-derived colostrum-deprived (CDCD) pig model. Animals in three treatment groups were inoculated once (Mhr 1; n = 12) or four (Mhr 2; n = 8) times with Mhr or sham-inoculated (NC group; n = 3) nasally and by tonsillar painting. Inoculum consisted of a triple cloned Mhr field isolate (4.5 × 107 CFU/mL) in Friis medium. Clinical signs were evaluated daily during the study. Serum and oral fluid antibody (IgA and IgG) response and cellular immune response were assessed using a recombinant chimeric VlpA-G-based indirect ELISA and by ELISpot, respectively. The presence of Mhr in oral fluids, nasal and oropharyngeal swabs were evaluated by qPCR. At 6 wpi, pigs were euthanized and evaluated for gross lesions consistent with Mhr and bacterial colonization in tonsils by qPCR. No clinical signs or gross lesions consistent with Mhr-associated disease were observed throughout the study. For Mhr 2 group, the presence of IgA and IgG in serum and oral fluids were detected at 2 and 4 weeks post-inoculation (wpi), respectively, while in Mhr 1, only IgA was detected in oral fluids at 6 wpi. The proportion of animals shedding Mhr in nasal secretions varied from 20 to 40 % in the Mhr 1 and 62.5-100% in the Mhr 2 group. However, the proportion of animals shedding Mhr in oropharyngeal swabs was consistent through the study (60 %) in Mhr 1 and fluctuated from 20 % to 87.5 % in Mhr 2 group. The lack of clinical signs and the presence of Mhr specific humoral response and bacterial colonization indicates that the multiple inoculation experimental model may mimic subclinical natural infection in the field. In addition, the humoral and transient cellular response did not result in bacterial clearance. Based on these results, animals would have to be exposed multiple times to mount a detectable immune response.
Collapse
|
7
|
Whole-Genome Sequence of the Mycoplasma ( Mesomycoplasma) hyorhinis DSM 25591 Type Strain. Microbiol Resour Announc 2021; 10:10/16/e00164-21. [PMID: 33888501 PMCID: PMC8063644 DOI: 10.1128/mra.00164-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The whole-genome sequence of the type strain Mycoplasma (“Mesomycoplasma”) hyorhinis DSM 25591 is reported and compared to the available sequences of the corresponding type strains from other strain collections to ascertain conformity. Knowledge of the identity of type strains is of importance for their application in standardized test systems. The whole-genome sequence of the type strain Mycoplasma (Mesomycoplasma) hyorhinis DSM 25591 is reported and compared to the available sequences of the corresponding type strains from other strain collections to ascertain conformity. Knowledge of the identity of type strains is of importance for their application in standardized test systems.
Collapse
|
8
|
Clavijo MJ, Sreevatsan S, Johnson TJ, Rovira A. Molecular epidemiology of Mycoplasma hyorhinis porcine field isolates in the United States. PLoS One 2019; 14:e0223653. [PMID: 31634349 PMCID: PMC6802821 DOI: 10.1371/journal.pone.0223653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/25/2019] [Indexed: 01/29/2023] Open
Abstract
Mycoplasma hyorhinis is one of the causative agents of polyserositis and arthritis in post-weaning pigs. Here we describe the development of a multi-locus sequence typing (MLST) protocol for the characterization of M. hyorhinis field isolates. A total of 104 field isolates from different geographical locations, swine production systems, and clinical backgrounds, were analyzed. Twenty-seven genes, including housekeeping and those encoding surface proteins, were evaluated to index diversity. Genes encoding surface proteins were included to increase the discriminatory power of the MLST. Four target gene fragments were selected to be included in the final MLST-s (surface) protocol: pdhB, p95, mtlD and ung. Within each locus the nucleotide variation ranged from 1.4% to 20%. The 104 field isolates were classified into 39 distinct sequence types (STs). Multiple STs were found within the same production system and within the same pig. The majority of STs grouped strains from the same production system; however, cases existed where multiple systems shared a ST, indicating potential relationships between pig flows. The majority of the nucleotide changes observed in these genes generated synonymous changes, while non-synonymous changes were exclusively in the mtlD gene fragment, suggesting that this protein is undergoing selection. Molecular typing of M. hyorhinis will primarily aid swine practitioners with pig flow management and identifying sources of infection during outbreaks.
Collapse
Affiliation(s)
- Maria J. Clavijo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, Minnesota, United States of America
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| |
Collapse
|
9
|
Giménez-Lirola LG, Meiroz-De-Souza-Almeida H, Magtoto RL, McDaniel AJ, Merodio MM, Matias Ferreyra FS, Poonsuk K, Gatto IRH, Baum DH, Ross RF, Arruda PHE, Schwartz KJ, Zimmerman JJ, Derscheid RJ, Arruda BL. Early detection and differential serodiagnosis of Mycoplasma hyorhinis and Mycoplasma hyosynoviae infections under experimental conditions. PLoS One 2019; 14:e0223459. [PMID: 31589633 PMCID: PMC6779295 DOI: 10.1371/journal.pone.0223459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma hyorhinis (MHR) and Mycoplasma hyosynoviae (MHS) are common opportunistic pathogens in the upper respiratory tract and tonsils of swine. The identification of the specific species involved in clinical cases using conventional diagnostic methods is challenging. Therefore, a recombinant chimeric polypeptide based on the seven known variable lipoproteins (A-G) specific of MHR and a cocktail of surface proteins detergent-extracted from MHS cultures were generated and their suitability as antemortem biomarkers for serodiagnosis of MHR- and MHS-infection were evaluated by ELISA. M. hyorhinis and MHS ELISA performance, evaluated using serum samples collected over a 56-day observation period from pigs inoculated with MHR, MHS, M. hyopneumoniae, M. flocculare, or Friis medium, varied by assay, targeted antibody isotype, and cutoffs. The progressions of MHR and MHS clinical diseases were evaluated in relation to the kinetics of the isotype-specific antibody response in serum and bacterial shedding in oral fluids during the observation period. In pigs inoculated with MHR, bacterial DNA was detected in one or more of the 5 pens at all sampling points throughout the study, IgA was first detected at DPI 7, one week before the first clinical signs, with both IgA and IgG detected in all samples collected after DPI 14. The peak of MHS shedding (DPI 8) coincided with the onset of the clinical signs, with both IgA and IgG detected in all serum samples collected ≥ DPI 14. This study demonstrated, under experimental conditions, that both ELISAs were suitable for early detection of specific antibodies against MHR or MHS. The diagnostic performance of the MHR and MHS ELISAs varied depending on the selected cutoff and the antibody isotype evaluated. The high diagnostic and analytical specificity of the ELISAs was particularly remarkable. This study also provides insights into the infection dynamics of MHR-associated disease and MHS-associated arthritis not previously described.
