1
|
Lu Y, Lee J, Li J, Allu SR, Wang J, Kim H, Bullaughey KL, Fisher SA, Nordgren CE, Rosario JG, Anderson SA, Ulyanova AV, Brem S, Chen HI, Wolf JA, Grady MS, Vinogradov SA, Kim J, Eberwine J. CHEX-seq detects single-cell genomic single-stranded DNA with catalytical potential. Nat Commun 2023; 14:7346. [PMID: 37963886 PMCID: PMC10645931 DOI: 10.1038/s41467-023-43158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Genomic DNA (gDNA) undergoes structural interconversion between single- and double-stranded states during transcription, DNA repair and replication, which is critical for cellular homeostasis. We describe "CHEX-seq" which identifies the single-stranded DNA (ssDNA) in situ in individual cells. CHEX-seq uses 3'-terminal blocked, light-activatable probes to prime the copying of ssDNA into complementary DNA that is sequenced, thereby reporting the genome-wide single-stranded chromatin landscape. CHEX-seq is benchmarked in human K562 cells, and its utilities are demonstrated in cultures of mouse and human brain cells as well as immunostained spatially localized neurons in brain sections. The amount of ssDNA is dynamically regulated in response to perturbation. CHEX-seq also identifies single-stranded regions of mitochondrial DNA in single cells. Surprisingly, CHEX-seq identifies single-stranded loci in mouse and human gDNA that catalyze porphyrin metalation in vitro, suggesting a catalytic activity for genomic ssDNA. We posit that endogenous DNA enzymatic activity is a function of genomic ssDNA.
Collapse
Affiliation(s)
- Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jaehee Lee
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jifen Li
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jinhui Wang
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - HyunBum Kim
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kevin L Bullaughey
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen A Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean G Rosario
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, ARC 517, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Alexandra V Ulyanova
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Kishi JY, Liu N, West ER, Sheng K, Jordanides JJ, Serrata M, Cepko CL, Saka SK, Yin P. Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nat Methods 2022; 19:1393-1402. [PMID: 36216958 PMCID: PMC9636025 DOI: 10.1038/s41592-022-01604-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
We present Light-Seq, an approach for multiplexed spatial indexing of intact biological samples using light-directed DNA barcoding in fixed cells and tissues followed by ex situ sequencing. Light-Seq combines spatially targeted, rapid photocrosslinking of DNA barcodes onto complementary DNAs in situ with a one-step DNA stitching reaction to create pooled, spatially indexed sequencing libraries. This light-directed barcoding enables in situ selection of multiple cell populations in intact fixed tissue samples for full-transcriptome sequencing based on location, morphology or protein stains, without cellular dissociation. Applying Light-Seq to mouse retinal sections, we recovered thousands of differentially enriched transcripts from three cellular layers and discovered biomarkers for a very rare neuronal subtype, dopaminergic amacrine cells, from only four to eight individual cells per section. Light-Seq provides an accessible workflow to combine in situ imaging and protein staining with next generation sequencing of the same cells, leaving the sample intact for further analysis post-sequencing.
Collapse
Affiliation(s)
- Jocelyn Y Kishi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Ninning Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Emma R West
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jack J Jordanides
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Matthew Serrata
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Sinem K Saka
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
High-depth spatial transcriptome analysis by photo-isolation chemistry. Nat Commun 2021; 12:4416. [PMID: 34285220 PMCID: PMC8292322 DOI: 10.1038/s41467-021-24691-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
In multicellular organisms, expression profiling in spatially defined regions is crucial to elucidate cell interactions and functions. Here, we establish a transcriptome profiling method coupled with photo-isolation chemistry (PIC) that allows the determination of expression profiles specifically from photo-irradiated regions of interest. PIC uses photo-caged oligodeoxynucleotides for in situ reverse transcription. PIC transcriptome analysis detects genes specifically expressed in small distinct areas of the mouse embryo. Photo-irradiation of single cells demonstrated that approximately 8,000 genes were detected with 7 × 104 unique read counts. Furthermore, PIC transcriptome analysis is applicable to the subcellular and subnuclear microstructures (stress granules and nuclear speckles, respectively), where hundreds of genes can be detected as being specifically localised. The spatial density of the read counts is higher than 100 per square micrometre. Thus, PIC enables high-depth transcriptome profiles to be determined from limited regions up to subcellular and subnuclear resolutions. Spatial analysis of RNAseq data is important. Here the authors report a method for transcriptome profiling combined with photo-isolation chemistry to allow determination of expression profiles specifically from photo-irradiated regions of interest which they use in mouse brains and embryonic tissues.
Collapse
|
4
|
Utilizing multiplex fluor LAMPs to illuminate multiple gene expressions in situ. PLoS One 2019; 14:e0223333. [PMID: 31584968 PMCID: PMC6777751 DOI: 10.1371/journal.pone.0223333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022] Open
Abstract
In situ gene expression detection is the best way to determine temporal and spatial differences in gene expression. However, in situ hybridization procedures are inherently difficult to execute and typically suffer from degradation of sample tissues, limited sensitivity to genes with low expression, high background, and limitation to single gene detections. We propose to utilize an isothermal gene amplification technique, LAMP (Loop-Mediated Isothermal Amplification), to solve these problems in a novel way. LAMP greatly amplifies the signal of expressed genes and can use multiple sets of primers and different fluorescent-labeled probes to produce multiplex gene detection. LAMP is a rapid, isothermal reaction that reduces the handling and degradation of tissue by cutting down on the washing steps required by other methods. Using this technique, we have successfully amplified 3 target genes, have produced positive fluorescent in situ results simultaneously for two genes. We have also demonstrated that LAMP can be used to exploit standard NBT/BCIP (nitro-blue tetrazolium chloride/5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) detection of single expression. In situ LAMP is a robust and applicable method that can be exploited for detection of gene expression in plant species, as well as in animals and bacteria.
Collapse
|
5
|
Li J, Eberwine J. The successes and future prospects of the linear antisense RNA amplification methodology. Nat Protoc 2018; 13:811-818. [PMID: 29599441 PMCID: PMC7086549 DOI: 10.1038/nprot.2018.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022]
Abstract
This Perspective discusses the development of the linear amplified RNA amplification technique over the last 25 years, and future applications of this important and versatile methodology. It has been over a quarter of a century since the introduction of the linear RNA amplification methodology known as antisense RNA (aRNA) amplification. Whereas most molecular biology techniques are rapidly replaced owing to the fast-moving nature of development in the field, the aRNA procedure has become a base that can be built upon through varied uses of the technology. The technique was originally developed to assess RNA populations from small amounts of starting material, including single cells, but over time its use has evolved to include the detection of various cellular entities such as proteins, RNA-binding-protein-associated cargoes, and genomic DNA. In this Perspective we detail the linear aRNA amplification procedure and its use in assessing various components of a cell's chemical phenotype. This procedure is particularly useful in efforts to multiplex the simultaneous detection of various cellular processes. These efforts are necessary to identify the quantitative chemical phenotype of cells that underlies cellular function.
