1
|
Azevedo JF, Joyner G, Kundu S, Samanta K, Gomes-Solecki M. Maternal Transfer of Oral Vaccine Induced Anti-OspA Antibodies Protects Peromyscus spp Pups from Tick-Transmitted Borrelia burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639966. [PMID: 40060546 PMCID: PMC11888318 DOI: 10.1101/2025.02.24.639966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The efficacy and duration of passive immunity protection depends on maternal antibody levels and transfer efficiency. We investigated whether oral vaccination of Peromyscus leucopus dams with recombinant OspA-expressing E. coli could induce maternal transfer of anti-OspA antibodies and protect pups from Borrelia burgdorferi challenge. Dams were vaccinated until breeding pairs were created (i), until parturition (ii), and until pups were 2 weeks old (iii). Pups were challenged with nymphal I. scapularis -transmitted B. burgdorferi at ∼ 4 weeks of age. Anti-OspA IgG were quantified in dams and pups, and anti -B. burgdorferi IgG were quantified in pups. B. burgdorferi burden was assessed by flaB qPCR in pups' tissues ∼ 4 weeks after tick challenge and viability of B. burgdorferi was assessed by culture of heart tissue. P. leucopus pups born to dams vaccinated until breeding had low serologic anti-OspA antibody and were not protected from tick transmitted B. burgdorferi infection. However, when dams' vaccination extended until parturition and until pups were two weeks old, significant anti-OspA antibody transfer and protection from B. burgdorferi infection occurred. This was evidenced by absence of antibody to B. burgdorferi PepVF, absence of B. burgdorferi flaB DNA in heart and bladder tissues, and absence of flaB in culture from heart tissues from pups euthanized >9 weeks after birth. We show that transfer of anti-OspA antibodies from vaccinated P. leucopus dams to offspring prevents tick transmission and infection dynamics of B. burgdorferi in the major reservoir host of this spirochete in the United States. Importance This study contributes to our understanding of how interventions based in reservoir targeted OspA vaccines designed to block transmission of B. burgdorferi from infected I. scapularis ticks may disrupt the enzootic cycle of this spirochete and reduce incidence of Lyme disease.
Collapse
|
2
|
Ferreras-Colino E, de la Fuente J, Couto J, Golovchenko M, Antunes S, Sevilla IA, Domingos A, Rudenko N, Contreras M, Martínez-Camacho R, Gortazar C, Risalde MA. Immunostimulant effect of heat-inactivated Mycobacterium bovis in mice challenged with vector-borne pathogens. Vaccine 2025; 53:127076. [PMID: 40188566 DOI: 10.1016/j.vaccine.2025.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
Trained immunity is defined as an enhanced state of the innate system which leads to an improved immune response against related or non-related pathogens. Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated Mycobacterium bovis strain, is currently one of the main inductors of trained immunity. The objective of the present study was to evaluate the protective effects of heat-inactivated M. bovis (HIMB) against Plasmodium berghei and Borrelia burgdorferi and characterize the immunological mechanisms involved. BALB/c and C3H/HeN mice were randomly assigned in similar number to either immunized group receiving two oral doses of HIMB with a 4-week interval, or control group treated with PBS. All the BALB/c mice were intraperitoneally infected with P. berghei while the C3H/HeN mice were subcutaneously infected with B. burgdorferi. Pathogen burden was significantly reduced in both immunized groups when compared to controls. The number of macrophages significantly decreased in the liver or in the spleen of the mice that had been immunized prior to the challenge with P. berghei or B. burgdorferi, respectively. Furthermore, the immunized groups showed an apparent upregulation of IFN-γ, TNF-α and IL-1α in the liver (P. berghei challenge) or a significant increase in IL-1α producing cells in the spleen (B. burgdorferi challenge). Our findings suggest that oral immunization with heat-inactivated mycobacteria limits pathogen burden through stimulation of the innate immune response in two vector-borne diseases in mice.
Collapse
Affiliation(s)
- Elisa Ferreras-Colino
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Marinela Contreras
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - Rafael Martínez-Camacho
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain
| | - Christian Gortazar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain.
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Zhang H, Li W, Li Y, Wang Y, Jin Y, Tong D, Li Z, Zhou J. Bacterial ghosts engineered with lipidated antigens as an adjuvant-free vaccine for Chlamydia abortus. Int J Pharm 2024; 666:124801. [PMID: 39368676 DOI: 10.1016/j.ijpharm.2024.124801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Bacterial ghosts (BGs) provide novel vaccine delivery platforms because of their inherent adjuvant properties and efficient antigen delivery capabilities. However, effective engineering strategies are required to modify them for different antigens. In this study, the Escherichia coli (E. coli) ghost was modified by using a lpp'-ompA chimera, a widely used bacterial surface display vector, with a protective antigen macrophage infectivity potentiator (MIP) of Chlamydia abortus (C. abortus), and its protective effect was evaluated in a mouse model. The MIP fusion protein accumulated at 1.2% of the ghost total protein mass and a significant portion of the protein was modified into lipoproteins upon translocation to the BG surface. Lipidated MIP-modified recombinant E. coli ghosts (rECG-lpp'-MIP) effectively promoted antigen-presenting cells (APCs) uptake of antigens and stimulated APCs activation in vivo and in vitro. Immunization with rECG-lpp'-MIP and no adjuvant induced intense specific humoral responses as well as Th1-biased cellular immune responses, which significantly improved the efficiency of C. abortus infection clearance in mice and reduced pathological damage to the uterus. In summary, this study demonstrates that recombinant E. coli ghosts modified with lipidated antigens could help to develop an effective C. abortus vaccine and aid in the development of a universal adjuvant-free vaccine platform.
Collapse
Affiliation(s)
- Huaiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yunhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yihan Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Youshun Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Zhaocai Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Jizhang Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
4
|
O’Bier NS, Camire AC, Patel DT, Billingsley JS, Hodges KR, Marconi RT. Development of novel multi-protein chimeric immunogens that protect against infection with the Lyme disease agent, Borreliella burgdorferi. mBio 2024; 15:e0215924. [PMID: 39287439 PMCID: PMC11481559 DOI: 10.1128/mbio.02159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Lyme disease is the most common tick-borne disease in North America. A vaccine for use in humans is not available. Here, we detail the development of two chimeric vaccine antigens, BAF and Chv2M. BAF elicits Abs that target proteins and protein variants produced by Borreliella species in ticks (OspB and OspA) and mammals (FtlA/B). OspB serves as the backbone structure for the BAF chimeric. Two OspA221-240 epitope-containing domain (ECD) variants (#A1 and #A15) were inserted into a loop in OspB. The N-terminal region of the FtlA protein was joined to the C-terminus of the chimeric. The second chimeric, Chv2M, consists of L5 (loop 5) and H5 (helix 5) ECDs derived from diverse OspC proteins. Borreliella species produce OspC upon exposure to the bloodmeal and during early infection in mammals. Here, we demonstrate that BAF and Chv2M are potent immunogens that elicit Abs that bind to each component protein (FtlA, FtlB, OspB, and multiple OspA and OspC variants). Anti-BAF and anti-Chv2M Abs kill Borreliella burgdorferi strains through Ab-mediated complement-dependent and complement-independent mechanisms. Eighty percent (32/40) of mice that received a three-dose vaccine regimen were protected from infection with B. burgdorferi B31. Efficacy increased to 90% (18/20) when the amount of Chv2M was increased in the third vaccine dose. Readouts for infection were flaB PCR and seroconversion to VlsE. This study establishes proof of principle for a chimeric immunogen vaccine formulation that elicits Abs to multiple targets on the B. burgdorferi cell surface produced during tick and mammalian stages of the enzootic cycle.IMPORTANCELyme disease is a growing public health threat across parts of the Northern Hemisphere. Regions that can support sustained tick populations are expanding, and the incidence of tick-borne diseases is increasing. In light of the increasing risk of Lyme disease, effective preventive strategies are needed. Most vaccine development efforts have focused on outer surface protein A, a Borreliella burgdorferi protein produced only in ticks. Herein, we describe the development of a novel vaccine formulation consisting of two multivalent chimeric proteins that are immunogenic and elicit antibodies with bactericidal activity that target several cell surface proteins produced by the Lyme disease spirochetes in feeding ticks and mammals. In a broader sense, this study advances efforts to develop custom-designed vaccinogens comprised of epitope-containing domains from multiple proteins.
