1
|
Xu J, PerezSanchez P, Sadravi S. Unlocking the full potential of plant cell-based production for valuable proteins: Challenges and innovative strategies. Biotechnol Adv 2025; 79:108526. [PMID: 39914685 PMCID: PMC11845290 DOI: 10.1016/j.biotechadv.2025.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Plant cell-based bioproduction systems offer a promising platform for the sustainable production of valuable proteins as they provide distinctive advantages over mammalian cell culture and whole plant cultivation. However, significant technical challenges remain, including low productivity, altered efficacy of plant-derived proteins, along with issues in culture process development, such as cell clumping, genetic instability, and difficulties with cryopreservation. To date, the full production potential of this platform remains largely untapped. This review addresses these critical challenges and proposes innovative strategies to unlock the full potential of the production platform. Rather than simply revisiting past advancements or summarizing current progress, it proposes forward-thinking solutions with a particular emphasis on cellular engineering. Key strategies include designing novel protein partners to enhance recombinant protein accumulation and functionality, employing precise gene integration techniques in genome to enhance transgene transcription, implementing cutting-edge methods for screening and maintaining elite cell lines to mitigate genetic instability, and leveraging genome editing tools for cellular engineering to develop new plant cell lines optimized for bioproduction. A key focus is on cell wall engineering to develop cellulose- or pectin-deficient cell lines, facilitating modifications to the morphology of existing plant cell lines. By exploring these innovative approaches, this review aims to foster innovative thinking and inspire future research in plant cell-based bioproduction.
Collapse
Affiliation(s)
- Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA.
| | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Shekoofeh Sadravi
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA; Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
2
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
3
|
Xie Q, Tan H, Zhang M, Zhang W, Ju Y, Fang Y. 5-azaC treatment affected anthocyanins, sugars and organic acids and reduced DNA methylation in Merlot grape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109308. [PMID: 39603030 DOI: 10.1016/j.plaphy.2024.109308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
DNA methylation plays a crucial role in regulating gene expression, thereby affecting the growth and development of organisms. The application of 5-azacytidine (5-azaC) serves as a potent regulator of DNA methylation levels by inhibiting DNA methyltransferase activity, which subsequently impacts organismal growth and development. In this study, we explored the effects of varying concentrations of 5-azaC on the growth and fruit quality attributes of Merlot grapes. Our findings indicate that treatment with 5-azaC accelerates fruit coloration in grape berries, particularly under conditions of suboptimal solar irradiance. Although 5-azaC treatments at various concentrations suppressed the accumulation of glucose and fructose, the accumulation of organic acids was more influenced by climatic factors than by 5-azaC exposure. Notably, high concentrations (200 μM) of 5-azaC significantly enhanced anthocyanin content, while subhigh concentrations (100 μM) had a contrasting effect. Genome-wide methylation profiling revealed that treatment with 5-azaC reduced CpG methylation levels, thereby affecting the transcriptional regulation of key genes involved in pertinent metabolic pathways. Expression levels of C4H, PAL, NAD-IDH, and SAI were markedly downregulated following treatment with 5-azaC. Collectively, our results demonstrate that 5-azaC modulates grape DNA methylation, stimulates grape growth and development, promotes anthocyanin accumulation, but also concurrently diminishes the levels of sugars and organic acids in mature grape fruits.
