1
|
Wang J, Wu N, Zhang J, Li X, Hu Y, Dai J, Shen C, Chen X. Ciliary neurotrophic factor attenuates myocardial infarction-induced oxidative stress and ferroptosis via PI3K/Akt signaling. J Mol Histol 2025; 56:90. [PMID: 39954087 DOI: 10.1007/s10735-025-10359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND As a member of the interleukin-6 family, ciliary neurotrophic factor (CNTF) regulates inflammation, oxidative stress, and other processes to exhibit neurotrophic and differentiating effects over cells in the central nervous system. It has not yet been documented, therefore, if CNTF influences the cardiac remodeling brought on by myocardial infarction (MI). The purpose of the current investigation was to identify the function and underlying mechanisms of CNTF in cardiac remodeling brought on by MI. METHODS Using an adeno-associated virus 9 (AAV9) system and tail vein injection, we overexpressed CNTF in the hearts. To create a model of MI, C57BL/6 mice underwent left anterior descending (LAD) ligation. The following techniques were employed to assess the impact of CNTF overexpression and the underlying mechanisms: quantitative real-time PCR, western blotting, histological analysis, immunofluorescence and immunohistochemistry analysis, and echocardiography. We used H9c2 cells to confirm CNTF's in vitro effects. RESULTS In MI mice, overexpression of CNTF prevents cardiac hypertrophy and cardiac fibrosis. Furthermore, oxidative stress and ferroptosis in response to MI damage were markedly reduced by CNTF overexpression. Mechanistically, overexpression of CNTF in both in vivo and in vitro markedly enhanced PI3K/Akt signaling. However, blocking this pathway effectively negated the beneficial impact of CNTF overexpression. CONCLUSIONS Our research indicates that via initiating the PI3K/Akt signaling pathway, CNTF controls myocardial dysfunction, oxidative stress, and ferroptosis in MI-induced cardiac remodeling. CNTF may have therapeutic potential in treating MI-induced cardiac remodeling.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Nan Wu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Jie Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Xiaojing Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yingchu Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Jiating Dai
- Health Science Center, Ningbo University, Ningbo, 315000, China
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
- , 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
- , 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Zhu X, Wang X, Wang J, Du L, Zhang Z, Zhou D, Han J, Luan B. Intermittent Fasting-Induced Orm2 Promotes Adipose Browning via the GP130/IL23R-p38 Cascade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407789. [PMID: 39248328 PMCID: PMC11558143 DOI: 10.1002/advs.202407789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Intermittent fasting (IF) plays a critical role in mitigating obesity, yet the precise biological mechanisms require further elucidation. Here Orosomucoid 2 (Orm2) is identified as an IF-induced hepatokine that stimulates adipose browning. IF induced Orm2 expression and secretion from the liver through peroxisome proliferator-activated receptor alpha (PPARα). In adipose tissue, Orm2 bound to glycoprotein 130/interleukin 23 receptor (GP130/IL23R) and promoted adipose browning through the activation of p38 mitogen-activated protein kinases (p38-MAPK). In obese mice, Orm2 led to a significant induction of adipose tissue browning and subsequent weight loss, an effect that is not replicated by a mutant variant of Orm2 deficient in GP130/IL23R binding capability. Crucially, genetic association studies in humans identified an obesity-associated Orm2 variant (D178E), which shows decreased GP130/IL23R binding and impaired browning capacity in mice. Overall, the research identifies Orm2 as a promising therapeutic target for obesity, mediating adipose browning through the GP130/IL23R-p38 signalling pathway.
Collapse
Affiliation(s)
- Xuejuan Zhu
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xinran Wang
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Department of Breast and Thyroid SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Jingang Wang
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Lei Du
- Department of Breast and Thyroid SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhen‐Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Donglei Zhou
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Junfeng Han
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Bing Luan
- Department of EndocrinologyTongji Hospital Affiliated to Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
3
|
Messeha SS, Agarwal M, Gendy SG, Mehboob SB, Soliman KFA. The Anti-Obesogenic Effects of Muscadine Grapes through Ciliary Neurotrophic Factor Receptor (Cntfr) and Histamine Receptor H1 (Hrh1) Genes in 3T3-L1 Differentiated Mouse Cells. Nutrients 2024; 16:1817. [PMID: 38931172 PMCID: PMC11206641 DOI: 10.3390/nu16121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity and type 2 diabetes are prevalent metabolic diseases that have significant links to several chronic diseases, including cancer, diabetes, hypertension, and cardiovascular disease. Muscadine grape extracts have shown the potential to reduce adiposity and improve insulin sensitivity and glucose control. Thus, this study was designed to determine the potential of muscadine grape berries extract (Pineapple and Southern Home) for its antiobesity properties in 3T3-L1 cells as a model for obesity research. The current study's data indicated the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydraziyl (DPPH) activity were higher in cultivar (CV) Southern Home, meanwhile, elevated the total flavonoid content (TFC) in Pineapple. Both extracts were safe across the tested range (0-5 mg/mL). A noticeable reduction in lipid accumulation was also found in extract-treated cells. In preadipocytes and adipocytes, the tested extracts showed significant alterations in various genes involved in glucose homeostasis and obesity. The most remarkable findings of the current study are the upregulation of two genes, Cntfr (+712.715-fold) and Hrh1 (+270.11-fold) in CV Pineapple extract-treated adipocytes 3T3-L1 and the high fold increase in Ramp3 induced by both Pineapple and Southern Home in pre-adipose cells. Furthermore, the tested extracts showed a potential to alter the mRNA of various genes, including Zfp91, B2m, Nr3c1, Insr, Atrn, Il6ra, Hsp90ab1, Sort1, and Npy1r. In conclusion, the data generated from the current study suggested that the two extracts under investigation are considered potential candidates for controlling insulin levels and managing obesity.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1415 ML King Blvd., Tallahassee, FL 32307, USA
| | - Meenakshi Agarwal
- Center for Viticulture & Small Fruit Research, Florida A&M University, Tallahassee, FL 32317, USA;
| | - Sherif G. Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Sheikh B. Mehboob
- Center for Viticulture & Small Fruit Research, Florida A&M University, Tallahassee, FL 32317, USA;
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1415 ML King Blvd., Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Aschenbrenner I, Siebenmorgen T, Lopez A, Parr M, Ruckgaber P, Kerle A, Rührnößl F, Catici D, Haslbeck M, Frishman D, Sattler M, Zacharias M, Feige MJ. Assembly-dependent Structure Formation Shapes Human Interleukin-23 versus Interleukin-12 Secretion. J Mol Biol 2023; 435:168300. [PMID: 37805067 DOI: 10.1016/j.jmb.2023.168300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Interleukin 12 (IL-12) family cytokines connect the innate and adaptive branches of the immune system and regulate immune responses. A unique characteristic of this family is that each member is anα:βheterodimer. For human αsubunits it has been shown that they depend on theirβsubunit for structure formation and secretion from cells. Since subunits are shared within the family and IL-12 as well as IL-23 use the same βsubunit, subunit competition may influence cytokine secretion and thus downstream immunological functions. Here, we rationally design a folding-competent human IL-23α subunit that does not depend on itsβsubunit for structure formation. This engineered variant still forms a functional heterodimeric cytokine but shows less chaperone dependency and stronger affinity in assembly with its βsubunit. It forms IL-23 more efficiently than its natural counterpart, skewing the balance of IL-12 and IL-23 towards more IL-23 formation. Together, our study shows that folding-competent human IL-12 familyαsubunits are obtainable by only few mutations and compatible with assembly and function of the cytokine. These findings might suggest that human α subunits have evolved for assembly-dependent folding to maintain and regulate correct IL-12 family member ratios in the light of subunit competition.