Collapse
Affiliation(s)
- Luis G. Giménez-Lirola
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
- * E-mail:
| | | | - Ronaldo L. Magtoto
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Aric J. McDaniel
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Maria M. Merodio
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | | | - Korakrit Poonsuk
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Igor R. H. Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - David H. Baum
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Richard F. Ross
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Paulo H. E. Arruda
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Kent J. Schwartz
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Jeffrey J. Zimmerman
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Rachel J. Derscheid
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Bailey L. Arruda
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
10
|
Orlov M, Garanina I, Fisunov GY, Sorokin A. Comparative Analysis of Mycoplasma gallisepticum vlhA Promoters. Front Genet 2018; 9:569. [PMID: 30519256 PMCID: PMC6258824 DOI: 10.3389/fgene.2018.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein hemagglutinin genes (vlhA) that play a role in immune escape. The vlhA promoters have a set of distinct properties in comparison to promoters of the other genes. The vlhA promoters carry a variable GAA repeats region at approximately 40 nts upstream of transcription start site. The promoters have been considered active only in the presence of exactly 12 GAA repeats. The mechanisms of vlhA expression regulation and GAA number variation are not described. Here we tried to understand these mechanisms using different computational methods. We conducted a comparative analysis among several M. gallisepticum strains. Nucleotide sequences analysis showed the presence of highly conserved regions flanking repeated trinucleotides that are not linked to GAA number variation. VlhA genes with 12 GAA repeats and their orthologs in 12 M. gallisepticum strains are more conserved than other vlhA genes and have narrower GAA number distribution. We conducted comparative analysis of physicochemical profiles of M. gallisepticum vlhA and sigma-70 promoters. Stress-induced duplex destabilization (SIDD) profiles showed that sigma-70 group is characterized by the common to prokaryotic promoters sharp maxima while vlhA promoters are hardly destabilized with the region between GAA repeats and transcription start site having zero opening probability. Electrostatic potential profiles of vlhA promoters indicate the presence of the distinct patterns that appear to govern initial stages of specific DNA-protein recognition. Open state dynamics profiles of vlhA demonstrate the pattern that might facilitate transcription bubble formation. Obtained data could be the basis for experimental identification of mechanisms of phase variation in M. gallisepticum.
Collapse
Affiliation(s)
- Mikhail Orlov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Anatoly Sorokin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
11
|
Einarsdottir T, Gunnarsson E, Hjartardottir S. Icelandic ovine Mycoplasma ovipneumoniae are variable bacteria that induce limited immune responses in vitro and in vivo. J Med Microbiol 2018; 67:1480-1490. [DOI: 10.1099/jmm.0.000818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thorbjorg Einarsdottir
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
- 2BioMedical Center, University of Iceland, Iceland
| | - Eggert Gunnarsson
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sigridur Hjartardottir
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
12
|
Christodoulides A, Gupta N, Yacoubian V, Maithel N, Parker J, Kelesidis T. The Role of Lipoproteins in Mycoplasma-Mediated Immunomodulation. Front Microbiol 2018; 9:1682. [PMID: 30108558 PMCID: PMC6080569 DOI: 10.3389/fmicb.2018.01682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/05/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma infections, such as walking pneumonia or pelvic inflammatory diseases, are a major threat to public health. Despite their relatively small physical and genomic size, mycoplasmas are known to elicit strong host immune responses, generally inflammatory, while also being able to evade the immune system. The mycoplasma membrane is composed of approximately two-thirds protein and one-third lipid and contains several lipoproteins that are known to regulate host immune responses. Herein, the immunomodulatory effects of mycoplasma lipoproteins are reviewed. A better understanding of the immunomodulatory effects, both activating and evasive, of Mycoplasma surface lipoproteins will contribute to understanding mechanisms potentially relevant to mycoplasma disease vaccine development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Affiliation(s)
- Søren A Ladefoged
- Department of Medical Microbiology and Immunology University of Aarhus, Denmark.,Department of Clinical Biochemistry University Hospital of Aarhus, Denmark
| |
Collapse
|
14
|
Xiong Q, Zhang B, Wang J, Ni B, Ji Y, Wei Y, Xiao S, Feng Z, Liu M, Shao G. Characterization of the role in adherence of Mycoplasma hyorhinis variable lipoproteins containing different repeat unit copy numbers. Vet Microbiol 2016; 197:39-46. [PMID: 27938681 DOI: 10.1016/j.vetmic.2016.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is an important pathogen of pigs. In previous studies, the variable lipoprotein (Vlp) family has been shown to play a role in mediating M. hyorhinis cytoadhesion. Herein, we performed several experiments to study the function of each Vlp family member in detail, especially examining the cytoadhesion functional domain and how the repeat unit copy number impacts on function. Recombinant proteins rVlpII, composed of region II from all seven Vlp members; rVlpIII, composed of repeat peptides from region III of all of Vlp members; as well as a series of recombinant rVlp proteins for each member containing different repeat unit copy numbers were constructed. All of the proteins were expressed in Escherichia coli and purified by affinity chromatography. The recombinant proteins, as well as seven keyhole limpet hemocyanin-conjugated Vlp peptides containing two copies of the repeat unit, were analyzed for their adherence to swine tracheal epithelial cells using a microtiter plate adherence assay. Both rVlpII and rVlpIII proteins were able to bind to cell membrane proteins. Among the repeat unit peptides, only PepVlpB and PepVlpG were able to bind to cell membrane proteins. All of the Vlp members had cytoadhesion capability. The adhesion abilities of the proteins containing 0 or 3 copies of the repeat unit were stronger than those of the proteins containing 12 copies. For rVlpA, rVlpB, rVlpD, rVlpF and rVlpG, the proteins containing no copies bound stronger than the proteins containing 3 copies. In contrast, the adherence of rVlpC3 was stronger than that of rVlpC0. There was no significant difference between the adherence of rVlpE3 and that of rVlpE0. Our results suggest that the major cytoadhesion sites of Vlps are mainly contained in region II, the function of which would be blocked by region III when region III is longer.
Collapse
Affiliation(s)
- Qiyan Xiong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bixiong Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bo Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yan Ji
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Shaobo Xiao
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Guoqing Shao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Meat Production, Processing and Quality control, Nanjing 210014, China.
| |
Collapse
|
15
|
MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc Natl Acad Sci U S A 2016; 113:5406-11. [PMID: 27114507 DOI: 10.1073/pnas.1600546113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoplasmas are "minimal" bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB-IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB-MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas.
