1
|
Liu ZY, Tang F, Wang J, Yang JZ, Chen X, Wang ZF, Li ZQ. Serum beta2-microglobulin acts as a biomarker for severity and prognosis in glioma patients: a preliminary clinical study. BMC Cancer 2024; 24:692. [PMID: 38844902 PMCID: PMC11155066 DOI: 10.1186/s12885-024-12441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Gliomas are the deadliest malignant tumors of the adult central nervous system. We previously discovered that beta2-microglobulin (B2M) is abnormally upregulated in glioma tissues and that it exerts a range of oncogenic effects. Besides its tissue presence, serum B2M levels serve as biomarkers for various diseases. This study aimed to explore whether serum B2M levels can be used in the diagnosis and prognosis of gliomas. METHODS Medical records from 246 glioma patients were retrospectively analyzed. The relationship between preoperative serum B2M levels and clinicopathological features was examined. Kaplan-Meier analysis, alongside uni- and multivariate Cox regression, assessed the association between B2M levels, systemic inflammatory markers, and glioma patient prognosis. Receiver operating characteristic (ROC) curve analysis evaluated the diagnostic significance of these biomarkers specifically for glioblastoma (GBM). RESULTS Patients with malignant gliomas exhibited elevated preoperative serum B2M levels. Glioma patients with high serum B2M levels experienced shorter survival times. Multivariate Cox analysis determined the relationship between B2M levels (hazard ratio = 1.92, 95% confidence interval: 1.05-3.50, P = 0.034) and the overall survival of glioma patients. B2M demonstrated superior discriminatory power in distinguishing between GBM and non-GBM compared to inflammation indicators. Moreover, postoperative serum B2M levels were lower than preoperative levels in the majority of glioma patients. CONCLUSIONS High preoperative serum B2M levels correlated with malignant glioma and a poor prognosis. Serum B2M shows promise as a novel biomarker for predicting patient prognosis and reflecting the therapeutic response.
Collapse
Affiliation(s)
- Zhen-Yuan Liu
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Wang
- Department of Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Jin-Zhou Yang
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Brain Glioma Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei International Science and Technology Cooperation Base for Research and Clinical techniques for Brain Glioma Diagnosis and Treatment, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Liu ZY, Tang F, Yang JZ, Chen X, Wang ZF, Li ZQ. The Role of Beta2-Microglobulin in Central Nervous System Disease. Cell Mol Neurobiol 2024; 44:46. [PMID: 38743119 PMCID: PMC11093819 DOI: 10.1007/s10571-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Central nervous system (CNS) disorders represent the leading cause of disability and the second leading cause of death worldwide, and impose a substantial economic burden on society. In recent years, emerging evidence has found that beta2 -microglobulin (B2M), a subunit of major histocompatibility complex class I (MHC-I) molecules, plays a crucial role in the development and progression in certain CNS diseases. On the one hand, intracellular B2M was abnormally upregulated in brain tumors and regulated tumor microenvironments and progression. On the other hand, soluble B2M was also elevated and involved in pathological stages in CNS diseases. Targeted B2M therapy has shown promising outcomes in specific CNS diseases. In this review, we provide a comprehensive summary and discussion of recent advances in understanding the pathological processes involving B2M in CNS diseases (e.g., Alzheimer's disease, aging, stroke, HIV-related dementia, glioma, and primary central nervous system lymphoma).
Collapse
Affiliation(s)
- Zhen-Yuan Liu
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Feng Tang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin-Zhou Yang
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Brain Glioma Center & Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Sun Y, Papadaki GF, Devlin CA, Danon JN, Young MC, Winters TJ, Burslem GM, Procko E, Sgourakis NG. Xeno interactions between MHC-I proteins and molecular chaperones enable ligand exchange on a broad repertoire of HLA allotypes. SCIENCE ADVANCES 2023; 9:eade7151. [PMID: 36827371 PMCID: PMC9956121 DOI: 10.1126/sciadv.ade7151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
Immunological chaperones tapasin and TAP binding protein, related (TAPBPR) play key roles in antigenic peptide optimization and quality control of nascent class I major histocompatibility complex (MHC-I) molecules. The polymorphic nature of MHC-I proteins leads to a range of allelic dependencies on chaperones for assembly and cell-surface expression, limiting chaperone-mediated peptide exchange to a restricted set of human leukocyte antigen (HLA) allotypes. Here, we demonstrate and characterize xeno interactions between a chicken TAPBPR ortholog and a complementary repertoire of HLA allotypes, relative to its human counterpart. We find that TAPBPR orthologs recognize empty MHC-I with broader allele specificity and facilitate peptide exchange by maintaining a reservoir of receptive molecules. Deep mutational scanning of human TAPBPR further identifies gain-of-function mutants, resembling the chicken sequence, which can enhance HLA-A*01:01 expression in situ and promote peptide exchange in vitro. These results highlight that polymorphic sites on MHC-I and chaperone surfaces can be engineered to manipulate their interactions, enabling chaperone-mediated peptide exchange on disease-relevant HLA alleles.
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Georgia F. Papadaki
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Christine A. Devlin
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Julia N. Danon
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Michael C. Young
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Trenton J. Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL 61820, USA
| | - Nikolaos G. Sgourakis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
A personal retrospective on the mechanisms of antigen processing. Immunogenetics 2019; 71:141-160. [PMID: 30694344 DOI: 10.1007/s00251-018-01098-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
My intention here is to describe the history of the molecular aspects of the antigen processing field from a personal perspective, beginning with the early identification of the species that we now know as MHC class I and MHC class II molecules, to the recognition that their stable surface expression and detection by T cells depends on peptide association, and to the unraveling of the biochemical and cell biological mechanisms that regulate peptide binding. One goal is to highlight the role that serendipity or, more colloquially, pure blind luck can play in advancing the research enterprise when it is combined with an appropriately receptive mind. This is not intended to be an overarching review, and because of my own work I focus primarily on studies of the human MHC. This means that I neglect the work of many other individuals who made advances in other species, particularly those who produced the many knockout mouse strains used to demonstrate the importance of the antigen processing machinery for initiating immune responses. I apologize in advance to colleagues around the globe whose contributions I deal with inadequately for these reasons, and to those whose foundational work is now firmly established in text books and therefore not cited. So many individuals have worked to advance the field that giving all of them the credit they deserve is almost impossible. I have attempted, while focusing on work from my own laboratory, to point out contemporaneous or sometimes earlier advances made by others. Much of the success of my own laboratory came because we simultaneously worked on both the MHC class I and class II systems and used the findings in one area to inform the other, but mainly it depended on the extraordinary group of students and fellows who have worked on these projects over the years. To those who worked in other areas who are not mentioned here, rest assured that I appreciate your efforts just as much.