Collapse
Affiliation(s)
- Qi Xie
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Hongbin Tan
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Mengbo Zhang
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Wentong Zhang
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Yanlun Ju
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China; Heyang Viti-viniculture Station, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| | - Yulin Fang
- College of Enology, Northwest A & F University, 712100, Yangling, Shaanxi, China; Heyang Viti-viniculture Station, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
5
|
Geng R, Xu J, Jiang J, Cheng Z, Sun M, Xia N, Gao J. Identification of New Cultivar and Different Provenances of Dendrocalamus brandisii (Poaceae: Bambusoideae) Using Simple Sequence Repeats Developed from the Whole Genome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2910. [PMID: 39458856 PMCID: PMC11511551 DOI: 10.3390/plants13202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Dendrocalamus brandisii is a high-quality bamboo species that can be used for both bamboo shoots and wood. The nutritional components and flavors of D. brandisii vary from different geographical provenances. However, the unique biological characteristics of bamboo make morphological classification methods unsuitable for distinguishing them. Although the new cultivar 'Manxie No.1' has significant differences in the branch characteristics and the color of shoot sheaths compared to the D. brandisii, it still lacks precise genetic information at the molecular level. This study identified 231,789 microsatellite markers based on the whole genome of D. brandisii and analyzed their type composition and distribution on chromosomes in detail. Then, using TP-M13-SSR fluorescence-labeling technology, 34 pairs of polymorphic primers were screened to identify the new cultivar 'Manxie No.1' and 11 different geographical provenances of D. brandisii. We also constructed DNA fingerprinting profiles for them. At the same time, we mapped six polymorphic SSRs to the gene of D. brandisii, among which SSR673 was mapped to DhB10G011540, which is related to plant immunity. The specific markers selected in this study can rapidly identify the provenances and the new cultivar of D. brandisii and help explore candidate genes related to some important traits.
Collapse
Affiliation(s)
- Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Maosheng Sun
- Institute of Bamboo and Rattan, Southwest Forestry University, Kunming 650224, China;
| | - Nianhe Xia
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| |
Collapse
|
6
|
Shao Z, Lu J, Khudaverdyan N, Song J. Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation. Nat Commun 2024; 15:6815. [PMID: 39122718 PMCID: PMC11315935 DOI: 10.1038/s41467-024-51246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.
Collapse
Affiliation(s)
- Zengyu Shao
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
7
|
da Costa GS, Cerqueira AF, de Brito CR, Mielke MS, Gaiotto FA. Epigenetics Regulation in Responses to Abiotic Factors in Plant Species: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2082. [PMID: 39124200 PMCID: PMC11314046 DOI: 10.3390/plants13152082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 08/12/2024]
Abstract
Plants have several mechanisms to adapt or acclimate to environmental stress. Morphological, physiological, or genetic changes are examples of complex plant responses. In recent years, our understanding of the role of epigenetic regulation, which encompasses changes that do not alter the DNA sequence, as an adaptive mechanism in response to stressful conditions has advanced significantly. Some studies elucidated and synthesized epigenetic mechanisms and their relationships with environmental change, while others explored the interplay between epigenetic modifications and environmental shifts, aiming to deepen our understanding of these complex processes. In this study, we performed a systematic review of the literature to analyze the progression of epigenetics studies on plant species' responses to abiotic factors. We also aimed to identify the most studied species, the type of abiotic factor studied, and the epigenetic technique most used in the scientific literature. For this, a search for articles in databases was carried out, and after analyzing them using pre-established inclusion criteria, a total of 401 studies were found. The most studied species were Arabidopsis thaliana and Oryza sativa, highlighting the gap in studies of non-economic and tropical plant species. Methylome DNA sequencing is the main technique used for the detection of epigenetic interactions in published studies. Furthermore, most studies sought to understand the plant responses to abiotic changes in temperature, water, and salinity. It is worth emphasizing further research is necessary to establish a correlation between epigenetic responses and abiotic factors, such as extreme temperatures and light, associated with climate change.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Amato Gaiotto
- Laboratório de Ecologia Aplicada à Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, BA 45662-900, Brazil; (G.S.d.C.)