Collapse
Affiliation(s)
- Jifen Li
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Eberwine
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 DOI: 10.1101/121202] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 05/28/2023] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ewan Birney
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ian Dunham
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Andrew Farmer
- Takara Bio United States, Inc., Mountain View, United States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, United States
- Massachusetts General Hospital Cancer Center, Boston, United States
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Genetics, Stanford University, Stanford, United States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, United States
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of Bioengineering, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Rahul Satija
- Department of Biology, New York University, New York, United States
- New York Genome Center, New York University, New York, United States
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Shalek
- Broad Institute of MIT and Harvard, Cambridge, United States
- Institute for Medical Engineering & Science (IMES) and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, United States
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Oliver Stegle
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Fabian J Theis
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of Proteomics, KTH Royal Institute of Technology, Stockholm, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical Institute, Chevy Chase, United States
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Barbara Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, United States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
- Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
7
|
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundberg E, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe'er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Theis FJ, Uhlen M, van Oudenaarden A, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N. The Human Cell Atlas. eLife 2017; 6:e27041. [PMID: 29206104 PMCID: PMC5762154 DOI: 10.7554/elife.27041] [Citation(s) in RCA: 1381] [Impact Index Per Article: 172.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
Collapse
Affiliation(s)
- Aviv Regev
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric S Lander
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ido Amit
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
| | - Ewan Birney
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Bernd Bodenmiller
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Piero Carninci
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Hans Clevers
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
| | - Ian Dunham
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - James Eberwine
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
| | - Wolfgang Enard
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
| | - Andrew Farmer
- Takara Bio United States, Inc.Mountain ViewUnited States
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Berthold Göttgens
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Nir Hacohen
- Broad Institute of MIT and HarvardCambridgeUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Muzlifah Haniffa
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Seung Kim
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Emma Lundberg
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
| | | | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Miriam Merad
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Musa Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Martijn Nawijn
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Mihai Netea
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Garry Nolan
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
| | - Dana Pe'er
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | | | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Stephen Quake
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Wolf Reik
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Joshua Sanes
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
| | - Rahul Satija
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
| | - Ton N Schumacher
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alex Shalek
- Broad Institute of MIT and HarvardCambridgeUnited States
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Ehud Shapiro
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Jay W Shin
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
| | - Oliver Stegle
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
| | - Michael Stratton
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Fabian J Theis
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
| | - Matthias Uhlen
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
| | | | - Allon Wagner
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Fiona Watt
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
| | - Jonathan Weissman
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Barbara Wold
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Ramnik Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| | - Nir Yosef
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Human Cell Atlas Meeting Participants
- Broad Institute of MIT and HarvardCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Wellcome Trust Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- EMBL-European Bioinformatics InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
- Division of Immunology, Department of Microbiology and ImmunobiologyHarvard Medical SchoolBostonUnited States
- Institute of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
- Department of HaematologyUniversity of CambridgeCambridgeUnited Kingdom
- Division of Genomic TechnologiesRIKEN Center for Life Science TechnologiesYokohamaJapan
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular BiologyUniversity of CambridgeCambridgeUnited Kingdom
- Hubrecht Institute, Princess Maxima Center for Pediatric Oncology and University Medical Center UtrechtUtrechtThe Netherlands
- Institute of Bioengineering, School of Life SciencesSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Theoretical Bioinformatics (B080)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuantHeidelberg UniversityHeidelbergGermany
- Department of Biology IILudwig Maximilian University MunichMartinsriedGermany
- Takara Bio United States, Inc.Mountain ViewUnited States
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, and MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Wellcome Trust-MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Massachusetts General Hospital Cancer CenterBostonUnited States
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Departments of Developmental Biology and of MedicineStanford University School of MedicineStanfordUnited States
- Peter Medawar Building for Pathogen Research and the Translational Gastroenterology Unit, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Allen Institute for Brain ScienceSeattleUnited States
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, School of BiotechnologyKTH Royal Institute of TechnologyStockholmSweden
- Department of GeneticsStanford UniversityStanfordUnited States
- Science for Life Laboratory, Department of Gene TechnologyKTH Royal Institute of TechnologyStockholmSweden
- National Institute of Biomedical GenomicsKalyaniIndia
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUnited States
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pathology and Medical Biology, GRIAC Research InstituteUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Internal Medicine and Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Microbiology and ImmunologyStanford UniversityStanfordUnited States
- Computational and Systems Biology ProgramSloan Kettering InstituteNew YorkUnited States
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
- Department of Applied Physics and Department of BioengineeringStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUnited Kingdom
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUnited Kingdom
- Center for Brain Science and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Department of BiologyNew York UniversityNew YorkUnited States
- New York Genome CenterNew York UniversityNew YorkUnited States
- Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Institute for Medical Engineering & Science (IMES) and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Department of Computer Science and Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Genitourinary Medical Oncology, Department of Immunology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
- Institute of Computational BiologyGerman Research Center for Environmental Health, Helmholtz Center MunichNeuherbergGermany
- Department of MathematicsTechnical University of MunichGarchingGermany
- Science for Life Laboratory and Department of ProteomicsKTH Royal Institute of TechnologyStockholmSweden
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityLyngbyDenmark
- Hubrecht Institute and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Electrical Engineering and Computer Science and the Center for Computational BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Centre for Stem Cells and Regenerative MedicineKing's College LondonLondonUnited Kingdom
- Department of Cellular & Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- California Institute for Quantitative Biomedical ResearchUniversity of California, San FranciscoSan FranciscoUnited States
- Center for RNA Systems BiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Center for Computational and Integrative BiologyMassachusetts General HospitalBostonUnited States
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUnited States
- Center for Microbiome Informatics and TherapeuticsMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Abstract
Recent advances in quantitation of mRNA by hybridization to microarrayed gene sequences or by deep sequencing of cDNA (RNA-seq) have provided global views of the abundance of each transcript. Analyses of RNA samples taken at 2 or 4 h intervals throughout development of Dictyostelium discoideum have defined the developmental changes in transcriptional profiles. Comparisons of the transcriptome of wild-type cells to that of mutant strains lacking a gene critical to progression through the developmental stages have defined key steps in the progression. The transcriptional response to cAMP pulses depends on the expression of pulse-independent genes that have been identified by transcriptional profiling with microarrays. Similar techniques were used to discover that the DNA binding protein GBF functions in a feed-forward loop to regulate post-aggregation genes and that expression of a set of late genes during culmination is dependent on the DNA binding protein SrfA. RNA-seq is able to reliably measure individual mRNAs present as a single copy per cell as well as mRNAs present at a thousand fold higher abundance. Using this technique it was found that 65% of the genes in Dictyostelium change twofold or more during development. Many decrease during the first 8 h of development, while the rest increase at specific stages and this pattern is evolutionarily conserved as found by comparing the transcriptomes of D. discoideum and Dictyostelium purpureum. The transcriptional profile of each gene is readily available at dictyBase and more sophisticated analyses are available on DictyExpress.
Collapse
Affiliation(s)
- William F Loomis
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
9
|
Ligasová A, Koberna K. In situ reverse transcription: the magic of strength and anonymity. Nucleic Acids Res 2010; 38:e167. [PMID: 20627869 PMCID: PMC2938209 DOI: 10.1093/nar/gkq619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe an approach that enables a highly specific, effective and fast detection of polyadenylated RNA sequences in situ at the light and electron microscopy levels. The method developed is based on the incorporation of 5-bromo-2′-deoxyuridine into the growing cDNA strand by means of the reverse transcriptase. We have shown that unlike the previously used deoxyuridine tagged with biotin or digoxigenin, 5-bromo-2′-deoxyuridine is ‘invisible’ in the DNA–DNA duplex but easily detectable in the DNA–RNA duplex. This feature is an important pre-requisite for the correct interpretation of the data obtained, as our results strongly indicate that reverse transcriptase uses DNA breaks as primers efficiently. We have also shown that the replacement of deoxythymidine by 5-bromo-2′-deoxyuridine considerably stabilizes the growing DNA–RNA duplex, thus enabling the one-step detection of polyadenylated RNA in structurally well-preserved cells. The method developed provides a highly specific signal with the signal/noise ratio higher than 130 for permeabilized cells and 25 for conventional acrylic resin sections under the conditions used. When the high pressure freezing technique followed by the freeze substitution is employed for the cell's preparation, the ratio is higher than 80.
Collapse
Affiliation(s)
- Anna Ligasová
- Laboratory of Cell Biology, Institute of Experimental Medicine, v.v.i., AS CR, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
10
|
Eberwine J, Crino P. Analysis of mRNA populations from single live and fixed cells of the central nervous system. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.3. [PMID: 18428502 DOI: 10.1002/0471142301.ns0503s00] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit presents a method for the amplification of poly(A)(+) mRNA extracted from the cytoplasm of a single cell. After cDNA is synthesized from the mRNA, it is made double stranded, denatured, and reverse transcribed to yield antisense RNA (aRNA). Another round of amplification results in a relatively large amount of aRNAs in essentially the same proportion as in the starting mRNA population. RNA amplification protocols can be used for many purposes, including generation of disease expression profiles, making of cDNA libraries, and generation of diagnostics and therapeutics for disease. An alternate protocol is used to amplify RNAs from single neurons in fixed tissue specimens. Support protocols gives instructions for reverse northern analysis, which allows analysis of the presence or absence and relative levels of mRNA expression in selected cells, and a convenient method to assess the RNA content in fixed tissue sections using the fluorescent dye acridine orange (which binds single-stranded nucleic acids).
Collapse
Affiliation(s)
- J Eberwine
- University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
11
|
Ariano MA. Fluorescent in situ transcription in cells and tissues. CURRENT PROTOCOLS IN NEUROSCIENCE 2008; Chapter 5:Unit 5.13. [PMID: 18428496 DOI: 10.1002/0471142301.ns0513s08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This method assesses cellular mRNA transcripts in tissue sections and cell cultures using unique short anti-sense primers directed against sequences in particular protein(s). The unlabeled synthetic cDNA oligonucleotide primers are extended complementary to a sense mRNA transcript using reverse transcriptase and labeled through incorporation of a fluorescent-labeled dUTP nucleotide base. The new cDNA will be synthesized upstream from the point of primer hybridization, and has a specific activity of fluorescent labeling dependent upon the length of the template mRNA from the primer location to the 5'-terminus. This procedure provides rapid detection of low abundance mRNA messages that can be related to other cellular protein components, labeled experimentally with alternative fluorochromes.
