1
|
Ding Y, Dunn J, Zhang H, Zhao K, Song J. Comparative transcriptomic analysis of chicken immune organs affected by Marek's disease virus infection at latency phases. Front Physiol 2025; 16:1520826. [PMID: 40241721 PMCID: PMC12000659 DOI: 10.3389/fphys.2025.1520826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past decades, MDV has dramatically evolved towards more virulent strains and remains a persistent threat to the world's poultry industry. We performed genome-wide gene expression analysis in the spleen, thymus, and bursa tissues from MD-resistant line and susceptible line to explore the mechanism of MD resistance and susceptibility. We identified genes and pathways associated with the transcriptional response to MDV infection using the robust RNA sequencing approach. The transcriptome analysis revealed a tissue-specific expression pattern among immune organs when confronting MDV. At pathway and network levels, MDV infections influenced cytokine-cytokine receptor interaction and cellular development in resistant and susceptible chicken lines. Meanwhile, we also observed different genetic responses between the two chicken lines: some pathways like herpes simplex infection and influenza A were found in MD resistant line spleen tissues, whereas metabolic-related pathways and DNA replication could only be observed in MD susceptible line chickens. In summary, our research renders new perceptions of the MD progression mechanism and beckons further gene function studies into MD resistance.
Collapse
Affiliation(s)
- Yi Ding
- Allen Institute for Brian Science, Seattle, WA, United States
| | - John Dunn
- U.S. Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA, United States
| | - Huanmin Zhang
- U.S. Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Service, Athens, GA, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Arsentieva NA, Korobova ZR, Batsunov OK, Lyubimova NE, Basina VV, Esaulenko EV, Totolian AA. CX3CL1/Fractalkine: A Potential Biomarker for Liver Fibrosis in Chronic HBV Infection. Curr Issues Mol Biol 2024; 46:9948-9957. [PMID: 39329945 PMCID: PMC11429568 DOI: 10.3390/cimb46090593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
A hepatitis B virus (HBV) infection can progress to chronic hepatitis, leading to liver fibrosis, cirrhosis, and hepatocellular carcinoma. CX3CL1/Fractalkine plays a crucial role in recruiting immune cells that are responsible for protecting against HBV infection. The aim of this study was to measure CX3CL1/Fractalkine concentrations in the blood plasma of individuals infected with HBV and to evaluate the role of this chemokine in the development of liver tissue fibrosis. Our study included patients infected with HBV, patients infected with HCV, autoimmune hepatitis, and healthy donors. We analyzed the CX3CL1/Fractalkine concentrations in blood plasma using the xMAP technology. Our results showed that HBV-infected patients had lower concentrations of CX3CL1/Fractalkine. Furthermore, in HBV-infected patients with severe fibrosis/cirrhosis, we observed significantly lower concentrations of CX3CL1/Fractalkine compared to those with no/mild fibrosis. Our study revealed that CX3CL1/Fractalkine concentrations are significantly associated with the stage of fibrosis in HBV infection. We demonstrated that lowered CX3CL1/Fractalkine concentrations might have prognostic value for predicting fibrosis development in liver tissue. Our findings suggest that decreased concentrations of CX3CL1/Fractalkine are associated with an increased risk of progressive liver fibrosis, indicating the potential of this chemokine as a prognostic biomarker for the development of liver fibrosis.
Collapse
Affiliation(s)
- Natalia A Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
| | - Zoia R Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L'va Tolstogo St. 6-8, 197022 St. Petersburg, Russia
| | - Oleg K Batsunov
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L'va Tolstogo St. 6-8, 197022 St. Petersburg, Russia
| | - Natalia E Lyubimova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
| | - Valentina V Basina
- Department of Infectious Diseases of Adults and Epidemiology, Saint Petersburg State Pediatric Medical University, Litovskaya St., Bldg. 2, 194100 St. Petersburg, Russia
| | - Elena V Esaulenko
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
- Department of Infectious Diseases of Adults and Epidemiology, Saint Petersburg State Pediatric Medical University, Litovskaya St., Bldg. 2, 194100 St. Petersburg, Russia
| | - Areg A Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L'va Tolstogo St. 6-8, 197022 St. Petersburg, Russia
| |
Collapse
|
4
|
Rodriguez C, Chocarro L, Echaide M, Ausin K, Escors D, Kochan G. Fractalkine in Health and Disease. Int J Mol Sci 2024; 25:8007. [PMID: 39125578 PMCID: PMC11311528 DOI: 10.3390/ijms25158007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
CX3CL1 is one of the 50 up-to-date identified and characterized chemokines. While other chemokines are produced as small, secreted proteins, CX3CL1 (fractalkine) is synthetized as a transmembrane protein which also leads to a soluble form produced as a result of proteolytic cleavage. The membrane-bound protein and the soluble forms exhibit different biological functions. While the role of the fractalkine/CX3CR1 signaling axis was described in the nervous system and was also related to the migration of leukocytes to sites of inflammation, its actions are controversial in cancer progression and anti-tumor immunity. In the present review, we first describe the known biology of fractalkine concerning its action through its cognate receptor, but also its role in the activation of different integrins. The second part of this review is dedicated to its role in cancer where we discuss its role in anti-cancer or procarcinogenic activities.
Collapse
Grants
- FIS PI23/00196 Instituto de Salud Carlos III-FEDER
- FIS PI20/00010 Instituto de Salud Carlos III-FEDER
- BMED 036-2023 Departamento de Salud del Gobierno de Navarra-FEDER, Spain
- LINTERNA, Ref. 0011-1411-2020-000033 Departamento de Industria, Gobierno de Navarra, Spain
- ARNMUNE, 0011-1411-2023-000111 Departamento de Industria, Gobierno de Navarra, Spain
- ISOLDA project, under grant agreement ID: 848166. Horizon 2020, European Union
- PFIS, FI21/00080 Instituto de Salud Carlos III-FEDER
Collapse
Affiliation(s)
| | | | | | | | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain; (C.R.); (L.C.); (M.E.); (K.A.)
| |
Collapse
|
5
|
Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1246-1264. [PMID: 38660801 PMCID: PMC11111348 DOI: 10.1161/atvbaha.123.320367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/genetics
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hypoxia/metabolism
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Eduardo Frias-Anaya
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Helios Gallego-Gutierrez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College, Victorville, CA (B.G.)
- Institute for Integrative Genome Biology, 1207F Genomics Building, University of California, Riverside (B.G.)
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Catherine Chinhchu Lai
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Aditya Sriram
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Cassandra M Bui
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Bliss Nelsen
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Preston Hale
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Angela Pham
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Richard Daneman
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| | - Eric Nudleman
- Department of Ophthalmology (E.N.), University of California San Diego, La Jolla
| | - Hao Sun
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Monica Guma
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Quebec, Canada (A.D.)
| | - Omar A Mesarwi
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Mark H Ginsberg
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| |
Collapse
|
6
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
8
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
9
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
10
|
Daskou M, Mu W, Sharma M, Vasilopoulos H, Heymans R, Ritou E, Rezek V, Hamid P, Kossyvakis A, Sen Roy S, Grijalva V, Chattopadhyay A, Kitchen SG, Fogelman AM, Reddy ST, Kelesidis T. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathog 2022; 18:e1010160. [PMID: 34995311 PMCID: PMC8740974 DOI: 10.1371/journal.ppat.1010160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William Mu
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Madhav Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hariclea Vasilopoulos
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rachel Heymans
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni Ritou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Philip Hamid
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Athanasios Kossyvakis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shubhendu Sen Roy
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan M. Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021; 231:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.