| |
Collapse
|
8
|
Shi J, Liu J, Li H, Tang Y, Liu S, Sun Z, Yu Z, Ji X. DNA methylation plays important roles in lifestyle transition of Arthrobotrys oligospora. IET Syst Biol 2024; 18:92-102. [PMID: 38760669 PMCID: PMC11179157 DOI: 10.1049/syb2.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Trap formation is the key indicator of carnivorous lifestyle transition of nematode-trapping fungi (NTF). Here, the DNA methylation profile was explored during trap induction of Arthrobotrys oligospora, a typical NTF that captures nematodes by developing adhesive networks. Whole-genome bisulfite sequencing identified 871 methylation sites and 1979 differentially methylated regions (DMRs). This first-of-its-kind investigation unveiled the widespread presence of methylation systems in NTF, and suggested potential regulation of ribosomal RNAs through DNA methylation. Functional analysis indicated DNA methylation's involvement in complex gene regulations during trap induction, impacting multiple biological processes like response to stimulus, transporter activity, cell reproduction and molecular function regulator. These findings provide a glimpse into the important roles of DNA methylation in trap induction and offer new insights for understanding the molecular mechanisms driving carnivorous lifestyle transition of NTF.
Collapse
Affiliation(s)
- Jiajia Shi
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiaxin Liu
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Heng Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yao Tang
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shuqun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhirong Sun
- Institute of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zefen Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xinglai Ji
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Liang Y, Hao J, Wang J, Zhang G, Su Y, Liu Z, Wang T. Statistical Genomics Analysis of Simple Sequence Repeats from the Paphiopedilum Malipoense Transcriptome Reveals Control Knob Motifs Modulating Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304848. [PMID: 38647414 PMCID: PMC11200097 DOI: 10.1002/advs.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Simple sequence repeats (SSRs) are found in nonrandom distributions in genomes and are thought to impact gene expression. The distribution patterns of 48 295 SSRs of Paphiopedilum malipoense are mined and characterized based on the first full-length transcriptome and comprehensive transcriptome dataset from 12 organs. Statistical genomics analyses are used to investigate how SSRs in transcripts affect gene expression. The results demonstrate the correlations between SSR distributions, characteristics, and expression level. Nine expression-modulating motifs (expMotifs) are identified and a model is proposed to explain the effect of their key features, potency, and gene function on an intra-transcribed region scale. The expMotif-transcribed region combination is the most predominant contributor to the expression-modulating effect of SSRs, and some intra-transcribed regions are critical for this effect. Genes containing the same type of expMotif-SSR elements in the same transcribed region are likely linked in function, regulation, or evolution aspects. This study offers novel evidence to understand how SSRs regulate gene expression and provides potential regulatory elements for plant genetic engineering.
Collapse
Affiliation(s)
- Yingyi Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jieyu Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518107China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
10
|
Singh HC, Tiwari V, Tiwari A, Rana TS. Development of EST-SSR markers in Bergenia ciliata using de novo transcriptome sequencing. Genome 2024; 67:119-124. [PMID: 38091581 DOI: 10.1139/gen-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bergenia ciliata (Haw.) Sternb. is an important herb predominantly found in the Indian Himalayan Region. It is widely used in medicines, healthcare systems, cosmetics, fodder, and ornamental purposes. The Illumina sequencing and de novo transcriptome assembly were carried out in B. ciliata to develop and identify simple sequence repeat markers. A total of 18 226 simple sequence repeats (SSRs) were identified wherein di-nucleotides were found to be abundant (47.88%), followed by mono-nucleotide (35.03%) and tri-nucleotide (15.88%) repeats. A total of 11 839 EST-SSR primers were designed, of which 96 primer pairs were commercially synthesized. Finally, 17 primer pairs revealed clear, distinct polymorphic bands, and these primers were validated with 40 diverse B. ciliata accessions. The present study revealed moderate level of genetic diversity (Ho = 0.389, He = 0.542, and PIC = 0.513). Furthermore, the transcriptome data and EST-SSR markers generated during the present investigation could be an important genetic resource for functional genomics, population studies, and conservation genetics of the genus Bergenia.