Collapse
Affiliation(s)
- Nathaniel S. O’Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew C. Camire
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John S. Billingsley
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kelly R. Hodges
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Dattwyler RJ, Arnaboldi PM. Vaccination hesistancy in Lyme borreliosis. THE LANCET. INFECTIOUS DISEASES 2024; 24:945-947. [PMID: 38830376 DOI: 10.1016/s1473-3099(24)00221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024]
Affiliation(s)
- Raymond J Dattwyler
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA.
| | - Paul M Arnaboldi
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
6
|
Johnson EE, Hart TM, Fikrig E. Vaccination to Prevent Lyme Disease: A Movement Towards Anti-Tick Approaches. J Infect Dis 2024; 230:S82-S86. [PMID: 39140718 PMCID: PMC11322886 DOI: 10.1093/infdis/jiae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 08/15/2024] Open
Abstract
Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.
Collapse
Affiliation(s)
- Emily E Johnson
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Thomas M Hart
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Noh SM, Ujczo J, Alperin DC, Jarvis SM, Solyman MSM, Koku R, Akinsulie OC, Hoffmann EE. Identification of Anaplasma marginale adhesins for entry into Dermacentor andersoni tick cells using phage display. Infect Immun 2024; 92:e0054023. [PMID: 38727242 PMCID: PMC11237752 DOI: 10.1128/iai.00540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.
Collapse
Affiliation(s)
- Susan M. Noh
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Jessica Ujczo
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
| | - Debra C. Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Shelby M. Jarvis
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Muna S. M. Solyman
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Roberta Koku
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olalekan C. Akinsulie
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Elizabeth E. Hoffmann
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Vance DJ, Basir S, Piazza CL, Willsey GG, Haque HME, Tremblay JM, Rudolph MJ, Muriuki B, Cavacini L, Weis DD, Shoemaker CB, Mantis NJ. Single-domain antibodies reveal unique borrelicidal epitopes on the Lyme disease vaccine antigen, outer surface protein A (OspA). Infect Immun 2024; 92:e0008424. [PMID: 38470113 PMCID: PMC11003225 DOI: 10.1128/iai.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Saiful Basir
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Carol Lyn Piazza
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Jacque M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Beatrice Muriuki
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Lisa Cavacini
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Pavia CS, Saggio G, Plummer MM. The major epidemiologic, microbiologic, immunologic, and clinical aspects of Lyme disease that form the basis for a newly developed vaccine that may become available soon for human use. Front Immunol 2024; 14:1326623. [PMID: 38420513 PMCID: PMC10899802 DOI: 10.3389/fimmu.2023.1326623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 03/02/2024] Open
Abstract
Working together, two major pharmaceutical companies have developed a Lyme disease vaccine consisting of recombinant-derived outer surface protein A (OspA) of the etiologic agent Borrelia burgdorferi. Multiple clinical trials have shown the vaccine to have good safety and efficacy results, and it is hoped that it would become available for human use at least by the year 2025 after receiving approval from the U.S. Food and Drug Administration. There are still challenges left to ensure that the vaccine has, at most, minimal side effects. Also, because the previously developed Lyme disease vaccine was discontinued in 2002 after four years of distribution, due in part, for frivolous reasons having little or no scientific basis, that even led to legal entanglements involving the vaccine manufacturer and some of the medical personnel overseeing the clinical trials, there will be concerns that this newly developed one could be subject again to some of the same unnecessary scrutiny rendering its implementation suboptimal. Initially this review will focus on the key epidemiological, microbiologic, immunologic and clinical aspects of Lyme disease that provide the foundation for developing this type of vaccine that could have a serious impact on the prevalence of this and even certain other tick-transmitted infections.
Collapse
Affiliation(s)
- Charles S. Pavia
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, United States
| | - Gregory Saggio
- Department of Clinical Specialties, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Maria M. Plummer
- Department of Clinical Specialties, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
10
|
Pine M, Arora G, Hart TM, Bettini E, Gaudette BT, Muramatsu H, Tombácz I, Kambayashi T, Tam YK, Brisson D, Allman D, Locci M, Weissman D, Fikrig E, Pardi N. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Mol Ther 2023; 31:2702-2714. [PMID: 37533256 PMCID: PMC10492027 DOI: 10.1016/j.ymthe.2023.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.
Collapse
Affiliation(s)
- Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Thomas M Hart
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Li Q, Zhou G, Fei X, Tian Y, Wang S, Shi H. Engineered Bacterial Outer Membrane Vesicles with Lipidated Heterologous Antigen as an Adjuvant-Free Vaccine Platform for Streptococcus suis. Appl Environ Microbiol 2023; 89:e0204722. [PMID: 36809058 PMCID: PMC10057044 DOI: 10.1128/aem.02047-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Safety and immunogenicity of orally administered poxvirus vectored constructs in the white-footed mouse ( Peromyscus leucopus). Vaccine X 2022; 13:100259. [PMID: 36654838 PMCID: PMC9841169 DOI: 10.1016/j.jvacx.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Globally, zoonotic spillover is becoming more frequent and represents a growing public health concern. Reservoir-targeted vaccination offers an intriguing alternative to traditional vaccine practices by establishing protection in wild populations that maintain the natural pathogen cycle. As an important pathogen reservoir, Peromyscus leucopus Rafinesque or the white-footed mouse has been the target of several experimental vaccines. However, strategies are limited by the method of administration, need for repeated dosing, or safety of constructs in the field. To address these concerns, we evaluated two highly attenuated poxviruses, raccoonpox virus (RCN) and modified vaccinia Ankara (MVA) virus as potential oral vaccine vectors in white-footed mice. Following oral administration, P. leucopus showed no adverse signs. A single oral dose elicited robust immune responses in mice to the foreign influenza hemagglutinin protein expressed by poxvirus vaccine vectors. Serum hemagglutinin inhibition antibody titers were detected by day 7 post immunization and persisted until study termination (77 days post immunization). This study establishes the safety and immunogenicity of recombinant MVA and RCN poxviruses in P. leucopus and demonstrates the suitability of these vectors as part of a reservoir-targeted vaccine strategy for white-footed mice.
Collapse
|
13
|
Haque HME, Ejemel M, Vance DJ, Willsey G, Rudolph MJ, Cavacini LA, Wang Y, Mantis NJ, Weis DD. Human B Cell Epitope Map of the Lyme Disease Vaccine Antigen, OspA. ACS Infect Dis 2022; 8:2515-2528. [PMID: 36350351 DOI: 10.1021/acsinfecdis.2c00346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel β-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA β-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.