Collapse
|
16
|
Kinetics of Genetic Variation of the Mycoplasma genitalium MG192 Gene in Experimentally Infected Chimpanzees. Infect Immun 2015; 84:747-53. [PMID: 26712208 DOI: 10.1128/iai.01162-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma genitalium, a human pathogen associated with sexually transmitted diseases, is capable of causing chronic infections, though mechanisms for persistence remain unclear. Previous studies have found that variation of the MgPa operon occurs by recombination of repetitive chromosomal sequences (known as MgPars) into the MG191 and MG192 genes carried on this operon, which may lead to antigenic variation and immune evasion. In this study, we determined the kinetics of MG192 sequence variation during the course of experimental infection using archived specimens from two chimpanzees infected with M. genitalium strain G37. The highly variable region of MG192 was amplified by PCR from M. genitalium isolates obtained at various time points postinfection (p.i.). Sequence analysis revealed that MG192 sequence variation began at 5 weeks p.i. With the progression of infection, sequence changes accumulated throughout the MG192 variable region. The presence of MG192 variants at specific time points was confirmed by variant-specific PCR assays and sequence analysis of single-colony cloned M. genitalium organisms. MG192 nucleotide sequence variation correlated with estimated recombination events, predicted amino acid changes, and time of seroconversion, a finding consistent with immune selection of MG192 variants. In addition, we provided evidence that MG192 sequence variation occurred during the process of M. genitalium single-colony cloning. Such spontaneous variation suggests that some MG192 variation is independent of immune selection but may form the basis for subsequent immune selection.
Collapse
|
17
|
Complete Genome Sequence of the Bovine Mastitis Pathogen Mycoplasma californicum Strain ST-6T (ATCC 33461T). GENOME ANNOUNCEMENTS 2014; 2:2/4/e00648-14. [PMID: 24994797 PMCID: PMC4081997 DOI: 10.1128/genomea.00648-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycoplasma californicum is one of several mycoplasmal species associated with bovine mastitis. The complete genome sequence of 793,841 bp has been determined and annotated for the M. californicum ST-6 type strain, providing a resource for the identification of surface antigens and putative pathoadaptive features.
Collapse
|
18
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
19
|
Characterization of the in vitro core surface proteome of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia. Vet Microbiol 2013; 168:116-23. [PMID: 24332827 DOI: 10.1016/j.vetmic.2013.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/13/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides (Mmm) is a severe cattle disease, present in many countries in sub-Saharan Africa. The development of improved diagnostic tests and vaccines for CBPP control remains a research priority. Polyacrylamide gel electrophoresis and mass spectrometry were used to characterize the Triton X-114 soluble proteome of nine Mmm strains isolated from Europe or Africa. Of a total of 250 proteins detected, 67 were present in all strains investigated. Of these, 44 were predicted to be lipoproteins or cytoplasmic membrane-associated proteins and are thus likely to be members of the core in vitro surface membrane-associated proteome of Mmm. Moreover, the presence of all identified proteins in other ruminant Mycoplasma pathogens were investigated. Two proteins of the core proteome were identified only in other cattle pathogens of the genus Mycoplasma pointing towards a role in host-pathogen interactions. The data generated will facilitate the identification and prioritization of candidate Mycoplasma antigens for improved control measures, as it is likely that surface-exposed membrane proteins will include those that are involved in host-pathogen interactions.
Collapse
|
20
|
Corona L, Amores J, Onni T, de la Fe C, Tola S. Characterization of Mycoplasma mycoides subsp. capri isolates by SDS-PAGE, immunoblotting and PFGE. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Siqueira FM, Thompson CE, Virginio VG, Gonchoroski T, Reolon L, Almeida LG, da Fonsêca MM, de Souza R, Prosdocimi F, Schrank IS, Ferreira HB, de Vasconcelos ATR, Zaha A. New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genomics 2013; 14:175. [PMID: 23497205 PMCID: PMC3610235 DOI: 10.1186/1471-2164-14-175] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. RESULTS The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species. CONCLUSIONS The comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host's immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
| | - Claudia Elizabeth Thompson
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Veridiana Gomes Virginio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Taylor Gonchoroski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciano Reolon
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Marbella Maria da Fonsêca
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Rangel de Souza
- Laboratório de Bioinformática. Laboratório Nacional de Computação Científica. Petrópolis, Rio de Janeiro, Brazil
| | - Francisco Prosdocimi
- Departamento de Bioquímica Médica. Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| | | | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular. Centro de Biotecnologia UFRGS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica. UFRGS, Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências. UFRGS, Porto Alegre, Brazil
| |
Collapse
|
22
|
Wu HN, Kawaguchi C, Nakane D, Miyata M. "Mycoplasmal antigen modulation," a novel surface variation suggested for a lipoprotein specifically localized on Mycoplasma mobile. Curr Microbiol 2012; 64:433-40. [PMID: 22349955 DOI: 10.1007/s00284-012-0090-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022]
Abstract
Mycoplasma mobile, a pathogen of freshwater fish, glides easily across surfaces, colonizes on the fish gill, and causes necrosis. The cell surface is differentiated into three parts: the head, neck, and body. Mobile variable surface proteins (Mvsps) localizing at each of these parts may be involved in surface variation including phase variation and antigenic variation, although no proof exists. In this study, we examined this possibility by focusing on MvspI, the largest Mvsp. Immunofluorescence microscopy showed that MvspI is expressed on the surfaces of all cells. When anti-MvspI antibody was added at concentrations over 0.8 nM, MvspI was observed to decrease over time. After 72 h of cultivation with the antibody, the fluorescence intensity and amount of MvspI decreased up to 13 and 39%, respectively, compared to those of cells grown without antibody. These changes were reversed by the removal of the antibody. Such effects were not observed when another antibody targeting other Mvsps was used, suggesting that the decrease is specific to the relationship between MvspI and the antibody. Cell growth was also inhibited by the antibody, but the decrease in MvspI could not be explained by the selective growth of MvspI-negative variants or by the inhibition of growth with other conditions. The decrease in MvspI caused by the antibody binding may suggest a novel type of surface variation, designated here as "mycoplasmal antigen modulation."