Collapse
Affiliation(s)
- Harish Chandra Singh
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
- School of Studies in Botany, Jiwaji University, Gwalior-474011, Madhya Pradesh, India
| | - Vandana Tiwari
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Avinash Tiwari
- School of Studies in Botany, Jiwaji University, Gwalior-474011, Madhya Pradesh, India
| | - Tikam S Rana
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
11
|
Amezrou R, Ducasse A, Compain J, Lapalu N, Pitarch A, Dupont L, Confais J, Goyeau H, Kema GHJ, Croll D, Amselem J, Sanchez-Vallet A, Marcel TC. Quantitative pathogenicity and host adaptation in a fungal plant pathogen revealed by whole-genome sequencing. Nat Commun 2024; 15:1933. [PMID: 38431601 PMCID: PMC10908820 DOI: 10.1038/s41467-024-46191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.
Collapse
Affiliation(s)
- Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France.
| | - Aurélie Ducasse
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Jérôme Compain
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Anais Pitarch
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Laetitia Dupont
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Johann Confais
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Gert H J Kema
- Plant Research International B.V., Wageningen, The Netherlands
| | - Daniel Croll
- Department of Ecology and Evolution, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | | |
Collapse
|
12
|
Perrella G, Fasano C, Donald NA, Daddiego L, Fang W, Martignago D, Carr C, Conti L, Herzyk P, Amtmann A. Histone Deacetylase Complex 1 and histone 1 epigenetically moderate stress responsiveness of Arabidopsis thaliana seedlings. THE NEW PHYTOLOGIST 2024; 241:166-179. [PMID: 37565540 PMCID: PMC10953426 DOI: 10.1111/nph.19165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.
Collapse
Affiliation(s)
- Giorgio Perrella
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Carlo Fasano
- Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentTrisaia Research CentreRotondella (Matera)75026Italy
| | - Naomi A. Donald
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentTrisaia Research CentreRotondella (Matera)75026Italy
| | - Weiwei Fang
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Damiano Martignago
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Craig Carr
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Lucio Conti
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Pawel Herzyk
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
- Glasgow Polyomics, Wolfson Wohl Cancer Research CentreUniversity of GlasgowGlasgowG61 1QHUK
| | - Anna Amtmann
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
13
|
Zhang M, Zheng C, Li J, Wang X, Liu C, Li X, Xu Z, Du K. Genetic diversity, population structure, and DNA fingerprinting of Ailanthus altissima var. erythrocarpa based on EST-SSR markers. Sci Rep 2023; 13:19315. [PMID: 37935877 PMCID: PMC10630516 DOI: 10.1038/s41598-023-46798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023] Open
Abstract
Ailanthus altissima var. erythrocarpa is an A. altissima variety with high economic, ecological and ornamental value, but there have been no reports on the development of SSR primers for it. According to the SSR primer information provided by the transcriptome of A. altissima var. erythrocarpa, 120 individuals with different redness levels were used to screen polymorphic primers. Transcriptomic analysis revealed 10,681 SSR loci, of which mononucleotide repeats were dominant (58.3%), followed by dinucleotide and trinucleotide repeats (16.6%, 15.1%) and pentanucleotide repeats (0.2%). Among 140 pairs of randomly selected primers, nineteen pairs of core primers with high polymorphism were obtained. The average number of alleles (Na), average number of effective alleles (Ne), average Shannon's diversity index (I), average observed heterozygosity (Ho), average expected heterozygosity (He), fixation index (F) and polymorphic information content (PIC) were 11.623, 4.098, 1.626, 0.516, 0.696, 0.232 and 0.671, respectively. Nineteen EST-SSR markers were used to study the genetic diversity and population structure of A. altissima var. erythrocarpa. The phylogenetic tree, PCoA, and structure analysis all divided the tested resources into two categories, clearly showing the genetic variation between individuals. The population showed high genetic diversity, mainly derived from intraspecific variation. Among nineteen pairs of primers, 4 pairs (p33, p15, p46, p92) could effectively distinguish and be used for fingerprinting of the tested materials. This study is of great significance for genetic diversity analysis and molecular-assisted breeding of A. altissima var. erythrocarpa.