Collapse
|
5
|
Sever L, Vo NTK, Bols NC, Dixon B. Tapasin's protein interactions in the rainbow trout peptide-loading complex. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:262-270. [PMID: 29253558 DOI: 10.1016/j.dci.2017.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Major histocompatibility complex (MHC) class I receptors play a key role in the immune system by presenting non-self peptides to T cell lymphocytes. In humans, the assembly of the MHC class I with a peptide is mediated by machinery in the endoplasmic reticulum referred as the peptide loading complex (PLC). Although, the identity of the PLC has been widely explored in humans, this complex has not been characterized in fish. Co-immunoprecipitation and mass spectrometry analysis revealed that the protein-protein interactions which exist in the human PLC are conserved in the monocyte/macrophage rainbow trout cell line (RTS11), in particular the interaction of tapasin with the transporter associated with antigen processing (TAP), MHC class I and ERp57. Importantly, a 20 kDa tapasin version that contains an intact C and N terminal domains was found to associate with ERp57 and form a 75 kDa heterodimer. These results suggest a possible novel alternative spliced version of tapasin may regulate the formation of the peptide-loading complex in teleosts.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W. Waterloo, Ontario, N2L 3G1, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W. Waterloo, Ontario, N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W. Waterloo, Ontario, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W. Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
6
|
Qian Y, Wang G, Xue F, Chen L, Wang Y, Tang L, Yang H. Genetic association between TAP1 and TAP2 polymorphisms and ankylosing spondylitis: a systematic review and meta-analysis. Inflamm Res 2017; 66:653-661. [PMID: 28405734 DOI: 10.1007/s00011-017-1047-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic inflammatory joint disease. The transporter associated with antigen processing (TAP) has been identified to play an important role in immune response as well as the HLA-associated diseases. The aim of our meta-analysis was to investigate the contribution of TAP (TAP1 and TAP2) polymorphisms to the risk of AS. METHODS Meta-analyses were performed between 2 polymorphisms in TAP1 (TAP1-333, -637) and 3 polymorphisms in TAP2 (TAP2-379, -565, and -665) and AS. RESULTS The meta-analyses were involved with 6 studies with 415 cases and 659 controls. Significant association was found between TAP1-333Val, TAP1-637Gly, and TAP2-565Thr and AS compared with combined control group (TAP1-333Val: p = 0.009, OR = 1.40, 95% CI 1.09-1.80; TAP1-637Gly: p = 0.002, OR = 1.48, 95% CI 1.15-1.91; p = 0.03, OR = 1.38, 95% CI 1.04-1.84). Subgroup analysis shown that significant association was only found in AS when compared with HLA-B27-negative controls (TAP1-333Val: p = 0.004, OR = 1.53, 95% CI 1.14-2.06; TAP1-637Gly: p = 0.004, OR = 1.52, 95% CI 1.15-2.02; p = 0.02, OR = 1.56, 95% CI 1.09-2.24), but not in AS when compared with HLA-B27-positive controls (p > 0.05). Moreover, no significant associations were found between haplotypes in TAP1 and TAP2 in both the combined and the subgroup analyses (p > 0.05). CONCLUSIONS TAP1-333Val, TAP1-637Gly, and TAP2-565Thr were likely to be associated with AS.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China.,Department of Orthopedics, Changshu First People's Hospital, Changshu, People's Republic of China
| | - Genlin Wang
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China
| | - Feng Xue
- Department of Orthopedics, Changshu First People's Hospital, Changshu, People's Republic of China
| | - Lianghui Chen
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Yan Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China.
| |
Collapse
|
7
|
Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. ACTA ACUST UNITED AC 2015; 85:155-66. [PMID: 25720504 DOI: 10.1111/tan.12538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.
Collapse
Affiliation(s)
- C Hermann
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
8
|
Koelzer VH, Dawson H, Andersson E, Karamitopoulou E, Masucci GV, Lugli A, Zlobec I. Active immunosurveillance in the tumor microenvironment of colorectal cancer is associated with low frequency tumor budding and improved outcome. Transl Res 2015; 166:207-17. [PMID: 25797890 DOI: 10.1016/j.trsl.2015.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 02/02/2023]
Abstract
Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.
Collapse
Affiliation(s)
- Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Karamitopoulou
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Giuseppe V Masucci
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland; Clinical Pathology Division, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Ardeniz Ö, Unger S, Onay H, Ammann S, Keck C, Cianga C, Gerçeker B, Martin B, Fuchs I, Salzer U, İkincioğulları A, Güloğlu D, Dereli T, Thimme R, Ehl S, Schwarz K, Schmitt-Graeff A, Cianga P, Fisch P, Warnatz K. β2-Microglobulin deficiency causes a complex immunodeficiency of the innate and adaptive immune system. J Allergy Clin Immunol 2015; 136:392-401. [PMID: 25702838 DOI: 10.1016/j.jaci.2014.12.1937] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Most patients with MHC class I (MHC-I) deficiency carry genetic defects in transporter associated with antigen processing 1 (TAP1) or TAP2. The clinical presentation can vary, and about half of the patients have severe skin disease. Previously, one report described β2-microglobulin (β2m) deficiency as another monogenetic cause of MHC-I deficiency, but no further immunologic evaluation was performed. OBJECTIVE We sought to describe the molecular and immunologic features of β2m deficiency in 2 Turkish siblings with new diagnoses. METHODS Based on clinical and serologic findings, the genetic defect was detected by means of candidate gene analysis. The immunologic characterization comprises flow cytometry, ELISA, functional assays, and immunohistochemistry. RESULTS Here we provide the first extensive clinical and immunologic description of β2m deficiency in 2 siblings. The sister had recurrent respiratory tract infections and severe skin disease, whereas the brother was fairly asymptomatic but had bronchiectasis. Not only polymorphic MHC-I but also the related CD1a, CD1b, CD1c, and neonatal Fc receptor molecules were absent from the surfaces of β2m-deficient cells. Absent neonatal Fc receptor surface expression led to low serum IgG and albumin levels in both siblings, whereas the heterozygous parents had normal results for all tested parameters except β2m mRNA (B2M) expression. Similar to TAP deficiency in the absence of a regular CD8 T-cell compartment, CD8(+) γδ T cells were strongly expanded. Natural killer cells were normal in number but not "licensed to kill." CONCLUSION The clinical presentation of patients with β2m deficiency resembles that of patients with other forms of MHC-I deficiency, but because of the missing stabilizing effect of β2m on other members of the MHC-I family, the immunologic defect is more extensive than in patients with TAP deficiency.
Collapse
Affiliation(s)
- Ömür Ardeniz
- Internal Medicine Division of Allergy and Clinical Immunology, Ege University Medical Faculty, İzmir, Turkey.
| | - Susanne Unger
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Hüseyin Onay
- Department of Medical Genetics, Ege University Medical Faculty, İzmir, Turkey
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Caroline Keck
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Corina Cianga
- Grigore T. Popa University of Medicine and Pharmacy, Department of Immunology, Iasi, Romania
| | - Bengü Gerçeker
- Department of Dermatology, Ege University Medical Faculty, İzmir, Turkey
| | - Bianca Martin
- Department of Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Aydan İkincioğulları
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Deniz Güloğlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Tuğrul Dereli
- Department of Dermatology, Ege University Medical Faculty, İzmir, Turkey
| | - Robert Thimme
- Department of Internal Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, and the Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Ulm, Germany
| | | | - Petru Cianga
- Grigore T. Popa University of Medicine and Pharmacy, Department of Immunology, Iasi, Romania
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Magor KE, Miranzo Navarro D, Barber MRW, Petkau K, Fleming-Canepa X, Blyth GAD, Blaine AH. Defense genes missing from the flight division. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:377-88. [PMID: 23624185 PMCID: PMC7172724 DOI: 10.1016/j.dci.2013.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/16/2013] [Indexed: 05/12/2023]
Abstract
Birds have a smaller repertoire of immune genes than mammals. In our efforts to study antiviral responses to influenza in avian hosts, we have noted key genes that appear to be missing. As a result, we speculate that birds have impaired detection of viruses and intracellular pathogens. Birds are missing TLR8, a detector for single-stranded RNA. Chickens also lack RIG-I, the intracellular detector for single-stranded viral RNA. Riplet, an activator for RIG-I, is also missing in chickens. IRF3, the nuclear activator of interferon-beta in the RIG-I pathway is missing in birds. Downstream of interferon (IFN) signaling, some of the antiviral effectors are missing, including ISG15, and ISG54 and ISG56 (IFITs). Birds have only three antibody isotypes and IgD is missing. Ducks, but not chickens, make an unusual truncated IgY antibody that is missing the Fc fragment. Chickens have an expanded family of LILR leukocyte receptor genes, called CHIR genes, with hundreds of members, including several that encode IgY Fc receptors. Intriguingly, LILR homologues appear to be missing in ducks, including these IgY Fc receptors. The truncated IgY in ducks, and the duplicated IgY receptor genes in chickens may both have resulted from selective pressure by a pathogen on IgY FcR interactions. Birds have a minimal MHC, and the TAP transport and presentation of peptides on MHC class I is constrained, limiting function. Perhaps removing some constraint, ducks appear to lack tapasin, a chaperone involved in loading peptides on MHC class I. Finally, the absence of lymphotoxin-alpha and beta may account for the observed lack of lymph nodes in birds. As illustrated by these examples, the picture that emerges is some impairment of immune response to viruses in birds, either a cause or consequence of the host-pathogen arms race and long evolutionary relationship of birds and RNA viruses.