Collapse
Affiliation(s)
- M A Ariano
- The Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
12
|
Iida K, Nishimura I. Gene expression profiling by DNA microarray technology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:35-50. [PMID: 12097236 DOI: 10.1177/154411130201300105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methods in molecular and genetic biology have provided important clues to elucidate the complex mechanisms of oral and craniofacial development and pathogenesis of diseases. It has become increasingly clear that a biological phenotype is a result of multiple factors involving a large number of regulatory genes, while a single nucleotide mutation can cause various degrees of oral and craniofacial abnormalities. These oral and craniofacial problems often present a challenge to the molecular screening process. Recent advances in microarray-based technologies allow for large-scale gene expression analysis in a single experiment, which have been applied to genome-wide assays, mutational analysis, drug discovery, developmental biology, and molecular analysis of various diseases. This review introduces the basic principle and some modifications of techniques and materials used in microarray technology, as well as currently available microarray data analysis strategies. Microarray technology can be applied to the soon-to-be-available human genome database and will be a powerful research tool for those inquiring into specific problems associated with oral and craniofacial biology.
Collapse
Affiliation(s)
- Keisuke Iida
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | | |
Collapse
|
13
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
14
|
Abstract
HER2 is a paradigm of a molecular target whose appropriate assessment is pivotal in the targeting of novel therapies for breast cancer, notably including Herceptin/Trastuzumab. Determining the correct levels requires immunohistochemical and molecular biological skills that are reproducible and measurable, coupled with a knowledge of the appropriate morphological and pathobiological context. Attaining these goals is not easy and laboratories testing for HER2 should maintain a high level of throughput of tests and engage in a recognized external quality assurance scheme. Fluorescence in-situ hybridization testing remains a particular challenge and there is a range of testing strategies. This testing forms the model for the identification of other novel molecular targets. In the future rapid throughput techniques such as real-time quantitative polymerase chain reaction (rqPCR), tissue microarrays or both should bring significant economies of cost and scale.
Collapse
Affiliation(s)
- F Lewis
- Academic Unit of Pathology, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
15
|
Fassunke J, Majores M, Ullmann C, Elger CE, Schramm J, Wiestler OD, Becker AJ. In situ-RT and immunolaser microdissection for mRNA analysis of individual cells isolated from epilepsy-associated glioneuronal tumors. J Transl Med 2004; 84:1520-5. [PMID: 15311215 DOI: 10.1038/labinvest.3700165] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Analysis of gene transcription patterns in complex tissues with multiple cell types is a major challenge. Examination of cellular subpopulations for molecular expression patterns requires their isolation from other surrounding cells. We performed single-cell mRNA analysis to study gangliogliomas obtained from patients with pharmacoresistant epilepsy (n = 6), in order to characterize CD34 expressing cells found in these tumors. Fresh-frozen biopsy tissue was analyzed by initial in situ-reverse transcription (in situ-RT) with oligonucleotides, subsequent immunohistochemistry (IHC) to identify specific cell types, and laser-capture microdissection (LCM, herein termed immuno-LCM) to obtain antigen-expressing cell subpopulations. Isolated complementary DNAs (cDNAs) were then quantified by real time-polymerase chain reaction (RT-PCR). We found that short- vs long-term incubation time for the IHC step did not adversely affect cDNA abundance obtained by subsequent RT-PCR, either for high-abundance (glyceraldehyde dehydrogenase; GAPDH), medium-abundance (glial fibrillary acidic protein; GFAP), or low abundance (neurofilament; NFM) gene transcripts. We also determined that the cellular specificity of capture was excellent, as determined by lack of contamination between different immuno-LCM cell isolates. We were therefore able to examine the lineage expression markers of isolated CD34-expressing cells. We observed coexpression of CD34 and NFM, suggesting neuronal differentiation of the CD34 expressing cellular elements in gangliogliomas. Expression markers for other cellular types (myelin basic protein for oligodendroglia; GFAP for astrocytes) were negative. Our findings support the hypothesis that gangiogliomas contain neuronal elements with compromised or atypical differentiation. We consider that this in situ-RT/immuno-LCM protocol is of general applicability, whereby virtually any primary antibody can be used to facilitate capture of individual cells in tissue sections for molecular analysis.
Collapse
Affiliation(s)
- Jana Fassunke
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Hemby SE. Morphine-induced alterations in gene expression of calbindin immunopositive neurons in nucleus accumbens shell and core. Neuroscience 2004; 126:689-703. [PMID: 15183518 DOI: 10.1016/j.neuroscience.2004.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/18/2022]
Abstract
Chronic opiate administration induces a number of biochemical alterations within the mesolimbic dopamine system that may mediate various aspects of the addictive process. In the present study, rats were administered morphine (1.0 mg/infusion) for 20 days (17.6+/-3.0 infusions/day) based on infusion histories of self-administering rats. Calbindin-D28K immunoreactive neurons were microdissected from the nucleus accumbens (NAc) shell and core subregions and gene expression was assessed using cDNA macroarrays. Comparison of gene expression between the shell and core subregions of vehicle-treated rats revealed significantly higher relative abundance of GABA-A alpha1, Galphai2 and post-synaptic density protein 95 transcript (PSD-95) mRNA levels in the shell, whereas Ggamma2 and synuclein 1 were more abundant in the core of the NAc. In the NAc shell, morphine administration resulted in upregulation of caspace 9, NF-kappaB, NF-H, tau, GABA-A delta subunit, FGFR1, Ggamma2, synuclein 1, syntaxin 5 and 13, GRK5, and c-fos mRNAs. Caspace 1, D2 dopamine receptor, GABA-A alpha1 subunit, GRIA 1/3/4, Galphai2, PSD-95 and CREB were down-regulated in the NAc shell with morphine administration. In the core, neuronal apoptotic inhibitory protein (NAIP), GABA-A alpha1 subunit, GRIN2C, GRIA1, mGluR1, D4 dopamine receptor and PSD-95 were upregulated by morphine administration whereas bax, bcl-x, cox-1 and MAP2 were decreased. These data demonstrate that morphine administration alters gene expression differentially in NAc subregions. Specifically, GABA-A alpha1 subunit, GRIA1 subunit and PSD-95 mRNAs were decreased in the shell but increased in the core following morphine administration. In addition, these results provide potential targets for further evaluation in models of morphine reinforcement as well as novel mechanisms of action in morphine-induced pathophysiology.
Collapse
Affiliation(s)
- S E Hemby
- Departments of Pharmacology and Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Neuroscience Division, Emory University School of Medicine, 954 Gatewood Road, Atlanta, GA 30329, USA.
| |
Collapse
|
17
|
Hinkle D, Glanzer J, Sarabi A, Pajunen T, Zielinski J, Belt B, Miyashiro K, McIntosh T, Eberwine J. Single neurons as experimental systems in molecular biology. Prog Neurobiol 2004; 72:129-42. [PMID: 15063529 DOI: 10.1016/j.pneurobio.2004.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/22/2004] [Indexed: 01/23/2023]
Abstract
The cellular and the inter-connective complexity of the central nervous system (CNS) necessitate's analysis of functioning at both the system and single cell levels. Systems neuroscience has developed procedures that facilitate the analysis of multicellular systems including multielectrode arrays, dye tracings and lesioning assays, and at the single cell level there have been significant strides in assessing the physiology and morphology of individual cells. Until recently little progress had been made in understanding the molecular biology of single neuronal cells. This review will highlight the development of PCR and aRNA procedures for analysis of mRNA abundances in single cells. Also, other procedures for the analysis of protein abundances as well as the association of RNA with proteins will also be summarized. These procedures promise to provide experimental insights that will help unravel the functional mechanisms regulating the cellular components of the CNS.
Collapse
Affiliation(s)
- David Hinkle
- Department of Pharmacology, University of Pennsylvania Medical School, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Expression profiling of tumours from cancer patients has uncovered several genes that are critically important in the progression of a normal cell to an oncogenic phenotype. Leading the way in these discoveries is the use of microarrays, a technology that is currently in transition from basic science applications to use in the clinic. Microarrays can determine the global gene regulation of an individual cancer, which may be useful in formulating an individualised therapy for the patient. Currently, cells used in breast cancer microarray studies often come from either homogenous cultures or heterogeneous biopsy samples. Both cell sources are at a disadvantage in determining the most accurate gene profile of cancer, which often consists of multiple subspecies of cancerous cells within a background of normal cells. Therefore, acquisition of small, but highly specific biopsies for analysis may be required for an accurate expression analysis of the disease. Amplification methods, such as polymerase chain reaction (PCR) and amplified antisense RNA (aRNA) amplification, have been used to amplify the mRNA signal from very small samples, which can then be used for microarray analysis. In this study, we describe the acquisition, amplification, and analysis of very small samples (<10000 cells) for expression analysis and demonstrate that the ultimate resolution of cancer expression analysis, one cell, is both feasible and practical.