Collapse
Affiliation(s)
- Heng Ning Wu
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
23
|
Deutscher AT, Tacchi JL, Minion FC, Padula MP, Crossett B, Bogema DR, Jenkins C, Kuit TA, Walker MJ, Djordjevic SP. Mycoplasma hyopneumoniae Surface Proteins Mhp385 and Mhp384 Bind Host Cilia and Glycosaminoglycans and Are Endoproteolytically Processed by Proteases That Recognize Different Cleavage Motifs. J Proteome Res 2012; 11:1924-36. [DOI: 10.1021/pr201115v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ania T. Deutscher
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden
NSW 2567, Australia
- School
of Biological Sciences, University of Wollongong, Wollongong NSW 2522, Australia
| | - Jessica L. Tacchi
- The ithree Institute, University of Technology Sydney, Broadway NSW 2007,
Australia
| | - F. Chris Minion
- Department of
Veterinary Microbiology
and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Matthew P. Padula
- The ithree Institute, University of Technology Sydney, Broadway NSW 2007,
Australia
| | - Ben Crossett
- School of Molecular Bioscience, University of Sydney, Sydney NSW 2006, Australia
| | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden
NSW 2567, Australia
- School
of Biological Sciences, University of Wollongong, Wollongong NSW 2522, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden
NSW 2567, Australia
| | - Tracey A. Kuit
- School
of Biological Sciences, University of Wollongong, Wollongong NSW 2522, Australia
| | - Mark J. Walker
- School
of Biological Sciences, University of Wollongong, Wollongong NSW 2522, Australia
- School of Chemistry and Molecular Biosciences
and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Steven P. Djordjevic
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden
NSW 2567, Australia
- The ithree Institute, University of Technology Sydney, Broadway NSW 2007,
Australia
| |
Collapse
|
24
|
Volokhov DV, Graham LJ, Brorson KA, Chizhikov VE. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques. Mol Cell Probes 2011; 25:69-77. [DOI: 10.1016/j.mcp.2011.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 11/25/2022]
|
25
|
Abstract
Mycoplasmas are a genus within the class Mollicutes (trivial name mollicutes), which are the smallest known prokaryotes capable of self-replication. They have a very small genome, and have evolved to this 'minimalist' status by losing non-essential genes, including those involved in cell wall synthesis. The mollicutes exploit their limited genetic material to the maximum and many are successful pathogens in man, animals, birds and plants. Most of those of veterinary importance are in the genus Mycoplasma and include 4 poultry pathogens of economic importance: Mycoplasma gallisepticum, Mycoplasma synoviae, Mycoplasma meleagridis and Mycoplasma iowae. The pathogenetic mechanisms of mycoplasmas are not fully understood, but they are successful pathogens because they can enter the host and multiply, evade the defence mechanisms, cause damage and escape to infect new hosts. M. gallisepticum is one of several motile species and possesses a terminal tip structure that mediates adherence to its target tissues. For some species, including M. gallisepticum, some of the organisms may become intracellular. Some Mycoplasma species, including the pathogenic poultry species, have a remarkable ability to vary their major surface antigens, a mechanism that is thought to help them to persist in their host by evading the immune response. The molecular and cellular events that lead to the development of lesions and clinical disease are still obscure. Some lesions appear to be the result of indirect damage from the host's inflammatory and cellular responses. Despite short survival times in the environment, mycoplasmas are able to transmit successfully to new hosts. In poultry flocks there is both horizontal and vertical transmission, the former being encouraged by intensive husbandry and stress factors. Establishing the pathways of transmission and the possible role of other birds, such as game and wild birds, as intermediate vectors between poultry flocks is now greatly aided by the availability of modern molecular methods for strain typing.
Collapse
Affiliation(s)
- J M Bradbury
- University of Liverpool, Department of Veterinary Pathology, Leahurst, Neston, England.
| |
Collapse
|
26
|
Mycoplasma agassizii strain variation and distinct host antibody responses explain differences between enzyme-linked immunosorbent assays and Western blot assays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1739-45. [PMID: 20810678 DOI: 10.1128/cvi.00215-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The precarious status of desert (Gopherus agassizii) and gopher (G. polyphemus) tortoises has resulted in conservation efforts that now include health assessment as an important component of management decision-making. Mycoplasmal upper respiratory tract disease (URTD) is one of very few diseases in chelonians for which comprehensive and rigorously validated diagnostic tests exist. In this study, serum samples obtained from eight Gopherus tortoises documented at necropsy to (i) be enzyme-linked immunosorbent assay (ELISA) seropositive using the PS6 antigen, (ii) be infected with Mycoplasma agassizii as indicated by direct isolation of the pathogen from the respiratory surfaces, and (iii) have histological lesions of mycoplasmal URTD were used to evaluate four distinct clinical isolates of M. agassizii as antigens for ELISA and Western blot analyses. Each animal sample reacted in the Western blot with its homologous M. agassizii strain, but recognition of heterologous M. agassizii strains was variable. Further, individual animals varied significantly with respect to the specific proteins recognized by the humoral immune response. An additional 114 Gopherus serum samples were evaluated using ELISA antigens prepared from the four distinct M. agassizii strains; A₄₀₅ values were significantly correlated (r² goodness of fit range, 0.708 to 0.771; P < 0.0001) for all antigens tested. The results confirm that strain variation is responsible for the observed differences between Western blot binding patterns. Thus, reliance on a single M. agassizii strain as an antigen in Western blot assays may provide false-negative results. This could have adverse consequences for the well-being of these environmentally sensitive hosts if false-negative animals were relocated to sites consisting of true-negative populations.
Collapse
|
27
|
Citti C, Nouvel LX, Baranowski E. Phase and antigenic variation in mycoplasmas. Future Microbiol 2010; 5:1073-85. [DOI: 10.2217/fmb.10.71] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With their reduced genome bound by a single membrane, bacteria of the Mycoplasma species represent some of the simplest autonomous life forms. Yet, these minute prokaryotes are able to establish persistent infection in a wide range of hosts, even in the presence of a specific immune response. Clues to their success in host adaptation and survival reside, in part, in a number of gene families that are affected by frequent, stochastic genotypic changes. These genetic events alter the expression, the size and the antigenic structure of abundant surface proteins, thereby creating highly versatile and dynamic surfaces within a clonal population. This phenomenon provides these wall-less pathogens with a means to escape the host immune response and to modulate surface accessibility by masking and unmasking stably expressed components that are essential in host interaction and survival.
Collapse
Affiliation(s)
| | - Laurent-Xavier Nouvel
- INRA, UMR 1225, F-31076 Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| | - Eric Baranowski
- INRA, UMR 1225, F-31076 Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France
| |
Collapse
|
28
|
Kamoun S, Kado CI. Phenotypic Switching Affecting Chemotaxis, Xanthan Production, and Virulence in Xanthomonas campestris. Appl Environ Microbiol 2010; 56:3855-60. [PMID: 16348384 PMCID: PMC185079 DOI: 10.1128/aem.56.12.3855-3860.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemotaxis towards sucrose and yeast extract of nine strains of Xanthomonas campestris representing pathovars campestris, armoraciae, translucens, vesicatoria, and pelargonii was analyzed by using swarm plates. Unexpectedly, each of these strains formed small or reduced swarms typical of nonmotile or nonchemotactic bacteria. With time, however, chemotactic cells appeared on the swarm plates as blebs of bacteria. These cells were strongly chemotactic and were concomitantly deficient in exopolysaccharide production. The switch from the wild type (exopolysaccharide producing and nonchemotactic) to the swarmer type (exopolysaccharide deficient and chemotactic) appeared irreversible ex planta in bacteriological medium. However, in radish leaves swarmer-type strains of X. campestris pv. campestris were able to revert to the wild type. Swarmer-type derivatives of two X. campestris pv. campestris wild-type isolates showed reduced virulence and growth in the host plants cauliflower and radish. However, exocellular complementation of X. campestris pv. campestris Hrp (nonpathogenic) mutant was achieved by coinoculation with a swarmer-type strain.