Collapse
Affiliation(s)
- Isabel Aschenbrenner
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Till Siebenmorgen
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Abraham Lopez
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Marina Parr
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Philipp Ruckgaber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Anna Kerle
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Florian Rührnößl
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dragana Catici
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Martin Haslbeck
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Dmitrij Frishman
- Technical University of Munich, TUM School of Life Sciences, Department of Bioinformatics, Freising, Germany
| | - Michael Sattler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, Germany; Helmholtz Munich, Molecular Targets & Therapeutics Center, Institute of Structural Biology, Neuherberg, Germany
| | - Martin Zacharias
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany
| | - Matthias J Feige
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
| |
Collapse
|
5
|
Yong J, Gröger S, von Bremen J, Ruf S. Ciliary Neurotrophic Factor (CNTF) Inhibits In Vitro Cementoblast Mineralization and Induces Autophagy, in Part by STAT3/ERK Commitment. Int J Mol Sci 2022; 23:ijms23169311. [PMID: 36012576 PMCID: PMC9408951 DOI: 10.3390/ijms23169311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
In animal models, the administration of ciliary neurotrophic factor (CNTF) was demonstrated to reduce bone mass and to participate in bone remodeling. Cementoblasts, a cell type embedded in the cementum, are the main cells to produce and mineralize the extracellular matrix. The effect of CNTF on cementoblasts has not yet been addressed. Thus, the goal of this in vitro study was to investigate possible influences of exogenous CNTF on cementogenesis, as well as autophagy regulation and subsequent mechanisms in cementoblasts. Cementoblasts (OCCM-30) were stimulated with exogenous CNTF. Alizarin Red staining was performed to analyze the functional differentiation (mineralization) of OCCM-30 cells. The release of OPG was quantified by ELISA. The expression of cementogenesis markers (RUNX-2, OCN, BMP-7, BSP, and SPON-2) was evaluated by RT-qPCR. Western blotting (WB) was performed for the protein expression of STAT3, COX-2, SHP-2, cPLAα, cPLAβ; ERK1/2, P38, and JNK. The autophagic flux was assessed using WB and RT-qPCR analysis of LC3A/B, Beclin-1, and Atg-5, and the autophagosome was investigated by immunofluorescence staining (IF). The ERK1/2 (FR180204) or STAT3 (sc-202818) antagonist was added, and the cellular response was analyzed using flow cytometry. Exogenous CNTF significantly attenuated mineralized nodule formation, impaired OPG release, and downregulated the mRNA levels of RUNX-2, OCN, BMP-7, and BSP. Moreover, CNTF induced the phosphorylation of STAT3 and activated a transient activation of SHP-2, cPLAβ, ERK1/2, P38, and JNK protein. CNTF also induced autophagosome formation and promoted autophagy-associated gene and protein expressions. Additionally, the inhibition of ERK1/2 or STAT3 reversed a CNTF-induced mineralization impairment and had regulatory effects on CNTF-induced autophagosome formation. Our data revealed that CNTF acts as a potent inhibitor of cementogenesis, and it can trigger autophagy, in part by ERK1/2 and STAT3 commitment in the cementoblasts. Thus, it may play an important role in inducing or facilitating inflammatory root resorption during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Ciliary Neurotrophic Factor (CNTF) and Its Receptors Signal Regulate Cementoblasts Apoptosis through a Mechanism of ERK1/2 and Caspases Signaling. Int J Mol Sci 2022; 23:ijms23158335. [PMID: 35955469 PMCID: PMC9369201 DOI: 10.3390/ijms23158335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) was identified as a survival factor in various types of peripheral and central neurons, glia and non-neural cells. At present, there is no available data on the expression and localization of CNTF-receptors in cementoblasts as well as on the role of exogenous CNTF on this cell line. The purpose of this study was to determine if cementoblasts express CNTF-receptors and analyze the mechanism of its apoptotic regulation effects on cementoblasts. OCCM-30 cementoblasts were cultivated and stimulated kinetically using CNTF protein (NBP2-35168, Novus Biologicals). Quantified transcriptional (RT-qPCR) and translational (WB) products of CNTFRα, IL-6Rα (CD126), LIFR, p-GP130, GP130, p-ERK1/2, ERK1/2, Caspase-8, -9, -3 and cleaved-caspase-3 were evaluated. Immunofluorescence (IF) staining was applied to visualize the localization of the CNTF-receptors within cells. The apoptosis ratio was measured with an Annexin-V FITC/PI kit. The ERK1/2 antagonist (FR180204, Calbiochem) was added for further investigation by flow cytometry analysis. The CNTF-receptor complex (CNTFRα, LIFR, GP130) was functionally up-regulated in cementoblasts while cultivated with exogenous CNTF. CNTF significantly attenuated cell viability and proliferation for long-term stimulation. Flow cytometry analysis shows that CNTF enhanced the apoptosis after prolonged duration. However, after only a short-term period, CNTF halts the apoptosis of cementoblasts. Further studies revealed that CNTF activated phosphorylated GP130 and the anti-apoptotic molecule ERK1/2 signaling to participate in the regulation of the apoptosis ratio of cementoblasts. In conclusion, CNTF elicited the cellular functions through a notable induction of its receptor complex in cementoblasts. CNTF has an inhibitory effect on the cementoblast homeostasis. These data also elucidate a cellular mechanism for an exogenous CNTF-triggered apoptosis regulation in a mechanism of ERK1/2 and caspase signaling and provides insight into the complex cellular responses induced by CNTF in cementoblasts.
Collapse
|
7
|
Ghasemi M, Alizadeh E, Motlagh BF, Zarghami N. The effect of exogenous ciliary neurotrophic factor on cell cycle and neural differentiation markers of in vitro model cells: New insights for future therapeutic approaches. Cell Biochem Funct 2021; 39:636-645. [PMID: 33890305 DOI: 10.1002/cbf.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Retinoblastoma is known as childhood rare malignancy of the retina. Ciliary neurotrophic factor (CNTF) was previously found to reduce degeneration and promote retina survival. This work investigated the effects of CNTF supplementation on in-vitro model cells including retinoblastoma (Y79) and adipose-derived mesenchymal stem cells (AMSCs) viability, proliferation, gene expression and cell cycle. A drop of viability was detected in Y79 treated with CNTF in a dose-dependent manner (P < .05). However, the proliferation of AMSCs was increased at lower concentrations of CNTF (5 ng/mL), but declined in higher doses (50 and 100 ng/mL). The BrdU assay confirmed the MTT assay results. Cell cycle was arrested in both Y79 and AMSCs in the G0/G1 phase by CNTF treatment. A considerable down-regulation of Bcl2, CycD1 and N-Myc genes expression (P < .05) inversely, P15 and P21 genes up-regulation in treated Y79 cells was observed. Besides, stemness genes' transcription was reduced in AMSCs (P < .05), and levels of neuronal-specific markers such as neuron-specific enolase (NSE) and neuronal nuclei (NeuN) were increased (P < .05). The findings of this study suggest a promising potential of CNTF in terms of arresting Y79 retinoblastoma cells, and differentiation-inducing to AMSCs, which could be valuable for managing future innovative treatments targeting retinoblastoma. SIGNIFICANCE OF THE STUDY: We demonstrate that CNTF has the potential to reduce proliferation of Y79 cells and induce the cell cycle arrest of them. Also, down-regulation of oncogenes (such as N-Myc) while up-regulation of tumour suppressor genes (such as P21) was detected by exposure of Y79 cells to CNTF. Furthermore, we observed the cell cycle arrest, reduction of stemness gene and up-regulation of neural differentiation markers in AMSCs treated with CNTF. These results support the probable promising effects of CNTF for controlling retinoblastoma.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Fallahi Motlagh
- Department of Ophthalmology, Nikokar Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Kang S, Narazaki M, Metwally H, Kishimoto T. Historical overview of the interleukin-6 family cytokine. J Exp Med 2020; 217:151633. [PMID: 32267936 PMCID: PMC7201933 DOI: 10.1084/jem.20190347] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) has been identified as a 26-kD secreted protein that stimulates B cells to produce antibodies. Later, IL-6 was revealed to have various functions that overlap with other IL-6 family cytokines and use the common IL-6 signal transducer gp130. IL-6 stimulates cells through multiple pathways, using both membrane and soluble IL-6 receptors. As indicated by the expanding market for IL-6 inhibitors, it has become a primary therapeutic target among IL-6 family cytokines. Here, we revisit the discovery of IL-6; discuss insights regarding the roles of this family of cytokines; and highlight recent advances in our understanding of regulation of IL-6 expression.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Narazaki
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hozaifa Metwally
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Fantone S, Tossetta G, Montironi R, Senzacqua M, Marzioni D, Mazzucchelli R. Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study. Eur J Histochem 2020; 64. [PMID: 33131268 PMCID: PMC7586252 DOI: 10.4081/ejh.2020.3147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohistochemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as key molecule to maintenance epithelium homeostasis via pERK downregulation by an autocrine mechanism. Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcinogenesis.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Rodolfo Montironi
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, School of Medicine, United Hospitals, Ancona.
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona.