Collapse
Affiliation(s)
- Manman Zhang
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
| | - Conghui Zheng
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Jida Li
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xueyong Wang
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Chunpeng Liu
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Xiangjun Li
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Zhenhua Xu
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China.
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China.
| | - Kejiu Du
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
14
|
Tabusam J, Liu M, Luo L, Zulfiqar S, Shen S, Ma W, Zhao J. Physiological Control and Genetic Basis of Leaf Curvature and Heading in Brassica rapa L. J Adv Res 2023; 53:49-59. [PMID: 36581197 PMCID: PMC10658314 DOI: 10.1016/j.jare.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.
Collapse
Affiliation(s)
- Javaria Tabusam
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Sumer Zulfiqar
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| |
Collapse
|
15
|
Gryzinska M, Kot B, Dudzinska E, Biernasiuk A, Jakubczak A, Malm A, Andraszek K. Changes in the Level of DNA Methylation in Candida albicans under the Influence of Physical and Chemical Factors. Int J Mol Sci 2023; 24:15873. [PMID: 37958861 PMCID: PMC10647513 DOI: 10.3390/ijms242115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of physical factors such as radiation (electromagnetic, microwave, infrared, laser, UVC, and X-ray) and high temperature, as well as chemical factors (controlled atmosphere) on the level of global DNA cytosine methylation in C. albicans ATCC 10231 cells were investigated. Prolonged exposure to each type of radiation significantly increased the DNA methylation level. In addition, the global methylation level in C. albicans cells increased with the incubation temperature. An increase in the percentage of methylated DNA was also noted in C. albicans cells cultured in an atmosphere with reduced O2. In contrast, in an atmosphere containing more than 3% CO2 and in anaerobic conditions, the DNA methylation level decreased relative to the control. This study showed that prolonged exposure to various types of radiation and high temperature as well as reduced O2 in the atmosphere caused a significant increase in the global DNA methylation level. This is most likely a response protecting DNA against damage, which at the same time can lead to epigenetic disorders, and in consequence can adversely affect the functioning of the organism.
Collapse
Affiliation(s)
- Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Barbara Kot
- Institute of Biological Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Ewa Dudzinska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Katarzyna Andraszek
- Institute of Animal Science and Fisheries, University of Siedlce, 08–110 Siedlce, Poland;
| |
Collapse
|
16
|
Li H, Mo P, Zhang J, Xie Z, Liu X, Chen H, Yang L, Liu M, Zhang H, Wang P, Zhang Z. Methionine biosynthesis enzyme MoMet2 is required for rice blast fungus pathogenicity by promoting virulence gene expression via reducing 5mC modification. PLoS Genet 2023; 19:e1010927. [PMID: 37733784 PMCID: PMC10547190 DOI: 10.1371/journal.pgen.1010927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/03/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.
Collapse
Affiliation(s)
- Huimin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Pengcheng Mo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jun Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhuoer Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Han Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Zhao Y, Liu G, Yang F, Liang Y, Gao Q, Xiang C, Li X, Yang R, Zhang G, Jiang H, Yu L, Yang S. Multilayered regulation of secondary metabolism in medicinal plants. MOLECULAR HORTICULTURE 2023; 3:11. [PMID: 37789448 PMCID: PMC10514987 DOI: 10.1186/s43897-023-00059-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 10/05/2023]
Abstract
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanze Liu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
| | - Feng Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingqing Gao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Run Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
18
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
19
|
De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA. Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response. Gigascience 2022; 12:giad034. [PMID: 37171129 PMCID: PMC10176504 DOI: 10.1093/gigascience/giad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The adaptive significance of polyploidy has been extensively debated, and chromosome-level genome assemblies of polyploids can provide insight into this. The Australian grass Bothriochloa decipiens belongs to the BCD clade, a group with a complex history of hybridization and polyploid. This is the first genome assembly and annotation of a species that belongs to this fascinating yet complex group. FINDINGS Using Illumina short reads, 10X Genomics linked reads, and Hi-C sequencing data, we assembled a highly contiguous genome of B. decipiens, with a total length of 1,218.22 Mb and scaffold N50 of 42.637 Mb. Comparative analysis revealed that the species experienced a relatively recent whole-genome duplication. We clustered the 20 major scaffolds, representing the 20 chromosomes, into the 2 subgenomes of the parental species using unique repeat signatures. We found evidence of biased fractionation and differences in the activity of transposable elements between the subgenomes prior to hybridization. Duplicates were enriched for genes involved in transcription and response to external stimuli, supporting a biased retention of duplicated genes following whole-genome duplication. CONCLUSIONS Our results support the hypotheses of a biased retention of duplicated genes following polyploidy and point to differences in repeat activity associated with subgenome dominance. B. decipiens is a widespread species with the ability to establish across many soil types, making it a prime candidate for climate change- resilient ecological restoration of Australian grasslands. This reference genome is a valuable resource for future population genomic research on Australian grasses.