Collapse
Affiliation(s)
- Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
12
|
Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021; 15:694292. [PMID: 34408629 PMCID: PMC8365835 DOI: 10.3389/fncel.2021.694292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Immune system dysregulation is increasingly being attributed to the development of a multitude of neurodegenerative diseases. This, in large part, is due to the delicate relationship that exists between neurons in the central nervous system (CNS) and peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis and immune surveillance within a tissue. Classically, the inner ear was thought to be immune privileged due to the presence of a blood-labyrinth barrier. However, it is now well-established that both vestibular and auditory end organs in the inner ear contain a resident (local) population of macrophages which are the phagocytic cells of the innate-immune system. Upon cochlear sterile injury or infection, there is robust activation of these resident macrophages and a predominant increase in the numbers of macrophages as well as other types of leukocytes. Despite this, the source, nature, fate, and functions of these immune cells during cochlear physiology and pathology remains unclear. Migration of local macrophages and infiltration of bone-marrow-derived peripheral blood macrophages into the damaged cochlea occur through various signaling cascades, mediated by the release of specific chemical signals from damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of the cochlea. Despite the known importance of this neuron-immune axis in CNS function and pathology, until recently it was not clear whether this signaling axis played a role in macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will explore the importance of innate immunity in neurodegenerative disease development, specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence for a role of FKN signaling in cochlear neuroprotection.
Collapse
Affiliation(s)
- Andrew Rigel Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
13
|
Hamdan D, Robinson LA. Role of the CX 3CL1-CX 3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321:F121-F134. [PMID: 34121453 DOI: 10.1152/ajprenal.00059.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines comprises key drivers of this process. Fractalkine [chemokine (C-X3-C motif) ligand 1 (CX3CL1)] is one of two unique chemokines synthesized as a transmembrane protein that undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, chemokine (C-X3-C motif) receptor 1 (CX3CR1), CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.
Collapse
Affiliation(s)
- Diana Hamdan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Nagashimada M, Sawamoto K, Ni Y, Kitade H, Nagata N, Xu L, Kobori M, Mukaida N, Yamashita T, Kaneko S, Ota T. CX3CL1-CX3CR1 Signaling Deficiency Exacerbates Obesity-induced Inflammation and Insulin Resistance in Male Mice. Endocrinology 2021; 162:bqab064. [PMID: 33765141 DOI: 10.1210/endocr/bqab064] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/21/2022]
Abstract
The CX3CL1-CX3CR1 system plays an important role in disease progression by regulating inflammation both positively and negatively. We reported previously that C-C chemokine receptors 2 and 5 promote obesity-associated adipose tissue inflammation and insulin resistance. Here, we demonstrate that CX3CL1-CX3CR1 signaling is involved in adipose tissue inflammation and insulin resistance in obese mice via adipose tissue macrophage recruitment and M1/M2 polarization. Cx3cl1 expression was persistently decreased in the epididymal white adipose tissue (eWAT) of high-fat diet-induced obese (DIO) mice, despite increased expression of other chemokines. Interestingly, in Cx3cr1-/- mice, glucose tolerance, insulin resistance, and hepatic steatosis induced by DIO or leptin deficiency were exacerbated. CX3CL1-CX3CR1 signaling deficiency resulted in reduced M2-polarized macrophage migration and an M1-dominant shift of macrophages within eWAT. Furthermore, transplantation of Cx3cr1-/- bone marrow was sufficient to impair glucose tolerance, insulin sensitivity, and regulation of M1/M2 status. Moreover, Cx3cl1 administration in vivo led to the attenuation of glucose intolerance and insulin resistance. Thus, therapy targeting the CX3CL1-CX3CR1 system may be beneficial in the treatment of type 2 diabetes by regulating M1/M2 macrophages.
Collapse
Affiliation(s)
- Mayumi Nagashimada
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuki Sawamoto
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Yinhua Ni
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
- College of Biological Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Hironori Kitade
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Liang Xu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Yamashita
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
16
|
Anderson CS, Chirkova T, Slaunwhite CG, Qiu X, Walsh EE, Anderson LJ, Mariani TJ. CX3CR1 Engagement by Respiratory Syncytial Virus Leads to Induction of Nucleolin and Dysregulation of Cilia-related Genes. J Virol 2021; 95:JVI.00095-21. [PMID: 33731455 PMCID: PMC8139714 DOI: 10.1128/jvi.00095-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) contains a conserved CX3C motif on the ectodomain of the G-protein. The motif has been indicated as facilitating attachment of the virus to the host initiating infection via the human CX3CR1 receptor. The natural CX3CR1 ligand, CX3CL1, has been shown to induce signaling pathways resulting in transcriptional changes in the host cells. We hypothesize that binding of RSV to CX3CR1 via CX3C leads to transcriptional changes in host epithelial cells. Using transcriptomic analysis, the effect of CX3CR1 engagement by RSV was investigated. Normal human bronchial epithelial (NHBE) cells were infected with RSV virus containing either wildtype G-protein, or a mutant virus containing a CX4C mutation in the G-protein. RNA sequencing was performed on mock and 4-days-post-infected cultures. NHBE cultures were also treated with purified recombinant wild-type A2 G-protein. Here we report that RSV infection resulted in significant changes in the levels 766 transcripts. Many nuclear associated proteins were upregulated in the WT group, including nucleolin. Alternatively, cilia-associated genes, including CC2D2A and CFAP221 (PCDP1), were downregulated. The addition of recombinant G-protein to the culture lead to the suppression of cilia-related genes while also inducing nucleolin. Mutation of the CX3C motif (CX4C) reversed these effects on transcription decreasing nucleolin induction and lessening the suppression of cilia-related transcripts in culture. Furthermore, immunohistochemical staining demonstrated decreases in in ciliated cells and altered morphology. Therefore, it appears that engagement of CX3CR1 leads to induction of genes necessary for RSV entry as well as dysregulation of genes associated with cilia function.ImportanceRespiratory Syncytial Virus (RSV) has an enormous impact on infants and the elderly including increased fatality rates and potential for causing lifelong lung problems. Humans become infected with RSV through the inhalation of viral particles exhaled from an infected individual. These virus particles contain specific proteins that the virus uses to attach to human ciliated lung epithelial cells, initiating infection. Two viral proteins, G-protein and F-protein, have been shown to bind to human CX3CR1and nucleolin, respectively. Here we show that the G-protein induces nucleolin and suppresses gene transcripts specific to ciliated cells. Furthermore, we show that mutation of the CX3C-motif on the G-protein, CX4C, reverses these transcriptional changes.
Collapse
Affiliation(s)
- Christopher S Anderson
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward E Walsh
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Larry J Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
17
|
Ibrahim AF, Osman AOBS, Elabbasy LM, Abdelsalam M, Wahab AM, Zaki MES, Abdel-Latif RAR. CX3CR1 at V249M and T280M Gene Polymorphism and Its Potential Risk for End-Stage Renal Diseases in Egyptian Patients. Int J Nephrol 2021; 2021:6634365. [PMID: 33986961 PMCID: PMC8093072 DOI: 10.1155/2021/6634365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
CX3CL1-CX3CR1 pathway may be one of the future treatment targets to delay the progression of end-stage renal diseases. This study aimed to evaluate the CX3CR gene polymorphism in Egyptian patients with ESRD and its relation to fractalkine blood level. The study included 100 patients with ESRD on dialysis, 61 males and 39 females with mean age 51.02 ± 7.8 years. The V2491 genotype revealed a significant increase in the frequency of GG genotype in healthy control (83%) compared to patients [69%] with a significant increase in GA in patients [30%] compared to control subjects [15%], P = 0.03. T280M study showed a statistically significant prevalence of TT genotype in healthy control subjects [86%-OR 95% CI 1.7] compared to patients [70%] with a significant increase in the prevalence of TA in patients [29%] compared to control subjects [13%], P = 0.01. There was a significant increase in fractalkine levels in genotypes GA + AA [503.04±224.1] pg/ml compared to genotype GG [423.6 210.3], P = 0.03. Moreover, there was a significant increase in the blood level of fractalkine in genotype TA + AA [498.8 219.6] compared to genotype TT [426.8±212.8], P = 0.05. In conclusion, our study showed that both V2491-GA genotype and T280M-TA are associated with potential risk for end-stage renal disease in Egyptian patients.
Collapse
Affiliation(s)
- Asmaa Fathelbab Ibrahim
- Lecturer of Clinical & Chemical Pathology, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | | | - Lamiaa M. Elabbasy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - A. M. Wahab
- Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
18
|
Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity. J Neurovirol 2021; 27:279-301. [PMID: 33646495 DOI: 10.1007/s13365-021-00955-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.