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, School of Medicine, United Hospitals, Ancona.
| |
Collapse
|
10
|
Kim KI, Baek JY, Jeong JY, Nam JH, Park ES, Bok E, Shin WH, Chung YC, Jin BK. Delayed Treatment of Capsaicin Produces Partial Motor Recovery by Enhancing Dopamine Function in MPP +-lesioned Rats via Ciliary Neurotrophic Factor. Exp Neurobiol 2019; 28:289-299. [PMID: 31138996 PMCID: PMC6526113 DOI: 10.5607/en.2019.28.2.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) on astrocytes prevents ongoing degeneration of nigrostriatal dopamine (DA) neurons in MPP+-lesioned rats via ciliary neurotrophic factor (CNTF). The present study determined whether such a beneficial effect of astrocytic TRPV1 could be achieved after completion of injury of DA neurons, rather than ongoing injury, which seems more relevant to therapeutics. To test this, the MPP+-lesioned rat model utilized here exhibited approximately 70~80% degeneration of nigrostriatal DA neurons that was completed at 2 weeks post medial forebrain bundle injection of MPP+. TRPV1 agonist, capsaicin (CAP), was intraperitoneally administered. CNTF receptor alpha neutralizing antibody (CNTFRαNAb) was nigral injected to evaluate the role of CNTF endogenously produced by astrocyte through TRPV1 activation on DA neurons. Delayed treatment of CAP produced a significant reduction in amphetamine-induced rotational asymmetry. Accompanying this behavioral recovery, CAP treatment increased CNTF levels and tyrosine hydroxylase (TH) activity in the substantia nigra pars compacta (SNpc), and levels of DA and its metabolites in the striatum compared to controls. Interestingly, behavioral recovery and increases in biochemical indices were not reflected in trophic changes of the DA system. Instead, behavioral recovery was temporal and dependent on the continuous presence of CAP treatment. The results suggest that delayed treatment of CAP increases nigral TH enzyme activity and striatal levels of DA and its metabolites by CNTF endogenously derived from CAP-activated astrocytes through TRPV1, leading to functional recovery. Consequently, these findings may be useful in the treatment of DA imbalances associated with Parkinson's disease.
Collapse
Affiliation(s)
- Kyoung In Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jeong Yeob Baek
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jae Yeong Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jin Han Nam
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Eun Su Park
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Eugene Bok
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
Yang S, Li S, Li XJ. MANF: A New Player in the Control of Energy Homeostasis, and Beyond. Front Physiol 2018; 9:1725. [PMID: 30555354 PMCID: PMC6282101 DOI: 10.3389/fphys.2018.01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023] Open
Abstract
All human behaviors, including the control of energy homeostasis, are ultimately mediated by neuronal activities in the brain. Neurotrophic factors represent a protein family that plays important roles in regulating neuronal development, function, and survival. It has been well established that canonical neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), play important roles in the central regulation of energy homeostasis. Recently, a class of non-canonical neurotrophic factors, represented by mesencephalic astrocyte-derived neurotrophic factor (MANF), has been discovered. MANF is structurally and functionally distinct from those canonical neurotrophic factors, hence raising the issue of MANF being non-canonical. Nonetheless, emerging evidence suggests that MANF is critically involved in many neuronal activities. Here, we review our current understanding about the functions of MANF in the brain, with a primary focus on the control of energy homeostasis.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Shihua Li
- GHM Institute of CNS Regeneration, Jinan University Guangzhou, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Abstract
The interleukin (IL)-6 family cytokines is a group of cytokines consisting of IL-6, IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine (CLC), and IL-27. They are grouped into one family because the receptor complex of each cytokine contains two (IL-6 and IL-11) or one molecule (all others cytokines) of the signaling receptor subunit gp130. IL-6 family cytokines have overlapping but also distinct biologic activities and are involved among others in the regulation of the hepatic acute phase reaction, in B-cell stimulation, in the regulation of the balance between regulatory and effector T cells, in metabolic regulation, and in many neural functions. Blockade of IL-6 family cytokines has been shown to be beneficial in autoimmune diseases, but bacterial infections and metabolic side effects have been observed. Recent advances in cytokine blockade might help to minimize such side effects during therapeutic blockade.
Collapse
Affiliation(s)
- Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| |
Collapse
|
13
|
Ghasemi M, Alizadeh E, Saei Arezoumand K, Fallahi Motlagh B, Zarghami N. Ciliary neurotrophic factor (CNTF) delivery to retina: an overview of current research advancements. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1694-1707. [PMID: 29065723 DOI: 10.1080/21691401.2017.1391820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intraocular administration of the ciliary neurotrophic factor (CNTF) has been found to attenuate the photoreceptor degeneration and preserve retinal functions in the animal research models of the inherited or induced retinal disease. Studies with the aim of CNTF transfer to the posterior segment inside the eye have been directed to determine the best method for its administration. An ideal delivery method would overcome the eye drug elimination mechanisms or barriers and provide the sustained release of the CNTF into retina in the safest fashion with the minimum harm to the quality of life. This review focuses on the present state of CNTF delivery to retina, also provides an overview of available technologies and their challenges.
Collapse
Affiliation(s)
- Maryam Ghasemi
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Effat Alizadeh
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Khatereh Saei Arezoumand
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Nosratollah Zarghami
- a The Umbilical Cord Stem Cell Research Center (UCSRC) , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
14
|
Emerich DF, Bruhn S, Chu Y, Kordower JH. Cellular Delivery of Cntf but not Nt-4/5 Prevents Degeneration of Striatal Neurons in a Rodent Model of Huntington's Disease. Cell Transplant 2017; 7:213-25. [PMID: 9588602 DOI: 10.1177/096368979800700215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The delivery of neurotrophic factors to the central nervous system (CNS) has gained considerable attention as a potential treatment strategy for neurodegenerative disorders such as Huntington's disease (HD). In the present study, we directly compared the ability of two neurotrophic factors, ciliary neurotrophic factor (CNTF), and neurotrophin-4/5 (NT-4/5), to prevent the degeneration of striatal neurons following intrastriatal injections of quinolinic acid (QA). Expression vectors containing either the human CNTF or NT-4/5 gene were transfected into a baby hamster kidney fibroblast cell line (BHK). Using a polymeric device, encapsulated BHK-control cells and those secreting either CNTF (BHK-CNTF) or NT-4/5 (BHK-NT-4/5) were transplanted unilaterally into the rat lateral ventricle. Seven days later, the same animals received unilateral injections of QA (225 nmol) into the ipsilateral striatum. Nissl-stained sections demonstrated that the BHK-CNTF cells significantly reduced the volume of striatal damage produced by QA. Quantitative analysis of striatal neurons further demonstrated that both choline acetyltransferase (ChAT)- and glutamic acid decarboxylase (GAD)-immunoreactive neurons were protected by CNTF implants. In contrast, the volume of striatal damage and loss of striatal ChAT and GAD-positive neurons in animals receiving BHK-NT-4/5 implants did not differ from control-implanted animals. These results help better define the scope of neuronal protection that can be afforded following cellular delivery of various neurotrophic factors. Moreover, these data further support the concept that implants of polymer-encapsulated CNTF-releasing cells can be used to protect striatal neurons from excitotoxic damage, and that this strategy may ultimately prove relevant for the treatment of HD.
Collapse
Affiliation(s)
- D F Emerich
- CytoTherapeutics, Inc., Providence, RI 02906, USA
| | | | | | | |
Collapse
|
15
|
Nakahara Y, Gage FH, Tuszynski MH. Grafts of Fibroblasts Genetically Modified to Secrete Ngf, Bdnf, Nt-3, or Basic Fgf Elicit Differential Responses in the Adult Spinal Cord. Cell Transplant 2017; 5:191-204. [PMID: 8689031 DOI: 10.1177/096368979600500209] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuronal and axonal responses to neurotrophic factors in the developing spinal cord have been relatively well characterized, but little is known about adult spinal responses to neurotrophic factors. We genetically modified primary rat fibroblasts to produce either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or basic fibroblast growth factor (bFGF), then grafted these neurotrophic factor-secreting cells into the central gray matter of the spinal cord in adult rats. Spinal cord lesions were not made prior to grafting. From 2 wk to 6 mo later, sensory neurites of dorsal root origin extensively penetrated NGF-, NT-3-, and bFGF-producing grafts, whereas BDNF-secreting grafts elicited no growth responses. Putative noradrenergic neurites also penetrated NGF-secreting cell grafts. Local motor and corticospinal motor axons did not penetrate any of the neurotrophic factor-secreting grafts. These results indicate that unlesioned or minimally lesioned adult spinal cord sensory and putative noradrenergic populations retain significant neurotrophic factor responsiveness, whereas motor neurites are comparatively resistant even to those neurotrophic factors to which they exhibit survival dependence during development. Grafts of genetically modified cells can be a useful tool for characterizing neurotrophic factor responsiveness in the adult spinal cord and designing strategies to promote axonal regeneration after injury.