Collapse
Affiliation(s)
- Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Näsman A, Andersson E, Marklund L, Tertipis N, Hammarstedt-Nordenvall L, Attner P, Nyberg T, Masucci GV, Munck-Wikland E, Ramqvist T, Dalianis T. HLA class I and II expression in oropharyngeal squamous cell carcinoma in relation to tumor HPV status and clinical outcome. PLoS One 2013; 8:e77025. [PMID: 24130830 PMCID: PMC3794938 DOI: 10.1371/journal.pone.0077025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/26/2013] [Indexed: 01/01/2023] Open
Abstract
HPV-DNA positive (HPVDNA+) oropharyngeal squamous cell carcinoma (OSCC) has better clinical outcome than HPV-DNA negative (HPVDNA-) OSCC. Current treatment may be unnecessarily extensive for most HPV+ OSCC, but before de-escalation, additional markers are needed together with HPV status to better predict treatment response. Here the influence of HLA class I/HLA class II expression was explored. Pre-treatment biopsies, from 439/484 OSCC patients diagnosed 2000-2009 and treated curatively, were analyzed for HLA I and II expression, p16(INK4a) and HPV DNA. Absent/weak as compared to high HLA class I intensity correlated to a very favorable disease-free survival (DFS), disease-specific survival (DSS) and overall survival (OS) in HPVDNA+ OSCC, both in univariate and multivariate analysis, while HLA class II had no impact. Notably, HPVDNA+ OSCC with absent/weak HLA class I responded equally well when treated with induction-chemo-radiotherapy (CRT) or radiotherapy (RT) alone. In patients with HPVDNA- OSCC, high HLA class I/class II expression correlated in general to a better clinical outcome. p16(INK4a) overexpression correlated to a better clinical outcome in HPVDNA+ OSCC. Absence of HLA class I intensity in HPVDNA+ OSCC suggests a very high survival independent of treatment and could possibly be used clinically to select patients for randomized trials de-escalating therapy.
Collapse
Affiliation(s)
- Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Marklund
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolaos Tertipis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lalle Hammarstedt-Nordenvall
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Attner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Nyberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Munck-Wikland
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, Duncan LM, Harbour ME, Rhodes DA, Skjødt K, Lehner PJ, Trowsdale J. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 2013; 110:3465-70. [PMID: 23401559 PMCID: PMC3587277 DOI: 10.1073/pnas.1222342110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I coupled with β2-microglobulin in the endoplasmic reticulum. In contrast to tapasin, TAPBPR does not bind ERp57 or calreticulin and is not an integral component of the PLC. β2-microglobulin is essential for the association between TAPBPR and MHC class I. However, the association between TAPBPR and MHC class I occurs in the absence of a functional PLC, suggesting peptide is not required. Expression of TAPBPR decreases the rate of MHC class I maturation through the secretory pathway and prolongs the association of MHC class I on the PLC. The TAPBPR:MHC class I complex trafficks through the Golgi apparatus, demonstrating a function of TAPBPR beyond the endoplasmic reticulum/cis-Golgi. The identification of TAPBPR as an additional component of the MHC class I antigen-presentation pathway demonstrates that mechanisms controlling MHC class I expression remain incompletely understood.
Collapse
Affiliation(s)
- Louise H Boyle
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Geironson L, Røder G, Paulsson K. Stability of peptide-HLA-I complexes and tapasin folding facilitation - tools to define immunogenic peptides. FEBS Lett 2012; 586:1336-43. [DOI: 10.1016/j.febslet.2012.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 01/04/2023]
|
14
|
Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T. The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. ACTA ACUST UNITED AC 2011; 76:259-75. [PMID: 21050182 DOI: 10.1111/j.1399-0039.2010.01550.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins protect the host from intracellular pathogens and cellular abnormalities through the binding of peptide fragments derived primarily from intracellular proteins. These peptide-MHC complexes are displayed at the cell surface for inspection by cytotoxic T lymphocytes. Here we reveal how MHC I molecules achieve this feat in the face of numerous levels of quality control. Among these is the chaperone tapasin, which governs peptide selection in the endoplasmic reticulum as part of the peptide-loading complex, and we propose key amino acid interactions central to the peptide selection mechanism. We discuss how the aminopeptidase ERAAP fine-tunes the peptide repertoire available to assembling MHC I molecules, before focusing on the journey of MHC I molecules through the secretory pathway, where calreticulin provides additional regulation of MHC I expression. Lastly we discuss how these processes culminate to influence immune responses.
Collapse
Affiliation(s)
- A Van Hateren
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | | | | | | | | | | |
Collapse
|
15
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules? Immunol Res 2010; 46:32-44. [PMID: 19830395 DOI: 10.1007/s12026-009-8123-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I-viral peptide complexes or cells displaying MHC class I-mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.
Collapse
|
17
|
Belicha-Villanueva A, Golding M, McEvoy S, Sarvaiya N, Cresswell P, Gollnick SO, Bangia N. Identification of an alternate splice form of tapasin in human melanoma. Hum Immunol 2010; 71:1018-26. [PMID: 20600451 DOI: 10.1016/j.humimm.2010.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Assembly of major histocompatibility complex (MHC) class I molecules with peptide in the endoplasmic reticulum requires the assistance of tapasin. Alternative splicing, which is known to regulate many genes, has been reported for tapasin only in the context of mutations. Here, we report on an alternate splice form of tapasin (tpsnΔEx3) derived from a human melanoma cell line that does not appear to be caused by mutations. Excision of exon 3 results in deletion of amino acids 70 to 156 within the beta barrel region, but the membrane proximal Ig domain, the transmembrane domain, and cytoplasmic tail of tapasin are intact. Introduction of tpsnΔEx3 into a tapasin-deficient cell line does not restore MHC class I expression at the cell surface. Similar to a previously described tapasin mutant (tpsnΔN50), tpsnΔEx3 interacts with TAP. Therefore, we used these altered forms of tapasin to test the importance of MHC class I interaction with TAP. In the presence of wild-type tapasin, transfection of tpsnΔN50, but not tpsnΔEx3, reduced MHC class I expression at the cell surface likely due its ability to compete MHC class I molecules from TAP. Together these findings suggest that tumor cells may contain alternate splice forms of tapasin which may regulate MHC class I antigen presentation.