Collapse
Affiliation(s)
- S Kamoun
- Department of Plant Pathology, University of California, Davis, California 95616
| | | |
Collapse
|
29
|
Characterization of a variant vlhA gene of Mycoplasma synoviae, strain WVU 1853, with a highly divergent haemagglutinin region. BMC Microbiol 2010; 10:6. [PMID: 20067616 PMCID: PMC2825196 DOI: 10.1186/1471-2180-10-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 01/12/2010] [Indexed: 11/20/2022] Open
Abstract
Background In Mycoplasma synoviae, type strain WVU 1853, a single member of the haemaglutinin vlhA gene family has been previously shown to be expressed. Variants of vlhA are expressed from the same unique vlhA promoter by recruiting pseudogene sequences via site-specific recombination events, thus generating antigenic variability. Using a bacterial stock of M. synoviae WVU 1853 that had been colony purified thrice and maintained in our laboratory at low passage level, we previously identified a vlhA gene-related partial coding sequence, referred to as MS2/28.1. The E. coli-expressed product of this partial coding sequence was found to be immunodominant, suggesting that it might be expressed. Results Reverse transcription-PCR amplification (RT-PCR), using a sense primer located at the 5'-end region of the expected vlhA transcript and a reverse primer located at the 3' end of MS2/28.1 coding sequence, yielded a consistent amplification product showing that MS2/28.1 was indeed transcribed. Nucleotide sequence analysis of the RT-PCR product identified an 1815-nucleotide full-length open reading frame (ORF), immediately preceded by a nucleotide sequence identical to that previously reported for expressed vlhA genes. PCR amplifications using genomic DNA isolated from single colonies further confirmed that the full-length ORF of MS2/28.1 was located downstream of the unique vlhA promoter sequence. The deduced 604-amino acid (aa) sequence showed a perfect sequence identity to the previously reported vlhA expressed genes along the first 224 residues, then highly diverged with only 37.6% aa identity. Despite the fact that this M. synoviae clone expressed a highly divergent and considerably shorter C-terminal haemagglutinin product, it was found to be expressed at the surface of the bacterium and was able to haemagglutinate chicken erythrocytes. Importantly, the E. coli-expressed C-terminal highly divergent 60 residues of MS2/28.1 proved haemagglutination competent. Conclusions In contrast to the previously characterized vlhA expressedvariants, MS2/28.1 displayed a highly divergent sequence, while still able to haemagglutinate erythrocytes. Overall, the data provide an indication as to which extent the M. synoviae vlhA gene could vary its antigenic repertoire.
Collapse
|
30
|
Occurrence, plasticity, and evolution of the vpma gene family, a genetic system devoted to high-frequency surface variation in Mycoplasma agalactiae. J Bacteriol 2009; 191:4111-21. [PMID: 19376859 DOI: 10.1128/jb.00251-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits a very versatile surface architecture by switching multiple, related lipoproteins (Vpmas) on and off. In the type strain, PG2, Vpma phase variation is generated by a cluster of six vpma genes that undergo frequent DNA rearrangements via site-specific recombination. To further comprehend the degree of diversity that can be generated at the M. agalactiae surface, the vpma gene repertoire of a field strain, 5632, was analyzed and shown to contain an extended repertoire of 23 vpma genes distributed between two loci located 250 kbp apart. Loci I and II include 16 and 7 vpma genes, respectively, with all vpma genes of locus II being duplicated at locus I. Several Vpmas displayed a chimeric structure suggestive of homologous recombination, and a global proteomic analysis further indicated that at least 13 of the 16 Vpmas can be expressed by the 5632 strain. Because a single promoter is present in each vpma locus, concomitant Vpma expression can occur in a strain with duplicated loci. Consequently, the number of possible surface combinations is much higher for strain 5632 than for the type strain. Finally, our data suggested that insertion sequences are likely to be involved in 5632 vpma locus duplication at a remote chromosomal position. The role of such mobile genetic elements in chromosomal shuffling of genes encoding major surface components may have important evolutionary and epidemiological consequences for pathogens, such as mycoplasmas, that have a reduced genome and no cell wall.
Collapse
|
31
|
Chopra-Dewasthaly R, Citti C, Glew MD, Zimmermann M, Rosengarten R, Jechlinger W. Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation. Mol Microbiol 2008; 67:1196-210. [PMID: 18248580 PMCID: PMC2268961 DOI: 10.1111/j.1365-2958.2007.06103.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2007] [Indexed: 11/29/2022]
Abstract
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host-pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the 'phase-locked' mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other 'difficult-to-manipulate' mycoplasmas.
Collapse
Affiliation(s)
- Rohini Chopra-Dewasthaly
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
32
|
Ma L, Jensen JS, Myers L, Burnett J, Welch M, Jia Q, Martin DH. Mycoplasma genitalium: an efficient strategy to generate genetic variation from a minimal genome. Mol Microbiol 2007; 66:220-36. [PMID: 17784912 PMCID: PMC2169797 DOI: 10.1111/j.1365-2958.2007.05911.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoplasma genitalium, a human pathogen associated with sexually transmitted diseases, is unique in that it has smallest genome of any known free-living organism. The goal of this study was to investigate if and how M. genitalium uses a minimal genome to generate genetic variations. We analysed the sequence variability of the third gene (MG192 or mgpC) of the M. genitalium MgPa adhesion operon, demonstrated that the MG192 gene is highly variable among and within M. genitalium strains in vitro and in vivo, and identified MG192 sequence shifts in the course of in vitro passage of the G37 type strain and in sequential specimens from an M. genitalium-infected patient. In order to establish the origin of the MG192 variants, we examined nine genomic loci containing partial copies of the MgPa operon, known as MgPar sequences. Our analysis suggests that the MG192 sequence variation is achieved by recombination between the MG192 expression site and MgPar sequences via gene cross-over and, possibly, also by gene conversion. It appears plausible that M. genitalium has the ability to generate unlimited variants from its minimized genome, which presumably allows the organism to adapt to diverse environments and/or to evade host defences by antigenic variation.
Collapse
Affiliation(s)
- Liang Ma
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ferrer-Navarro M, Gómez A, Yanes O, Planell R, Avilés FX, Piñol J, Pérez Pons JA, Querol E. Proteome of the bacterium Mycoplasma penetrans. J Proteome Res 2007; 5:688-94. [PMID: 16512684 DOI: 10.1021/pr050340p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A proteome map of Mycoplasma penetrans has been constructed using two-dimensional gel electrophoresis in combination with mass spectrometry (MS). Mycoplasma penetrans infects the urogenital and respiratory tracts of humans. A total of 207 spots were characterized with MS and, in comparing the experimental data with the DNA sequence-derived predictions, it was possible to assign these 207 spots to 153 genes. The Pro-Q Diamond phosphoprotein dye technology was used for the fluorescent detection of 26 phosphoproteins in the 4-7 pH range.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Institut de Biotecnología i de Biomedicina and Departament de Bioquímica i Biología Molecular, Universitat Autonoma de Barcelona. 08193, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kang J, Blaser MJ. Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat Rev Microbiol 2006; 4:826-36. [PMID: 17041630 DOI: 10.1038/nrmicro1528] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microorganisms that persist in single hosts face particular challenges. Helicobacter pylori, an obligate bacterial parasite of the human stomach, has evolved a lifestyle that features interstrain competition and intraspecies cooperation, both of which involve horizontal gene transfer. Microbial species must maintain genomic integrity, yet H. pylori has evolved a complex nonlinear system for diversification that exists in dynamic tension with the mechanisms for ensuring fidelity. Here, we review these tensions and propose that they create a dynamic pool of genetic variants that is sufficiently genetically diverse to allow H. pylori to occupy all of the potential niches in the stomach.