Collapse
|
19
|
Lee S, Latha K, Manyam G, Yang Y, Rao A, Rao G. Role of CX3CR1 signaling in malignant transformation of gliomas. Neuro Oncol 2020; 22:1463-1473. [PMID: 32236410 PMCID: PMC7566338 DOI: 10.1093/neuonc/noaa075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Chemokine signaling may contribute to progression of low-grade gliomas (LGGs) by altering tumor behavior or impacting the tumor microenvironment. In this study, we investigated the role of CX3C chemokine receptor 1 (CX3CR1) signaling in malignant transformation of LGGs. METHODS Ninety patients with LGGs were genotyped for the presence of common CX3CR1 V249I polymorphism and examined for genotype-dependent alterations in survival, gene expression, and tumor microenvironment. A genetically engineered mouse model was leveraged to model endogenous intracranial gliomas with targeted expression of CX3C ligand 1 (CX3CL1) and CX3CR1, individually or in combination. RESULTS LGG patients who were heterozygous (V/I; n = 43) or homozygous (I/I; n = 2) for the CX3CR1 V249I polymorphism had significantly improved median overall (14.8 vs 9.8 y, P < 0.05) and progression-free survival (8.6 vs 6.5 y, P < 0.05) compared with those with the wild type genotype (V/V; n = 45). Tumors from the V/I + I/I group exhibited significantly decreased levels of CCL2 and MMP9 transcripts, correlating with reduced intratumoral M2 macrophage infiltration and microvessel density. In an immunocompetent mouse model of LGGs, coexpression of CX3CL1 and CX3CR1 promoted a more malignant tumor phenotype characterized by increased microglia/macrophage infiltration and microvessel density, resulting in shorter survival. CONCLUSIONS CX3CR1 V249I polymorphism is associated with improved overall and progression-free survival in LGGs. CX3CR1 signaling enhances accumulation of tumor associated microglia/macrophages and angiogenesis during malignant transformation.
Collapse
Affiliation(s)
- Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
- Departments of Neurosurgery
| | | | - Ganiraju Manyam
- Bioinformatics, and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas (G.M.)
| | | | - Arvind Rao
- Departments of Computational Medicine and Bioinformatics, Radiation Oncology, Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020; 9:cells9102277. [PMID: 33065974 PMCID: PMC7600611 DOI: 10.3390/cells9102277] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to brain injury or inflammation. During the last decade, there has been a growing interest in the roles that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain disorders. However, the reported results have proven controversial, indicating that a disruption of the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the emerging role of CX3CL1 in animal models of some brain disorders.
Collapse
|
21
|
Shu C, Justice AC, Zhang X, Wang Z, Hancock DB, Johnson EO, Xu K. DNA methylation mediates the effect of cocaine use on HIV severity. Clin Epigenetics 2020; 12:140. [PMID: 32928285 PMCID: PMC7491141 DOI: 10.1186/s13148-020-00934-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cocaine use accelerates human immunodeficiency virus (HIV) progression and worsens HIV outcomes. We assessed whether DNA methylation in blood mediates the association between cocaine use and HIV severity in a veteran population. Methods We analyzed 1435 HIV-positive participants from the Veterans Aging Cohort Study Biomarker Cohort (VACS-BC). HIV severity was measured by the Veteran Aging Cohort Study (VACS) index. We assessed the effect of cocaine use on VACS index and mortality among the HIV-positive participants. We selected candidate mediators that were associated with both persistent cocaine use and VACS index by epigenome-wide association (EWA) scans at a liberal p value cutoff of 0.001. Mediation analysis of the candidate CpG sites between cocaine’s effect and the VACS index was conducted, and the joint mediation effect of multiple CpGs was estimated. A two-step epigenetic Mendelian randomization (MR) analysis was conducted as validation. Results More frequent cocaine use was significantly associated with a higher VACS index (β = 1.00, p = 2.7E−04), and cocaine use increased the risk of 10-year mortality (hazard ratio = 1.10, p = 0.011) with adjustment for confounding factors. Fifteen candidate mediator CpGs were selected from the EWA scan. Twelve of these CpGs showed significant mediation effects, with each explaining 11.3–29.5% of the variation. The mediation effects for 3 of the 12 CpGs were validated by the two-step epigenetic MR analysis. The joint mediation effect of the 12 CpGs accounted for 47.2% of cocaine’s effect on HIV severity. Genes harboring these 12 CpGs are involved in the antiviral response (IFIT3, IFITM1, NLRC5, PLSCR1, PARP9) and HIV progression (CX3CR1, MX1). Conclusions We identified 12 DNA methylation CpG sites that appear to play a mediation role in the association between cocaine use and HIV severity.
Collapse
Affiliation(s)
- Chang Shu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Amy C Justice
- Connecticut Veteran Healthcare System, West Haven, CT, USA.,Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Connecticut Veteran Healthcare System, West Haven, CT, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA.,Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA. .,Connecticut Veteran Healthcare System, West Haven, CT, USA.
| |
Collapse
|
22
|
Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infect Immun 2020; 88:IAI.00882-19. [PMID: 31964743 DOI: 10.1128/iai.00882-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of the most interesting markers of IA risk was then validated in a replication population, including 474 subjects (94 IA and 380 non-IA patients). Functional experiments were also performed to confirm the biological relevance of the most interesting markers. The meta-analysis of both populations showed that carriers of the ARNT2 rs1374213G, CX3CR1 rs7631529A, and CX3CR1 rs9823718G alleles (where the RefSeq identifier appears as a subscript) had a significantly increased risk of developing IA according to a log-additive model (P value from the meta-analysis [P Meta] = 9.8 · 10-5, P Meta = 1.5 · 10-4, and P Meta =7.9 · 10-5, respectively). Haplotype analysis also confirmed the association of the CX3CR1 haplotype with AG CGG with an increased risk of IA (P = 4.0 · 10-4). Mechanistically, we observed that monocyte-derived macrophages (MDM) from subjects carrying the ARNTR2 rs1374213G allele or the GG genotype showed a significantly impaired fungicidal activity but that MDM from carriers of the ARNT2 rs1374213G and CX3CR1 rs9823718G or CX3CR1 rs7631529A alleles had deregulated immune responses to Aspergillus conidia. These results, together with those from expression quantitative trait locus (eQTL) data browsers showing a strong correlation of the CX3CR1 rs9823718G allele with lower levels of CX3CR1 mRNA in whole peripheral blood (P = 2.46 · 10-7) and primary monocytes (P = 4.31 · 10-7), highlight the role of the ARNT2 and CX3CR1 loci in modulating and predicting IA risk and provide new insights into the host immune mechanisms involved in IA development.
Collapse
|
23
|
Li Y, He C, He Z, Zhong M, Liu D, Liu R, Fan R, Duan Y. AIDS prevention and control in the Yunnan region by T cell subset assessment. PLoS One 2019; 14:e0214800. [PMID: 30998710 PMCID: PMC6472762 DOI: 10.1371/journal.pone.0214800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Background Prior to being spread throughout broader China, multiple human immunodeficiency virus (HIV)-1 genotypes were originally discovered in the Yunnan Province. As the HIV-1 epidemic continues its spread in Yunnan, knowledge of the influence of gender, age, and ethnicity to instances of HIV reservoirs will benefit monitoring the spread of HIV. Methods The degree to which T cells are depleted during an HIV infection depends on the levels of immune activation. T-cell subsets were assessed in newly-diagnosed HIV/AIDS patients in Yunnan, and the influence of age, gender, and ethnicity were investigated. Patients that were newly diagnosed with the HIV-infection between the years 2015 and 2018 at the First Affiliated Hospital of Kunming Medical College were selected for this study (N = 408). The lymphocyte levels and T cell subsets were retrospectively measured in whole blood samples by FACS analysis. Results The median CD4 count was 224 ± 191 cells/μl. Significantly higher mean frequencies and absolute numbers were observed in CD3+, CD3+CD4+, CD3+CD8+, CD45+, and CD3+CD4+/CD45+ in females compared to males. Han patients showed a higher total number of CD3+T cells and the ratio of CD3+ /CD45+ cells compared to any other ethnic minority (P < 0.001). The numbers of CD3+ T-cells, CD3+CD8+ T cells, and CD45+ T cells were highest in the age group ≥ 60. Significant differences were observed in the counts of CD3+, CD3+CD8+, and CD45+ cells and the ratio of CD3+/CD45+ and CD3+CD4+/CD45+ cells between the ≤ 29 and 30–59 age groups. Conclusion This study has revealed that low levels of CD4+ T cells can be observed in newly-diagnosed HIV/AIDS patients in the Yunnan province. It has also been demonstrated that gender, age, and ethnicity have a significant association with the ratio of T-cell subsets that may contribute to virus progression and disease prognosis in individuals belonging to certain subsets of the population. This study has highlighted the importance of HIV/AIDS screening in at-risk populations to ensure timely and adequate clinical management in Yunnan.