Collapse
|
18
|
Subramaniam NS, Morgan EF, Lee CY, Wetherall JD, Groth DM. Polymorphism of sheep MHC Class IIb gene TAPASIN. Vet Immunol Immunopathol 2010; 137:176-80. [PMID: 20605221 DOI: 10.1016/j.vetimm.2010.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/06/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022]
Abstract
The Major Histocompatibility Complex (MHC) is one of the most gene dense regions in the genome and studies in several species have shown significant associations between the MHC and disease. The endoplasmic reticular glycoprotein, tapasin, is involved in the MHC class I antigen presentation pathway. Sheep TAPASIN is located in the class IIb region of the MHC. Sheep TAPASIN was subcloned from BAC and cosmid genomic clones and DNA sequenced. TAPASIN is 9549bp in length and encodes a protein of 447 amino acids. The structure of sheep TAPASIN was similar to other mammals and consisted of eight exons with a distinctively larger intron between exon three and four. Sheep TAPASIN gene had high sequence identity with other mammalian TAPASINs. The TAPASIN gene sequence is conserved across many mammalian species and is possibly maintained through purifying selection with the average ratio of ds/dn of 3.9. Twenty-six SNPs in sheep TAPASIN were identified.
Collapse
Affiliation(s)
- N Siva Subramaniam
- Western Australian Biomedical Research Institute (WABRI) & Centre for Health Innovation Research Institute, School of Biomedical Sciences, Curtin University of Technology, Perth, Western Australia 6845, Australia
| | | | | | | | | |
Collapse
|
19
|
Theodoratos A, Whittle B, Enders A, Tscharke DC, Roots CM, Goodnow CC, Fahrer AM. Mouse strains with point mutations in TAP1 and TAP2. Immunol Cell Biol 2009; 88:72-8. [PMID: 19721454 DOI: 10.1038/icb.2009.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report two new mouse strains: Jasmine (C57BL/6J/Apb-Tap2jas/Apb), with a point mutation in the transporter associated with antigen processing (TAP)2 ; and Rose, (C57BL/6J/Apb-Tap1rose/Apb), with a point mutation in TAP1. These strains were detected as the result of ethyl nitroso urea (ENU) screens for recessive point mutations affecting the immune system. As expected in cases of defective TAP expression, the mice have very low major histocompatibility complex (MHC)-I cell-surface expression, and few CD8(+) T cells. The Rose strain has an A to T substitution in exon 10 of TAP1, resulting in an asparagine to valine substitution at position 643. Jasmine has an A to C transversion in exon 5 of TAP2, resulting in a threonine to proline substitution at position 293 of the protein. The mutation does not affect mRNA levels, but results in a very severe reduction in TAP2 protein. TAP1 protein levels are also decreased in Jasmine mice, demonstrating a new role for mouse TAP2 in stabilizing TAP1 protein expression. Jasmine is the first strain available with defective TAP2. The two mouse strains provide additional animal models for the human condition Bare Lymphocyte syndrome type 1, and identify new residues important for TAP function.
Collapse
Affiliation(s)
- Angelo Theodoratos
- Biochemistry and Molecular Biology, Research School of Biology, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Effect of a tapasin mutant on the assembly of the mouse MHC class I molecule H2-K(d). Immunol Cell Biol 2009; 88:57-62. [PMID: 19687800 DOI: 10.1038/icb.2009.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major histocompatibility complex (MHC) class I heavy chain/beta(2)m heterodimers assemble with antigenic peptides through interactions with peptide-loading complex proteins, including tapasin and ERp57. In human cells, a cysteine residue within tapasin (C95) has been shown to form a covalent bond with ERp57. In this study, we focused on the effect of this tapasin amino-acid residue in mouse cells expressing the MHC class I molecule H2-K(d). We showed that a large disulfide-bonded complex was present in the mouse cells that included ERp57, tapasin, and K(d). Furthermore, in mouse cells, unlike human cells, we found that tapasin mutated at C95 can participate in a non-covalent complex with ERp57. Comparison of our findings to earlier findings with a human molecule (HLA-B(*)4402) also revealed that a tapasin C95 mutation has a stronger effect on the maturation and stability of K(d) than HLA-B(*)4402. Overall, our results characterize the influence of this tapasin cysteine residue on the stable surface expression of a mouse MHC class I molecule and reveal differences in tapasin C95 interactions and effects between mouse and human systems.
Collapse
|
21
|
Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampé R, Koch J, Ressing ME, Wiertz EJHJ. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. THE JOURNAL OF IMMUNOLOGY 2008; 181:4894-907. [PMID: 18802093 DOI: 10.4049/jimmunol.181.7.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Simone LC, Wang X, Tuli A, McIlhaney MM, Solheim JC. Influence of the tapasin C terminus on the assembly of MHC class I allotypes. Immunogenetics 2008; 61:43-54. [PMID: 18958466 DOI: 10.1007/s00251-008-0335-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 09/29/2008] [Indexed: 11/30/2022]
Abstract
Several endoplasmic reticulum proteins, including tapasin, play an important role in major histocompatibility complex (MHC) class I assembly. In this study, we assessed the influence of the tapasin cytoplasmic tail on three mouse MHC class I allotypes (H2-K(b), -K(d), and -L(d)) and demonstrated that the expression of truncated mouse tapasin in mouse cells resulted in very low K(b), K(d), and L(d) surface expression. The surface expression of K(d) also could not be rescued by human soluble tapasin, suggesting that the surface expression phenotype of the mouse MHC class I molecules in the presence of soluble tapasin was not due to mouse/human differences in tapasin. Notably, soluble mouse tapasin was able to partially rescue HLA-B8 surface expression on human 721.220 cells. Thus, the cytoplasmic tail of tapasin (either mouse or human) has a stronger impact on the surface expression of murine MHC class I molecules on mouse cells than on the expression of HLA-B8 on human cells. A K408W mutation in the mouse tapasin transmembrane/cytoplasmic domain disrupted K(d) folding and release from tapasin, but not interaction with transporter associated with antigen processing (TAP), indicating that the mechanism whereby the tapasin transmembrane/cytoplasmic domain facilitates MHC class I assembly is not limited to TAP stabilization. Our findings indicate that the C terminus of mouse tapasin plays a vital role in enabling murine MHC class I molecules to be expressed at the surface of mouse cells.