Collapse
Affiliation(s)
- Josephine Kang
- Departments of Medicine and Microbiology, New York University School of Medicine, New York, New York, 10016 USA
| | | |
Collapse
|
35
|
Bischof DF, Vilei EM, Frey J. Genomic differences between type strain PG1 and field strains of Mycoplasma mycoides subsp. mycoides small-colony type. Genomics 2006; 88:633-41. [PMID: 16919417 PMCID: PMC1798306 DOI: 10.1016/j.ygeno.2006.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 11/25/2022]
Abstract
The recently accomplished complete genomic sequence analysis of the type strain PG1 of Mycoplasma mycoides subsp. mycoides small-colony type revealed four large repeated segments of 24, 13, 12, and 8 kb that are flanked by insertion sequence (IS) elements. Genetic analysis of type strain PG1 and African, European, and Australian field and vaccine strains revealed that the 24-kb genetic locus is repeated only in PG1 and not in other M. mycoides subsp. mycoides SC strains. In contrast, the 13-kb genetic locus was found duplicated in some strains originating from Africa and Australia but not in strains that were isolated from the European outbreaks. The 12- and 8-kb genetic loci were found in two and three copies, respectively, in all 28 strains analyzed. The flanking IS elements are assumed to lead to these tandem duplications, thus contributing to genomic plasticity. This aspect must be considered when designing novel diagnostic approaches and recombinant vaccines.
Collapse
|
36
|
Wise KS, Foecking MF, Röske K, Lee YJ, Lee YM, Madan A, Calcutt MJ. Distinctive repertoire of contingency genes conferring mutation- based phase variation and combinatorial expression of surface lipoproteins in Mycoplasma capricolum subsp. capricolum of the Mycoplasma mycoides phylogenetic cluster. J Bacteriol 2006; 188:4926-41. [PMID: 16788201 PMCID: PMC1483001 DOI: 10.1128/jb.00252-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The generation of surface variation among many divergent species of Mollicutes (mycoplasmas) occurs through stochastic expression patterns of diverse lipoprotein genes. The size and wide distribution of such variable gene sets in minimal (approximately 0.6- to 1.4-Mb) mycoplasmal genomes suggest their key role in the adaptation and survival of these wall-less monoderms. Diversity through variable genes is less clearly established among phylogenetically similar mycoplasmas, such as the Mycoplasma mycoides cluster of ruminant pathogens, which vary widely in host range and pathobiology. Using (i) genome sequences from two members of this clade, Mycoplasma capricolum subsp. capricolum and M. mycoides subsp. mycoides small colony biotype (SC), (ii) antibodies to specific peptide determinants of predicted M. capricolum subsp. capricolum gene products, and (iii) analysis of the membrane-associated proteome of M. capricolum subsp. capricolum, a novel set of six genes (vmcA to vmcF) expressing distinct Vmc (variable M. capricolum subsp. capricolum) lipoproteins is demonstrated. These occur at two separate loci in the M. capricolum subsp. capricolum genome, which shares striking overall similarity and gene synteny with the M. mycoides subsp. mycoides SC genome. Collectively, Vmc expression is noncoordinate and combinatorial, subject to a single-unit insertion/deletion in a 5' flanking dinucleotide repeat that governs expression of each vmc gene. All vmc genes share modular regions affecting expression and membrane translocation. In contrast, vmcA to vmcD genes at one locus express surface proteins with highly structured size-variable repeating domains, whereas vmcE to vmcF genes express products with short repeats devoid of predicted structure. These genes confer a distinctive, dynamic surface architecture that may represent adaptive differences within this important group of pathogens as well as exploitable diagnostic targets.
Collapse
Affiliation(s)
- Kim S Wise
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, M616 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006; 188:2761-73. [PMID: 16585737 PMCID: PMC1446993 DOI: 10.1128/jb.188.8.2761-2773.2006] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 10/28/2005] [Indexed: 11/20/2022] Open
Abstract
Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.
Collapse
Affiliation(s)
- M Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kassab DM, Roane TM. Differential responses of a mine tailings Pseudomonas isolate to cadmium and lead exposures. Biodegradation 2006; 17:379-87. [PMID: 16477362 DOI: 10.1007/s10532-005-9010-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
We examined cadmium and lead resistance in Pseudomonas sp. S8A, an isolate obtained from mine tailings-contaminated soil. Resistant to soluble metal concentrations up to 200 mg l(-1) cadmium and 300 mg l(-1) lead, S8A produced both exopolymer and biosurfactant. Upon growth, this pseudomonad diverged into two morphologically distinct colony subtypes; small and round or large and flat. In the presence of lead and in the no metal control the large morphotype appeared only in late stationary phase. With cadmium the large morphotype appeared immediately following exposure. Results show that the large morphotype produced greater amounts of surfactant than the small morphotype, suggesting a unique subpopulation response to cadmium toxicity. Results also indicate that an unidentified 28 kDa protein was expressed following exposure to >10 mg l(-1) cadmium. This study demonstrates new links between surfactant production, differential subpopulation response and metal exposure.
Collapse
Affiliation(s)
- Duried M Kassab
- Department of Biology, University of Colorado at Denver, Denver, USA
| | | |
Collapse
|
39
|
Janis C, Lartigue C, Frey J, Wróblewski H, Thiaucourt F, Blanchard A, Sirand-Pugnet P. Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol 2005; 71:2888-93. [PMID: 15932982 PMCID: PMC1151838 DOI: 10.1128/aem.71.6.2888-2893.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replicative oriC plasmids were recently developed for several mollicutes, including three Mycoplasma species belonging to the mycoides cluster that are responsible for bovine and caprine diseases: Mycoplasma mycoides subsp. mycoides small-colony type, Mycoplasma mycoides subsp. mycoides large-colony type, and Mycoplasma capricolum subsp. capricolum. In this study, oriC plasmids were evaluated in M. capricolum subsp. capricolum as genetic tools for (i) expression of heterologous proteins and (ii) gene inactivation by homologous recombination. The reporter gene lacZ, encoding beta-galactosidase, and the gene encoding spiralin, an abundant surface lipoprotein of the related mollicute Spiroplasma citri, were successfully expressed. Functional Escherichia coli beta-galactosidase was detected in transformed Mycoplasma capricolum subsp. capricolum cells despite noticeable codon usage differences. The expression of spiralin in M. capricolum subsp. capricolum was assessed by colony and Western blotting. Accessibility of this protein at the cell surface and its partition into the Triton X-114 detergent phase suggest a correct maturation of the spiralin precursor. The expression of a heterologous lipoprotein in a mycoplasma raises potentially interesting applications, e.g., the use of these bacteria as live vaccines. Targeted inactivation of gene lppA encoding lipoprotein A was achieved in M. capricolum subsp. capricolum with plasmids harboring a replication origin derived from S. citri. Our results suggest that the selection of the infrequent events of homologous recombination could be enhanced by the use of oriC plasmids derived from related mollicute species. Mycoplasma gene inactivation opens the way to functional genomics in a group of bacteria for which a large wealth of genome data are already available and steadily growing.