Collapse
Affiliation(s)
- Y Nakahara
- Department of Neurosciences, University of California-San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
16
|
Emerich DF, Cain CK, Greco C, Saydoff JA, Hu ZY, Liu H, Lindner MD. Cellular Delivery of Human Cntf Prevents Motor and Cognitive Dysfunction in a Rodent Model of Huntington's Disease. Cell Transplant 2017; 6:249-66. [PMID: 9171158 DOI: 10.1177/096368979700600308] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The delivery of ciliary neurotrophic factor (CNTF) to the central nervous system has recently been proposed as a potential means of halting or slowing the neural degeneration associated with Huntington's disease (HD). The following set of experiments examined, in detail, the ability of human CNTF (hCNTF) to prevent the onset of behavioral dysfunction in a rodent model of HD. A DHFR-based expression vector containing the hCNTF gene was transfected into a baby hamster kidney fibroblast cell line (BHK). Using a polymeric device, encapsulated BHK-control cells and those secreting hCNTF were transplanted bilaterally into rat lateral ventricles. Eight days later, the same animals received bilateral injections of quinolinic acid (QA, 225 nmol) into the previously implanted striata. A third group received sham surgery (incision only) and served as a normal control group. Bilateral infusions of QA produced a significant loss of body weight and mortality that was prevented by prior implantation with hCNTF-secreting cells. Moreover, QA produced a marked hyperactivity, an inability to use the forelimbs to retrieve food pellets in a staircase test, increased the latency of the rats to remove adhesive stimuli from their paws, and decreased the number of steps taken in a bracing test that assessed motor rigidity. Finally, the QA-infused animals were impaired in tests of cognitive function — the Morris water maze spatial learning task, and the delayed nonmatching-to-position operant test of working memory. Prior implantation with hCNTF-secreting cells prevented the onset of all the above deficits such that implanted animals were nondistinguishable from sham-lesioned controls. At the conclusion of behavioral testing, 19 days following QA, the animals were sacrificed for neurochemical determination of striatal choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) levels. This analysis revealed that QA decreased striatal ChAT levels by 35% and striatal GAD levels by 45%. In contrast, hCNTF-treated animals did not exhibit any decrease in ChAT levels and only a 10% decrease in GAD levels. These results support the concepts that implants of polymer-encapsulated hCNTF-releasing cells can be used to protect striatal neurons from excitotoxic damage, produce extensive behavioral protection as a result of that neuronal sparing, and that this strategy may ultimately prove relevant for the treatment of HD.
Collapse
Affiliation(s)
- D F Emerich
- CytoTherapeutics, Inc., Providence, RI 02906, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang Q, Liu Y, Zhang C, Guo F, Feng C, Li X, Shi H, Su Z. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration. Protein Expr Purif 2017; 133:152-159. [PMID: 28323167 DOI: 10.1016/j.pep.2017.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022]
Abstract
Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Feng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Hong Shi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
18
|
Wang H, Shi L, Liang T, Wang B, Wu W, Su G, Wei J, Li P, Huang R. MiR-696 Regulates C2C12 Cell Proliferation and Differentiation by Targeting CNTFRα. Int J Biol Sci 2017; 13:413-425. [PMID: 28529450 PMCID: PMC5436562 DOI: 10.7150/ijbs.17508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/28/2022] Open
Abstract
Micro-696 (miR-696) has been previously known as an exercise related miRNA, which has a profound role in fatty acid oxidation and mitochondrial biogenesis of skeletal muscle. However, its role in skeletal myoblast proliferation and differentiation is still unclear. In this study, we found that miR-696 expressed highly in skeletal muscle and reduced during C2C12 myoblasts differentiation. MiR-696 overexpression repressed C2C12 myoblast proliferation and myofiber formation, while knockdown of endogenous miR-696 expression showed opposite results. During myogenesis, we observed an inversed expression pattern between miR-696 and CNTFRα in vitro, and demonstrated that miR-696 could specifically target CNTFRα and repress the expression of CNTFRα. Additionally, we further found that knockdown of CNTFRα suppressed the proliferation and differentiation of C2C12 cells. Taking all things together, we propose a novel insight that miR-696 down-regulates C2C12 cell myogenesis by inhibiting CNTFRα expression.
Collapse
Affiliation(s)
- Han Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Shi
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Liang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - BinBin Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WangJun Wu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Julong Wei
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Abstract
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
Collapse
Affiliation(s)
- Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
20
|
Hunt LC, White J. The Role of Leukemia Inhibitory Factor Receptor Signaling in Skeletal Muscle Growth, Injury and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:45-59. [DOI: 10.1007/978-3-319-27511-6_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev 2015; 26:507-15. [PMID: 26187860 DOI: 10.1016/j.cytogfr.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| | - Jean-François Gauchat
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
22
|
Razavi S, Nazem G, Mardani M, Esfandiari E, Salehi H, Esfahani SHZ. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res 2015; 4:53. [PMID: 25802822 PMCID: PMC4361963 DOI: 10.4103/2277-9175.151570] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Neurotrophins are small molecules of polypeptides, which include nerve growth factor (NGF) family, glial cell line–derived neurotrophic factor (GDNF) family ligands, and neuropoietic cytokines. These factors have an important role in neural regeneration, remyelination, and regulating the development of the peripheral and central nervous systems (PNS and CNS, respectively) by intracellular signaling through specific receptors. It has been suggested that the pathogenesis of human neurodegenerative disorders may be due to an alteration in the neurotrophic factors and their receptors. The use of neurotrophic factors as therapeutic agents is a novel strategy for restoring and maintaining neuronal function during neurodegenerative disorders such as multiple sclerosis. Innate and adaptive immune responses contribute to pathology of neurodegenerative disorders. Furthermore, autoimmune and mesenchymal stem cells, by the release of neurotrophic factors, have the ability to protect neuronal population and can efficiently suppress the formation of new lesions. So, these cells may be an alternative source for delivering neurotrophic factors into the CNS.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasemi Nazem
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
23
|
Seidel JL, Faideau M, Aiba I, Pannasch U, Escartin C, Rouach N, Bonvento G, Shuttleworth CW. Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 2015; 63:91-103. [PMID: 25092804 PMCID: PMC5141616 DOI: 10.1002/glia.22735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/17/2014] [Indexed: 11/08/2022]
Abstract
Waves of spreading depolarization (SD) have been implicated in the progressive expansion of acute brain injuries. SD can persist over several days, coincident with the time course of astrocyte activation, but little is known about how astrocyte activation may influence SD susceptibility. We examined whether activation of astrocytes modified SD threshold in hippocampal slices. Injection of a lentiviral vector encoding Ciliary neurotrophic factor (CNTF) into the hippocampus in vivo, led to sustained astrocyte activation, verified by up-regulation of glial fibrillary acidic protein (GFAP) at the mRNA and protein levels, as compared to controls injected with vector encoding LacZ. In acute brain slices from LacZ controls, localized 1M KCl microinjections invariably generated SD in CA1 hippocampus, but SD was never induced with this stimulus in CNTF tissues. No significant change in intrinsic excitability was observed in CA1 neurons, but excitatory synaptic transmission was significantly reduced in CNTF samples. mRNA levels of the predominantly astrocytic Na(+) /K(+) -ATPase pump α2 subunit were higher in CNTF samples, and the kinetics of extracellular K(+) transients during matched synaptic activation were consistent with increased K(+) uptake in CNTF tissues. Supporting a role for the Na(+) /K(+) -ATPase pump in increased SD threshold, ouabain, an inhibitor of the pump, was able to generate SD in CNTF tissues. These data support the hypothesis that activated astrocytes can limit SD onset via increased K(+) clearance and suggest that therapeutic strategies targeting these glial cells could improve the outcome following acute brain injuries associated with SD.