Collapse
Affiliation(s)
- Ya Li
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunan, China
- Yunnan Institute of Laboratory Diagnosis, Kunming, Yunan, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Chenglu He
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunan, China
- Yunnan Institute of Laboratory Diagnosis, Kunming, Yunan, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Zengpin He
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunan, China
- Yunnan Institute of Laboratory Diagnosis, Kunming, Yunan, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Min Zhong
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunan, China
- Yunnan Institute of Laboratory Diagnosis, Kunming, Yunan, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Dajin Liu
- Department of Medical Records and Statistics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Ruiyang Liu
- Department of Standardized Training, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Ruixuan Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunan, China
- Yunnan Institute of Laboratory Diagnosis, Kunming, Yunan, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunan, China
- * E-mail:
| |
Collapse
|
24
|
Lannes N, Garcia-Nicolàs O, Démoulins T, Summerfield A, Filgueira L. CX 3CR1-CX 3CL1-dependent cell-to-cell Japanese encephalitis virus transmission by human microglial cells. Sci Rep 2019; 9:4833. [PMID: 30886214 PMCID: PMC6423114 DOI: 10.1038/s41598-019-41302-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/01/2019] [Indexed: 01/10/2023] Open
Abstract
The neurotropic Japanese encephalitis virus (JEV) is responsible for Japanese encephalitis, an uncontrolled inflammatory disease of the central nervous system. Microglia cells are the unique innate immune cell type populating the brain that cross-communicate with neurons via the CX3CR1-CX3CL1 axis. However, microglia may serve as a viral reservoir for JEV. Human microglia are able to transmit JEV infectivity to neighbouring cells in a cell-to-cell contact-dependent manner. Using JEV-treated human blood monocyte-derived microglia, the present study investigates molecular mechanisms behind cell-to-cell virus transmission by human microglia. For that purpose, JEV-associated microglia were co-cultured with JEV susceptible baby hamster kidney cells under various conditions. Here, we show that microglia hosting JEV for up to 10 days were able to transmit the virus to susceptible cells. Interestingly, neutralizing anti-JEV antibodies did not completely abrogate cell-to-cell virus transmission. Hence, intracellular viral RNA could be a contributing source of infectious virus material upon intercellular interactions. Importantly, the CX3CL1-CX3CR1 axis was a key regulator of cell-to-cell virus transmission from JEV-hosting human microglia. Our findings suggest that human microglia may be a source of infection for neuronal populations and sustain JEV brain pathogenesis in long-term infection. Moreover, the present work emphasizes on the critical role of the CX3CR1-CX3CL1 axis in JEV pathogenesis mediating transmission of infectious genomic JEV RNA.
Collapse
Affiliation(s)
- Nils Lannes
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland.
| | - Obdullio Garcia-Nicolàs
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Langassstrasse 122, Bern, Switzerland
| | - Luis Filgueira
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, Fribourg, Switzerland
| |
Collapse
|
25
|
Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimer's disease. J Neuroinflammation 2019; 16:30. [PMID: 30744705 PMCID: PMC6371521 DOI: 10.1186/s12974-019-1412-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, and the most common form of dementia. As the understanding of AD has progressed, it is now believed that AD is an amyloid-initiated tauopathy with neuroinflammation serving as the link between amyloid deposition, tau pathology, and neurodegeneration. As microglia are the main immune effectors in the central nervous system, they have been the focus of attention in studies investigating the neuroinflammatory component of AD. Therefore, recent work has focused on immunomodulators, which can alter microglial activation without suppressing activity, as potential therapeutics for AD. Fractalkine (CX3CL1; FKN), a unique chemokine with a one-to-one relationship with its receptor, signals through its cognate receptor (CX3CR1) to reduce expression of pro-inflammatory genes in activated microglia. Disrupting FKN signaling has opposing effects on the two hallmark pathologies of AD, but over-expressing a soluble FKN has been shown to reduce tau pathology while not altering amyloid pathology. Recently, differential signaling has been reported when comparing two cleavage variants of soluble FKN. These differential effects may explain recent studies reporting seemingly conflicting results regarding the effect of FKN over expression on AD pathologies.
Collapse
Affiliation(s)
- Dylan J Finneran
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
Sakai M, Takeuchi H, Yu Z, Kikuchi Y, Ono C, Takahashi Y, Ito F, Matsuoka H, Tanabe O, Yasuda J, Taki Y, Kawashima R, Tomita H. Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain. Psychiatry Clin Neurosci 2018; 72:409-422. [PMID: 29485193 DOI: 10.1111/pcn.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/18/2022]
Abstract
AIM CX3CR1, a G-protein-coupled receptor, is involved in various inflammatory processes. Two non-synonymous single nucleotide polymorphisms, V249I (rs3732379) and T280M (rs3732378), are located in the sixth and seventh transmembrane domains of the CX3CR1 protein, respectively. Previous studies have indicated significant associations between T280M and leukocyte functional characteristics, including adhesion, signaling, and chemotaxis, while the function of V249I is unclear. In the brain, microglia are the only proven and widely accepted CX3CR1-expressing cells. This study aimed to specify whether there were specific brain regions on which these two single nucleotide polymorphisms exert their biological impacts through their functional effects on microglia. METHODS Associations between the single nucleotide polymorphisms and brain characteristics, including gray and white matter volumes, white matter integrity, resting arterial blood volume, and cerebral blood flow, were evaluated among 1300 healthy Japanese individuals. RESULTS The major allele carriers (V249 and T280) were significantly associated with an increased total arterial blood volume of the whole brain, especially around the bilateral precuneus, left posterior cingulate cortex, and left posterior parietal cortex. There were no significant associations between the genotypes and other brain structural indicators. CONCLUSION This finding suggests that the CX3CR1 variants may affect arterial structures in the brain, possibly via interactions between microglia and brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Mai Sakai
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yuta Takahashi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fumiaki Ito
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroo Matsuoka
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Nuclear Medicine and Radiology, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Collar AL, Swamydas M, O’Hayre M, Sajib MS, Hoffman KW, Singh SP, Mourad A, Johnson MD, Ferre EM, Farber JM, Lim JK, Mikelis CM, Gutkind JS, Lionakis MS. The homozygous CX3CR1-M280 mutation impairs human monocyte survival. JCI Insight 2018; 3:95417. [PMID: 29415879 PMCID: PMC5821174 DOI: 10.1172/jci.insight.95417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Several reports have demonstrated that mouse Cx3cr1 signaling promotes monocyte/macrophage survival. In agreement, we previously found that, in a mouse model of systemic candidiasis, genetic deficiency of Cx3cr1 resulted in increased mortality and impaired tissue fungal clearance associated with decreased macrophage survival. We translated this finding by showing that the dysfunctional CX3CR1 variant CX3CR1-M280 was associated with increased risk and worse outcome of human systemic candidiasis. However, the impact of this mutation on human monocyte/macrophage survival is poorly understood. Herein, we hypothesized that CX3CR1-M280 impairs human monocyte survival. We identified WT (CX3CR1-WT/WT), CX3CR1-WT/M280 heterozygous, and CX3CR1-M280/M280 homozygous healthy donors of European descent, and we show that CX3CL1 rescues serum starvation-induced cell death in CX3CR1-WT/WT and CX3CR1-WT/M280 but not in CX3CR1-M280/M280 monocytes. CX3CL1-induced survival of CX3CR1-WT/WT monocytes is mediated via AKT and ERK activation, which are both impaired in CX3CR1-M280/M280 monocytes, associated with decreased blood monocyte counts in CX3CR1-M280/M280 donors at steady state. Instead, CX3CR1-M280/M280 does not affect monocyte CX3CR1 surface expression or innate immune effector functions. Together, we show that homozygocity of the M280 polymorphism in CX3CR1 is a potentially novel population-based genetic factor that influences human monocyte signaling.