Collapse
Affiliation(s)
- Laura C Simone
- Eppley Institute for Research in Cancer and Allied Diseases and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | |
Collapse
|
23
|
Malone KE, Stohlman SA, Ramakrishna C, Macklin W, Bergmann CC. Induction of class I antigen processing components in oligodendroglia and microglia during viral encephalomyelitis. Glia 2008; 56:426-35. [PMID: 18205173 PMCID: PMC7165990 DOI: 10.1002/glia.20625] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glia exhibit differential susceptibility to CD8 T cell mediated effector mechanisms during neurotropic coronavirus infection. In contrast to microglia, oligodendroglia are resistant to CD8 T cell perforin‐mediated viral control in the absence of IFNγ. Kinetic induction of MHC Class I expression by microglia and oligodendroglia in vivo was thus analyzed to assess responses to distinct inflammatory signals. Flow cytometry demonstrated delayed Class I surface expression by oligodendroglia compared with microglia. Distinct kinetics of Class I protein upregulation correlated with cell type specific transcription patterns of genes encoding Class I heavy chains and antigen processing components. Microglia isolated from naïve mice expressed high levels of these mRNAs, whereas they were near detection limits in oligodendroglia; nevertheless, Class I protein was undetectable on both cell types. Infection induced modest mRNA increases in microglia, but dramatic transcriptional upregulation in oligodendroglia coincident with IFNα or IFNγ mRNA increases in infected tissue. Ultimately mRNAs reached similar levels in both cell types at their respective time points of maximal Class I expression. Expression of Class I on microglia, but not oligodendroglia, in infected IFNγ deficient mice supported distinct IFN requirements for Class I presentation. These data suggest an innate immune preparedness of microglia to present antigen and engage CD8 T cells early following infection. The delayed, yet robust, IFNγ dependent capacity of oligodendroglia to express Class I suggests strict control of immune interactions to avoid CD8 T cell recognition and potential presentation of autoantigen to preserve myelin maintenance. © 2008 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Karen E Malone
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
24
|
Kamiguchi K, Torigoe T, Fujiwara O, Ohshima S, Hirohashi Y, Sahara H, Hirai I, Kohgo Y, Sato N. Disruption of the association of 73 kDa heat shock cognate protein with transporters associated with antigen processing (TAP) decreases TAP-dependent translocation of antigenic peptides into the endoplasmic reticulum. Microbiol Immunol 2008; 52:94-106. [DOI: 10.1111/j.1348-0421.2008.00017.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Everett MW, Edidin M. Tapasin Increases Efficiency of MHC I Assembly in the Endoplasmic Reticulum but Does Not Affect MHC I Stability at the Cell Surface. THE JOURNAL OF IMMUNOLOGY 2007; 179:7646-52. [DOI: 10.4049/jimmunol.179.11.7646] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Sibilio L, Martayan A, Setini A, Monaco EL, Tremante E, Butler RH, Giacomini P. A single bottleneck in HLA-C assembly. J Biol Chem 2007; 283:1267-1274. [PMID: 17956861 DOI: 10.1074/jbc.m708068200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poor assembly of class I major histocompatibility HLA-C heavy chains results in their intracellular accumulation in two forms: free of and associated with their light chain subunit (beta(2)-microglobulin). Both intermediates are retained in the endoplasmic reticulum by promiscuous and HLA-dedicated chaperones and are poorly associated with peptide antigens. In this study, the eight serologically defined HLA-C alleles and the interlocus recombinant HLA-B46 allele (sharing the HLA-C-specific motif KYRV at residues 66-76 of the alpha1-domain alpha-helix) were compared with a large series of HLA-B and HLA-A alleles. Pulse-labeling experiments with HLA-C transfectants and HLA homozygous cell lines demonstrated that KYRV alleles accumulate as free heavy chains because of both poor assembly and post-assembly instability. Reactivity with antibodies to mapped linear epitopes, co-immunoprecipitation experiments, and molecular dynamics simulation studies additionally showed that the KYRV motif confers association to the HLA-dedicated chaperones TAP and tapasin as well as reduced plasticity and unfolding in the peptide-binding groove. Finally, in vitro assembly experiments in cell extracts of the T2 and 721.220 mutant cell lines demonstrated that HLA-Cw1 retains the ability to form a peptide-receptive interface despite a lack of TAP and functional tapasin, respectively. In the context of the available literature, these results indicate that a single locus-specific biosynthetic bottleneck renders HLA-C peptide-selective (rather than peptide-unreceptive) and a preferential natural killer cell ligand.
Collapse
Affiliation(s)
- Leonardo Sibilio
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Aline Martayan
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Andrea Setini
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Elisa Lo Monaco
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Elisa Tremante
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Richard H Butler
- Cell Biology Institute, Consiglio Nazionale delle Ricerche, Via E. Ramarini 32, 00016 Monterotondo Scalo Rome, Italy
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena National Cancer Research Institute, Centro della Ricerca Sperimentale, Via delle Messi d'Oro 156, 00158 Rome, Italy.
| |
Collapse
|
27
|
Cabrera CM. The Double Role of the Endoplasmic Reticulum Chaperone Tapasin in Peptide Optimization of HLA Class I Molecules. Scand J Immunol 2007; 65:487-93. [PMID: 17523940 DOI: 10.1111/j.1365-3083.2007.01934.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the assembly of the HLA class I molecules with peptides in the peptide-loading complex, a series of transient interactions are made with ER-resident chaperones. These interactions culminate in the trafficking of the HLA class I molecules to the cell surface and presentation of peptides to CD8(+) T lymphocytes. Within the peptide-loading complex, the glycoprotein tapasin exhibits a relevant function. This immunoglobulin (Ig) superfamily member in the endoplasmic reticulum membrane tethers empty HLA class I molecules to the transporter associated with antigen-processing (TAP) proteins. This review will address the current concepts regarding the double role that tapasin plays in the peptide optimization and surface expression of the HLA class I molecules.
Collapse
Affiliation(s)
- C M Cabrera
- Stem Cell Bank of Andalucia (Spanish Central Node), Hospital Universitario Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
28
|
Fruci D, Ferracuti S, Limongi MZ, Cunsolo V, Giorda E, Fraioli R, Sibilio L, Carroll O, Hattori A, van Endert PM, Giacomini P. Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. THE JOURNAL OF IMMUNOLOGY 2006; 176:4869-79. [PMID: 16585582 DOI: 10.4049/jimmunol.176.8.4869] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide trimming in the endoplasmic reticulum (ER), the final step required for the generation of most HLA class I-binding peptides, implicates the concerted action of two aminopeptidases, ERAP1 and ERAP2. Because defects in the expression of these peptidases could lead to aberrant surface HLA class I expression in tumor cells, we quantitatively assayed 14 EBV-B cell lines and 35 human tumor cell lines of various lineages for: 1) expression and enzymatic activities of ERAP1 and ERAP2; 2) ER peptide-trimming activity in microsomes; 3) expression of HLA class I H chains and TAP1; and 4) surface HLA class I expression. ERAP1 and ERAP2 expression was detectable in all of the EBV-B and tumor cell lines, but in the latter it was extremely variable, sometimes barely detectable, and not coordinated. The expression of the two aminopeptidases corresponded well to the respective enzymatic activities in most cell lines. A peptide-trimming assay in microsomes revealed additional enzymatic activities, presumably contributed by other unidentified aminopeptidases sharing substrate specificity with ERAP2. Interestingly, surface HLA class I expression showed significant correlation with ERAP1 activity, but not with the activity of either ERAP2 or other unidentified aminopeptidases. Transfection with ERAP1 or ERAP2 of two tumor cell lines selected for simultaneous low expression of the two aminopeptidases resulted in the expected, moderate increases of class I surface expression. Thus, low and/or imbalanced expression of ERAP1 and probably ERAP2 may cause improper Ag processing and favor tumor escape from the immune surveillance.
Collapse
|
29
|
Groothuis T, Neefjes J. The Ins and Outs of Intracellular Peptides and Antigen Presentation by MHC Class I Molecules. Curr Top Microbiol Immunol 2006; 300:127-48. [PMID: 16573239 DOI: 10.1007/3-540-28007-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MHC class I molecules present small intracellular generated fragments to the outside surveying immune system. This is the result of a series of biochemical processes involving biosynthesis, degradation, translocation, intracellular transport, diffusion, and many more. Critical intermediates and end products of this cascade of events are peptides. The peptides are generated by the proteasome, degraded by peptidases unless transported into the ER where another peptidase and MHC class I molecules are waiting. Unless peptides bind to MHC class I molecules, they are released from the ER and enter the cytoplasm by a system resembling the ERAD pathway in many aspects. The cycle of peptides over the ER membrane with the proteasome at the input site and peptidases or MHC class I molecules on the output site are central in the MHC class I antigen presentation pathway and this review.