Collapse
Affiliation(s)
- Jessica L Seidel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lu J, Ksendzovsky A, Yang C, Mehta GU, Yong RL, Weil RJ, Park DM, Mushlin HM, Fang X, Balgley BM, Lee DH, Lee CS, Lonser RR, Zhuang Z. CNTF receptor subunit α as a marker for glioma tumor-initiating cells and tumor grade: laboratory investigation. J Neurosurg 2012; 117:1022-1031. [PMID: 23061382 DOI: 10.3171/2012.9.jns1212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Tumor-initiating cells are uniquely resilient to current treatment modalities and play an important role in tumor resistance and recurrence. The lack of specific tumor-initiating cell markers to identify and target these cells presents a major obstacle to effective directed therapy. METHODS To identify tumor-initiating cell markers in primary brain tumors, the authors compared the proteomes of glioma tumor-initiating cells to their differentiated progeny using a novel, nongel/shotgun-based, multidimensional liquid-chromatography protein separation technique. An in vivo xenograft model was used to demonstrate the tumorigenic and stem cell properties of these cells. Western blot and immunofluorescence analyses were used to confirm findings of upregulated ciliary neurotrophic factor receptor subunit-α (CNTFRα) in undifferentiated tumor-initiating cells and gliomas of increasing tumor grade. Sequencing of the CNTFRα coding regions was performed for mutation analysis. Finally, antibody-dependent cell-mediated cytotoxicity was used to establish the role of CNTFRα as a potential immunotherapeutic target. RESULTS Ciliary neurotrophic factor receptor subunit-α expression was increased in tumor-initiating cells and was decreased in the cells' differentiated progeny, and expression levels increased with glioma grade. Mutations of CNTFRα are not common in gliomas. Functional studies using CNTF treatment in glioma tumor-initiating cells showed induction of differentiation through the CNTFRα pathway. Treatment with anti-CNTFRα antibody resulted in increased antibody-dependent cell-mediated cytotoxicity in CNTFRα expressing DAOY cells but not in cell lines that lack CNTFRα. CONCLUSIONS These data indicate that CNTFRα plays a role in the formation or maintenance of tumor-initiating cells in gliomas, is a marker that correlates with histological grade, may underlie treatment resistance in some cases, and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jie Lu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Alexander Ksendzovsky
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Gautam U Mehta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Raymund L Yong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Robert J Weil
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, The Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deric M Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Harry M Mushlin
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | | | | | - Dae-Hee Lee
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Cheng S Lee
- Calibrant Biosystems, Gaithersburg, Maryland
| | - Russell R Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda
| |
Collapse
|
25
|
Kuhananthan S, Miklasz SD, Ramirez VD. Monoclonal antibodies against a dopamine-releasing protein (DARP) arrest fetal development, decrease brain catecholamines, and increase adrenal weight of neonatal rats. Mol Cell Neurosci 2012; 2:410-7. [PMID: 19912826 DOI: 10.1016/1044-7431(91)90028-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1991] [Indexed: 10/20/2022] Open
Abstract
Monoclonal antibodies (MAb) were produced against a partially purified dopamine-releasing protein (DARP) to examine the feasible physiological role of this factor during the development of the rat. These IgM isotype MAbs, and not other IgM antibodies (controls), induced a remarkable increase in fetal resorption and stillbirth rate and impaired the developmental increase of catecholamine concentration in the corpus striatum and hypothalamus of newborn rats. Neonatal injections of the anti-DARP MAb (a single injection of 200 mug, 24 h after birth or 40 mug on alternate days during the first 10 days) decreased the dopamine (DA) concentration of the corpus striatum by 30% on Day 10 and 15% on Day 25 and drastically impaired (by 43% on Day 25) the developmental increase in hypothalamic DA. Furthermore, in the hypothalamus, there was a marked decrease in epinephrine and an increase in norepinephrine (NE) concentration, suggesting an impairment in PNMT function. Neonatal anti-DARP injections also resulted in increased adrenal weight (45 and 44% on Days 10 and 25, respectively) and elevated NE content (anti-DARP, 315 +/- 12 ng, vs control, 223 +/- 16 ng, n = 6). Intrafetal injection of anti-DARP MAb (40 mug) on E 17 resulted in increased resorption and stillbirth accounting for 83% fetal loss. A 10-mug dose of the antibody produced 33% of fetal resorption or stillborn fetuses, whereas control injections resulted in only 4.4% of fetal loss. These data strongly suggest that DARP may be a neurotrophic factor involved in the growth and differentiation of central catecholaminergic neurons and probably necessary for the maturation of PNMT during the early development of rat brain.
Collapse
Affiliation(s)
- S Kuhananthan
- Department of Physiology and Biophysics, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
26
|
Garcia N, Santafé MM, Tomàs M, Priego M, Obis T, Lanuza MA, Besalduch N, Tomàs J. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation. J Peripher Nerv Syst 2012; 17:312-23. [DOI: 10.1111/j.1529-8027.2012.00419.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Severi I, Carradori MR, Lorenzi T, Amici A, Cinti S, Giordano A. Constitutive expression of ciliary neurotrophic factor in mouse hypothalamus. J Anat 2012; 220:622-631. [PMID: 22458546 PMCID: PMC3390515 DOI: 10.1111/j.1469-7580.2012.01498.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 11/30/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a large number of neuronal and glial cells in culture; its expression in glial cells is strongly upregulated after a variety of nerve tissue injuries. Exogenously administered CNTF produces an anorectic effect via activation of hypothalamic neurons and stimulates neurogenesis in mouse hypothalamus. To determine whether CNTF is produced endogenously in the hypothalamus, we sought cellular sources and examined their distribution in adult mouse hypothalamus by immunohistochemistry. CNTF immunoreactivity (IR) was predominantly detected in the ependymal layer throughout the rostrocaudal extension of the third ventricle, where numerous ependymocytes and tanycytes exhibited specific staining. Some astrocytes in the grey matter of the anterior hypothalamus and in the median eminence of the hypothalamic tuberal region were also positive. Stimulation of cells bearing CNTF receptor α (CNTFRα) induces specific activation of the signal transducer and activator of transcription 3 (STAT3) signalling system. Treatment with recombinant CNTF and detection of the nuclear expression of phospho-STAT3 (P-STAT3) showed that CNTF-producing ependymal cells and tanycytes were intermingled with, or very close to, P-STAT3-positive, CNTFRα-bearing cells. A fraction of CNTF-producing ependymal cells and tanycytes and some median eminence astrocytes also exhibited P-STAT3 IR. Thus, in normal adult mice the ependyma of the third ventricle is both a source of and a target for CNTF, which may play hitherto unknown roles in hypothalamic function in physiological conditions.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Maria Rita Carradori
- Department of Clinical, Experimental and Odontostomatological Sciences, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Adolfo Amici
- Department of Clinical, Experimental and Odontostomatological Sciences, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
28
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 707] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
29
|
Luo X, Park KK. Neuron-Intrinsic Inhibitors of Axon Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398309-1.00008-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wen R, Tao W, Li Y, Sieving PA. CNTF and retina. Prog Retin Eye Res 2011; 31:136-51. [PMID: 22182585 DOI: 10.1016/j.preteyeres.2011.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 10/29/2011] [Accepted: 11/17/2011] [Indexed: 11/15/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is one of the most studied neurotrophic factors for neuroprotection of the retina. A large body of evidence demonstrates that CNTF promotes rod photoreceptor survival in almost all animal models. Recent studies indicate that CNTF also promotes cone photoreceptor survival and cone outer segment regeneration in the degenerating retina and improves cone function in dogs with congenital achromotopsia. In addition, CNTF is a neuroprotective factor and an axogenesis factor for retinal ganglion cells (RGCs). This review focuses on the effects of exogenous CNTF on photoreceptors and RGCs in the mammalian retina and the potential clinical application of CNTF for retinal degenerative diseases.
Collapse
Affiliation(s)
- Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
31
|
Lee BS, Choi JY, Cha JH. Expression of ciliary neurotrophic factor and its receptor in experimental obstructive nephropathy. Anat Cell Biol 2011; 44:85-97. [PMID: 21829752 PMCID: PMC3145847 DOI: 10.5115/acb.2011.44.2.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/27/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is well known as a growth/survival factor of neuronal tissue. We investigated the expression of CNTF and its specific receptor alpha (CNTFRα) in a unilateral ureteral obstruction (UUO) model. Complete UUO was produced by left ureteral ligation in Sprague-Dawley rats. The animals were sacrificed on days 1, 3, 5, 7, 14, 21, and 28 after UUO. The kidneys were fixed, and processed for both immunohistochemistry and in situ hybridization. CNTF immunoreactivity in sham-operated kidneys was observed only in the descending thin limb (DTL) of the loop of Henle. In UUO kidneys, CNTF expression was induced in the S3 segment (S3s) of the proximal tubule from day 1, and progressively expanded into the entire S3s and a part of the convoluted proximal tubules, distal tubules (DT), and glomerular parietal epithelium up to day 7. Upregulated CNTF expression was maintained to day 28. From day 14, the inner medullary collecting duct showed weak CNTF immunoreactivity. The CNTFRα mRNA hybridization signal in sham-operated kidneys was weakly detected in the DTL, DT, medullary thick ascending limb, and in a few S3s cells. After UUO, CNTFRα mRNA expression increased progressively in both the renal cortex and the medulla up to day 7 and increased expression was maintained until day 28. The results suggest that the S3s may be the principal induction site for CNTF in response to renal injury, and that CNTF may play a role in chronic renal injury.