Collapse
Affiliation(s)
- Amanda L. Collar
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID) , and
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID) , and
| | - Morgan O’Hayre
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Md Sanaullah Sajib
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Kevin W. Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology (LMI), NIAID, NIH, Bethesda, Maryland, USA
| | - Ahmad Mourad
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa D. Johnson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elise M.N. Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID) , and
| | - Joshua M. Farber
- Laboratory of Molecular Immunology (LMI), NIAID, NIH, Bethesda, Maryland, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Constantinos M. Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
- Department of Pharmacology, UCSD, San Diego, California, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID) , and
| |
Collapse
|
28
|
Kaur T, Ohlemiller KK, Warchol ME. Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury. J Comp Neurol 2017; 526:824-835. [PMID: 29218724 DOI: 10.1002/cne.24369] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/11/2022]
Abstract
Cochlear hair cells are vulnerable to a variety of insults like acoustic trauma and ototoxic drugs. Such injury can also lead to degeneration of spiral ganglion neurons (SGNs), but this occurs over a period of months to years. Neuronal survival is necessary for the proper function of cochlear prosthetics, therefore, it is of great interest to understand the mechanisms that regulate neuronal survival in deaf ears. We have recently demonstrated that selective hair cell ablation is sufficient to attract leukocytes into the spiral ganglion, and that fractalkine signaling plays a role in macrophage recruitment and in the survival of auditory neurons. Fractalkine (CX3 CL1), a chemokine that regulates adhesion and migration of leukocytes is expressed by SGNs and signals to leukocytes via its receptor CX3 CR1. The present study has extended the previous findings to more clinically relevant conditions of sensorineural hearing loss by examining the role of fractalkine signaling after aminoglycoside ototoxicity or acoustic trauma. Both aminoglycoside treatment and acoustic overstimulation led to the loss of hair cells as well as prolonged increase in the numbers of cochlear leukocytes. Lack of CX3 CR1 did not affect macrophage recruitment after injury, but resulted in increased loss of SGNs and enhanced expression of the inflammatory cytokine interleukin-1β, when compared to mice with intact CX3 CR1. These data indicate that the dysregulation of macrophage response caused by the absence of CX3 CR1 may contribute to inflammation-mediated neuronal loss in the deafened ear, suggesting a key role for inflammation in the long-term survival of target-deprived afferent neurons.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin K Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
29
|
Das S, Raundhal M, Chen J, Oriss TB, Huff R, Williams JV, Ray A, Ray P. Respiratory syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary innate immune response. JCI Insight 2017; 2:94605. [PMID: 28878128 DOI: 10.1172/jci.insight.94605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects almost all infants by 2 years of age, and severe bronchiolitis resulting from RSV infection is the primary cause of hospitalization in the first year of life. Among infants hospitalized due to RSV-induced bronchiolitis, those with a specific mutation in the chemokine receptor CX3CR1, which severely compromises binding of its ligand CX3CL1, were at a higher risk for more severe viral bronchiolitis than those without the mutation. Here, we show that RSV infection of newborn mice deficient in CX3CR1 leads to significantly greater neutrophilic inflammation in the lungs, accompanied by an increase in mucus production compared with that induced in WT mice. Analysis of innate and adaptive immune responses revealed an early increase in the number of IL-17+ γδ T cells in CX3CR1-deficient mice that outnumbered IFN-γ+ γδ T cells as well as IFN-γ+ NK cells, IFN-γ being host protective in the context of RSV infection. This bias toward IL-17+ γδ T cells persisted at a later time. The lungs of CX3CR1-deficient mice expressed higher levels of IL-1β mRNA and protein, and blockade of IL-1β signaling using IL-1 receptor antagonist significantly reduced the number of IL-17+ γδ T cells in the lungs of infected mice. Blockade of IL-17RC abolished RSV-induced lung pathology in infected CX3CR1-deficient mice. We propose that, in infants harboring mutant CX3CR1, targeting the IL-17R may minimize disease severity and hospitalization in early life.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V Williams
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Ishizuka K, Fujita Y, Kawabata T, Kimura H, Iwayama Y, Inada T, Okahisa Y, Egawa J, Usami M, Kushima I, Uno Y, Okada T, Ikeda M, Aleksic B, Mori D, Someya T, Yoshikawa T, Iwata N, Nakamura H, Yamashita T, Ozaki N. Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl Psychiatry 2017; 7:e1184. [PMID: 28763059 PMCID: PMC5611740 DOI: 10.1038/tp.2017.173] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/20/2017] [Accepted: 06/17/2017] [Indexed: 12/20/2022] Open
Abstract
CX3CR1, a G protein-coupled receptor solely expressed by microglia in the brain, has been repeatedly reported to be associated with neurodevelopmental disorders including schizophrenia (SCZ) and autism spectrum disorders (ASD) in transcriptomic and animal studies but not in genetic studies. To address the impacts of variants in CX3CR1 on neurodevelopmental disorders, we conducted coding exon-targeted resequencing of CX3CR1 in 370 Japanese SCZ and 192 ASD patients using next-generation sequencing technology, followed by a genetic association study in a sample comprising 7054 unrelated individuals (2653 SCZ, 574 ASD and 3827 controls). We then performed in silico three-dimensional (3D) structural modeling and in vivo disruption of Akt phosphorylation to determine the impact of the detected variant on CX3CR1-dependent signal transduction. We detected a statistically significant association between the variant Ala55Thr in CX3CR1 with SCZ and ASD phenotypes (odds ratio=8.3, P=0.020). A 3D structural model indicated that Ala55Thr could destabilize the conformation of the CX3CR1 helix 8 and affect its interaction with a heterotrimeric G protein. In vitro functional analysis showed that the CX3CR1-Ala55Thr mutation inhibited cell signaling induced by fractalkine, the ligand for CX3CR1. The combined data suggested that the variant Ala55Thr in CX3CR1 might result in the disruption of CX3CR1 signaling. Our results strengthen the association between microglia-specific genes and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ishizuka
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Fujita
- Department of Molecular Neuroscience,
Osaka University Graduate School of Medicine, Osaka,
Japan
| | - T Kawabata
- Institute for Protein Research, Osaka
University, Osaka, Japan
| | - H Kimura
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Iwayama
- Laboratory for Molecular Psychiatry,
RIKEN Brain Science Institute, Wako, Japan
| | - T Inada
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Okahisa
- Department of Neuropsychiatry, Okayama
University Graduate School of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama, Japan
| | - J Egawa
- Department of Psychiatry, Niigata
University Graduate School of Medical and Dental Sciences,
Niigata, Japan
| | - M Usami
- Department of Child and Adolescent
Psychiatry, Kohnodai Hospital, National Center for Global Health and
Medicine, Ichikawa, Japan
| | - I Kushima
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - Y Uno
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Laboratory for Psychiatric and Molecular
Neuroscience, McLean Hospital, Belmont, MA,
USA
| | - T Okada
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| | - M Ikeda
- Department of Psychiatry, Fujita Health
University School of Medicine, Toyoake, Japan
| | - B Aleksic
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Department of Psychiatry, Nagoya University Graduate School
of Medicine, 65 Tsurumai-cho, Showa-ku,
Nagoya, Aichi
4668550, Japan. E-mail:
| | - D Mori
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan,Brain and Mind Research Center, Nagoya
University, Nagoya, Japan
| | - To Someya
- Department of Psychiatry, Niigata
University Graduate School of Medical and Dental Sciences,
Niigata, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry,
RIKEN Brain Science Institute, Wako, Japan
| | - N Iwata
- Department of Psychiatry, Fujita Health
University School of Medicine, Toyoake, Japan
| | - H Nakamura
- Institute for Protein Research, Osaka
University, Osaka, Japan
| | - T Yamashita
- Department of Molecular Neuroscience,
Osaka University Graduate School of Medicine, Osaka,
Japan
| | - N Ozaki
- Department of Psychiatry, Nagoya
University Graduate School of Medicine, Nagoya,
Japan
| |
Collapse
|
31
|
López-López A, Gelpi E, Lopategui DM, Vidal-Taboada JM. Association of the CX3CR1-V249I Variant with Neurofibrillary Pathology Progression in Late-Onset Alzheimer's Disease. Mol Neurobiol 2017; 55:2340-2349. [PMID: 28343297 DOI: 10.1007/s12035-017-0489-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/14/2017] [Indexed: 01/22/2023]
Abstract
Neuroinflammation and microglial dysfunction have a prominent role in the pathogenesis of late-onset Alzheimer's disease (LOAD). CX3CR1 is a microglia-specific gene involved in microglia-neuron crosstalk and neuroinflammation. Numerous evidence show the involvement of CX3CR1 in AD. The aim of this study was to investigate if some functional genetic variants of this gene could influence on LOAD's outcome, in a neuropathologically confirmed Spanish cohort. We designed an open, pragmatic, case-control retrospective study including a total of 475 subjects (205 pathologically confirmed AD cases and 270 controls). We analyzed the association of the two CX3CR1 functional variants (V249I, rs3732379; and T280M, rs3732378) with neurofibrillary pathology progression rate according to Braak's staging system, age at onset (AAO), survival time, and risk of suffering LOAD. We found that individuals heterozygous for CX3CR1-V249I presented a lower neurofibrillary pathology stage at death (OR = 0.42, 95%CI [0.23, 0.74], p = 0.003, adj-p = 0.013) than the other genotypes. Eighty percent of the subjects homozygous for 249I had higher neurofibrillary pathology progression (Braak's stage VI). Moreover, homozygosis for 280M and 249I could be associated with a higher AAO in the subgroups of AD with Lewy bodies and without Lewy bodies. These CX3CR1 genetic variants could represent new modifying factors of pathology progression and age at onset in LOAD. These results provide further evidence of the involvement of CX3CR1 pathway and microglia/macrophages in the pathogenesis of LOAD.