Collapse
Affiliation(s)
- H M Emranul Haque
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Monir Ejemel
- MassBiologics, Boston, Massachusetts02126, United States
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Graham Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Michael J Rudolph
- New York Structural Biology Center, New York, New York10027, United States
| | | | - Yang Wang
- MassBiologics, Boston, Massachusetts02126, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
14
|
Arora G, Lynn GE, Tang X, Rosen CE, Hoornstra D, Sajid A, Hovius JW, Palm NW, Ring AM, Fikrig E. CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever. mBio 2022; 13:e0116122. [PMID: 36036625 PMCID: PMC9600505 DOI: 10.1128/mbio.01161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Chen WH, Strych U, Bottazzi ME, Lin YP. Past, present, and future of Lyme disease vaccines: antigen engineering approaches and mechanistic insights. Expert Rev Vaccines 2022; 21:1405-1417. [PMID: 35836340 PMCID: PMC9529901 DOI: 10.1080/14760584.2022.2102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transmitted by ticks, Lyme disease is the most common vector-borne disease in the Northern hemisphere. Despite the geographical expansion of human Lyme disease cases, no effective preventive strategies are currently available. Developing an efficacious and safe vaccine is therefore urgently needed. Efforts have previously been taken to identify vaccine targets in the causative pathogen (Borrelia burgdorferi sensu lato) and arthropod vector (Ixodes spp.). However, progress was impeded due to a lack of consumer confidence caused by the myth of undesired off-target responses, low immune responses, a limited breadth of immune reactivity, as well as by the complexities of the vaccine process development. AREA COVERED In this review, we summarize the antigen engineering approaches that have been applied to overcome those challenges and the underlying mechanisms that can be exploited to improve both safety and efficacy of future Lyme disease vaccines. EXPERT OPINION Over the past two decades, several new genetically redesigned Lyme disease vaccine candidates have shown success in both preclinical and clinical settings and built a solid foundation for further development. These studies have greatly informed the protective mechanisms of reducing Lyme disease burdens and ending the endemic of this disease.
Collapse
Affiliation(s)
- Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| |
Collapse
|
16
|
Agglutination of Borreliella burgdorferi by Transmission-Blocking OspA Monoclonal Antibodies and Monovalent Fab Fragments. Infect Immun 2022; 90:e0030622. [PMID: 36000876 PMCID: PMC9476992 DOI: 10.1128/iai.00306-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lyme disease vaccines based on recombinant Outer surface protein A (OspA) elicit protective antibodies that interfere with tick-to-host transmission of the disease-causing spirochete Borreliella burgdorferi. Another hallmark of OspA antisera and certain OspA monoclonal antibodies (MAbs) is their capacity to induce B. burgdorferi agglutination in vitro, a phenomenon first reported more than 30 years ago but never studied in molecular detail. In this report, we demonstrate that transmission-blocking OspA MAbs, individually and in combination, promote dose-dependent and epitope-specific agglutination of B. burgdorferi. Agglutination occurred within minutes and persisted for hours. Spirochetes in the core of the aggregates exhibited evidence of outer membrane (OM) stress, revealed by propidium iodide uptake. The most potent agglutinator was the mouse MAb LA-2, which targets the OspA C terminus (β-strands 18 to 20). Human MAb 319-44, which also targets the OspA C terminus (β-strand 20), and 857-2, which targets the OspA central β-sheet (strands 8 to 10), were less potent agglutinators, while MAb 221-7, which targets β-strands 10 to 11, had little to no measurable agglutinating activity, even though its affinity for OspA exceeded that of LA-2. Remarkably, monovalent Fab fragments derived from LA-2, and to a lesser degree 319-44, retained the capacity to induce B. burgdorferi aggregation and OM stress, a particularly intriguing observation considering that "LA-2-like" Fabs have been shown to experimentally entrap B. burgdorferi within infected ticks and prevent transmission during feeding to a mammalian host. It is therefore tempting to speculate that B. burgdorferi aggregation triggered by OspA-specific antibodies in vitro may in fact reflect an important biological activity in vivo.
Collapse
|
17
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
18
|
Dattwyler RJ, Gomes-Solecki M. The year that shaped the outcome of the OspA vaccine for human Lyme disease. NPJ Vaccines 2022; 7:10. [PMID: 35087055 PMCID: PMC8795424 DOI: 10.1038/s41541-022-00429-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
The expansion of Lyme borreliosis endemic areas and the corresponding increase of disease incidence have opened the possibility for greater acceptance of a vaccine. In this perspective article, we discuss the discovery of outer surface protein A (OspA) of B. burgdorferi, and the subsequent pre-clinical testing and clinical trials of a recombinant OspA vaccine for human Lyme disease. We also discuss in detail the open public hearings of the FDA Lyme disease vaccine advisory panel held in 1998 where concerns of molecular mimicry induced autoimmunity to native OspA were raised, the limitations of those studies, and the current modifications of recombinant OspA to develop a multivalent subunit vaccine for Lyme disease.
Collapse
Affiliation(s)
- Raymond J. Dattwyler
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology and Immunology, New York Medical College, Valhalla, NY USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
19
|
Phillip K, Nair N, Samanta K, Azevedo JF, Brown GD, Petersen CA, Gomes-Solecki M. Maternal transfer of neutralizing antibodies to B. burgdorferi OspA after oral vaccination of the rodent reservoir. Vaccine 2021; 39:4320-4327. [PMID: 34172332 PMCID: PMC8495753 DOI: 10.1016/j.vaccine.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
Lyme Disease presents unique challenges for public health. Transfer of protective antibodies between mothers and offspring should occur after vaccination of mice. We present new evidence for maternal transfer of oral vaccine induced neutralizing anti-OspA IgG antibodies to mouse pups mainly through ingestion of colostrum. We found a strong statistical correlation of antibody transfer between mothers that produced the most robust IgG response to OspA and their respective pups. OspA-specific antibody was detected as early as 24 h after birth and protective levels of antibodies lasted until ~5 weeks of age in the majority of pups but persisted in some mice until 9 weeks. This was further supported by detection of neutralizing antibodies in serum of all pups at 2-3 weeks after birth and in some offspring adult mice at 9 weeks of age. A clear association was found between robust antibody responses in mothers and the length of time antibody persisted in the respective pups using a novel longitudinal Bayesian model. These factors are likely to impact the enzootic cycle of B. burgdorferi if reservoir targeted OspA-based vaccination interventions are implemented.
Collapse
Affiliation(s)
- Kathryn Phillip
- University of Tennessee Health Science Center Department of Comparative Medicine
| | - Nisha Nair
- University of Tennessee Health Science Center Department of Microbiology, Immunology and Biochemistry
| | - Kamalika Samanta
- University of Tennessee Health Science Center Department of Microbiology, Immunology and Biochemistry
| | - Jose F. Azevedo
- University of Tennessee Health Science Center Department of Microbiology, Immunology and Biochemistry
| | | | - Christine A. Petersen
- University of Iowa Department of Epidemiology, Center for Emerging Infectious Diseases
| | - Maria Gomes-Solecki
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, United States.
| |
Collapse
|
20
|
Vaccination with meningococcal outer membrane vesicles carrying Borrelia OspA protects against experimental Lyme borreliosis. Vaccine 2021; 39:2561-2567. [PMID: 33812741 DOI: 10.1016/j.vaccine.2021.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines, as such a vaccine has been proven to be successful in the past. The expression of recombinant antigens in meningococcal Outer Membrane Vesicles (OMVs), with the OMV functioning both as adjuvant and delivery vehicle, greatly enhances their potential. Immunization studies in mice have shown that OMV-based vaccines can protect against various pathogens and an OMV-based meningococcal vaccine is approved and available for human use. Because of its surface localization in Borrelia and the detailed knowledge regarding its immunogenicity and structure, OspA was chosen as a suitable lipoprotein to be tested as an OMV-based vaccine against Lyme borreliosis. We have previously shown that the OMV-OspA vaccine was immunogenic in mice and here we assessed the efficacy of OMV-OspA. We generated a second-generation OMV-OspA vaccine and vaccinated C3H/HeN mice with (EDTA extracted) meningococcal OMVs expressing OspA from B. burgdorferi strain B31. The adjuvant effect of empty OMVs on recombinant OspA was tested as well. We subsequently challenged mice with a subcutaneous injection of B. burgdorferi. Average antibody end-point titers against the OspA-OMV construct were high, although lower compared to the antibodies raised against recombinant OspA. Interestingly, antibody titers between recombinant OspA adjuvanted with aluminum hydroxide and recombinant OspA with OMV as adjuvant were comparable. Finally, qPCR and culture data show that both the OspA-OMV and the vaccine based on recombinant OspA with OMV as adjuvant provided significant, yet partial protection, against Borrelia infection. OMV-based vaccines using Borrelia (lipo)proteins are an easy and feasible vaccination method protecting against B. burgdorferi infection and could be a promising strategy in humans.