Collapse
Affiliation(s)
- Carole Janis
- UMR Génomique Développement Pouvoir Pathogène, INRA, Université Victor Segalen Bordeaux 2, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Szathmáry S, Rajapakse N, Székely I, Pitlik E, Bíró J, Erdei N, Stipkovits L. Binding of mycoplasmas to solid phase adsorbents. Acta Vet Hung 2005; 53:299-307. [PMID: 16156125 DOI: 10.1556/avet.53.2005.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The capture of mycoplasmas (M. hominis, M. buccale, M. fermentans, M. bovis, M. synoviae, M. gallisepticum and M. arthritidis) based on lipid structures and adhesion molecules present in the mycoplasmal membrane was tested using different chromatographic resins (ActiClean Etox, ClarEtox, Heparin-Actigel, Sulfated Hiflow and SulfEtox). All of the resins efficiently reduced mycoplasma concentrations in Phosphate Buffered Saline (PBS) and in Fetal Bovine Serum (FBS) by 3-8 logs in a few minutes. This technology could be used for removing mycoplasmas from tissue culture components such as serum, and for concentrating mycoplasmas in vaccine production.
Collapse
|
41
|
Kang J, Huang S, Blaser MJ. Structural and functional divergence of MutS2 from bacterial MutS1 and eukaryotic MSH4-MSH5 homologs. J Bacteriol 2005; 187:3528-37. [PMID: 15866941 PMCID: PMC1112012 DOI: 10.1128/jb.187.10.3528-3537.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MutS homologs, identified in nearly all bacteria and eukaryotes, include the bacterial proteins MutS1 and MutS2 and the eukaryotic MutS homologs 1 to 7, and they often are involved in recognition and repair of mismatched bases and small insertion/deletions, thereby limiting illegitimate recombination and spontaneous mutation. To explore the relationship of MutS2 to other MutS homologs, we examined conserved protein domains. Fundamental differences in structure between MutS2 and other MutS homologs suggest that MutS1 and MutS2 diverged early during evolution, with all eukaryotic homologs arising from a MutS1 ancestor. Data from MutS1 crystal structures, biochemical results from MutS2 analyses, and our phylogenetic studies suggest that MutS2 has functions distinct from other members of the MutS family. A mutS2 mutant was constructed in Helicobacter pylori, which lacks mutS1 and mismatch repair genes mutL and mutH. We show that MutS2 plays no role in mismatch or recombinational repair or deletion between direct DNA repeats. In contrast, MutS2 plays a significant role in limiting intergenomic recombination across a range of donor DNA tested. This phenotypic analysis is consistent with the phylogenetic and biochemical data suggesting that MutS1 and MutS2 have divergent functions.
Collapse
Affiliation(s)
- Josephine Kang
- Department of Microbiology, New York University School of Medicine, and VA Medical Center, New York, NY 10016, USA.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- P Borst
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
43
|
van den Broek D, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Molecular nature of spontaneous modifications in gacS which cause colony phase variation in Pseudomonas sp. strain PCL1171. J Bacteriol 2005; 187:593-600. [PMID: 15629930 PMCID: PMC543552 DOI: 10.1128/jb.187.2.593-600.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain PCL1171 displays colony phase variation between opaque phase I and translucent phase II colonies, thereby regulating the production of secondary metabolites and exoenzymes. Complementation and sequence analysis of 26 phase II mutants and of 13 wild-type phase II sectors growing out of phase I colonies showed that in all these cases the phase II phenotype is caused by spontaneous mutations in gacA or/and gacS. Mutation of gac reduced both the length of the lag phase and the generation time. Isolation and sequencing of the gacS genes from the phase II bacteria revealed one insertion as well as several random point mutations, deletions, and DNA rearrangements. Most phase II colonies reverted with a high frequency, resulting in wild-type gacA and gacS genes and a phase I phenotype. Some phase II bacteria retained the phase II phenotype but changed genotypically as a result of (re)introduction of mutations in either gacA or gacS. The reversion of gacA or gacS to the wild type was not affected by mutation of recA and recB. We conclude that in Pseudomonas sp. strain PCL1171, mutations in gacA and gacS are the basis for phase variation from phase I to phase II colonies and that, since these mutations are efficiently removed, mutations in gac result in dynamic switches between the "wild-type" population and the subpopulations harboring spontaneous mutations in gacA and or gacS, thereby enabling both populations to be maintained.
Collapse
Affiliation(s)
- Daan van den Broek
- Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
44
|
Gavanescu I, Pihan G, Halilovic E, Szomolanyi-Tsuda E, Welsh RM, Doxsey S. Mycoplasma infection induces a scleroderma-like centrosome autoantibody response in mice. Clin Exp Immunol 2004; 137:288-97. [PMID: 15270845 PMCID: PMC1809115 DOI: 10.1111/j.1365-2249.2004.02535.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Development of autoantibodies to intracellular molecules is a universal feature of autoimmune diseases and parallels onset of chronic inflammatory pathology. Initiating antigens of disease-specific autoantibody responses are unknown. We previously showed that the major targets of autoantibodies in scleroderma are centrosomes, organelles involved in mitotic spindle organization. Here we show that centrosome autoantibodies are induced in mice by mycoplasma infection. The centrosome-specific antibody response involves class switching of preexisting IgM to IgG isotypes, suggesting a T cell-dependent mechanism. The antibody response spreads to include additional intracellular targets, with newly recruited autoantibody specificities arising as IgM isotypes. Antibiotic treatment of mice prevents autoantibody development. Centrosome autoantibodies may provide an aetiological link between infection and human autoimmunity and suggest novel therapeutic strategies in these disorders.
Collapse
Affiliation(s)
- I Gavanescu
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Phase and antigenic variation result in a heterogenic phenotype of a clonal bacterial population, in which individual cells either express the phase-variable protein(s) or not, or express one of multiple antigenic forms of the protein, respectively. This form of regulation has been identified mainly, but by no means exclusively, for a wide variety of surface structures in animal pathogens and is implicated as a virulence strategy. This review provides an overview of the many bacterial proteins and structures that are under the control of phase or antigenic variation. The context is mainly within the role of the proteins and variation for pathogenesis, which reflects the main body of literature. The occurrence of phase variation in expression of genes not readily recognizable as virulence factors is highlighted as well, to illustrate that our current knowledge is incomplete. From recent genome sequence analysis, it has become clear that phase variation may be more widespread than is currently recognized, and a brief discussion is included to show how genome sequence analysis can provide novel information, as well as its limitations. The current state of knowledge of the molecular mechanisms leading to phase variation and antigenic variation are reviewed, and the way in which these mechanisms form part of the general regulatory network of the cell is addressed. Arguments both for and against a role of phase and antigenic variation in immune evasion are presented and put into new perspective by distinguishing between a role in bacterial persistence in a host and a role in facilitating evasion of cross-immunity. Finally, examples are presented to illustrate that phase-variable gene expression should be taken into account in the development of diagnostic assays and in the interpretation of experimental results and epidemiological studies.