Collapse
Affiliation(s)
- Alan López-López
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobank, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Diana Maria Lopategui
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain.,Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, USA
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, Faculty of Medicine-IDIBAPS, University of Barcelona, Barcelona, Spain. .,Institut de Neurociencies, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Zhuang Q, Cheng K, Ming Y. CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe? Curr Gene Ther 2017; 17:442-452. [PMID: 29446734 PMCID: PMC5902862 DOI: 10.2174/1566523218666180214092536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/06/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
The fractalkine receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) and its highly selective ligand CX3CL1 mediate chemotaxis and adhesion of immune cells, which are involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. The CX3CL1/CX3CR1 axis has recently drawn attention as a potential therapeutic target because it is involved in the ontogeny, homeostatic migration, or colonization of renal phagocytes. We performed a Medline/PubMed search to detect recently published studies that explored the relationship between the CX3CL1/CX3CR1 axis and renal diseases and disorders, including diabetic nephropathy, renal allograft rejection, infectious renal diseases, IgA nephropathy, fibrotic kidney disease, lupus nephritis and glomerulonephritis, acute kidney injury and renal carcinoma. Most studies demonstrated its role in promoting renal pathopoiesis; however, several recent studies showed that the CX3CL1/CX3CR1 axis could also reduce renal pathopoiesis. Thus, the CX3CL1/CX3CR1 axis is now considered to be a double-edged sword that could provide novel perspectives into the pathogenesis and treatment of renal diseases and disorders.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Ke Cheng
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| |
Collapse
|
33
|
Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O'Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 2016; 167:1415-1429.e19. [PMID: 27863252 PMCID: PMC5300907 DOI: 10.1016/j.cell.2016.10.042] [Citation(s) in RCA: 864] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/13/2016] [Accepted: 10/21/2016] [Indexed: 02/02/2023]
Abstract
Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.
Collapse
Affiliation(s)
- William J Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Heather Elding
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Tao Jiang
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Dave Allen
- Blood Research Group, NHS Blood and Transplant, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9BQ, UK
| | - Dace Ruklisa
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Alice L Mann
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Daniel Mead
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Heleen Bouman
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Fernando Riveros-Mckay
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Myrto A Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John J Lambourne
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Haematology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Road, London, London E1 1BB, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Kousik Kundu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Lorenzo Bomba
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Kim Berentsen
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Louise C Daugherty
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Olivier Delaneau
- Département de Génétique et Développement (GEDEV), University of Geneva, 1211 Geneve 4, Switzerland
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Stephen F Garner
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Jose Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Matthias Haimel
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Eva M Janssen-Megens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Anita Kaan
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Mihir Kamat
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Bowon Kim
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Amit Mandoli
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Jonathan Marchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Jared O'Connell
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Romina Petersen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Nilofar Sharifi
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Simon M Sheard
- UK Biobank Ltd., 1-4 Spectrum Way, Adswood, Stockport SK3 0SA, UK
| | - James R Staley
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Martijn van der Ent
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Klaudia Walter
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Shuang-Yin Wang
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Eleanor Wheeler
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Steven P Wilder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Valentina Iotchkova
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carmel Moore
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Jennifer Sambrook
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen Kaptoge
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Location H7-230, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Plesmanlaan 125, Amsterdam, 1066CX, the Netherlands
| | - Enrique Carrillo-de-Santa-Pau
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - David Juan
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Daniel Rico
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Lu Chen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Bing Ge
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Louella Vasquez
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Tony Kwan
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Diego Garrido-Martín
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10- 12, Barcelona 8002, Spain
| | - Stephen Watt
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Ying Yang
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Roderic Guigo
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10- 12, Barcelona 8002, Spain; Computational Genomics, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Dirk S Paul
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Tomi Pastinen
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - David Bujold
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK; Department of Haematology, Churchill Hospital, Headington, Oxford OX3 7LE, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Nicole Soranzo
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
34
|
Yadav AK, Kumar V, Jha V. Association of chemokine receptor CX3CR1 V249I and T280M polymorphisms with chronic kidney disease. Indian J Nephrol 2016; 26:275-9. [PMID: 27512300 PMCID: PMC4964688 DOI: 10.4103/0971-4065.163426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The chemokine fractalkine (CX3CL1) and its receptor CX3CR1 are involved in the activation of leukocytes. Two common single-nucleotide polymorphisms of the CX3CR1 gene, V249I and T280M, have been associated with reduced fractalkine signaling, leading to decreased adhesive function and leukocyte chemotaxis. We hypothesized that variation in the CX3CR1 gene could be associated with chronic kidney disease (CKD), a disease of inflammatory activation. We studied the association between CX3CR1 V249I and T280M polymorphisms, and fractalkine and highly sensitive C-reactive protein (hs-CRP) levels in 123 patients with CKD and 100 healthy controls (HCs). Genotype analysis was done by polymerase chain reaction-restriction fragment length polymorphism, and fractalkine and hs-CRP levels were analyzed by enzyme-linked immunosorbent assay. MM genotype of T280M was absent in CKD patients, while in controls it was seen in 1% of the individuals. The allele frequencies in both the groups were similar (P = 0.059). Compared to HC, M280M + T280M genotype was more frequent in CKD (P = 0.041). The frequency of II genotype of V249I was 0.8% in CKD, whereas in HC, it was 2%. I249I + V249I genotype was more frequent in CKD as compared to HC (P = 0.034). No difference in allelic frequency of V249I was noted between the two groups (P = 0.061, odds ratios = 1.74, 95% confidence intervals = 0.96–3.12). Plasma fractalkine and serum hs-CRP levels were higher in CKD subjects (P = 0.004 and P < 0.0001). No association of either genotype was found with fractalkine and hs-CRP levels. Polymorphisms at I249 and M280 genotype in CX3CR1 gene are associated with CKD; however, there was no association of fractalkine or inflammatory marker with these genotypes.