Collapse
|
21
|
Koči J, Bista S, Chirania P, Yang X, Kitsou C, Rana VS, Yas OB, Sonenshine DE, Pal U. Antibodies against EGF-like domains in Ixodes scapularis BM86 orthologs impact tick feeding and survival of Borrelia burgdorferi. Sci Rep 2021; 11:6095. [PMID: 33731754 PMCID: PMC7971074 DOI: 10.1038/s41598-021-85624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/01/2021] [Indexed: 11/15/2022] Open
Abstract
Ixodes scapularis ticks transmit multiple pathogens, including Borrelia burgdorferi sensu stricto, and encode many proteins harboring epidermal growth factor (EGF)-like domains. We show that I. scapularis produces multiple orthologs for Bm86, a widely studied tick gut protein considered as a target of an anti-tick vaccine, herein termed as Is86. We show that Is86 antigens feature at least three identifiable regions harboring EGF-like domains (termed as EGF-1, EGF-2, and EGF-3) and are differentially upregulated during B. burgdorferi infection. Although the RNA interference-mediated knockdown of Is86 genes did not show any influences on tick engorgement or B. burgdorferi sensu stricto persistence, the immunization of murine hosts with specific recombinant EGF antigens marginally reduced spirochete loads in the skin, in addition to affecting tick blood meal engorgement and molting. However, given the borderline impact of EGF immunization on tick engorgement and pathogen survival in the vector, it is unlikely that these antigens, at least in their current forms, could be developed as potential vaccines. Further investigations of the biological significance of Is86 (and other tick antigens) would enrich our knowledge of the intricate biology of ticks, including their interactions with resident pathogens, and contribute to the development of anti-tick measures to combat tick-borne illnesses.
Collapse
Affiliation(s)
- Juraj Koči
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA. .,Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia. .,Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia.
| | - Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Payal Chirania
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Ozlem Buyuktanir Yas
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA. .,Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
22
|
Helble JD, McCarthy JE, Hu LT. Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle. Parasite Immunol 2021; 43:e12816. [PMID: 33368329 DOI: 10.1111/pim.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both mammalian and tick hosts through careful modulation of its gene expression. This allows B. burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted between the two hosts. Distinct interactions between the spirochete and its host occur at every step of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector and the natural mammalian reservoirs has been made significantly more feasible through the complete genome sequences of the organisms and the advent of high throughput screening technologies. Ultimately, a thorough investigation of the interplay between the two domains (and two phyla within one domain) is necessary in order to completely understand how the pathogen is transmitted.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Julie E McCarthy
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| |
Collapse
|
23
|
O'Bier NS, Hatke AL, Camire AC, Marconi RT. Human and Veterinary Vaccines for Lyme Disease. Curr Issues Mol Biol 2020; 42:191-222. [PMID: 33289681 DOI: 10.21775/cimb.042.191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (LD) is an emerging zoonotic infection that is increasing in incidence in North America, Europe, and Asia. With the development of safe and efficacious vaccines, LD can potentially be prevented. Vaccination offers a cost-effective and safe approach for decreasing the risk of infection. While LD vaccines have been widely used in veterinary medicine, they are not available as a preventive tool for humans. Central to the development of effective vaccines is an understanding of the enzootic cycle of LD, differential gene expression of Borrelia burgdorferi in response to environmental variables, and the genetic and antigenic diversity of the unique bacteria that cause this debilitating disease. Here we review these areas as they pertain to past and present efforts to develop human, veterinary, and reservoir targeting LD vaccines. In addition, we offer a brief overview of additional preventative measures that should employed in conjunction with vaccination.
Collapse
Affiliation(s)
- Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Amanda L Hatke
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Andrew C Camire
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
24
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Kamp HD, Swanson KA, Wei RR, Dhal PK, Dharanipragada R, Kern A, Sharma B, Sima R, Hajdusek O, Hu LT, Wei CJ, Nabel GJ. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines 2020; 5:33. [PMID: 32377398 PMCID: PMC7195412 DOI: 10.1038/s41541-020-0183-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
A growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete Borrelia burgdorferi sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public. Here, we designed a six component vaccine that elicits antibody (Ab) responses against all Borrelia strains that commonly cause Lyme disease in humans. The outer surface protein A (OspA) of Borrelia was fused to a bacterial ferritin to generate self-assembling nanoparticles. OspA-ferritin nanoparticles elicited durable high titer Ab responses to the seven major serotypes in mice and non-human primates at titers higher than a previously licensed vaccine. This response was durable in rhesus macaques for more than 6 months. Vaccination with adjuvanted OspA-ferritin nanoparticles stimulated protective immunity from both B. burgdorferi and B. afzelii infection in a tick-fed murine challenge model. This multivalent Lyme vaccine offers the potential to limit the spread of Lyme disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Radek Sima
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Chih-Jen Wei
- Sanofi, 640 Memorial Dr, Cambridge, MA 01239 USA
| | | |
Collapse
|
26
|
Gomes-Solecki M, Arnaboldi PM, Backenson PB, Benach JL, Cooper CL, Dattwyler RJ, Diuk-Wasser M, Fikrig E, Hovius JW, Laegreid W, Lundberg U, Marconi RT, Marques AR, Molloy P, Narasimhan S, Pal U, Pedra JHF, Plotkin S, Rock DL, Rosa P, Telford SR, Tsao J, Yang XF, Schutzer SE. Protective Immunity and New Vaccines for Lyme Disease. Clin Infect Dis 2020; 70:1768-1773. [PMID: 31620776 PMCID: PMC7155782 DOI: 10.1093/cid/ciz872] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Lyme disease, caused by some Borrelia burgdorferi sensu lato, is the most common tick-borne illness in the Northern Hemisphere and the number of cases, and geographic spread, continue to grow. Previously identified B. burgdorferi proteins, lipid immunogens, and live mutants lead the design of canonical vaccines aimed at disrupting infection in the host. Discovery of the mechanism of action of the first vaccine catalyzed the development of new strategies to control Lyme disease that bypassed direct vaccination of the human host. Thus, novel prevention concepts center on proteins produced by B. burgdorferi during tick transit and on tick proteins that mediate feeding and pathogen transmission. A burgeoning area of research is tick immunity as it can unlock mechanistic pathways that could be targeted for disruption. Studies that shed light on the mammalian immune pathways engaged during tick-transmitted B. burgdorferi infection would further development of vaccination strategies against Lyme disease.