Collapse
Affiliation(s)
- T Groothuis
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Abele R, Tampé R. Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 2005; 580:1156-63. [PMID: 16359665 DOI: 10.1016/j.febslet.2005.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon-gamma. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | |
Collapse
|
31
|
Sibilio L, Martayan A, Setini A, Fraioli R, Fruci D, Shabanowitz J, Hunt DF, Giacomini P. Impaired Assembly Results in the Accumulation of Multiple HLA-C Heavy Chain Folding Intermediates. THE JOURNAL OF IMMUNOLOGY 2005; 175:6651-8. [PMID: 16272320 DOI: 10.4049/jimmunol.175.10.6651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class I MHC H chains assemble with beta2-microglobulin (beta2m) and are loaded with peptide Ags through multiple folding steps. When free of beta2m, human H chains react with Abs to linear epitopes, such as L31. Immunodepletion and coimmunoprecipitation experiments, performed in this study, detected a preferential association of L31-reactive, beta2m-free H chains with calnexin in beta2m-defective cells, and with calreticulin and TAP in beta2m-expressing cells. In beta2m-defective cells, the accumulation of calnexin-bound H chains stoichiometrically exceeded their overall accumulation, a finding that supports both chaperoning preferences and distinct sorting abilities for different class I folds. No peptide species, in a mass range compatible with that of the classical class I ligands, could be detected by mass spectrometry of acidic eluates from L31-reactive HLA-Cw1 H chains. In vitro assembly experiments in TAP-defective T2 cells, and in cells expressing an intact Ag-processing machinery, demonstrated that L31 H chains are not only free of, but also unreceptive to, peptides. L31 and HC10, which bind nearly adjacent linear epitopes of the alpha1 domain alpha helix, reciprocally immunodepleted free HLA-C H chains, indicating the existence of a local un-/mis-folding involving the N-terminal end of the alpha1 domain alpha helix and peptide-anchoring residues of the class I H chain. Thus, unlike certain murine free H chains, L31-reactive H chains are not the immediate precursors of conformed class I molecules. A model inferring their precursor-product relationships with other known class I intermediates is presented.
Collapse
Affiliation(s)
- Leonardo Sibilio
- Laboratory of Immunology, Regina Elena Cancer Institute Centro della Ricerca Sperimentale, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bangia N, Cresswell P. Stoichiometric tapasin interactions in the catalysis of major histocompatibility complex class I molecule assembly. Immunology 2005; 114:346-53. [PMID: 15720436 PMCID: PMC1782088 DOI: 10.1111/j.1365-2567.2005.02103.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The assembly of major histocompatibility complex (MHC) class I molecules with their peptide ligands in the endoplasmic reticulum (ER) requires the assistance of many proteins that form a multimolecular assemblage termed the 'peptide-loading complex'. Tapasin is the central stabilizer of this complex, which also includes the transporter associated with antigen processing (TAP), MHC class I molecules, the ER chaperone, calreticulin, and the thiol-oxidoreductase ERp57. In the present report, we investigated the requirements of these interactions for tapasin protein stability and MHC class I dissociation from the peptide-loading complex. We established that tapasin is stable in the absence of either TAP or MHC class I interaction. In the absence of TAP, tapasin interaction with MHC class I molecules is long-lived and results in the sequestration of existing tapasin molecules. In contrast, in TAP-sufficient cells, tapasin is re-utilized to interact with and facilitate the assembly of many MHC class I molecules sequentially. Furthermore, chemical cross-linking has been utilized to characterize the interactions within this complex. We demonstrate that tapasin and MHC class I molecules exist in a 1 : 1 complex without evidence of higher-order tapasin multimers. Together these studies shed light on the tapasin protein life cycle and how it functions in MHC class I assembly with peptide for presentation to CD8(+) T cells.
Collapse
Affiliation(s)
- Naveen Bangia
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
33
|
Wright CA, Kozik P, Zacharias M, Springer S. Tapasin and other chaperones: models of the MHC class I loading complex. Biol Chem 2005; 385:763-78. [PMID: 15493870 DOI: 10.1515/bc.2004.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.
Collapse
Affiliation(s)
- Cynthia Anne Wright
- Biochemistry and Cell Biology, International University Bremen, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
34
|
Petersen JL, Hickman-Miller HD, McIlhaney MM, Vargas SE, Purcell AW, Hildebrand WH, Solheim JC. A Charged Amino Acid Residue in the Transmembrane/Cytoplasmic Region of Tapasin Influences MHC Class I Assembly and Maturation. THE JOURNAL OF IMMUNOLOGY 2005; 174:962-9. [PMID: 15634919 DOI: 10.4049/jimmunol.174.2.962] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tapasin influences the quantity and quality of MHC/peptide complexes at the cell surface; however, little is understood about the structural features that underlie its effects. Because tapasin, MHC class I, and TAP are transmembrane proteins, the tapasin transmembrane/cytoplasmic region has the potential to affect interactions at the endoplasmic reticulum membrane. In this study, we have assessed the influence of a conserved lysine at position 408, which lies in the tapasin transmembrane/cytoplasmic domain. We found that substitutions at position K408 in tapasin affected the expression of MHC class I molecules at the cell surface, and down-regulated tapasin stabilization of TAP. In addition to affecting TAP interaction with tapasin, the substitution of alanine, but not tryptophan, for the lysine at tapasin position 408 increased the amount of tapasin found in association with the open, peptide-free form of the HLA-B8 H chain. Tapasin K408A was also associated with more folded, beta(2)-microglobulin-assembled HLA-B8 molecules than wild-type tapasin. Consistent with our observation of a large pool of tapasin K408A-associated HLA-B8 molecules, the rate at which HLA-B8 migrated from the endoplasmic reticulum was slower in tapasin K408A-expressing cells than in wild-type tapasin-expressing cells. Thus, the alanine substitution at position 408 in tapasin may interfere with the stable acquisition by MHC class I molecules of peptides that are sufficiently optimal to allow MHC class I release from tapasin.
Collapse
Affiliation(s)
- Jason L Petersen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Li L, Sullivan BA, Aldrich CJ, Soloski MJ, Forman J, Grandea AG, Jensen PE, Van Kaer L. Differential Requirement for Tapasin in the Presentation of Leader- and Insulin-Derived Peptide Antigens to Qa-1b-Restricted CTLs. THE JOURNAL OF IMMUNOLOGY 2004; 173:3707-15. [PMID: 15356116 DOI: 10.4049/jimmunol.173.6.3707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loading of MHC class I molecules with peptides involves a variety of accessory proteins, including TAP-associated glycoprotein (tapasin), which tethers empty MHC class I molecules to the TAP peptide transporter. We have evaluated the role of tapasin for the assembly of peptides with the class Ib molecule Qa-1b. In normal cells, Qa-1b is predominantly bound by a peptide, the Qa-1 determinant modifier (Qdm), derived from the signal sequence of class Ia molecules. Our results show that tapasin links Qa-1b to the TAP peptide transporter, and that tapasin facilitates the delivery of Qa-1b molecules to the cell surface. Tapasin was also required for the presentation of endogenous Qdm peptides to Qdm-specific, Qa-1b-restricted CTLs. In sharp contrast, tapasin expression was dispensable for the presentation of an insulin peptide to insulin-specific, Qa-1b-restricted CTL isolated from TCR transgenic mice. However, tapasin deficiency significantly impaired the positive selection of these insulin-specific, Qa-1b-restricted transgenic CD8+ T cells. These findings reveal that tapasin plays a differential role in the loading of Qdm and insulin peptides onto Qa-1b molecules, and that tapasin is dispensable for retention of empty Qa-1b molecules in the endoplasmic reticulum, and are consistent with the proposed peptide-editing function of tapasin.