Collapse
Affiliation(s)
- A K Yadav
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - V Kumar
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - V Jha
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; George Institute for Global Health, New Delhi, India
| |
Collapse
|
35
|
Verstockt B, Cleynen I. Genetic Influences on the Development of Fibrosis in Crohn's Disease. Front Med (Lausanne) 2016; 3:24. [PMID: 27303667 PMCID: PMC4885006 DOI: 10.3389/fmed.2016.00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
Fibrostenotic strictures are an important complication in patients with Crohn’s disease (CD), very often necessitating surgery. This fibrotic process develops in a genetically susceptible individual and is influenced by an interplay with environmental, immunological, and disease-related factors. A deeper understanding of the genetic factors driving this fibrostenotic process might help to unravel the pathogenesis, and ultimately lead to development of new, anti-fibrotic therapy. Here, we review the genetic factors that have been associated with the development of fibrosis in patients with CD, as well as their potential pathophysiological mechanism(s). We also hypothesize on clinical implications, if any, and future research directions.
Collapse
Affiliation(s)
- Bram Verstockt
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, UK; Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Isabelle Cleynen
- Laboratory of Complex Genetics, Department of Human Genetics, KU Leuven , Leuven , Belgium
| |
Collapse
|
36
|
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73:1765-86. [PMID: 26852158 PMCID: PMC4819943 DOI: 10.1007/s00018-016-2147-8] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Jussi J Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
37
|
Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M, Dong J. Role of CX3CL1 in Diseases. Arch Immunol Ther Exp (Warsz) 2016; 64:371-83. [PMID: 27098399 DOI: 10.1007/s00005-016-0395-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/21/2016] [Indexed: 01/04/2023]
Abstract
Chemokines are a family of small 8-10 kDa inducible cytokines. Initially characterized as chemotactic factors, they are now considered to affect not just cellular recruitment. CX3CL1 is a unique chemokine that can exist in a soluble form, as a chemotactic cytokine, or in a membrane-attached form that acts as a binding molecule. Recently, the effects of CX3CL1 on diseases, such as inflammation and cancer, have been supported and confirmed by numerous publications. However, due to its dual effects, CX3CL1 exerts numerous effects on pathophysiological conditions that have both negative and positive consequences on pathogenesis and outcome. This review article summarizes the important scientific and clinical data that now point to a critical role for CX3CL1 in diseases.
Collapse
Affiliation(s)
- WangMi Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chong Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rong Xing
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mumingjiang Yishakea
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
38
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
39
|
Assone T, Paiva A, Fonseca LAM, Casseb J. Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections. Viruses 2016; 8:v8020038. [PMID: 26848682 PMCID: PMC4776193 DOI: 10.3390/v8020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA) haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other persistent viruses, such as HIV and HCV.
Collapse
Affiliation(s)
- Tatiane Assone
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Arthur Paiva
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Luiz Augusto M Fonseca
- Department of Preventive Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Jorge Casseb
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| |
Collapse
|
40
|
Li D, Peng X, Sun H. Association of CX3CR1 (V249I and T280M) polymorphisms with age-related macular degeneration: a meta-analysis. Can J Ophthalmol 2015; 50:451-60. [PMID: 26651305 DOI: 10.1016/j.jcjo.2015.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Studies investigating the associations between CX3CR1 genetic polymorphisms and age-related macular degeneration (AMD) have reported controversial results. Therefore, this meta-analysis aims to clarify the effects of CX3CR1 T280M and V249I polymorphisms on AMD risk. DESIGN Meta-analysis. PARTICIPANTS Results from six studies were pooled in the meta-analysis. METHODS Relevant studies were selected through an extensive search of PubMed, EMBASE, and the Web of Science databases. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random-effects model. RESULTS Six studies with were included in this systematic review and meta-analysis. There was no significant association between CX3CR1 T280M polymorphism and risk of AMD under all genetic models (TT vs CC/CT OR = 1.57, 95% CI = 0.87-2.84; CC vs TT/CT: OR = 0.75, 95% CI = 0.54-1.06; TT vs CC: OR = 0.58, 95% CI = 0.30-1.144; CT vs CC: OR = 1.25, 95% CI = 0.91-1.70). The CX3CR1 V249I polymorphism also did not significantly affect the AMD risk (AA vs GG/AG OR = 1.23, 95% CI = 0.98-1.55; AG/AA vs GG: OR = 0.56, 95% CI = 0.29-1.07; AA vs GG: OR = 1.43, 95% CI = 0.97-2.09; AG vs GG: OR = 1.07, 95% CI = 0.85-1.36). CONCLUSIONS This meta-analysis suggested that CX3CR1 T280M and V249I polymorphisms may not be associated with an increased risk of AMD based on current published data. Given the limited sample size, the finding on CX3CR1 polymorphisms needs further investigation.
Collapse
Affiliation(s)
- Dan Li
- Department of Ophthalmology, Beijing Di Tan Hospital, Capital Medical University, Beijing, China
| | - XiaoYan Peng
- Beijng Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing Tongren Hospital
| | - HuiYu Sun
- Department of Ophthalmology, Beijing Di Tan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
41
|
Zhou Y, Deng HW, Shen H. Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int 2015; 26:2561-72. [PMID: 26194495 DOI: 10.1007/s00198-015-3250-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Peripheral blood monocytes (PBMs) are an important source of precursors of osteoclasts, the bone-resorbing cells and the cytokines produced by PBMs that have profound effects on osteoclast differentiation, activation, and apoptosis. So PBMs represent a highly valuable and unique working cell model for bone-related study. Finding an appropriate working cell model for clinical and (epi-)genomic studies of human skeletal disorders is a challenge. Peripheral blood monocytes (PBMs) can give rise to osteoclasts, the bone-resorbing cells. Particularly, PBMs provide the sole source of osteoclast precursors for adult peripheral skeleton where the bone marrow is normally hematopoietically inactive. PBMs can secrete potent pro- and anti-inflammatory cytokines, which are important for osteoclast differentiation, activation, and apoptosis. Reduced production of PBM cytokines represents a major mechanism for the inhibitory effects of sex hormones on osteoclastogenesis and bone resorption. Abnormalities in PBMs have been linked to various skeletal disorders/traits, strongly supporting for the biological relevance of PBMs with bone metabolism and disorders. Here, we briefly review the origin and further differentiation of PBMs. In particular, we discuss the close relationship between PBMs and osteoclasts, and highlight the utility of PBMs in study the pathophysiological mechanisms underlying various skeletal disorders.
Collapse
Affiliation(s)
- Y Zhou
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H-W Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| |
Collapse
|
42
|
Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina. ASN Neuro 2015; 7:7/5/1759091415608204. [PMID: 26514658 PMCID: PMC4641555 DOI: 10.1177/1759091415608204] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fractalkine (CX3CL1 or FKN) is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita) CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a) decreased neuronal cell counts in the retinal ganglion cell layer, (b) increased microglial cell numbers, and (c) decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Andrew S Mendiola
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Ya-Chin Yang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Sarina L Adkins
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Vanessa Torres
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| |
Collapse
|
43
|
Tang J, Chen Y, Cui R, Li D, Xiao L, Lin P, Du Y, Sun H, Yu X, Zheng X. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol Med Rep 2015; 12:7907-14. [PMID: 26496926 PMCID: PMC4758273 DOI: 10.3892/mmr.2015.4438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a common phenomenon in prostate cancer, which leads to cell proliferation and tumor growth. Fractalkine (FKN) is a membrane-bound chemokine, which is implicated in the progression of human prostate cancer and skeletal metastasis. However, the association between FKN and hypoxia-induced prostate cancer cell proliferation remains to be elucidated. The present study demonstrated that hypoxia induced the expression and secretion of FKN in the DU145 prostate cancer cell line. Furthermore, inhibiting the activity of FKN with the anti-FKN FKN-specific antibody markedly inhibited hypoxia-induced DU145 cell proliferation. Under normoxic conditions, DU145 cell proliferation markedly increased following exogenous administration of human recombinant FKN protein, and the increase was significantly alleviated by anti-FKN, indicating the importance of FKN in DU145 cell proliferation. In addition, subsequent determination of cell cycle distribution and expression levels of two core cell cycle regulators, cyclin E and cyclin-dependent kinase (CDK)2, suggested that FKN promoted the G1/S phase transition by upregulating the expression levels of cyclin E and CDK2. The results of the present study demonstrated that hypoxia led to the upregulation of the secretion and expression of FKN, which enhanced cell proliferation by promoting cell cycle progression in the prostate cancer cells. These findings provide evidence of a novel function for FKN, and suggest that FKN may serve as a potential target for treating androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Jiebing Tang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lijie Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ping Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yandan Du
- Department of Clinical Laboratory, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Inner Mongolia Forestry General Hospital, Hulunbuir, Inner Mongolia 022150, P.R. China
| | - Hui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoguang Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiulan Zheng
- Department of Ultrasonography, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
44
|
Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice. PLoS One 2015; 10:e0138317. [PMID: 26393344 PMCID: PMC4579121 DOI: 10.1371/journal.pone.0138317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022] Open
Abstract
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.