Collapse
Affiliation(s)
- Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
| | - Paul M Arnaboldi
- Department of Microbiology/Immunology, New York Medical College, New York, USA
| | | | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York, USA
| | - Christopher L Cooper
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Raymond J Dattwyler
- Department of Microbiology/Immunology, New York Medical College, New York, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, USA
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - J W Hovius
- Department of Internal Medicine, Section of Infectious Diseases, Amsterdam Multidisciplinary Lyme Borreliosis Center, Amsterdam University Medical Centers, Academic Medical Center, The Netherlands
| | - Will Laegreid
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, Wyoming, USA
| | | | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Adriana R Marques
- Lyme Disease Studies Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sukanya Narasimhan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Maryland, USA
| | - Stanley Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel L Rock
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Patricia Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sam R Telford
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts, USA
| | - Jean Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Departments of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University of School of Medicine, Indianapolis, Indiana, USA
| | - Steven E Schutzer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
27
|
Stafford KC, Williams SC, van Oosterwijk JG, Linske MA, Zatechka S, Richer LM, Molaei G, Przybyszewski C, Wikel SK. Field evaluation of a novel oral reservoir-targeted vaccine against Borrelia burgdorferi utilizing an inactivated whole-cell bacterial antigen expression vehicle. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:257-268. [PMID: 31898760 DOI: 10.1007/s10493-019-00458-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Blacklegged ticks (Ixodes scapularis) are the principal vector for Borrelia burgdorferi, among other infectious agents, in the northeastern, mid-Atlantic, and upper midwestern USA. White-footed mice (Peromyscus leucopus) are the primary and most competent reservoir host of B. burgdorferi in the Northeast. Live reservoir-targeted vaccines (RTVs) to limit enzootic transmission of B. burgdorferi were previously developed and successfully evaluated in laboratory and controlled field trials. A novel, inactivated RTV was developed to minimize regulatory and market challenges facing previous RTVs based on live bacterial or viral vehicles. Thirty-two residential properties in Redding, Connecticut, participated in a field trial of an orally delivered, inactivated RTV efficacy study (2015-2016). During the two-year vaccination period, a significant decrease in the percentage of B. burgdorferi-infected I. scapularis larvae parasitizing P. leucopus was observed, as was a significant reduction in the percentage of infected P. leucopus on RTV-treated properties when compared to control properties. This novel inactivated RTV was effective in reducing numbers of B. burgdorferi-infected I. scapularis and B. burgdorferi-infected P. leucopus on properties where it was distributed.
Collapse
Affiliation(s)
- Kirby C Stafford
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Scott C Williams
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.
| | | | - Megan A Linske
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | | | | | - Goudarz Molaei
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | | | - Stephen K Wikel
- U.S. Biologic, Inc., Memphis, TN, USA
- Department of Medical Sciences, School of Medicine, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
28
|
Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Sci Rep 2019; 9:17606. [PMID: 31772280 PMCID: PMC6879480 DOI: 10.1038/s41598-019-53830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Membrane-embedded proteins are critical to the establishment, survival and persistence in the host of the Lyme disease bacterium Borrelia burgdorferi (Bb), but to date, there are no solved structures of transmembrane proteins representing these attractive therapeutic targets. All available structures from the genus Borrelia represent proteins expressed without a membrane-targeting signal peptide, thus avoiding conserved pathways that modify, fold and assemble membrane protein complexes. Towards elucidating structure and function of these critical proteins, we directed translocation of eleven expression-optimized Bb virulence factors, including the signal sequence, to the Escherichia coli membrane, of which five, BBA57, HtrA, BB0238, BB0323, and DipA, were expressed with C-terminal His-tags. P66 was also expressed using the PelB signal sequence fused to maltose binding protein. Membrane-associated BBA57 lipoprotein was solubilized by non-ionic and zwitterionic detergents. We show BBA57 translocation to the outer membrane, purification at a level sufficient for structural studies, and evidence for an α-helical multimer. Previous studies showed multiple critical roles of BBA57 in transmission, joint arthritis, carditis, weakening immune responses, and regulating other Bb outer surface proteins. In describing the first purification of membrane-translocated BBA57, this work will support subsequent studies that reveal the precise mechanisms of this important Lyme disease virulence factor.
Collapse
|
29
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Lee JJ, Hsieh CL, Widman J, Mingala C, Ardeza Villanueva M, Feng H, Divers T, Chang YF. A luminescence-based assay for evaluating bactericidal antibody to Borrelia burgdorferi in vaccinated horses' serum. Equine Vet J 2019; 51:669-673. [PMID: 30648279 DOI: 10.1111/evj.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/01/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Current serological tests cannot discriminate between bactericidal Borrelia burgdorferi antibodies from others that are merely a response to Borrelia antigenic stimulation. OBJECTIVE To develop a sensitive and convenient luminescence-based serum bactericidal assay (L-SBA) to identify serum borreliacidal activity. STUDY DESIGN Prospective validation study and method comparison. METHODS Serum samples were obtained either from archives of the Animal Health Diagnostic Center at Cornell University (N = 7) or from a vaccination trial (N = 238). Endogenous complement-inactivated serum sample was incubated with exogenic complement and B. burgdorferi ML23 pBBE22luc, which is able to process luciferin with luciferase and produce luminescence in viable Borrelia. After incubation, a light signal can be detected by using a luminometer to calculate the borreliacidal antibody titre. RESULTS Components of the reaction mixture including spirochetes and complement from various sources and concentrations were tested to identify a reliable recipe for our complement-mediated L-SBA. We also applied this L-SBA on measuring bactericidal antibody activities and calculated the half inhibitory concentration (IC50 ) of serum samples from clinical collections. Furthermore, we analysed the L-SBA titres and anti-outer surface protein A (OspA) antibody levels from vaccinated horses using the multiplex assays and found that there is a relationship between results generated using these two different assays. The increases of L-SBA titres correlated with increases of anti-OspA antibody titre in sera (r = 0.423). MAIN LIMITATIONS Immunoreactivity of commercial complement may differ from different batches. Clinical protection of borreliacidal antibody levels has not been determined. CONCLUSIONS The L-SBA provided a sensitive and easy-operating platform for the evaluation of bactericidal antibody to B. burgdorferi, and we anticipated L-SBA would function well as an evaluation tool of vaccine efficiency in the future.
Collapse
Affiliation(s)
- J J Lee
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - C L Hsieh
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - J Widman
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - C Mingala
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - M Ardeza Villanueva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - H Feng
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - T Divers
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | - Y-F Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
31
|
Bhatia B, Hillman C, Carracoi V, Cheff BN, Tilly K, Rosa PA. Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector. PLoS Pathog 2018; 14:e1006959. [PMID: 29621350 PMCID: PMC5886588 DOI: 10.1371/journal.ppat.1006959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Lyme disease in humans is caused by several genospecies of the Borrelia burgdorferi sensu lato (s.l.) complex of spirochetal bacteria, including B. burgdorferi, B. afzelii and B. garinii. These bacteria exist in nature as obligate parasites in an enzootic cycle between small vertebrate hosts and Ixodid tick vectors, with humans representing incidental hosts. During the natural enzootic cycle, infected ticks in endemic areas feed not only upon naïve hosts, but also upon seropositive infected hosts. In the current study, we considered this environmental parameter and assessed the impact of the immune status of the blood-meal host on the phenotype of the Lyme disease spirochete within the tick vector. We found that blood from a seropositive host profoundly attenuates the infectivity (>104 fold) of homologous spirochetes within the tick vector without killing them. This dramatic neutralization of vector-borne spirochetes was not observed, however, when ticks and blood-meal hosts carried heterologous B. burgdorferi s.l. strains, or when mice lacking humoral immunity replaced wild-type mice as blood-meal hosts in similar experiments. Mechanistically, serum-mediated neutralization does not block induction of host-adapted OspC+ spirochetes during tick feeding, nor require tick midgut components. Significantly, this study demonstrates that strain-specific antibodies elicited by B. burgdorferi s.l. infection neutralize homologous bacteria within feeding ticks, before the Lyme disease spirochetes enter a host. The blood meal ingested from an infected host thereby prevents super-infection by homologous spirochetes, while facilitating transmission of heterologous B. burgdorferi s.l. strains. This finding suggests that Lyme disease spirochete diversity is stably maintained within endemic populations in local geographic regions through frequency-dependent selection of rare alleles of dominant polymorphic surface antigens.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
| | - Chad Hillman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
| | - Valentina Carracoi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