Collapse
Affiliation(s)
- Byoung-Seung Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
32
|
Dubový P, Raška O, Klusáková I, Stejskal L, Celakovský P, Haninec P. Ciliary neurotrophic factor promotes motor reinnervation of the musculocutaneous nerve in an experimental model of end-to-side neurorrhaphy. BMC Neurosci 2011; 12:58. [PMID: 21696588 PMCID: PMC3224149 DOI: 10.1186/1471-2202-12-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 06/22/2011] [Indexed: 12/23/2022] Open
Abstract
Background It is difficult to repair nerve if proximal stump is unavailable or autogenous nerve grafts are insufficient for reconstructing extensive nerve damage. Therefore, alternative methods have been developed, including lateral anastomosis based on axons' ability to send out collateral sprouts into denervated nerve. The different capacity of a sensory or motor axon to send a sprout is controversial and may be controlled by cytokines and/or neurotrophic factors like ciliary neurotrophic factor (CNTF). The aim of the present study was to quantitatively assess collateral sprouts sent out by intact motor and sensory axons in the end-to-side neurorrhaphy model following intrathecal administration of CNTF in comparison with phosphate buffered saline (vehiculum) and Cerebrolysin. The distal stump of rat transected musculocutaneous nerve (MCN) was attached in an end-to-side fashion with ulnar nerve. CNTF, Cerebrolysin and vehiculum were administered intrathecally for 2 weeks, and all animals were allowed to survive for 2 months from operation. Numbers of spinal motor and dorsal root ganglia neurons were estimated following their retrograde labeling by Fluoro-Ruby and Fluoro-Emerald applied to ulnar and musculocutaneous nerve, respectively. Reinnervation of biceps brachii muscles was assessed by electromyography, behavioral test, and diameter and myelin sheath thickness of regenerated axons. Results Vehiculum or Cerebrolysin administration resulted in significantly higher numbers of myelinated axons regenerated into the MCN stumps compared with CNTF treatment. By contrast, the mean diameter of the myelinated axons and their myelin sheath thickness in the cases of Cerebrolysin- or CNTF-treated animals were larger than were those for rats treated with vehiculum. CNTF treatment significantly increased the percentage of motoneurons contributing to reinnervation of the MCN stumps (to 17.1%) when compared with vehiculum or Cerebrolysin treatments (at 9.9 or 9.6%, respectively). Reduced numbers of myelinated axons and simultaneously increased numbers of motoneurons contributing to reinnervation of the MCN improved functional reinnervation of the biceps brachii muscle after CNTF treatment. Conclusion The present experimental study confirms end-to-side neurorrhaphy as an alternative method for reconstructing severed peripheral nerves. CNTF promotes motor reinnervation of the MCN stump after its end-to-side neurorrhaphy with ulnar nerve and improves functional recovery of the biceps brachii muscle.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Iughetti L, China M, Berri R, Predieri B. Pharmacological treatment of obesity in children and adolescents: present and future. J Obes 2010; 2011:928165. [PMID: 21197151 PMCID: PMC3010692 DOI: 10.1155/2011/928165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023] Open
Abstract
The prevalence of overweight and obesity is increasing in children and adolescents worldwide raising the question on the approach to this condition because of the potential morbidity, mortality, and economic tolls. Dietetic and behavioral treatments alone have only limited success; consequently, discussion on strategies for treating childhood and adolescent obesity has been promoted. Considering that our knowledge on the physiological systems regulating food intake and body weight is considerably increased, many studies have underlined the scientific and clinical relevance of potential treatments based on management of peripheral or central neuropeptides signals by drugs. In this paper, we analyze the data on the currently approved obesity pharmacological treatment suggesting the new potential drugs.
Collapse
Affiliation(s)
- Lorenzo Iughetti
- Obesity Research Center, Department of Pediatrics, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
| | - Mariachiara China
- Obesity Research Center, Department of Pediatrics, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
| | - Rossella Berri
- Obesity Research Center, Department of Pediatrics, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
| | - Barbara Predieri
- Obesity Research Center, Department of Pediatrics, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
| |
Collapse
|
34
|
Hackenberger BK, Jarić D, Hackenberger D, Stepić S. Effects of chronic dietary exposure to a low-dose of Malathion, Aroclor-1254 and 3-methylcholanthrene on three biomarkers in male mice. ACTA BIOLOGICA HUNGARICA 2010; 61:423-33. [PMID: 21112834 DOI: 10.1556/abiol.61.2010.4.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this research was to examine the applicability of some chronic toxicological tests in the determination of exposure to xenobiotics present in concentrations below No Observed Adverse Effect Level (NOAEL) and below the detection limit of analytical instruments. In the present experiment tested chemicals (Malathion, Aroclor-1254 and 3-methylcholanthrene (3-MC)) were mixed with wheat grains and given to male mice as feed over a period of 12 months. 7-ethoxyresorufin-O-deethylase (EROD) activity with the 3-MC and Aroclor-1254 treatments reached the peak at 9th month of exposure (26.7 and 42.4 pmol⁻¹ mg(prot)-⁻¹, respectively), while malathion did not have significant influence. Glutathione (GSH) level depletion was highest after three months of exposure. Unexpectedly, acetylcholinesterase (AChE) activity increased after treatment with malathion, an organophosphorous insecticide. In conclusion, low-level concentrations chronically administered exert certain effects on the levels of selected enzymes, e.g. biomarkers.
Collapse
Affiliation(s)
- B K Hackenberger
- Department of Biology, Josip Juraj Strossmayer University, Osijek, Croatia.
| | | | | | | |
Collapse
|
35
|
IL-27 structural analysis demonstrates similarities with ciliary neurotrophic factor (CNTF) and leads to the identification of antagonistic variants. Proc Natl Acad Sci U S A 2010; 107:19420-5. [PMID: 20974977 DOI: 10.1073/pnas.1005793107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IL-27, consisting of the subunits IL-27p28 and Epstein-Barr virus-induced gene 3 (EBI3), is a heterodimeric cytokine belonging to the IL-6/IL-12 family of cytokines. IL-27p28 is a four-helical cytokine requiring association with the soluble receptor EBI3 to be efficiently secreted and functionally active. Computational and biological analyses of the IL-27 binding site 1 to its receptor revealed important structural proximities with the ciliary neurotrophic factor group of cytokines and highlighted the contribution of p28 Trp(97), as well as of EBI3 Phe(97), Asp(210), and Glu(159), as key residues in the interactions between both cytokine subunits. WSX-1 (IL-27R) and gp130 compose the IL-27 receptor-signaling complex, recruiting the STAT-1 and STAT-3 pathways. A study of IL-27 binding site 3 showed that Trp(197) was crucial for the cytokine's interaction with gp130, but that the mutated cytokine still recognized IL-27R on the cell surface. IL-27 exerts both pro- and anti-inflammatory functions, promoting proliferation and differentiation of Th1 and inhibiting Th17 differentiation. Our results led us to develop mutated forms of human and mouse IL-27 with antagonistic activities. Using an in vivo mouse model of concanavalin A-induced Th1-cell-mediated hepatitis, we showed that the murine IL-27 antagonist W195A decreased liver inflammation by downregulating the synthesis of CXCR3 ligands and several acute phase proteins. Together, these data suggest that IL-27 antagonism could be of interest in down-modulating acute IL-27-driven Th1-cell-mediated immune response.
Collapse
|
36
|
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci 2010; 4:32. [PMID: 20592948 PMCID: PMC2902233 DOI: 10.3389/fnins.2010.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 05/07/2010] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 3–5 years after disease onset. Therapeutic options remain limited despite substantial number of approaches that have been tested clinically. Many neurotrophic growth factors are known to promote the survival of neurons and foster regeneration in the central nervous system. Various neurotrophic factors have been investigated pre-clinically and clinically for the treatment of ALS. Although pre-clinical data appeared promising, no neurotrophic factors succeeded yet in a clinical phase III trial. In this review we discuss the rationale behind those factors, possible reasons for clinical failures, and argue for a renewal of hope in this powerful class of drugs for the treatment of ALS.