Collapse
Affiliation(s)
- LiQi Li
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Turnquist HR, Petersen JL, Vargas SE, McIlhaney MM, Bedows E, Mayer WE, Grandea AG, Van Kaer L, Solheim JC. The Ig-Like Domain of Tapasin Influences Intermolecular Interactions. THE JOURNAL OF IMMUNOLOGY 2004; 172:2976-84. [PMID: 14978101 DOI: 10.4049/jimmunol.172.5.2976] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Presentation of antigenic peptides to T lymphocytes by MHC class I molecules is regulated by events involving multiple endoplasmic reticulum proteins, including tapasin. By studying the effects of substitutions in the tapasin Ig-like domain, we demonstrated that H-2L(d)/tapasin association can be segregated from reconstitution of folded L(d) surface expression. This finding suggests that peptide acquisition by L(d) is influenced by tapasin functions that are independent of L(d) binding. We also found that the presence of a nine-amino acid region in the Ig-like domain of mouse or human tapasin is required for association with L(d), and certain point substitutions in this sequence abrogate human, but not mouse, tapasin association with L(d). These data are consistent with a higher overall affinity between L(d) and mouse tapasin compared with human tapasin. In addition, we found that other point mutations in the same region of the tapasin Ig-like domain affect MHC class I surface expression and Ag presentation. Finally, we showed that the cysteine residues in the Ig-like domain of tapasin influence tapasin's stability, its interaction with the MHC class I H chain, and its stabilization of TAP. Mutagenesis of these cysteines decreases tapasin's electrophoretic mobility, suggesting that these residues form an intramolecular disulfide bond. Taken together, these results reveal a critical role for the tapasin Ig-like domain in tapasin function.
Collapse
Affiliation(s)
- Heth R Turnquist
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Assembly of MHC class I molecules in the ER is regulated by the so-called loading complex (LC). This multiprotein complex is of definite importance for class I maturation, but its exact organization and order of assembly are not known. Evidence implies that the quality of peptides loaded onto class I molecules is controlled at multiple stages during MHC class I assembly. We recently found that tapasin, an important component of the LC, interacts with COPI-coated vesicles. Biochemical studies suggested that the tapa-sin-COPI interaction regulates the retrograde transport of immature MHC class I molecules from the Golgi network back to the ER. Also other findings now propose that in addition to the peptide-loading control, the quality control of MHC class I antigen presentation includes the restriction of export of suboptimally loaded MHC class I molecules to the cell surface. In this review, we use recent studies of tapasin to examine the efficiency of TAP, the LC constitution, ER quality control of class I assembly, and peptide optimization. The concepts of MHC class I recycling and ER retention are also discussed.
Collapse
Affiliation(s)
- Kajsa M Paulsson
- Rayne Institute, Centre for Molecular Medicine, Department of Medicine, University College of London, 5 University St., London WC1E 6JJ, UK.
| | | |
Collapse
|
38
|
Lilić M, Popmihajlov Z, Monaco JJ, Vukmanović S. Association of beta2-microglobulin with the alpha3 domain of H-2Db heavy chain. Immunogenetics 2004; 55:740-7. [PMID: 14735325 DOI: 10.1007/s00251-003-0639-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/17/2003] [Indexed: 11/28/2022]
Abstract
MHC class I molecules are heterotrimeric complexes composed of heavy chain, beta2-microglobulin (beta2m) and short peptide. This trimeric complex is generated in the endoplasmic reticulum (ER), where a peptide loading complex (PLC) facilitates transport from the cytosol and binding of the peptide to the preassembled ER resident heavy chain/beta2m dimers. Association of mouse MHC class I heavy chain with beta2m is characterized by allelic differences in the number and/or positions of amino acid interactions. It is unclear, however, whether all alleles follow common binding patterns with minimal contributions by allele-specific contacts, or whether essential contacts with beta2m are different for each allele. While searching for the PLC binding site in the alpha3 domain of the mouse MHC class I molecule H-2Db, we unexpectedly discovered a site critical for binding mouse, but not human, beta2m. Interestingly, amino acids in the corresponding region of another MHC class I heavy chain allele do not make contacts with the mouse beta2m. Thus, there are allelic differences in the modes of binding of beta2m to the heavy chain of MHC class I.
Collapse
Affiliation(s)
- Mirjana Lilić
- Michael Heidelberger Division of Immunology, Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
39
|
Lee N, Geraghty DE. HLA-F Surface Expression on B Cell and Monocyte Cell Lines Is Partially Independent from Tapasin and Completely Independent from TAP. THE JOURNAL OF IMMUNOLOGY 2003; 171:5264-71. [PMID: 14607927 DOI: 10.4049/jimmunol.171.10.5264] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we examined HLA-F expression in normal cells and cell lines, with a particular focus on identifying cells that express surface protein. While HLA-F protein was expressed in a number of diverse tissues and cell lines, including bladder, skin, and liver cell lines, no surface expression could be detected in the majority of them. However, surface expression was observed on EBV-transformed lymphoblastoid cell lines and on some monocyte cell lines. Expression on B lymphoblastoid cell lines was observed, while no surface expression on normal B cells or on any peripheral blood lymphocytes could be detected. Surface expression correlated with the presence of a limited amount of endoglycosidase H (Endo H)-resistant HLA-F. However, clearly not all surface-expressed HLA-F was fully glycosylated. We further examined the requirement of HLA-F surface expression for functional TAP and tapasin molecules and identified a clear departure from the dependence shown by other class I molecules on TAP. In contrast, of the two surface glycosylation forms expressed, an Endo H-sensitive form was tapasin independent, while an Endo H-resistant form was clearly tapasin dependent. Finally, we tested whether HLA-F could be stabilized for surface expression without peptide by using the classical cold treatment for surface stabilization of empty class I. Of several cell lines tested, only MHC deletion mutant 721.221 demonstrated a typical class I phenotype, indicating that control of surface stabilization may have a genetic basis resident in the MHC.
Collapse
Affiliation(s)
- Ni Lee
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
40
|
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2003; 75:163-89. [PMID: 14525967 DOI: 10.1189/jlb.0603252] [Citation(s) in RCA: 3005] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
41
|
Paulsson K, Wang P. Chaperones and folding of MHC class I molecules in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:1-12. [PMID: 12788224 DOI: 10.1016/s0167-4889(03)00048-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.
Collapse
Affiliation(s)
- Kajsa Paulsson
- The Institution of Tumour Immunology, Lund University, BMC I12, S-223 62, Lund, Sweden.
| | | |
Collapse
|
42
|
Park B, Lee S, Kim E, Ahn K. A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:961-8. [PMID: 12517962 DOI: 10.4049/jimmunol.170.2.961] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Different HLA class I alleles display a distinctive dependence on tapasin for surface expression and Ag presentation. In this study, we show that the tapasin dependence of HLA class I alleles correlates to the nature of the amino acid residues present at the naturally polymorphic position 114. The tapasin dependence of HLA class I alleles bearing different residues at position 114 decreases in the order of acidity, with high tapasin dependence for acidic amino acids (aspartic acid and glutamic acid), moderate dependence for neutral amino acids (asparagine and glutamine), and low dependence for basic amino acids (histidine and arginine). A glutamic acid to histidine substitution at position 114 allows the otherwise tapasin-dependent HLA-B4402 alleles to load high-affinity peptides independently of tapasin and to have surface expression levels comparable to the levels seen in the presence of tapasin. The opposite substitution, histidine to glutamic acid at position 114, is sufficient to change the HLA-B2705 allele from the tapasin-independent to the tapasin-dependent phenotype. Furthermore, analysis of point mutants at position 114 reveals that tapasin plays a principal role in transforming the peptide-binding groove into a high-affinity, peptide-receptive conformation. The natural polymorphisms in HLA class I H chains that selectively affect tapasin-dependent peptide loading provide insights into the functional interaction of tapasin with MHC class I molecules.