| | - Britney N. Cheff
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
| | - Kit Tilly
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America
- * E-mail:
| |
Collapse
|
32
|
Whiteside SK, Snook JP, Ma Y, Sonderegger FL, Fisher C, Petersen C, Zachary JF, Round JL, Williams MA, Weis JJ. IL-10 Deficiency Reveals a Role for TLR2-Dependent Bystander Activation of T Cells in Lyme Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1457-1470. [PMID: 29330323 PMCID: PMC5809275 DOI: 10.4049/jimmunol.1701248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
Abstract
T cells predominate the immune responses in the synovial fluid of patients with persistent Lyme arthritis; however, their role in Lyme disease remains poorly defined. Using a murine model of persistent Lyme arthritis, we observed that bystander activation of CD4+ and CD8+ T cells leads to arthritis-promoting IFN-γ, similar to the inflammatory environment seen in the synovial tissue of patients with posttreatment Lyme disease. TCR transgenic mice containing monoclonal specificity toward non-Borrelia epitopes confirmed that bystander T cell activation was responsible for disease development. The microbial pattern recognition receptor TLR2 was upregulated on T cells following infection, implicating it as marker of bystander T cell activation. In fact, T cell-intrinsic expression of TLR2 contributed to IFN-γ production and arthritis, providing a mechanism for microbial-induced bystander T cell activation during infection. The IL-10-deficient mouse reveals a novel TLR2-intrinsic role for T cells in Lyme arthritis, with potentially broad application to immune pathogenesis.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jeremy P Snook
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Ying Ma
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - F Lynn Sonderegger
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Colleen Fisher
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Charisse Petersen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - James F Zachary
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802
| | - June L Round
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Matthew A Williams
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Janis J Weis
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| |
Collapse
|
33
|
Marcinkiewicz AL, Lieknina I, Kotelovica S, Yang X, Kraiczy P, Pal U, Lin YP, Tars K. Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Front Immunol 2018; 9:181. [PMID: 29472926 PMCID: PMC5809437 DOI: 10.3389/fimmu.2018.00181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the causative agent of Lyme disease, the most common tick-borne disease in the US and Europe. No potent human vaccine is currently available. The innate immune complement system is vital to host defense against pathogens, as complement activation on the surface of spirochetes results in bacterial killing. Complement system is inhibited by the complement regulator factor H (FH). To escape killing, B. burgdorferi produces an outer surface protein CspZ that binds FH to inhibit complement activation on the cell surface. Immunization with CspZ alone does not protect mice from infection, which we speculate is because FH-binding cloaks potentially protective epitopes. We modified CspZ by conjugating to virus-like particles (VLP-CspZ) and eliminating FH binding (modified VLP-CspZ) to increase immunogenicity. We observed greater bactericidal antibody titers in mice vaccinated with modified VLP-CspZ: A serum dilution of 1:395 (modified VLP-CspZ) vs 1:143 (VLP-CspZ) yielded 50% borreliacidal activity. Immunizing mice with modified VLP-CspZ cleared spirochete infection, as did passive transfer of elicited antibodies. This work developed a novel Lyme disease vaccine candidate by conjugating CspZ to VLP and eliminating FH-binding ability. Such a strategy of conjugating an antigen to a VLP and eliminating binding to the target ligand can serve as a general model for developing vaccines against other bacterial infectious agents.
Collapse
Affiliation(s)
- Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Xiuli Yang
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia–Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, College Park, MD, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Science, State University of New York at Albany, Albany, NY, United States
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
34
|
Jessen Condry DL, Bradley DS, Brissette CA. Design of a Lyme Disease Vaccine as an Active Learning Approach in a Novel Interdisciplinary Graduate-Level Course. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2017; 18:jmbe-18-52. [PMID: 29854047 PMCID: PMC5976042 DOI: 10.1128/jmbe.v18i3.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/05/2017] [Indexed: 06/08/2023]
Abstract
A biomedical sciences graduate program needed an introductory class that would develop skills for students interested in a wide variety of disciplines, such as microbiology or cancer biology, and a diverse array of biomedical careers. Faculty created a year-long student-centered course, Scientific Discovery, to serve this need. The course was divided into four modules with progressive skill outcomes. Each module had a focus related to each of the major research areas of the collective faculty: molecular biology, biochemistry, neuroscience, and infectious disease. First-year graduate students enter the program with relevant college-level biology and chemistry coursework but not in-depth content knowledge of any of the focus areas. Each module features a biomedical problem for the students to gain specific content knowledge while developing skills outcomes, such as the ability to conduct scholarly inquiry. In 2015, the theme of the infectious disease module was to create an effective human vaccine to prevent Lyme disease. The module required students to learn fundamental concepts of microbiology and immunology and then apply that knowledge to design their own Lyme disease vaccine. The class culminated with students communicating their creative designs in the form of a "white paper" and a pitch to "potential investors." By the end of the module, students had developed fundamental knowledge, applied that knowledge with great creativity, and met the skills learning outcomes, as evidenced by their ability to conduct scholarly inquiry and apply knowledge gained during this module to a novel problem, as part of their final exam.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Corresponding author. Mailing address: Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Neuroscience Building, Room 118, 504 Hamline Street, Stop 9061, Grand Forks, ND 58202-9061. Phone: 701-777-6412. Fax: 701-777-0387. E-mail:
| |
Collapse
|
35
|
The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS One 2017; 12:e0184357. [PMID: 28863166 PMCID: PMC5581183 DOI: 10.1371/journal.pone.0184357] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that the Outer surface protein A (OspA) based Lyme borreliosis vaccine VLA15 induces protective immunity in mice. Herein, we report the induction of protective immunity by VLA15 with mouse models using ticks infected with B. burgdorferi (OspA serotype 1), B. afzelii (OspA serotype 2) and B. bavariensis (OspA serotype 4) or with in vitro grown B. garinii (OspA serotype 5 and 6) for challenge. For B. garinii (OspA serotype 3), we have developed a growth inhibition assay using chicken complement and functional antibodies targeting B. garinii (OspA serotype 3) could be demonstrated after immunization with VLA15. Furthermore, following three priming immunizations, a booster dose was administered five months later and the induction of immunological memory could be confirmed. Thus, the antibody titers after the booster dose were increased considerably compared to those after primary immunization. In addition, the half-lives of anti-OspA serotype specific antibodies after administration of the booster immunization were longer than after primary immunization. Taken together, we could show that VLA15 induced protection in mice against challenge with four different clinically relevant Borrelia species (B. burgdorferi, B. afzelii, B. garinii and B. bavariensis) expressing five of the six OspA serotypes included in the vaccine. The protection data is supported by functional assays showing efficacy against spirochetes expressing any of the six OspA serotypes (1 to 6). To our knowledge, this is the first time a Lyme borreliosis vaccine has been able to demonstrate such broad protection in preclinical studies. These new data provide further promise for the clinical development of VLA15 and supports our efforts to provide a new Lyme borreliosis vaccine available for global use.
Collapse
|
36
|
Harman MW, Hamby AE, Boltyanskiy R, Belperron AA, Bockenstedt LK, Kress H, Dufresne ER, Wolgemuth CW. Vancomycin Reduces Cell Wall Stiffness and Slows Swim Speed of the Lyme Disease Bacterium. Biophys J 2017; 112:746-754. [PMID: 28256234 DOI: 10.1016/j.bpj.2016.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a tick-transmitted pathogen that requires motility to invade and colonize mammalian and tick hosts. These bacteria use a unique undulating flat-wave shape to penetrate and propel themselves through host tissues. Previous mathematical modeling has suggested that the morphology and motility of these spirochetes depends crucially on the flagellar/cell wall stiffness ratio. Here, we test this prediction using the antibiotic vancomycin to weaken the cell wall. We found that low to moderate doses of vancomycin (≤2.0 μg/mL for 24 h) produced small alterations in cell shape and that as the dose was increased, cell speed decreased. Vancomycin concentrations >1.0 μg/mL also inhibited cell growth and led to bleb formation on a fraction of the cells. To quantitatively assess how vancomycin affects cell stiffness, we used optical traps to bend unflagellated mutants of B. burgdorferi. We found that in the presence of vancomycin, cell wall stiffness gradually decreased over time, with a 40% reduction in the bending stiffness after 36 h. Under the same conditions, the swimming speed of wild-type B. burgdorferi slowed by ∼15%, with only marginal changes to cell morphology. Interestingly, our biophysical model for the swimming dynamics of B. burgdorferi suggested that cell speed should increase with decreasing cell stiffness. We show that this discrepancy can be resolved if the periplasmic volume decreases as the cell wall becomes softer. These results provide a testable hypothesis for how alterations of cell wall stiffness affect periplasmic volume regulation. Furthermore, since motility is crucial to the virulence of B. burgdorferi, the results suggest that sublethal doses of antibiotics could negatively impact spirochete survival by impeding their swim speed, thereby enabling their capture and elimination by phagocytes.