Collapse
|
37
|
Li Y, Tao W, Luo L, Huang D, Kauper K, Stabila P, LaVail MM, Laties AM, Wen R. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS One 2010; 5:e9495. [PMID: 20209167 PMCID: PMC2830484 DOI: 10.1371/journal.pone.0009495] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/12/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cone photoreceptors are responsible for color and central vision. In the late stage of retinitis pigmentosa and in geographic atrophy associated with age-related macular degeneration, cone degeneration eventually causes loss of central vision. In the present work, we investigated cone degeneration secondary to rod loss in the S334ter-3 transgenic rats carrying the rhodopsin mutation S334ter. METHODOLOGY/PRINCIPAL FINDINGS Recombinant human ciliary neurotrophic factor (CNTF) was delivered by intravitreal injection to the left eye of an animal, and vehicle to the right eye. Eyes were harvested 10 days after injection. Cone outer segments (COS), and cell bodies were identified by staining with peanut agglutinin and cone arrestin antibodies in whole-mount retinas. For long-term treatment with CNTF, CNTF secreting microdevices were implanted into the left eyes at postnatal day (PD) 20 and control devices into the right eyes. Cone ERG was recorded at PD 160 from implanted animals. Our results demonstrate that an early sign of cone degeneration is the loss of COS, which concentrated in many small areas throughout the retina and is progressive with age. Treatment with CNTF induces regeneration of COS and thus reverses the degeneration process in early stages of cone degeneration. Sustained delivery of CNTF prevents cones from degeneration and helps them to maintain COS and light-sensing function. CONCLUSIONS/SIGNIFICANCE Loss of COS is an early sign of secondary cone degeneration whereas cell death occurs much later. At early stages, degenerating cones are capable of regenerating outer segments, indicating the reversal of the degenerative process. Sustained delivery of CNTF preserves cone cells and their function. Long-term treatment with CNTF starting at early stages of degeneration could be a viable strategy for preservation of central vision for patients with retinal degenerations.
Collapse
Affiliation(s)
- Yiwen Li
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Weng Tao
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Lingyu Luo
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Deqiang Huang
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Konrad Kauper
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Paul Stabila
- Neurotech USA, Lincoln, Rhode Island, United States of America
| | - Matthew M. LaVail
- Beckman Vision Center, University of California San Francisco, San Francisco, California, United States of America
| | - Alan M. Laties
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rong Wen
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
38
|
Vacher CM, Crépin D, Aubourg A, Couvreur O, Bailleux V, Nicolas V, Férézou J, Gripois D, Gertler A, Taouis M. A putative physiological role of hypothalamic CNTF in the control of energy homeostasis. FEBS Lett 2008; 582:3832-8. [PMID: 18950628 DOI: 10.1016/j.febslet.2008.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/26/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Administration of CNTF durably reduces food intake and body weight in obese humans and rodent models. However, the involvement of endogenous CNTF in the central regulation of energy homeostasis needs to be elucidated. Here, we demonstrate that CNTF and its receptor are expressed in the arcuate nucleus, a key hypothalamic region controlling food intake, and that CNTF levels are inversely correlated to body weight in rats fed a high-sucrose diet. Thus endogenous CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.
Collapse
Affiliation(s)
- C-M Vacher
- Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire, UMR 1197 INRA, Université Paris 11, Bâtiment 447, 91405 Orsay, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rousseau F, Chevalier S, Guillet C, Ravon E, Diveu C, Froger J, Barbier F, Grimaud L, Gascan H. Ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin share a conserved binding site on the ciliary neurotrophic factor receptor alpha chain. J Biol Chem 2008; 283:30341-50. [PMID: 18728012 DOI: 10.1074/jbc.m803239200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin are members of the four-helix bundle cytokine family. These proteins signal through a common tripartite receptor composed of leukemia inhibitory factor receptor, gp130, and ciliary neurotrophic factor receptor alpha. Binding to ciliary neurotrophic factor receptor alpha occurs through an interaction site located at the C terminus of the cytokine AB loop and alphaD helix, known as site 1. In the present study, we have generated a model of neuropoietin and identified a conserved binding site for the three cytokines interacting with ciliary neurotrophic factor receptor alpha. To identify the counterpart of this site on ciliary neurotrophic factor receptor alpha, its cytokine binding domain was modeled, and the physicochemical properties of its surface were analyzed. This analysis revealed an area displaying properties complementary to the site 1 of ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin. Based on our computational predictions, residues were selected for their potential involvement in the ciliary neurotrophic factor receptor alpha binding epitope, and site-directed mutagenesis was carried out. Biochemical, cell proliferation, and cell signaling analyses showed that Phe(172) and Glu(286) of ciliary neurotrophic factor receptor alpha are key interaction residues. Our results demonstrated that ciliary neurotrophic factor, cardiotrophin-like cytokine, and neuropoietin share a conserved binding site on ciliary neurotrophic factor receptor alpha.
Collapse
Affiliation(s)
- François Rousseau
- Unité Mixte INSERM 564, Bâtiment Monteclair, 4 Rue Larrey, 49033 Angers Cedex 01, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A novel immunoprecipitation strategy identifies a unique functional mimic of the glial cell line-derived neurotrophic factor family ligands in the pathogen Trypanosoma cruzi. Infect Immun 2008; 76:3530-8. [PMID: 18541656 DOI: 10.1128/iai.00411-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The journey of the Chagas' disease parasite Trypanosoma cruzi in the human body usually starts in the skin after an insect bite, when trypomastigotes get through the extracellular matrix to bind specific surface receptors in the epidermis and dermis to enter cells, where they differentiate and replicate. As the infection spreads to the heart, nervous system, and other parts of the body via the circulatory system, the parasite must also cope with additional receptors in the immune system and vascular endothelium. The molecular underpinnings that govern host cell receptor recognition by T. cruzi counterreceptors remain largely unknown. Here, we describe an immunoprecipitation strategy designed to concurrently identify host receptors and complementing parasite counterreceptors. Extracellular domains of growth factor receptors fused to human immunoglobulin G (IgG) Fc were incubated with parasite lysates, immunoprecipitated on protein G-Sepharose, and eluted with Laemmli sample buffer. Possible T. cruzi counterreceptors pulled down by the receptor-Fc bait were visualized on immunoblots probed with multispecific high-affinity IgG from chronic chagasic sera and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels stained with silver or Coomassie blue. In screening receptors important for nervous system repair, this parasite counterreceptor immunoprecipitation (PcIP) assay identified 7 to 11 polypeptides (molecular masses, 14 kDa to 55 kDa) that bound to the coreceptors of glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) GFRalpha-1, -2, and -3. Binding was specific because the T. cruzi mimic of host GFLs, named TGFL, did not react with GFL coreceptor tyrosine kinase RET and with other neurotrophic receptors. The polypeptides were located on the parasite outer membrane and bound noncovalently to each other. TGFL eluted from the GFL receptor/protein G affinity column with 0.5 M NaCl, pH 7.5, and potently promoted neurite outgrowth and cell survival in a GFL-sensitive mouse pheochromocytoma cell line. Given that GFLs are neuron survival factors crucial for development and maintenance of central and peripheral nervous systems, it may be that T. cruzi mimicry of host GFLs helps in mutually beneficial host repair of infected and damaged nervous tissue. As there are >30 growth factor receptor-Fc chimeras commercially available, this PcIP assay can be readily adapted to identify receptors/counterreceptors in other T. cruzi invasion sites and in other infections such as Lyme disease, amebiasis, and schistosomiasis.
Collapse
|
41
|
The neuropeptide NAP provides neuroprotection against retinal ganglion cell damage after retinal ischemia and optic nerve crush. Graefes Arch Clin Exp Ophthalmol 2008; 246:1255-63. [PMID: 18414890 DOI: 10.1007/s00417-007-0746-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/21/2007] [Accepted: 11/26/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND NAP, an 8-amino acid peptide (NAPVSIPQ=Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln) derived from activity-dependent neuroprotective protein (ADNP), plays an important role in neuronal differentiation and the survival of neurons in different pathological situations. We already discovered that NAP increases the survival of retinal ganglion cells (RGC) in vitro, and supports neurite outgrowth in retinal explants at femtomolar concentrations. The aim of this study was to investigate the effects of NAP on RGC survival after transient retinal ischemia and optic nerve crush. METHODS RGC of male Wistar rats were labelled retrogradely with 6 l FluoroGold injected stereotactically into both superior colliculi. Seven days later, retinal ischemia was induced by elevating the intraocular pressure to 120 mm Hg for 60 minutes or by crushing one optic nerve for 10 s after a partial orbitotomy. NAP was either injected intraperitoneally in the concentration of 100 microg/kg [corrected] 1 day before, directly after, and on the first and the second days after damage, or intravitreally (0.05 or 0.5 microg/eye) [corrected] directly after the optic nerve crush. Controls received the same concentrations of a control peptide. Densities of surviving RGC and activated microglial cells (AMC) were quantified in a masked fashion 10 days after damage by counting FluoroGold-labelled cells. RESULTS After retinal ischemia, intraperitoneal injections of NAP increased the number of surviving RGC by 40% (p < 0.005) compared to the control group. After optic nerve crush, NAP raised the number of surviving RGC by 31% (p = 0.07) when injected intraperitoneally and by 54% (p < 0.05) when administered intravitreally. CONCLUSIONS NAP acts neuroprotectively in vivo after retinal ischemia and optic nerve crush, and may have potential in treating optic nerve diseases.