Collapse
Affiliation(s)
- Boyoun Park
- Graduate School of Biotechnology, Korea University, Seoul, Korea
| | | | | | | |
Collapse
|
43
|
Grommé M, Neefjes J. Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol Immunol 2002; 39:181-202. [PMID: 12200050 DOI: 10.1016/s0161-5890(02)00101-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules usually present endogenous peptides at the cell surface. This is the result of a cascade of events involving various dedicated proteins like the peptide transporter associated with antigen processing (TAP) and the ER chaperone tapasin. However, alternative ways for class I peptide loading exist which may be highly relevant in a process called cross-priming. Both pathways are described here in detail. One major difference between these pathways is that the proteases involved in the generation of peptides are different. How proteases and peptidases influence peptide generation and degradation will be discussed. These processes determine the amount of peptides available for TAP translocation and class I binding and ultimately the immune response.
Collapse
Affiliation(s)
- Monique Grommé
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Momburg F, Tan P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol 2002; 39:217-33. [PMID: 12200052 DOI: 10.1016/s0161-5890(02)00103-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MHC class I molecules are loaded with peptides that mostly originate from the degradation of cytosolic protein antigens and that are translocated across the endoplasmic reticulum (ER) membrane by the transporter associated with antigen processing (TAP). The ER-resident molecule tapasin (Tpn) is uniquely dedicated to tether class I molecules jointly with the chaperone calreticulin (Crt) and the oxidoreductase ERp57 to TAP. As learned from the study of a Tpn-deficient cell line and from mice harboring a disrupted Tpn gene, the transient association of class I molecules with Tpn and TAP is critically important for the stabilization of class I molecules and the optimization of the peptide cargo presented to cytotoxic T cells. The different functions of molecular domains of Tpn and the highly coordinated formation of the TAP-associated peptide loading complex will also be discussed in this review.
Collapse
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
45
|
Paulsson KM, Kleijmeer MJ, Griffith J, Jevon M, Chen S, Anderson PO, Sjogren HO, Li S, Wang P. Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum. J Biol Chem 2002; 277:18266-71. [PMID: 11884415 DOI: 10.1074/jbc.m201388200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tapasin is a subunit of the transporter associated with antigen processing (TAP). It associates with the major histocompatibility complex (MHC) class I. We show that tapasin interacts with beta- and gamma-subunits of COPI coatomer. COPI retrieves membrane proteins from the Golgi network back to the endoplasmic reticulum (ER). The COPI subunit-associated tapasin also interacts with MHC class I molecules suggesting that tapasin acts as the cargo receptor for packing MHC class I molecules as cargo proteins into COPI-coated vesicles. In tapasin mutant cells, neither TAP nor MHC class I are detected in association with the COPI coatomer. Interestingly, tapasin-associated MHC class I molecules are antigenic peptide-receptive and detected in both the ER and the Golgi. Our data suggest that tapasin is required for the COPI vesicle-mediated retrograde transport of immature MHC class I molecules from the Golgi network to the ER.
Collapse
Affiliation(s)
- Kajsa M Paulsson
- Institution of Tumor Immunology, Lund University, Solvegatan 21, s-223 62 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Genetic defects in T-cell function lead to susceptibility to infections or to other clinical problems that are more grave than those seen in disorders resulting in antibody deficiency alone. Those affected usually present during infancy with either common or opportunistic infections and rarely survive beyond infancy or childhood. The spectrum of T-cell defects ranges from the syndrome of severe combined immunodeficiency, in which T-cell function is absent, to combined immunodeficiency disorders in which there is some, but not adequate, T-cell function for a normal life span. Recent discoveries of the molecular causes of many of these defects have led to a new understanding of the flawed biology underlying the ever-growing number of defects. Most of these conditions could be diagnosed by means of screening for lymphopenia or for T-cell deficiency in cord blood at birth. Early recognition of those so afflicted is essential to the application of the most appropriate treatments for these conditions at a very early age. The latter treatments include both transplantation and gene therapy in addition to immunoglobulin replacement. Fully defining the molecular defects of such patients is also essential for genetic counseling of family members and prenatal diagnosis.
Collapse
Affiliation(s)
- Rebecca H Buckley
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
47
|
Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 2002; 16:509-20. [PMID: 11970875 DOI: 10.1016/s1074-7613(02)00304-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The loading of MHC class I molecules with their peptide cargo is undertaken by a multimolecular peptide loading complex within the endoplasmic reticulum. We show that MHC class I molecules can optimize their peptide repertoire over time and that this process is dependent on tapasin. Optimization of the peptide repertoire is both quantitatively and qualitatively improved by tapasin. The extent of optimization is maximal when MHC class I molecules are allowed to load within the fully assembled peptide loading complex. Finally, we identify a single natural polymorphism (116D>Y) in HLA-B*4402 that permits tapasin-independent loading of HLA-B*4405 (116Y). In the presence of tapasin, the tapasin-independent allele B*4405 (116Y) acquires a repertoire of peptides that is less optimal than the tapasin-dependent allele B*4402 (116D).
Collapse
Affiliation(s)
- Anthony P Williams
- MRC Human Immunology Unit, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Paquet ME, Williams DB. Mutant MHC class I molecules define interactions between components of the peptide-loading complex. Int Immunol 2002; 14:347-58. [PMID: 11934871 DOI: 10.1093/intimm/14.4.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Class I histocompatibility molecules, consisting of a heavy chain, beta2-microglobulin and peptide, are assembled in the endoplasmic reticulum (ER) with the assistance of several molecular chaperones and accessory proteins. Peptide binding occurs when assembling class I molecules associate with a loading complex consisting of the transporter associated with antigen processing (TAP) peptide transporter, tapasin, ERp57 and calreticulin (CRT)/calnexin. To assess the physical organization of this complex, we generated a series of mutants in the murine H-2Dd heavy chain and assessed their association with components of the complex. Seven mutations, clustered between amino acids 122 and 136 in the heavy chain alpha2 domain plus one mutation at position 222 in the alpha3 domain, resulted in loss of interaction with tapasin. Association with TAP was always lost simultaneously, supporting the view that tapasin acts as an obligatory bridge between class I molecules and TAP. Compared with previous studies on the HLA-A2 molecule, some differences in points of tapasin interaction were observed. Failure of the H-2Dd mutants to bind tapasin resulted in low cell-surface expression and altered intracellular transport. Most mutants retained a substantial degree of peptide loading, consistent with the view that although tapasin may promote peptide binding to class I, it is not required. A surprising observation was that all mutants lacking tapasin interaction retained normal association with CRT. This contrasts with previous observations on other class I molecules and, combined with differences in tapasin interaction, suggests that the organization of the ER peptide-loading complex can vary depending on the specific class I molecule examined.
Collapse
Affiliation(s)
- Marie-Eve Paquet
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
49
|
Affiliation(s)
- S Narayanan
- Department of Pathology, Weill Medical College of Cornell University, New York, New York, USA
| | | |
Collapse
|
50
|
Tan P, Kropshofer H, Mandelboim O, Bulbuc N, Hämmerling GJ, Momburg F. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1950-60. [PMID: 11823531 DOI: 10.4049/jimmunol.168.4.1950] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.
Collapse
Affiliation(s)
- Pamela Tan
- Department of Molecular Immunology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|