Collapse
Affiliation(s)
- Michael W Harman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Alex E Hamby
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Ross Boltyanskiy
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut
| | - Alexia A Belperron
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - Holger Kress
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut; Department of Physics, University of Bayreuth, Bayreuth, Bavaria, Germany
| | - Eric R Dufresne
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut
| | - Charles W Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
37
|
Singh P, Verma D, Backstedt BT, Kaur S, Kumar M, Smith AA, Sharma K, Yang X, Azevedo JF, Gomes-Solecki M, Buyuktanir O, Pal U. Borrelia burgdorferi BBI39 Paralogs, Targets of Protective Immunity, Reduce Pathogen Persistence Either in Hosts or in the Vector. J Infect Dis 2017; 215:1000-1009. [PMID: 28453837 DOI: 10.1093/infdis/jix036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi genome harbors several paralogous gene families (pgf) that can encode immunogenic proteins of unknown function. Protein-protein interaction assays using a transmission-blocking vaccine candidate, BBA52, as bait identified an interacting partner in spirochetes-a member of pgf 54, annotated as BBI39. We show that BBI39 is a surface-exposed membrane antigen that is immunogenic during spirochete infection, despite the gene being primarily transcribed in the vector with a transient expression in the host only at tick-bite sites. Immunization of rodents with BBI39, or a diverse paralog, BBI36, or their combination impaired pathogen acquisition by the vector, transmission from ticks to hosts, or induction of disease. High-titer BBI39 immunoglobulin G antibodies, which have borreliacidal properties, could be generated through routine subcutaneous or oral immunization, further highlighting use of BBI39 proteins as novel Lyme disease vaccines that can target pathogens in the host or in ticks.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Deepshikha Verma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Brian T Backstedt
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Simarjot Kaur
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | | | - Maria Gomes-Solecki
- Immuno Technologies Inc., Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ozlem Buyuktanir
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
38
|
Guarino C, Asbie S, Rohde J, Glaser A, Wagner B. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses. Vaccine 2017; 35:4140-4147. [PMID: 28668566 DOI: 10.1016/j.vaccine.2017.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023]
Abstract
Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs.
Collapse
Affiliation(s)
- Cassandra Guarino
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sanda Asbie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Rohde
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
When is genetic modification socially acceptable? When used to advance human health through avenues other than food. PLoS One 2017; 12:e0178227. [PMID: 28591218 PMCID: PMC5462347 DOI: 10.1371/journal.pone.0178227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
Given the potential for genetic modification (GM) to impact human health, via food and health mechanisms, a greater understanding of the social acceptance of GM is necessary to facilitate improved health outcomes. This analysis sought to quantify U.S. residents’ acceptance of GM across five potential uses (grain production, fruit or vegetable production, livestock production, human medicine, and human health, i.e. disease vector control) and provides an in-depth analysis of a timely case study–the Zika virus (ZIKV). The two categories with the highest levels of acceptance for GM use were human medicine (62% acceptance) and human health (68% acceptance); the proportions agreeing with the use of GM for these two categories were statistically different from all other categories. Acceptance of GM in food uses revealed 44% of the sample accepted the use of GM in livestock production while grain production and fruit and vegetable production showed similar levels of agreement with 49% and 48% of responses, respectively. Two variables were significant in all five models predicting GM acceptance; namely, being male and GM awareness. Being male was significant and positive for all models; respondents who reported being male were more likely (than those who reported female) to agree with all five of the uses of GM studied. Those who were reportedly aware of GM mosquito technology were also more likely to agree with all uses of GM technology investigated. The potential relationship between awareness of GM technology uses and acceptance of other uses could help inform rates of acceptance of new technologies by various population segments.
Collapse
|
40
|
Marche MG, Mura ME, Falchi G, Ruiu L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci Rep 2017; 7:43805. [PMID: 28256631 PMCID: PMC5335551 DOI: 10.1038/srep43805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Outer spore envelope proteins of pathogenic bacteria often present specific virulence factors and tools to evade the defence system of their hosts. Brevibacillus laterosporus, a pathogen of invertebrates and an antimicrobial-producing species, is characterised by a unique spore coat and canoe-shaped parasporal body (SC-CSPB) complex surrounding the core spore. In the present study, we identified and characterised major proteins of the SC-CSPB complex of B. laterosporus, and we investigated their entomopathogenic role. Employing a proteomic approach and a B. laterosporus-house fly study model, we found four highly conserved proteins (ExsC, CHRD, CpbA and CpbB) that function as insect virulence factors. CpbA was associated with a significantly higher mortality of flies and greater relative gene expression levels during sporulation, compared to the other SC-CSPB proteins. Taken together, we suggest that spore surface proteins are a part of a complex set of toxins and virulence factors that B. laterosporus employs in its pathogenicity against flies.
Collapse
Affiliation(s)
| | - Maria Elena Mura
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Giovanni Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|
41
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
42
|
Iqbal H, Kenedy MR, Lybecker M, Akins DR. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 2016; 102:757-774. [PMID: 27588694 PMCID: PMC5582053 DOI: 10.1111/mmi.13492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Two outer membrane protein (OMP) transport systems in diderm bacteria assist in assembly and export of OMPs. These two systems are the β-barrel assembly machine (BAM) complex and the translocation and assembly module (TAM). The BAM complex consists of the OMP component BamA along with several outer membrane associated proteins. The TAM also consists of an OMP, designated TamA, and a single inner membrane (IM) protein, TamB. Together TamA and TamB aid in the secretion of virulence-associated OMPs. In this study we characterized the hypothetical protein BB0794 in Borrelia burgdorferi. BB0794 contains a conserved DUF490 domain, which is a motif found in all TamB proteins. All spirochetes lack a TamA ortholog, but computational and physicochemical characterization of BB0794 revealed it is a TamB ortholog. Interestingly, BB0794 was observed to interact with BamA and a BB0794 regulatable mutant displayed altered cellular morphology and antibiotic sensitivity. The observation that B. burgdorferi contains a TamB ortholog that interacts with BamA and is required for proper outer membrane biogenesis not only identifies a novel role for TamB-like proteins, but also may explain why most diderms harbor a TamB-like protein while only a select group encodes TamA.