Collapse
|
42
|
Lee TI, Yang CS, Fang KM, Tzeng SF. Role of Ciliary Neurotrophic Factor in Microglial Phagocytosis. Neurochem Res 2008; 34:109-17. [DOI: 10.1007/s11064-008-9682-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
|
43
|
CNTF: a target therapeutic for obesity-related metabolic disease? J Mol Med (Berl) 2008; 86:353-61. [DOI: 10.1007/s00109-007-0286-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/09/2007] [Accepted: 10/24/2007] [Indexed: 02/06/2023]
|
44
|
Expression of ciliary neurotrophic factor after induction of ocular hypertension in the retina of rats. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200710020-00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
45
|
Abstract
Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is now estimated that 10% of the world's population is overweight or obese. As a result, new therapeutic options for the treatment of obesity are clearly warranted. Recent research has focused on the role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role of gp130 receptor ligands as part of a therapeutic strategy to treat obesity.
Collapse
Affiliation(s)
- Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Division of Diabetes and Metabolism, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
46
|
Wen R, Song Y, Kjellstrom S, Tanikawa A, Liu Y, Li Y, Zhao L, Bush RA, Laties AM, Sieving PA. Regulation of rod phototransduction machinery by ciliary neurotrophic factor. J Neurosci 2007; 26:13523-30. [PMID: 17192435 PMCID: PMC6674721 DOI: 10.1523/jneurosci.4021-06.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) promotes photoreceptor survival but also suppresses electroretinogram (ERG) responses. This has caused concerns about whether CNTF is detrimental to the function of photoreceptors because it is considered to be a potential treatment for retinal degenerative disorders. Here we report that the suppression of ERG responses is attributable to negative regulation of the phototransduction machinery in rod photoreceptors. Intravitreal injection of recombinant human CNTF protein in rat results in a series of biochemical and morphological changes in rod photoreceptors. CNTF induces a decrease in rhodopsin expression and an increase in arrestin level. Morphologically, CNTF treatment causes a shortening of rod outer segments (ROS). All of these changes are fully reversible. The lower rhodopsin level and shortened ROS reduce the photon catch of rods. Less rhodopsin and more arrestin dramatically increase the arrestin-to-rhodopsin ratio so that more arrestin molecules are available to quench the photoexcited rhodopsin. The overall effect of CNTF is to negatively regulate the phototransduction machinery, which reduces the photoresponsiveness of rods, resulting in lower ERG amplitude at a given intensity of light stimulus. The CNTF-induced changes in rods are similar to those in light-induced photoreceptor plasticity. Whether CNTF-induced changes in rods are through the same mechanism that mediates light-induced photoreceptor plasticity remains to be answered.
Collapse
Affiliation(s)
- Rong Wen
- Department of Ophthalmology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuhlmann T, Remington L, Cognet I, Bourbonniere L, Zehntner S, Guilhot F, Herman A, Guay-Giroux A, Antel JP, Owens T, Gauchat JF. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:584-98. [PMID: 16877358 PMCID: PMC1698786 DOI: 10.2353/ajpath.2006.051086] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide 35-55, treatment with CNTF did not change the peripheral immune response but did reduce the number of perivascular infiltrates and T cells and the level of diffuse microglial activation in spinal cord. Blood brain barrier permeability was significantly reduced in CNTF-treated animals. Beneficial effects of CNTF did not persist after it was withdrawn. After cessation of CNTF treatment, inflammation and symptoms returned to control levels. However, slight but significantly higher numbers of oligodendrocytes, NG2-positive cells, axons, and neurons were observed in mice that had been treated with high concentrations of CNTF. Our results show that CNTF inhibits inflammation in the spinal cord, resulting in amelioration of the clinical course of experimental autoimmune encephalomyelitis during time of treatment.
Collapse
Affiliation(s)
- Tanja Kuhlmann
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Oberle S, Schober A, Meyer V, Holtmann B, Henderson C, Sendtner M, Unsicker K. Loss of leukemia inhibitory factor receptor beta or cardiotrophin-1 causes similar deficits in preganglionic sympathetic neurons and adrenal medulla. J Neurosci 2006; 26:1823-32. [PMID: 16467531 PMCID: PMC6793615 DOI: 10.1523/jneurosci.4127-05.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leukemia inhibitory factor (LIF) receptor beta (LIFRbeta) is a receptor for a variety of neurotrophic cytokines, including LIF, ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1). These cytokines play an essential role for the survival and maintenance of developing and postnatal somatic motoneurons. CNTF may also serve the maintenance of autonomic, preganglionic sympathetic neurons (PSNs) in the spinal cord, as suggested by its capacity to prevent their death after destruction of one of their major targets, the adrenal medulla. Although somatic motoneurons and PSNs share a common embryonic origin, they are distinct in several respects, including responses to lesions. We have studied PSNs in mice with targeted deletions of the LIFRbeta or CT-1 genes, respectively. We show that LIF, CNTF, and CT-1 are synthesized in embryonic adrenal gland and spinal cord and that PSNs express LIFRbeta. In embryonic day 18.5 LIFRbeta (-/-) and CT-1 (-/-) mice, PSNs were reduced by approximately 20%. PSNs projecting to the adrenal medulla were more severely affected (-55%). Although LIFRbeta (-/-) mice revealed normal numbers of adrenal chromaffin cells and axons terminating on chromaffin cells, levels of adrenaline and numbers of adrenaline-synthesizing cells were significantly reduced. We conclude that activation of LIFRbeta is required for normal development of PSNs and one of their prominent targets, the adrenal medulla. Thus, both somatic motoneurons and PSNs in the spinal cord depend on LIFRbeta signaling for their development and maintenance, although PSNs seem to be overall less affected than somatic motoneurons by LIFRbeta deprivation.
Collapse
|
49
|
Abstract
Neurotrophic factors are proteins which promote the survival of specific neuronal populations. Many have other physiological effects on neurons such as inducing morphological differentiation, enhancing nerve regeneration, stimulating neurotransmitter expression, and otherwise altering the physiological characteristics of neurons. These properties suggest that neurotrophic factors are highly promising as potential therapeutic agents for neurological disease. Neurotrophic factors will most likely be applied to the peripheral nervous system initially, since there are fewer problems for large proteins to gain access to peripheral neurons. Many of the most intensively studied factors are active in the peripheral nervous system. These include the neurotrophins (nerve growth factor, brain derived neurotrophic factor, neurotrophin-3, neurotrophin-4/5), the insulin like growth factors, ciliary neurotrophic factor, and glial cell derived neurotrophic factor and its related proteins. The biology of these factors and their receptors in the peripheral nervous system is reviewed here. We also review data suggesting that abnormal availability of some factors may contribute towards the pathogenesis of certain types of peripheral neuropathy. Finally, the pre-clinical data suggesting that individual factors might be effective in treating neuropathy is reviewed, along with data relating to possible side effects of neurotrophic factor therapy. Several factors have already entered clinical trials with variable success. The data from these trials is reviewed as well.
Collapse
Affiliation(s)
- S C Apfel
- Dept. of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Pugh PC, Margiotta JF. PACAP support of neuronal survival requires MAPK- and activity-generated signals. Mol Cell Neurosci 2006; 31:586-95. [PMID: 16431129 DOI: 10.1016/j.mcn.2005.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 10/31/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed in the parasympathetic ciliary ganglion (CG) and modulates nicotinic acetylcholine receptor function. PACAP also provides trophic support, promoting partial survival of CG neurons in culture and full survival when accompanied by membrane depolarization. We probed the adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP to determine their respective roles in supporting neuronal survival and examined their interaction with signals generated by membrane activity. While PLC-dependent signaling was dispensable, AC-generated signals proved critical for PACAP to support neuronal survival. Specifically, PACAP-supported survival was mimicked by 8Br-cAMP and blocked by inhibiting either PKA or the phosphorylation of mitogen-activated protein kinase (MAPK). The ability of PACAP to promote survival was additionally dependent on spontaneous activity as blocking Na+ or Ca2+ channel currents completely abrogated trophic effects. Our results underscore the importance of coordinated MAPK- and activity-generated signals in transducing neuropeptide-mediated parasympathetic neuronal survival.
Collapse
Affiliation(s)
- Phyllis C Pugh
- Department of Neurosciences, Medical University of Ohio, 3035 Arlington Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|