Collapse
Affiliation(s)
- J G Glanzer
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
19
|
Backes E, Hemby SE. Discrete cell gene profiling of ventral tegmental dopamine neurons after acute and chronic cocaine self-administration. J Pharmacol Exp Ther 2003; 307:450-9. [PMID: 12966149 PMCID: PMC4048547 DOI: 10.1124/jpet.103.054965] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic cocaine administration induces a number of biochemical alterations within the mesolimbic dopamine system that may mediate various aspects of the addictive process such as sensitization, craving, withdrawal, and relapse. In the present study, rats were allowed to self-administer cocaine (0.5 mg/infusion) for 1 or 20 days. Tyrosine hydroxylase immunopositive cells were microdissected from the ventral tegmental area (VTA) using laser capture microdissection, and changes in the abundances of 95 mRNAs were assessed using cDNA macroarrays. Five GABA-A receptor subunit mRNAs (alpha4, alpha6, beta2, gamma2, and delta) were down-regulated at both 1 and 20 days of cocaine self-administration. In contrast, the catalytic subunit of protein phosphatase 2A (PP2alpha), GABA-A alpha1, and Galphai2 were significantly increased at both time points. Additionally, calcium/calmodulin-dependent protein kinase IIalpha mRNA levels were increased initially followed by a slight decrease after 20 days, whereas neuronal nitric-oxide synthase mRNA levels were initially decreased but returned to near control levels by day 20. These results indicate that alterations of specific GABA-A receptor subtypes and other signal transduction transcripts seem to be specific neuroadaptations associated with cocaine self-administration. Moreover, as subunit composition determines the functional properties of GABA-A receptors, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.
Collapse
Affiliation(s)
- Eric Backes
- Department of Pharmacology, Neuroscience Division, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
20
|
Qian X, Lloyd RV. Recent developments in signal amplification methods for in situ hybridization. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2003; 12:1-13. [PMID: 12605030 DOI: 10.1097/00019606-200303000-00001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In situ hybridization (ISH) allows for the histologic and cytologic localization of DNA and RNA targets. However, the application of ISH techniques can be limited by their inability to detect targets with low copies of DNA and RNA. During the last few years, several strategies have been developed to improve the sensitivity of ISH by amplification of either target nucleic acid sequences prior to ISH or signal detection after the hybridization is completed. Current approaches involving target amplification (in situ PCR, primed labeling, self-sustained sequence replication), signal amplification (tyramide signal amplification, branched DNA amplification), and probe amplification (padlock probes and rolling circle amplification) are reviewed with emphasis on their applications to bright field microscopy. More recent developments such as molecular beacons and in situ strand displacement amplification continue to increase the sensitivity of in situ hybridization methods. Application of some of these techniques has extended the utility of ISH in diagnostic pathology and in research because of the ability to detect targets with low copy numbers of DNA and RNA.
Collapse
Affiliation(s)
- Xiang Qian
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
21
|
Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ, Greenough WT, Eberwine J. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 2003; 37:417-31. [PMID: 12575950 DOI: 10.1016/s0896-6273(03)00034-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fragile X mental retardation-1 (Fmr1) gene encodes a multifunctional protein, FMRP, with intrinsic RNA binding activity. We have developed an approach, antibody-positioned RNA amplification (APRA), to identify the RNA cargoes associated with the in vivo configured FMRP messenger ribonucleoprotein (mRNP) complex. Using APRA as a primary screen, putative FMRP RNA cargoes were assayed for their ability to bind directly to FMRP using traditional methods of assessing RNA-protein interactions, including UV-crosslinking and filter binding assays. Approximately 60% of the APRA-defined mRNAs directly associate with FMRP. By examining a subset of these mRNAs and their encoded proteins in brain tissue from Fmr1 knockout mice, we have observed that some of these cargoes as well as the proteins they encode show discrete changes in abundance and/or differential subcellular distribution. These data are consistent with spatially selective regulation of multiple biological pathways by FMRP.
Collapse
Affiliation(s)
- Kevin Y Miyashiro
- Department of Pharmacology, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hemby SE, Trojanowski JQ, Ginsberg SD. Neuron-specific age-related decreases in dopamine receptor subtype mRNAs. J Comp Neurol 2003; 456:176-83. [PMID: 12509874 PMCID: PMC4048549 DOI: 10.1002/cne.10525] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Age-related decline in dopamine receptor levels has been observed in regional studies of animal and human brains; however, identifying specific cellular substrates and/or alterations in distinct neuronal populations remains elusive. To evaluate whether age-related decreases in dopamine receptor subtypes are associated with specific cell populations in the hippocampus and entorhinal cortex, antisense RNA amplification was combined with cDNA array analysis to examine effects of aging on D1-D5 dopamine receptor mRNA expression levels in hippocampal CA1 pyramidal neurons and entorhinal cortex layer II stellate cells from post-mortem human brains (19-92 years). In CA1 pyramidal neurons, significant age-related decline was observed for dopamine receptor mRNAs (D1-D4, P < 0.001; D5, P < 0.05) but not for the cytoskeletal elements beta-actin, three-repeat (3R) tau, and four-repeat (4R) tau. In contrast, no significant changes were observed in stellate cells across the same cohort. Thus, senescence may be a factor responsible for cell-specific decrements in dopamine receptor gene expression in one population of neurons within a circuit that is critical for learning and memory. Furthermore, these results support the hypothesis that alterations in dopaminergic function may also be related to behavioral abnormalities, such as psychosis, that occur with aging.
Collapse
Affiliation(s)
- Scott E Hemby
- Department of Pharmacology and Psychiatry/Behavioral Sciences, Yerkes National Primate Research Center, Neuroscience Division, Emory University School of Medicine, Atlanta, Georgia 30329, USA.
| | | | | |
Collapse
|
23
|
Crino PB. Gene expression analysis as a strategy to understand the molecular pathogenesis of infantile spasms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:367-89. [PMID: 12040902 DOI: 10.1016/s0074-7742(02)49022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Peter B Crino
- PENN Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Eberwine J, Belt B, Kacharmina JE, Miyashiro K. Analysis of subcellularly localized mRNAs using in situ hybridization, mRNA amplification, and expression profiling. Neurochem Res 2002; 27:1065-77. [PMID: 12462405 DOI: 10.1023/a:1020956805307] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Targeting of mRNAs to distinct subcellular regions occurs in all polarized cells. The mechanisms by which RNA transport occurs are poorly understood. With the advent of RNA amplification methodologies and expression profiling it is now possible to catalogue the RNAs that are targeted to particular subcellular regions. In particular, neurons are polarized cells in which dendrites receive signals from presynaptic neurons. Upon stimulation (information receipt) the dendrite processes the information such that an immediate dendritic response is generated as well as a longer-term somatic response. The integrated cellular response results in a signal that can be propagated through the axon to the next post-synaptic neuron. Much previous work has shown that mRNAs can be localized in dendrites and that local translation in dendrites can occur. In this chapter the methods for analysis of RNAs that are localized to dendrites are reviewed and a partial list of dendritically localized RNAs is presented. This information may be useful in identifying RNA regulatory regions that are responsible for specifying rate of RNA transport and the dendritic sites at which targeted RNAs dock so that they can be translated.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology and Psychiatry, University of Pennsylvania Medical School, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
25
|
Ryzhova EV, Crino P, Shawver L, Westmoreland SV, Lackner AA, González-Scarano F. Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. Virology 2002; 297:57-67. [PMID: 12083836 DOI: 10.1006/viro.2002.1395] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV)-infected macaques develop an encephalitis (SIVE) that is pathologically virtually indistinguishable from that associated with HIV infection, with multinucleated giant cells (MNGCs) being the principal histopathological manifestation. To dissect SIV variants responsible for MNGC development, we examined the relationships between env sequences transcribed in individual MNGCs and those from genomic DNA of brain and spleen tissues. The brain-specific variant found in all brain clones was dominant among the clones from MNGCs, suggesting a role in the formation of giant cells. Furthermore, two additional minor groups of sequences were present in MNGCs. One group consisted of sequences closely related to those from spleen, indicating recent and probably multiple episodes of neuroinvasion. The second group represented clones similar or identical to the initial inoculum. The survival of archival sequences and their activation presumably by the fusion of productively and quiescently infected macrophages/microglia identify the central nervous system as a possible anatomical reservoir for latent infection.