Collapse
Affiliation(s)
- Marjan W van der Woude
- Department of Microbiology, University of Pennsylvania, 202A Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | |
Collapse
|
46
|
Röske K, Calcutt MJ, Wise KS. The Mycoplasma fermentans prophage φMFV1: genome organization, mobility and variable expression of an encoded surface protein. Mol Microbiol 2004; 52:1703-20. [PMID: 15186419 DOI: 10.1111/j.1365-2958.2004.04087.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The approximately 16 kb genome of the Mycoplasma fermentans phiMFV1 prophage is described, and its mobility, replication and effect on the mycoplasma surface phenotype are demonstrated. In various M. fermentans strains, phiMFV1 was either absent or integrated at diverse (and sometimes multiple) chromosomal sites, each marked by a conserved TTTTTA target sequence that is duplicated upon integration. Precise excision, replication of an extrachromosomal form and loss of phiMFV1 from the mycoplasmal genome were documented in a series of clonal derivatives of M. fermentans propagated in culture. Of 18 open reading frames (ORFs) encoded by phiMFV1, most can be ascribed functions related to phage biology, whereas one encodes a unique coiled-coil membrane surface protein, Mem, that was confirmed to be expressed in propagating populations of M. fermentans. With the exception of Mem and other minor ORFs, the striking similarity between the deduced proteomes of phiMFV1 and the recently described phiMAV1 of arthritogenic strains of Mycoplasma arthritidis, along with the prominent gene synteny between these elements, provides the taxonomic basis for a new family of prophage. Their coding features are consistent with long-term residence in mycoplasma genomes and the divergence of species within a phylogenetic clade of mycoplasmas. The unique Mem protein expressed from phiMFV1 and the unique hypothetical surface lipoproteins encoded by phiMAV1 and phiMFV1 also suggest that prophage-associated genes may provide specific, selectable phenotypic traits during co-evolution of mycoplasma species with their respective mammalian hosts. Retention of these labile prophage elements in organisms with such drastically reduced genome sizes implies a significant role in adaptation and survival.
Collapse
Affiliation(s)
- K Röske
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | |
Collapse
|
47
|
Vanden Bush TJ, Rosenbusch RF. Characterization of a lympho-inhibitory peptide produced by Mycoplasma bovis. Biochem Biophys Res Commun 2004; 315:336-41. [PMID: 14766212 DOI: 10.1016/j.bbrc.2004.01.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Indexed: 11/20/2022]
Abstract
Mycoplasma bovis is able to inhibit the mitogen-induced proliferation of bovine lymphocytes. Herein is described the isolation of an immuno-inhibitory peptide from M. bovis. Using size exclusion chromatography, three lympho-suppressive fractions were isolated from M. bovis free supernatant. MALDI-TOF analysis revealed a common peak throughout the suppressive fractions. The purest of these fractions was subjected to N-terminal sequencing, revealing an 84% homologous match with the C-terminus of the M. bovis surface protein VspL (variable surface protein-L). A recombinant of the 26 amino acid peptide was also able to suppress Concanavalin A (ConA)-induced proliferation of bovine lymphocytes. This describes a unique immunosuppressive peptide produced by the bovine respiratory pathogen, M. bovis.
Collapse
Affiliation(s)
- Tony J Vanden Bush
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
48
|
Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson B, Uhlén M. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res 2004; 14:221-7. [PMID: 14762060 PMCID: PMC327097 DOI: 10.1101/gr.1673304] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 11/24/2003] [Indexed: 11/25/2022]
Abstract
Mycoplasma mycoides subsp. mycoidesSC (MmymySC)is the etiological agent of contagious bovine pleuropneumonia (CBPP), a highly contagious respiratory disease in cattle. The genome of Mmymy SC type strain PG1(T) has been sequenced to map all the genes and to facilitate further studies regarding the cell function of the organism and CBPP. The genome is characterized by a single circular chromosome of 1211703 bp with the lowest G+C content (24 mole%)and the highest density of insertion sequences (13% of the genome size)of all sequenced bacterial genomes. The genome contains 985 putative genes, of which 72 are part of insertion sequences and encode transposases. Anomalies in the GC-skew pattern and the presence of large repetitive sequences indicate a high genomic plasticity. A variety of potential virulence factors was identified, including genes encoding putative variable surface proteins and enzymes and transport proteins responsible for the production of hydrogen peroxide and the capsule, which is believed to have toxic effects on the animal.
Collapse
Affiliation(s)
- Joakim Westberg
- Department of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Salaün L, Snyder LA, Saunders NJ. Adaptation by phase variation in pathogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:263-301. [PMID: 12964248 DOI: 10.1016/s0065-2164(03)01011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Laurence Salaün
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
50
|
van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders IHM, Bloemberg GV, Lugtenberg BJJ. Biocontrol traits of Pseudomonas spp. are regulated by phase variation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1003-1012. [PMID: 14601668 DOI: 10.1094/mpmi.2003.16.11.1003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Of 214 Pseudomonas strains isolated from maize rhizosphere, 46 turned out to be antagonistic, of which 43 displayed clear colony phase variation. The latter strains formed both opaque and translucent colonies, designated as phase I and phase II, respectively. It appeared that important biocontrol traits, such as motility and the production of antifungal metabolites, proteases, lipases, chitinases, and biosurfactants, are correlated with phase I morphology and are absent in bacteria with phase II morphology. From a Tn5luxAB transposon library of Pseudomonas sp. strain PCL1171 phase I cells, two mutants exhibiting stable expression of phase II had insertions in gacS. A third mutant, which showed an increased colony phase variation frequency was mutated in mutS. Inoculation of wheat seeds with PCL1171 bacteria of phase I morphology resulted in efficient suppression of take-all disease, whereas disease suppression was absent with phase II bacteria. Neither the gacS nor the mutS mutant was able to suppress take-all, but biocontrol activity was restored after genetic complementation of these mutants. Furthermore, in a number of cases, complementation by gacS of wild-type phase II sectors to phase I phenotype could be shown. A PCL1171 phase I mutant defective in antagonistic activity appeared to have a mutation in a gene encoding a lipopeptide synthetase homologue and had lost its biocontrol activity, suggesting that biocontrol by strain PCL1171 is dependent on the production of a lipopeptide. Our results show that colony phase variation plays a regulatory role in biocontrol by Pseudomonas bacteria by influencing the expression of major biocontrol traits and that the gacS and mutS genes play a role in the colony phase variation process. Therefore phase variation not only plays a role in escaping animal defense but it also appears to play a much broader and vital role in the ecology of bacteria producing exoenzymes, antibiotics, and other secondary metabolites.
Collapse
Affiliation(s)
- Daan van den Broek
- Leiden University, Institute of Biology Leiden, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|