Collapse
Affiliation(s)
- Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Meghan Lybecker
- Department of Biology, University of Colorado - Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
43
|
Zatechka S. Reservoir-Targeted Vaccines as a One Health Path to Prevent Zoonotic Disease. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/ijvv.2016.02.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Artificial feeding Rice stripe virus enables efficient virus infection of Laodelphax striatellus. J Virol Methods 2016; 235:139-143. [DOI: 10.1016/j.jviromet.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/19/2016] [Accepted: 06/05/2016] [Indexed: 11/24/2022]
|
45
|
Priyam M, Tripathy M, Rai U, Ghorai SM. Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet Immunol Immunopathol 2016; 172:26-37. [DOI: 10.1016/j.vetimm.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
46
|
Krupka M, Masek J, Barkocziova L, Turanek Knotigova P, Kulich P, Plockova J, Lukac R, Bartheldyova E, Koudelka S, Chaloupkova R, Sebela M, Zyka D, Droz L, Effenberg R, Ledvina M, Miller AD, Turanek J, Raska M. The Position of His-Tag in Recombinant OspC and Application of Various Adjuvants Affects the Intensity and Quality of Specific Antibody Response after Immunization of Experimental Mice. PLoS One 2016; 11:e0148497. [PMID: 26848589 PMCID: PMC4744052 DOI: 10.1371/journal.pone.0148497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/29/2022] Open
Abstract
Lyme disease, Borrelia burgdorferi-caused infection, if not recognized and appropriately treated by antibiotics, may lead to chronic complications, thus stressing the need for protective vaccine development. The immune protection is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies, associated with the Th1 immune response. Surface antigen OspC is involved in Borrelia spreading through the host body. Previously we reported that recombinant histidine tagged (His-tag) OspC (rOspC) could be attached onto liposome surfaces by metallochelation. Here we report that levels of OspC-specific antibodies vary substantially depending upon whether rOspC possesses an N' or C' terminal His-tag. This is the case in mice immunized: (a) with rOspC proteoliposomes containing adjuvants MPLA or non-pyrogenic MDP analogue MT06; (b) with free rOspC and Montanide PET GEL A; (c) with free rOspC and alum; or (d) with adjuvant-free rOspC. Stronger responses are noted with all N'-terminal His-tag rOspC formulations. OspC-specific Th1-type antibodies predominate post-immunization with rOspC proteoliposomes formulated with MPLA or MT06 adjuvants. Further analyses confirmed that the structural features of soluble N' and C' terminal His-tag rOspC and respective rOspC proteoliposomes are similar including their thermal stabilities at physiological temperatures. On the other hand, a change in the position of the rOspC His-tag from N' to C' terminal appears to affect substantially the immunogenicity of rOspC arguably due to steric hindrance of OspC epitopes by the C' terminal His-tag itself and not due to differences in overall conformations induced by changes in the His-tag position in rOspC variants.
Collapse
Affiliation(s)
- Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef Masek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Lucia Barkocziova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Plockova
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Robert Lukac
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Eliska Bartheldyova
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Stepan Koudelka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
- International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| | - Radka Chaloupkova
- International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, Brno, Czech Republic
| | - Marek Sebela
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | - Roman Effenberg
- Department of Chemistry of Natural Compounds University of Chemistry and Technology, Prague, Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds University of Chemistry and Technology, Prague, Czech Republic
| | - Andrew D. Miller
- King's College London, Institute of Pharmaceutical Science, London, United Kingdom, and GlobalAcorn Ltd, London, United Kingdom
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
- * E-mail: (MR); (JT)
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
- * E-mail: (MR); (JT)
| |
Collapse
|
47
|
Salverda MLM, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JWR, van der Ark A, Stork M, van der Ley P. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 2016; 34:1025-33. [PMID: 26801064 DOI: 10.1016/j.vaccine.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Merijn L M Salverda
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Sanne M Meinderts
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Immunology of Infectious Diseases and Vaccines (IIV), National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
48
|
Kung F, Kaur S, Smith AA, Yang X, Wilder CN, Sharma K, Buyuktanir O, Pal U. A Borrelia burgdorferi Surface-Exposed Transmembrane Protein Lacking Detectable Immune Responses Supports Pathogen Persistence and Constitutes a Vaccine Target. J Infect Dis 2016; 213:1786-95. [PMID: 26747708 DOI: 10.1093/infdis/jiw013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 01/29/2023] Open
Abstract
Borrelia burgdorferi harbors a limited set of transmembrane surface proteins, most of which constitute key targets of humoral immune responses. Here we show that BB0405, a conserved membrane-spanning protein of unknown function, fails to evoke detectable antibody responses despite its extracellular exposure. bb0405 is a member of an operon and ubiquitously expressed throughout the rodent-tick infection cycle. The gene product serves an essential function in vivo, as bb0405-deletion mutants are unable to transmit from ticks and establish infection in mammalian hosts. Despite the lack of BB0405-specific immunoglobulin M or immunoglobulin G antibodies during natural infection, mice immunized with a recombinant version of the protein elicited high-titer and remarkably long-lasting antibody responses, conferring significant host protection against tick-borne infection. Taken together, these studies highlight the essential role of an apparently immune-invisible borrelial transmembrane protein in facilitating infection and its usefulness as a target of protective host immunity blocking the transmission of B. burgdorferi.
Collapse
Affiliation(s)
- Faith Kung
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Simarjot Kaur
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Cara N Wilder
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| | - Ozlem Buyuktanir
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland-College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park
| |
Collapse
|
49
|
Krajacich BJ, Lopez JE, Raffel SJ, Schwan TG. Vaccination with the variable tick protein of the relapsing fever spirochete Borrelia hermsii protects mice from infection by tick-bite. Parasit Vectors 2015; 8:546. [PMID: 26490040 PMCID: PMC4618142 DOI: 10.1186/s13071-015-1170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
Background Tick-borne relapsing fevers of humans are caused by spirochetes that must adapt to both warm-blooded vertebrates and cold-blooded ticks. In western North America, most human cases of relapsing fever are caused by Borrelia hermsii, which cycles in nature between its tick vector Ornithodoros hermsi and small mammals such as tree squirrels and chipmunks. These spirochetes alter their outer surface by switching off one of the bloodstream-associated variable major proteins (Vmps) they produce in mammals, and replacing it with the variable tick protein (Vtp) following their acquisition by ticks. Based on this reversion to Vtp in ticks, we produced experimental vaccines comprised on this protein and tested them in mice challenged by infected ticks. Methods The vtp gene from two isolates of B. hermsii that encoded antigenically distinct types of proteins were cloned, expressed, and the recombinant Vtp proteins were purified and used to vaccinate mice. Ornithodoros hermsi ticks that were infected with one of the two strains of B. hermsii from which the vtp gene originated were used to challenge mice that received one of the two Vtp vaccines or only adjuvant. Mice were then followed for infection and seroconversion. Results The Vtp vaccines produced protective immune responses in mice challenged with O. hermsi ticks infected with B. hermsii. However, polymorphism in Vtp resulted in mice being protected only from the spirochete strain that produced the same Vtp used in the vaccine; mice challenged with spirochetes producing the antigenically different Vtp than the vaccine succumbed to infection. Conclusions We demonstrate that by having knowledge of the phenotypic changes made by B. hermsii as the spirochetes are acquired by ticks from infected mammals, an effective vaccine was developed that protected mice when challenged with infected ticks. However, the Vtp vaccines only protected mice from infection when challenged with that strain producing the identical Vtp. A vaccine containing multiple Vtp types may have promise as an oral vaccine for wild mammals if applied to geographic settings such as small islands where the mammal diversity is low and the Vtp types in the B. hermsii population are defined.
Collapse
Affiliation(s)
- Benjamin J Krajacich
- Present address: Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Job E Lopez
- Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Sandra J Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT, 59840-2932, USA.
| |
Collapse
|
50
|
Leng CH, Liu SJ, Chen HW, Chong P. Recombinant bacterial lipoproteins as vaccine candidates. Expert Rev Vaccines 2015; 14:1623-32. [PMID: 26420467 DOI: 10.1586/14760584.2015.1091732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant bacterial lipoproteins (RLP) with built-in immuno-stimulating properties for novel subunit vaccine development are reviewed. This platform technology offers the following advantages: easily converts antigens into highly immunogenic RLP using a fusion sequence containing lipobox; the lipid moiety of RLP is recognized as the danger signals in the immune system through the Toll-like receptor 2, so both innate and adaptive immune responses can be induced by RLP; serves as an efficient and cost-effective bioprocess for producing RLP in Escherichia coli and the feasibility and safety of this core platform technology has been successfully demonstrated in animal model studies including meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases and HPV-based immunotherapeutic vaccines.
Collapse
Affiliation(s)
- Chih-Hsiang Leng
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Shih-Jen Liu
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | - Hsin-Wei Chen
- a Vaccine R&D Center, National Health Research Institutes, Zhunan Town, Miaoli 350, Taiwan
| | | |
Collapse
|