Collapse
Affiliation(s)
- Elena V Ryzhova
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kelz MB, Dent GW, Therianos S, Marciano PG, McIntosh TK, Coleman PD, Eberwine JH. Single-Cell Antisense RNA Amplification and Microarray Analysis as a Tool for Studying Neurological Degeneration and Restoration. ACTA ACUST UNITED AC 2002; 2002:re1. [PMID: 14602975 DOI: 10.1126/sageke.2002.1.re1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative diseases typically affect subpopulations of neurons. Characterizing these vulnerable cells and identifying the factors that make them susceptible to damage while neighboring cells remain resistant are essential to the understanding of molecular pathogenesis that underlies neurodegenerative diseases. Classically, molecular analysis of the central nervous system involves the identification and isolation of an anatomic region of interest; next, the relevant tissue is pulverized, and the resulting homogenate is analyzed. Although this method provides useful data, its effectiveness diminishes when used in areas of high cellular diversity or in instances in which one cell type is lost as a consequence of selective cell death or quiescence. A technique that affords the ability to assess molecular events in a very precise anatomical site would provide a powerful tool for this research discipline. In this review, we discuss the amplification of messenger RNA from single neural cells and the subsequent use of the RNA to probe DNA microarrays in an effort to create cell-specific molecular profiles. Specifically, recent work in single-cell expression profiling in Alzheimer's and Huntington's diseases is discussed. We also review some new work with neural stem cells and their application to restorative neurobiology. Finally, we discuss the use of cell-specific molecular profiles to better understand the basics of neuronal cell biology.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Pharmacology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
| | - Scott E. Hemby
- Corresponding author: Yerkes Regional Primate Center 954 Gatewood Road, NE Atlanta, GA 30329 Telephone: (404) 727-5988 Fax: (404) 727-8756
| |
Collapse
|
28
|
|
29
|
Hemby SE, Sanchez MM, Winslow JT. Functional genomics approaches to a primate model of autistic symptomology. J Autism Dev Disord 2001; 31:551-5. [PMID: 11814265 DOI: 10.1023/a:1013286725596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies indicate a primary dysfunction of the temporal lobe in autism, specifically the hippocampal formation and entorhinal cortex (EC). Assessment of gene expression in the EC and hippocampus will provide insight into the subtle alterations in neuronal function associated with autism. To this end, evaluations in a primate model of social attachment, which produces behaviors associated with autism, in addition to the use of human post-mortem tissue from individuals diagnosed with autism will provide heretofore unattainable information of how the complex neural circuitry of this region is altered in autism. Identification of altered expression of multiple genes should provide a molecular "fingerprint" of autism and may provide new targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- S E Hemby
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30329, USA.
| | | | | |
Collapse
|
30
|
Affiliation(s)
- J Eberwine
- Department of Pharmacology, University of Pennsylvania Medical Center, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
31
|
Kyin R, Hua Y, Baybis M, Scheithauer B, Kolson D, Uhlmann E, Gutmann D, Crino PB. Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1541-54. [PMID: 11583980 PMCID: PMC1850517 DOI: 10.1016/s0002-9440(10)62539-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2001] [Indexed: 11/26/2022]
Abstract
Neurotrophins and their receptors modulate cerebral cortical development. Tubers in the tuberous sclerosis complex (TSC) are characterized histologically by disorganized cortical cytoarchitecture and thus, we hypothesized that expression of neurotrophin mRNAs and proteins might be altered in tubers. Using in situ transcription and mRNA amplification to probe cDNA arrays, we found that neurotrophin-3 (NT3) and trkB mRNA expression were reduced whereas neurotrophin-4 (NT4) and trkC mRNA expression were increased in whole tuber sections. Alterations in mRNA abundance were defined in single microdissected dysplastic neurons (DNs) and giant cells (GCs). NT3 mRNA expression was reduced in GCs and trkB mRNA expression was reduced in DNs. NT4 mRNA expression was increased in DNs and trkC mRNA expression was increased in both DNs and GCs. In three patients, TSC2 locus mutations were confirmed and the mean tuberin mRNA expression levels was reduced across all nine cases. Consistent with these observations, NT3 mRNA expression was reduced but trkC mRNA expression was increased in vitro in human NTera2 neurons (NT2N) transfected with a tuberin antisense construct that reduced tuberin expression. Western analysis of tuber homogenates and computer-assisted densitometry of immunolabeled sections confirmed the neurotrophin mRNA expression data in whole sections and single neurotrophin immunoreactive cells. We conclude that alterations in NT4/trkB and NT3/trkC expression may contribute to tuber formation during brain development as downstream effects of the hamartin and tuberin pathway in TSC.
Collapse
Affiliation(s)
- R Kyin
- Department of Neurology, Penn Epilepsy Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In situ hybridization has been used for localization of specific nucleic acid sequences at the cellular level despite providing relatively low-detection sensitivity. In situ reverse transcriptase-polymerase chain reactions (RT-PCR) enhance sensitivity and thus enable localization of low-abundance mRNA in a cell. However, the available methods are fraught with problems of nonspecific amplifications as a result of mispriming and/or amplification from partially digested residual genomic DNA in tissue. Herein, we demonstrate that nonspecific background amplification can be eliminated by pretreatment of samples with restriction enzymes before DNase I digestion. Primers tagged with a far-red shifted fluorescent dye such as Cy5 in PCR reactions allow identification of target mRNA by fluorescence microscopy. These novel modifications lead to increased specificity and rapid in situ detection of cellular mRNA and thus may be used for pathological diagnosis.
Collapse
Affiliation(s)
- R Kher
- Division of Nephrology and Hypertension, Richard Roudebusch Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
33
|
Crino PB, Duhaime AC, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 2001; 56:906-13. [PMID: 11294928 DOI: 10.1212/wnl.56.7.906] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Focal cortical dysplasia is characterized by disorganized cortical lamination, dysplastic and heterotopic neurons, and an association with epilepsy. The contribution that dysplastic and heterotopic neurons make to epileptogenesis in focal cortical dysplasia is unknown and the phenotype of these cells may be distinct. The authors hypothesized that the expression of genes encoding glutamatergic (glutamate [GluR] and N-methyl-D-aspartate NMDA receptors [NR]) and gamma-aminobutyric acid A receptor (GABA(A)R) subunits is distinct in dysplastic and heterotopic neurons and that changes in receptor gene expression could be defined in a cell-specific pattern. METHODS Single immunohistochemically labeled dysplastic and heterotopic neurons were microdissected from human focal cortical dysplasia specimens obtained during epilepsy surgery. Pyramidal neurons were microdissected from postmortem control cortex and from temporal cortex without dysplasia resected during temporal lobectomy. Poly (A) messenger RNA (mRNA) from single neurons was amplified, radiolabeled, and used to probe complementary DNA (cDNA) arrays containing GluR(1-6), NR(1A,1B), NR(2A-D), and GABA(A)Ralpha(1-6), and -Rbeta(1-3) subunit cDNAS: The relative hybridization intensities of each mRNA-cDNA hybrid were quantified by phosphorimaging. RESULTS GluR, NR, and GABA(A)R subunit mRNA expression did not differ between control neurons and nondysplastic epilepsy specimens. Expression of GluR(4), NR(2B), and NR(2C) subunit mRNA was increased, and NR(2A) and GABA(A)Rbeta(1) subunit mRNA was decreased in dysplastic compared with pyramidal and heterotopic neurons. In contrast, GABA(A)Ralpha(1), -Ralpha(2), and -Rbeta(2) as well as GluR(1) mRNA levels were reduced in both dysplastic and heterotopic neurons. CONCLUSIONS Differential expression of GluR, NR, and GABA(A)R mRNA in dysplastic and heterotopic neurons demonstrates cell specific gene transcription changes in focal cortical dysplasia. These results suggest that dysplastic and heterotopic neurons may be pharmacologically distinct and make differential contributions epileptogenesis in focal cortical dysplasia.