Collapse
|
45
|
Timasheva YR, Nasibullin TR, Mustafina OE. The CXCR2 Gene Polymorphism Is Associated with Stroke in Patients with Essential Hypertension. Cerebrovasc Dis Extra 2015; 5:124-31. [PMID: 26648969 PMCID: PMC4662298 DOI: 10.1159/000441529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/29/2015] [Indexed: 01/02/2023] Open
Abstract
Hypertension is the major risk factor for stroke, and genetic factors contribute to its development. Inflammation has been hypothesized to be the key link between blood pressure elevation and stroke. We performed an analysis of the association between inflammatory mediator gene polymorphisms and the incidence of stroke in patients with essential hypertension (EH). The study group consisted of 625 individuals (296 patients with noncomplicated EH, 71 hypertensive patients with ischemic stroke, and 258 control subjects). Both patients and controls were ethnic Tatars originating from the Republic of Bashkortostan (Russian Federation). The analysis has shown that the risk of ischemic stroke was associated with the CXCR2 rs1126579 polymorphism. Our results indicate that among patients with EH, the heterozygous genotype carriers had a higher risk of stroke (OR = 1.72, 95% CI 1.01-2.92), whereas the CXCR2*C/C genotype was protective against stroke (OR = 0.32, 95% CI 0.12-0.83). As shown by the gene-gene interaction analysis, the CXCR2 rs1126579 polymorphism was also present in all genotype/allele combinations associated with the risk of stroke. Genetic patterns associated with stroke also included polymorphisms in the CCL2, CCL18, CX3CR1, CCR5, and CXCL8 (IL8) genes, although no association between these loci and stroke was detected by individual analysis.
Collapse
|
46
|
Dabrowska-Zamojcin E, Dziedziejko V, Safranow K, Kurzawski M, Domanski L, Pawlik A. Association between the CX3CR1 gene V249I polymorphism and delayed kidney allograft function. Transpl Immunol 2015; 32:172-4. [PMID: 25898802 DOI: 10.1016/j.trim.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/28/2015] [Accepted: 04/14/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fractalkine is a member of the chemokine family that acts as an adhesion molecule and as an extracellular chemoattractant promoting cellular migration. In this study, we analysed the association between the CX3CR1 gene V249I (rs3732379) SNP and renal allograft function. METHODS The study enrolled 270 Caucasian kidney allograft recipients. The following parameters were recorded in each case: the recipient's age and gender, delayed graft function (DGF) defined as the need for dialysis in the first 7 days after transplantation, occurrence and number of episodes of acute rejection (AR), and chronic allograft dysfunction (CAD). RESULTS Delayed graft function was diagnosed in 39.2% of individuals with the CC genotype, 22.7% with CT and 23.5% of those with the TT genotype. The differences were statistically significant (CC vs. TT+CT: OR = 2.17; 95% CI = 1.28-3.70, p = 0.0042). In multivariate analysis the CC genotype was an independent and significant predictor of higher risk of DGF. The distribution of genotypes and alleles of the CX3CR1 gene polymorphism among patients with and without AR as well as CAD did not differ significantly. CONCLUSIONS The results of this study suggest that the CX3CR1 gene V249I (rs3732379) SNP CC genotype is associated with increased risk of DGF.
Collapse
Affiliation(s)
- Ewa Dabrowska-Zamojcin
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Leszek Domanski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
47
|
Prada N, Antoni G, Commo F, Rusakiewicz S, Semeraro M, Boufassa F, Lambotte O, Meyer L, Gougeon ML, Zitvogel L. Analysis of NKp30/NCR3 isoforms in untreated HIV-1-infected patients from the ANRS SEROCO cohort. Oncoimmunology 2014; 2:e23472. [PMID: 23802087 PMCID: PMC3661172 DOI: 10.4161/onci.23472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells play a prominent role at the intersection between innate and cognate immunity, thus influencing the development of multiple pathological conditions including HIV-1-induced AIDS. Not only NK cells directly kill HIV-1-infected cells, but also control the maturation and/or elimination of dendritic cells (DCs). These functions are regulated by the delicate balance between activating and inhibiting receptors expressed at the NK-cell surface. Among the former, NKp30 has raised significant interest since the alternative splicing of its intracellular domain leads to differential effector functions, dictating the prognosis of patients bearing gastrointestinal sarcoma, and B7-H6 has recently been identified as its main ligand. Since NKp30 is downregulated in CD56-/CD16+ NK cells expanded in viremic, chronically infected HIV-1+ patients, we decided to investigate the predictive value of NKp30 splice variants for spontaneous disease progression in 89 therapy-naïve HIV-1-infected individuals enrolled in an historical cohort of patients followed since diagnosis (ANRS SEROCO cohort). We found no difference in the representation of NK-cell subsets (CD56bright, CD56dim, CD56neg) in HIV-1-infected patients as compared with healthy subjects. NKp30 downregulation was detected in CD56dim and CD56neg NK-cell subsets, yet this did not convey any prognostic value. None of the NKp30 isoforms did affect disease progression, as measured in terms of time-to-loss of circulating CD4+ T cells, time-to-AIDS-defining events and overall survival. NKp30 isoforms do not seem to play a major role in the outcome of HIV-1 infection, but the heterogeneity of the immuno-virological status of patients at enrollment could have to be taken into account.
Collapse
Affiliation(s)
- Nicole Prada
- INSERM U1015; Institut Gustave Roussy; Villejuif, France ; Institut Pasteur; Antiviral Immunity, Biotherapy and Vaccine Unit; Infection and Epidemiology Department; Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Martínez-García M, Santos F, Moreno-Paz M, Parro V, Antón J. Unveiling viral-host interactions within the 'microbial dark matter'. Nat Commun 2014; 5:4542. [PMID: 25119473 DOI: 10.1038/ncomms5542] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/27/2014] [Indexed: 11/09/2022] Open
Abstract
Viruses control natural microbial communities. Identification of virus-host pairs relies either on their cultivation or on metagenomics and tentative assignment based on genomic signatures. Both approaches have severe drawbacks when aiming to target such pairs within the uncultured majority. Here we present an unambiguous way to assign viruses to hosts that does not rely on any previous information about either of them nor requires their cultivation. First, genomic contents of individual cells present in an environmental sample are retrieved by means of single-cell genomic technologies. Then, individual cell genomes are hybridized against a set of individual viral genomes from the same sample, previously immobilized on a microarray. Infected cells will yield positive hybridization as they carry viral genomes, which can be then sequenced and characterized. Using this method, we pinpoint viruses infecting the ubiquitous hyperhalophilic Nanohaloarchaeota, included in the so-called 'microbial dark matter' (the uncultured fraction of the microbial world).
Collapse
Affiliation(s)
- Manuel Martínez-García
- 1] Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain [2]
| | - Fernando Santos
- 1] Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain [2]
| | - Mercedes Moreno-Paz
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Víctor Parro
- Departamento de Evolución Molecular, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
49
|
Gupta D, Gupta V, Singh V, Chawla S, Parveen F, Agrawal S, Phadke SR. Study of Polymorphisms in CX3CR1, PLEKHA1 and VEGF Genes as Risk Factors for Age-related Macular Degeneration in Indian Patients. Arch Med Res 2014; 45:489-94. [DOI: 10.1016/j.arcmed.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
|
50
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|