Collapse
Affiliation(s)
- P B Crino
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | | | |
Collapse
|
34
|
White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 2001; 49:67-78. [PMID: 11198298 DOI: 10.1002/1531-8249(200101)49:1<67::aid-ana10>3.0.co;2-l] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular pharmacologic basis of epileptogenesis in cortical tubers in the tuberous sclerosis complex is unknown. Altered transcription of genes encoding glutamatergic and gamma-aminobutyric acid (GABA)-ergic receptors and uptake sites may contribute to seizure initiation and may occur selectively in dysplastic neurons and giant cells. Arrays containing GABA A (GABAAR), GluR, NMDA receptor (NR) subunits, GAD65, the vesicular GABA transporter (VGAT), and the neuronal glutamate transporter (EAAC1) cDNAs were probed with amplified poly (A) mRNA from tubers or normal neocortex to identify changes in gene expression. Increased levels of EAAC1, and NR2B and 2D subunit mRNAs and diminished levels of GAD65, VGAT, GluR1, and GABAAR alpha1 and alpha2 were observed in tubers. Ligand-binding experiments in frozen tuber homogenates demonstrated an increase in functional NR2B-containing receptors. Arrays were then probed with poly (A) mRNA from single, microdissected dysplastic neurons, giant cells, or normal neurons (n = 30 each). Enhanced expression of GluR 3, 4, and 6 and NR2B and 2C subunit mRNAs was noted in the dysplastic neurons, whereas only the NR2D mRNA was upregulated in giant cells. GABAAR alpha1 and alpha2 mRNA levels were reduced in both dysplastic neurons and giant cells compared to control neurons. Differential expression of GluR, NR, and GABAAR mRNAs in tubers reflects cell-specific changes in gene transcription that argue for a distinct molecular phenotype of dysplastic neurons and giant cells and suggests that dysplastic neurons and giant cells make differential contributions to epileptogenesis in the tuberous sclerosis complex.
Collapse
Affiliation(s)
- R White
- PENN Epilepsy Center and Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Phenotypic characterization of cells in conjunction with single-cell mRNA analysis, which yields information regarding expression of multiple genes in individual neurons, facilitates a detailed and comprehensive view of neuronal cell biology. More specifically, the aRNA amplification method has provided an approach to analyze mRNA levels in single cells that have been phenotypically characterized on the basis of electrophysiology, morphology, and/or protein expression. In this way, relative mRNA abundances can be directly assayed from a well-defined population of neurons. The concept of expression profiling led to the development of robotics methods for arraying thousands of cDNAs on microarrays. These cDNA arrays can be screened with labeled aRNA or cDNA to generate a molecular fingerprint of a specific cell type, disease state, or therapeutic efficacy. A broad view of how gene expression is altered in single neurons affected by a particular disease process may provide clues to pathogenetic disease mechanisms or avenues for therapeutic interventions. The use of mRNA profiles to produce diagnostics and therapeutics is called transcript-aided drug design (TADD). When coupled with single-cell resolution, TADD promises to be an important tool in diagnosis of disease states, as well as provide a blueprint on which to develop therapeutic strategies. For example, mRNA abundances in an individual diseased cell may increase, decrease, or remain constant, and thus it is possible that a pharmaceutical alone or in combination with other drugs may be specifically designed to restore mRNA abundances to a normal state. Alternatively, if functional protein levels parallel the mRNA level changes, then drugs targeting the function of the proteins translated from these altered mRNAs may prove to be therapeutic. One promise of such an approach is that information about mRNA abundances that are altered in a diseased cell may provide new therapeutic indications for existing drugs. For example, if the abundance of mRNA for the beta-adrenergic receptor is altered as shown by the microarrays for a particular disease, already available adrenergic receptor agonists or antagonists that had not previously been used in this particular disease paradigm may prove to be therapeutically efficacious. The expression profile of a given cell is a measure of the potential for protein expression. Proteins are generally the functional entities within cells and differences in protein function often result in disease. The ability to monitor the coordinate changes in gene expression, in single phenotypically identified cells, that correlate with disease will provide unique insight into the expressed genetic variability of cells and will likely furnish unforeseen insight into the underlying cellular mechanisms that produce disease etiology.
Collapse
Affiliation(s)
- J E Kacharmina
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
36
|
Khoa ND, Hasunuma T, Kobata T, Kato T, Nishioka K. Expression of murine HOXD9 during embryonic joint patterning and in human T lymphotropic virus type I tax transgenic mice with arthropathy resembling rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 1999; 42:686-96. [PMID: 10211882 DOI: 10.1002/1529-0131(199904)42:4<686::aid-anr11>3.0.co;2-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To characterize the expression of murine HOXD9 during normal joint development and in arthritic joints of human T lymphotropic virus type I (HTLV-I) tax transgenic mice and the role of HTLV-I tax in HOXD9 expression. METHODS Expression of HOXD9, HOXD1O, HOXD11, HOXD12, and HOXD13 genes in joint tissues at the ankle/foot regions of mouse embryos at day 10 to day 18 of gestation (E10-E18) and neonates within 10 days after birth was determined by reverse transcriptase-polymerase chain reaction and in situ reverse transcription methods. Adult synovial tissues from 5 HTLV-I tax transgenic mice with chronic polyarthritis and 4 nontransgenic (normal) mice were also examined for expression of these HOXD genes. The effect of HTLV-I on HOXD9 expression in cultured synoviocytes was studied by in vitro infection and transfection experiments. RESULTS Expression of HOXD9 was detected in embryonic joints, preferentially on articular cartilage, only during the early stages of joint development (up to E15), whereas other HOXD genes were expressed throughout the embryonic and neonatal stages. In adult mice, transcripts of HOXD9 were specifically detected in synovial tissues from 4 of 5 arthritic mice, especially in the lining and sublining synovial cells, but not in synovial tissues of normal mice. Activation of HOXD9 was observed in cultured synoviocytes infected with HTLV-I in vitro as well as in those transfected with HTLV-I tax. CONCLUSION Our findings suggest that HOXD9 is involved not only in the early stages of normal joint development, but may also be involved in the pathologic process of arthritis. HTLV-I tax appeared as an activator of this HOX gene in cultured synoviocytes.
Collapse
Affiliation(s)
- N D Khoa
- St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | |
Collapse
|
37
|
Speel EJ, Hopman AH, Komminoth P. Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J Histochem Cytochem 1999; 47:281-8. [PMID: 10026231 DOI: 10.1177/002215549904700302] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In situ hybridization (ISH) has proved to be an invaluable molecular tool in research and diagnosis to visualize nucleic acids in their cellular environment. However, its applicability can be limited by its restricted detection sensitivity. During the past 10 years, several strategies have been developed to improve the threshold levels of nucleic acid detection in situ by amplification of either target nucleic acid sequences before ISH (e.g., in situ PCR) or the detection signals after the hybridization procedures. Here we outline the principles of tyramide signal amplification using the catalyzed reporter deposition (CARD) technique, present practical suggestions to efficiently enhance the sensitivity of ISH with CARD, and discuss some applications and possible future directions of in situ nucleic acid detection using such an amplification strategy.
Collapse
Affiliation(s)
- E J Speel
- Department of Pathology, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
38
|
Rundle CH, Schroeder HW, Koopman WJ. In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. J Immunol Methods 1998; 218:31-52. [PMID: 9819121 DOI: 10.1016/s0022-1759(98)00097-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have developed an improved in situ hybridization (ISH) technique for the analysis of human immunoglobulin heavy chain variable (V(H)) gene family expression in suspensions of human B lymphocytes. Oligonucleotide probes specific for framework region (FR) consensus germline sequences for each of the seven human V(H) gene families were designed and hybridization conditions were developed to accommodate the greatest degree of V(H) gene variation, maximize the sensitivity of transcript detection, and assure the specificity of the technique. The hybridization parameters were rigorously characterized by Southern hybridization to a panel of 30 V(H) cDNA clones and by ISH to 17 B cell lines expressing characterized V(H) genes. Results obtained with ISH using V(H) gene family and isotype-specific gene probes correlated well with histochemical measures of Ig gene product expression. Profiles of cellular V(H) gene expression were generated for mitogen stimulated peripheral blood B lymphocytes from six normal subjects. When compared with estimates of frequency of V(H) genes in the human germline, the results were consistent with a random pattern of V(H) family utilization.
Collapse
Affiliation(s)
- C H Rundle
- The Birmingham Veterans Administration Medical Center, and Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
39
|
NAC-1, a rat brain mRNA, is increased in the nucleus accumbens three weeks after chronic cocaine self-administration. J Neurosci 1997. [PMID: 9278521 DOI: 10.1523/jneurosci.17-18-06864.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic cocaine use leads to biochemical and behavioral changes that can persist for weeks to months after drug administration is discontinued. Alterations in gene expression in the mammalian CNS may contribute to these long-term neural consequences of cocaine abuse. A combined in situ transcription-PCR amplification strategy was used to isolate a novel mRNA, NAC-1, from the nucleus accumbens of rats 3 weeks after discontinuing 3 weeks of intravenous cocaine self-administration. In rats that self-administered cocaine, levels of NAC-1 were increased approximately 50% in the nucleus accumbens but not in the dorsal striatum or hippocampus, when compared with levels from yoked-saline controls. In situ hybridization analysis demonstrated increased numbers of NAC-1-expressing cells in the nucleus accumbens of rats who had self-administered cocaine. NAC-1 mRNA exists as one form, approximately 4400 nucleotides (nt) in size, and also is present at much lower amounts in non-neural tissues. A full-length cDNA clone was isolated from a whole brain library. The predicted polypeptide sequence contains a POZ domain in the first 120 amino acids; the same POZ domain sequence mediates protein-protein interactions among some transcriptional regulators. NAC-1 mRNA levels were also increased in the nucleus accumbens 1 week after 6 d of noncontingent cocaine treatments. Regulation of NAC-1 mRNA in the nucleus accumbens demonstrates a long-term effect of cocaine use on cellular function that may be relevant in behavioral sensitization or cocaine self-administration.
Collapse
|
40
|
Crino PB, Trojanowski JQ, Dichter MA, Eberwine J. Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Natl Acad Sci U S A 1996; 93:14152-7. [PMID: 8943076 PMCID: PMC19509 DOI: 10.1073/pnas.93.24.14152] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Accepted: 07/24/1996] [Indexed: 02/03/2023] Open
Abstract
One hallmark of tuberous sclerosis (TSC) is the presence of highly epileptogenic dysplastic cerebral cortex (tubers) composed of abnormally shaped neurons and giant cells. Mutation of the TSC gene (TSC2) may disrupt differentiation and maturation of neuronal precursors, since the TSC2 gene product tuberin is believed to regulate cellular proliferation. To test the hypothesis that cells in tubers may retain the molecular phenotype of embryonic or immature neurons, tubers from five TSC patients were probed with antibodies to proteins expressed in neuronal precursors (nestin, Ki-67, and proliferating cell nuclear antigen). Many dysmorphic neurons and giant cells in tubers were stained by these antibodies, while neurons in adjacent normal and control cortex were not labeled. To further characterize the molecular phenotype of cells in tubers, we developed a methodology in which poly(A)+ mRNA was amplified from immunohistochemically labeled single cells in paraffin-embedded brain specimens. This approach enabled us to detect mRNAs encoding nestin, and other cytoskeletal elements, cell cycle markers, and synthetic enzymes present in individual nestin-stained cells by means of reverse Northern blotting. We conclude that the presence of immature phenotypic markers (mRNAs and proteins) within tubers suggests disruption of cell cycle regulation and neuronal maturation in TSC during cortical development. Characterization of multiple mRNAs within fixed, immunohistochemically labeled cells provides a powerful tool for studying gene expression and the molecular pathophysiology of many neurologic diseases.
Collapse
Affiliation(s)
- P B Crino
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is known to be a secretory product of activated macrophages. TNF-alpha activates endothelial cells, stimulates angiogenesis and induces proliferation of smooth muscle cells (SMCs). Therefore, TNF-alpha has been suggested to be actively involved in the inflammatory events associated with atherosclerosis. Previous ultrastructural and immunocytochemical studies have shown that macrophages as well as SMCs are constituents of atherosclerotic lesions in the Watanabe heritable hyperlipidemic (WHHL) rabbit. Recently, we have shown that TNF-alpha mRNA levels in aorta of 18-month-old WHHL rabbits were significantly higher than that of 6-month-old WHHL rabbits and New Zealand White (NZW) rabbits by quantitative RT-PCR [1]. However, it remains unclear as to the cell type(s) responsible for the increased TNF-alpha mRNA levels in atherosclerotic lesions. In this study, we provided evidence showing the expression of the TNF-alpha gene in the medial SMCs as well as cells of intimal lesions in arteries of WHHL rabbits by in situ transcription (IST). TNF-alpha protein was also detected in the cytoplasm of the intimal and medial SMCs and macrophages by immunocytochemistry using a monoclonal antibody against rabbit TNF-alpha. In contrast, the expression of TNF-alpha mRNA and protein can not be detected in the arteries from healthy New Zealand White (NZW) rabbits. Our results suggest that the expression of TNF-alpha in both intimal and medial SMCs and macrophages is associated with the progression of atherosclerosis.
Collapse
Affiliation(s)
- X Lei
- Department of Pathology, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
42
|
Sapatino BV, Petrescu AD, Rosenbaum BA, Smith R, Piedrahita JA, Welsh CJ. Characteristics of cloned cerebrovascular endothelial cells following infection with Theiler's virus. II. Persistent infection. J Neuroimmunol 1995; 62:127-35. [PMID: 7499500 DOI: 10.1016/0165-5728(95)00094-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cloned cerebrovascular endothelial cells (CVE) persistently infected with Theiler's virus (PI-CVE) have been established and characterized. The CVE were derived from strains of mice that are susceptible (SJL/J and CBA) and resistant (BALB/c) to Theiler's virus-induced demyelination (TVID). The cells were persistently infected with either the BeAn or GDVII strains of Theiler's virus in vitro and studied at various passage levels for infectious virus, viral antigen and the expression of major histocompatibility complex (MHC) Class I and II antigens. The virus replicated to lower titers than in acutely infected CVE and appeared to be more cell-associated. Flow cytometric analysis revealed that 18-39% of the PI-CVE contained viral antigen. Persistently infected CVE derived from SJL/J and CBA mice expressed high levels of MHC Class I, whereas BALB/c PI-CVE did not. MHC Class II was upregulated by IFN-gamma in SJL/J PI-CVE albeit at a slightly lower level than in uninfected CVE. In addition, the PI-CVE demonstrated increased levels of mRNA for IL-1 beta when compared to uninfected CVE.
Collapse
Affiliation(s)
- B V Sapatino
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station 77843-4458, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wu TC, Ling Y, Kanayama M, Huang A, Kurman R. Localization of Epstein-Barr Virus-Encoded Small RNA-1 by in situ Reverse Transcription: Demonstration of cDNA Generation in Formalin-Fixed Paraffin-Embedded Tissue Sections. J Biomed Sci 1995; 2:249-255. [PMID: 11725061 DOI: 10.1007/bf02253385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Reverse transcription (RT) followed by polymerase chain reaction (RT-PCR) has been commonly used to detect viral and cellular transcripts in whole cell extracts. Application of this technique to tissue sections requires the in situ generation of cDNA. In this study, we selected an abundant transcript, Epstein-Barr virus (EBV)-encoded small RNA (EBER-1), as a model template to demonstrate cDNA generation in tissue sections. Using both digoxigenin-dUTP and primers which are complementary to EBER-1, we demonstrated specific EBER-1 cDNA generation both in vitro, and in tissue sections taken from formalin-fixed paraffin-embedded cell blocks of an EBV-infected cell line, B95-8. Furthermore, we utilized in situ RT in sections of EBV-associated nasopharyngeal carcinomas, and identified EBER-1 cDNA specifically in neoplastic cells, but not in the surrounding nonneoplastic stroma. EBER-1 cDNA was localized to the nucleus of these cells, with relative sparing of the nucleolus and the cytoplasm. No specific signal was evident if the reverse transcriptase was omitted, if 'sense' primers were used, or if RT was preceded by RNase digestion. The specificity of EBER-1 cDNA was further confirmed by in situ hybridization using the sense riboprobe, which has the same polarity as the EBER-1 transcript. Our results provide a successful example of using nonradioactive nucleotide analogue for cDNA generation in formalin-fixed, paraffin-embedded tissue sections. This approach would provide a visible assay to monitor RT in tissue sections, and allow further optimization of conditions for cDNA generation in tissue sections. Therefore, it potentially can be helpful for the future development of RT-PCR in tissue sections. Copyright 1995 S. Karger AG, Basel
Collapse
Affiliation(s)
- T.-C. Wu
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Md., USA
| | | | | | | | | |
Collapse
|
44
|
Nastiuk KL, Clayton DF. The canary androgen receptor mRNA is localized in the song control nuclei of the brain and is rapidly regulated by testosterone. JOURNAL OF NEUROBIOLOGY 1995; 26:213-24. [PMID: 7707043 DOI: 10.1002/neu.480260206] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Singing in canaries is an androgen-inducible behavior, under the control of an identified motor pathway, which includes several discrete "song nuclei" in the telencephalon. To determine whether the mRNA for the canary androgen receptor (cAR) is expressed in these song control nuclei, we synthesized probes from the recently cloned cAR cDNA and used in situ hybridization to examine spring male canary brain sections. Concentrations of cAR mRNA are detectable in several of the song control nuclei of the forebrain, including high vocal center (HVC), lateral magnocellular nucleus of the anterior neostriatum and robust nucleus of the archistriatum. In addition, we also show that testosterone treatment rapidly induces a significant reduction of cAR mRNA levels in nucleus HVC of females. Since the effects of androgen on singing behavior occur much more slowly, the behavioral effects are probably a secondary or independent result of androgen's primary and immediate action on target gene transcription.
Collapse
Affiliation(s)
- K L Nastiuk
- Laboratory of Animal Behavior, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
45
|
Welsh CJ, Sapatino BV, Petrescu A, Piedrahita J. The blood-brain barrier in virus-induced demyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 383:105-16. [PMID: 8644494 DOI: 10.1007/978-1-4615-1891-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C J Welsh
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station 77843-4458, USA
| | | | | | | |
Collapse
|
46
|
Eberwine J, Cao Y, Nair S, Miyashiro K, Mackler S, Finnell R, Surmeier J, Dichter M. Mechanisms of neuronal plasticity as analyzed at the single cell level. PROGRESS IN BRAIN RESEARCH 1995; 105:117-26. [PMID: 7568870 DOI: 10.1016/s0079-6123(08)63289-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter has highlighted how correlates of neuronal plasticity such as electrophysiological responsiveness and changes in gene expression may be examined in defined CNS regions as well as in single cells. The ability to simultaneously measure the mRNA levels for hundreds of different genes, to clone novel genes, and to characterize the physiology and morphology of the cell promises to provide insight into molecular mechanisms of plasticity. The importance of understanding how one gene product changes relative to another (coordinated changes) as well as subcellular distribution of mRNAs cannot be overstated. It is only through an analysis of both the molecular and cellular processes associated with plasticity that a thorough understanding of the mechanisms of neuronal plasticity can be gained.
Collapse
Affiliation(s)
- J Eberwine
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia 19104-6084, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
We and others have described methods to label specific nucleic acid sequences in fixed cells by reverse in situ transcription (IST). They are simple alternatives to the tedious steps of in situ hybridization with labeled probes. We have favored use of thermostable DNA polymerases after heat denaturation of template secondary structure, accompanied by synthesis of cDNA from an annealed primer, but the approach has been limited by the low reverse transcriptase (RT) activity of Taq polymerase and delayed detection methods. We have improved the technique by the use of recombinant Thermus thermophilus (rTth) DNA polymerase and fluorescein-12-dUTP (FIST). Jurkat T lymphocytes were stimulated with ionomycin + phorbol myristate acetate to produce interleukin-2 (IL-2) mRNA in vitro overnight. They were cytospun onto slides and fixed in 70% ethanol + 30% DEPC-treated water, acetone, and air-dried. The slides were placed on a temperature-controlled heating block, and the cell spot was covered with a plastic coverslip. The temperature was raised to 95 degrees C, and 5-10 microliters of modified Perkin-Elmer/Cetus rTth RT reaction mix was injected under the edge of the coverslip. Each 10 microliters of mix in DEPC-water contained 10 mM Tris-HCl, pH 8.3, 90 mM KCl, 1 mM MnCl2, 1 mM dithiothreitol, 10 U placental ribonuclease inhibitor, 0.125 mM dA,C,GTPs, 0.1 mM fluorescein-12-dUTP, 2 U rTth DNA polymerase, and 4 pM 22-mer oligonucleotide primer, which spanned the second intron of IL-2. After 3 min at 95 degrees C, 1 min at 50 degrees C and 10 min at 72 degrees C, the slides were washed in 0.5 x phosphate-buffered saline, pH 7.0, at 42 degrees C, in 70% ethanol, 100% ethanol, and air-dried. The cells were mounted in antifade solution (2% n-propyl gallate in 70% glycerol), and could be viewed immediately by fluorescence microscopy. Image analysis showed that stimulated Jurkat cells were brighter than uninduced controls or those treated with RNase or without polymerase or primer. FIST appears to be useful for the detection of specific mRNAs in single cells.
Collapse
Affiliation(s)
- H Chang
- Naval Medical Research Institute, Bethesda, MD 20889-5607
| |
Collapse
|
48
|
Bassell GJ, Powers CM, Taneja KL, Singer RH. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol 1994; 126:863-76. [PMID: 7914201 PMCID: PMC2120111 DOI: 10.1083/jcb.126.4.863] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Considerable evidence indicates that mRNA associates with structural filaments in the cell (cytoskeleton). This relationship would be an important mechanism to effect mRNA sorting since specific mRNAs could be sequestered at sites within the cell. In addition, it can provide a mechanism for spatial regulation of mRNA expression. However, the precise structural interactions between mRNA and the cytoskeleton have yet to be defined. An objective of this work was to visualize "individual" poly(A) mRNA molecules in situ by electron microscopy to identify their relationship to individual filaments. Poly(A) RNA and filaments were identified simultaneously using antibodies to detect hybridized probe and filaments or actin-binding proteins. In human fibroblasts, most of the poly(A) mRNA (72%) was localized within 5 nm of orthogonal networks of F-actin filaments. Poly(A) mRNA also colocalized with vimentin filaments (29%) and microtubules (< 10%). The sites of mRNA localization were predominantly at filament intersections. The majority of poly(A) mRNA and polysomes colocalized with the actin crosslinking proteins, filamin, and alpha-actinin, and the elongation factor, EF-1 alpha (actin-binding protein; ABP-50). Evidence that intersections contained single mRNA molecules was provided by using a labeled oligo dT probe to prime the synthesis of cDNA in situ using reverse transcriptase. Both the poly(A) and cis sequences of the same mRNA molecule could then be visualized independently. We propose that the cytoskeletal intersection is a mRNA receptor and serves as a "microdomain" where mRNA is attached and functionally expressed.
Collapse
Affiliation(s)
- G J Bassell
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655-0106
| | | | | | | |
Collapse
|
49
|
Romalde JL, Estes MK, Szücs G, Atmar RL, Woodley CM, Metcalf TG. In situ detection of hepatitis A virus in cell cultures and shellfish tissues. Appl Environ Microbiol 1994; 60:1921-6. [PMID: 8031087 PMCID: PMC201581 DOI: 10.1128/aem.60.6.1921-1926.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An in situ transcription method was developed to detect hepatitis A virus RNA in both cell cultures and shellfish tissues. Radiolabeled cDNA copies were synthesized in situ by reverse transcriptase-directed transcription after annealing with a specific primer to the viral RNA. Both tritium (3H) and 35S were useful in the in situ transcription reaction, but the use of 3H resulted in a lower background and finer detail in the localization of viral particles. Application of the method to different organs of oysters which had bioaccumulated hepatitis A virus allowed the first in situ localization of the virus, specifically in stomach and hepatopancreatic tissues.
Collapse
Affiliation(s)
- J L Romalde
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
50
|
Mackler SA, Eberwine JH. Cellular adaptation to opiates alters ion-channel mRNA levels. Proc Natl Acad Sci U S A 1994; 91:385-9. [PMID: 7506420 PMCID: PMC42952 DOI: 10.1073/pnas.91.1.385] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The chronic use of several drugs, including opiates, results in the stereotypical behaviors characteristic of addiction. Alterations in gene expression have been associated with the use of these addictive drugs. Previous studies, however, have been limited to describing changes in amounts of individual mRNAs from single tissue samples. Cellular adaptation to opiates, reflected in the regulation of the expression of many different mRNAs, seems likely to contribute to the complicated behaviors of addiction. The present studies examined coordinate alterations in the amounts of multiple mRNAs in the rat striatum and in NG108-15 cells after opioid stimulation or the precipitated withdrawal of opioid use. The experimental approach combined amplification of the poly(A)+ RNA population with reverse Northern blot analysis to simultaneously characterize the relative changes in several mRNAs. Morphine treatment of rats for 5 days was associated with a reduction in the amount of striatal RNA for the voltage-sensitive K+ channel without significant changes in other ion channels. In NG108-15 cells stimulation with the delta-opiate receptor agonist [D-Ala2,D-Leu5]enkephalin (DADLE) alone and followed by naloxone (precipitated withdrawal) caused relative changes in the abundances of several mRNAs. The composite effects of alterations in the abundance of multiple mRNAs (and the proteins they encode) in response to opioid use likely contribute to the development and maintenance of opiate-mediated behaviors.
Collapse
Affiliation(s)
- S A Mackler
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|