Collapse
Affiliation(s)
- Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Christopher Lee
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - A Fournier-Level
- School of BioSciences, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
- Arthur Rylah Institute for Environment Research, Heidelberg, 3084 Victoria, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
20
|
Patitaki E, Schivre G, Zioutopoulou A, Perrella G, Bourbousse C, Barneche F, Kaiserli E. Light, chromatin, action: nuclear events regulating light signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:333-349. [PMID: 35949052 PMCID: PMC9826491 DOI: 10.1111/nph.18424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.
Collapse
Affiliation(s)
- Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Geoffrey Schivre
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
- Université Paris‐SaclayOrsay91400France
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Giorgio Perrella
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria, 2620133MilanItaly
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERMUniversité PSLParis75005France
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
21
|
Ma M, Meng H, Lei E, Wang T, Zhang W, Lu B. De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae). BMC PLANT BIOLOGY 2022; 22:467. [PMID: 36171538 PMCID: PMC9519402 DOI: 10.1186/s12870-022-03827-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Amomum tsaoko is a medicinal and food dual-use crop that belongs to the Zingiberaceae family. However, the lack of transcriptomic and genomic information has limited the understanding of the genetic basis of this species. Here, we performed transcriptome sequencing of samples from different A. tsaoko tissues, and identified and characterized the expressed sequence tag-simple sequence repeat (EST-SSR) markers. RESULTS A total of 58,278,226 high-quality clean reads were obtained and de novo assembled to generate 146,911 unigenes with an N50 length of 2002 bp. A total of 128,174 unigenes were successfully annotated by searching seven protein databases, and 496 unigenes were identified as annotated as putative terpenoid biosynthesis-related genes. Furthermore, a total of 55,590 EST-SSR loci were detected, and 42,333 primer pairs were successfully designed. We randomly selected 80 primer pairs to validate their polymorphism in A. tsaoko; 18 of these primer pairs produced distinct, clear, and reproducible polymorphisms. A total of 98 bands and 96 polymorphic bands were amplified by 18 pairs of EST-SSR primers for the 72 A. tsaoko accessions. The Shannon's information index (I) ranged from 0.477 (AM208) to 1.701 (AM242) with an average of 1.183, and the polymorphism information content (PIC) ranged from 0.223 (AM208) to 0.779 (AM247) with an average of 0.580, indicating that these markers had a high level of polymorphism. Analysis of molecular variance (AMOVA) indicated relatively low genetic differentiation among the six A. tsaoko populations. Cross-species amplification showed that 14 of the 18 EST-SSR primer pairs have transferability between 11 Zingiberaceae species. CONCLUSIONS Our study is the first to provide transcriptome data of this important medicinal and edible crop, and these newly developed EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity, and molecular marker-assisted selection in A. tsaoko.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - Hengling Meng
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - En Lei
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Tiantao Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Wei Zhang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China.
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China.
| |
Collapse
|
22
|
Chen H, Zhao C, Yang Y, Zeng Z, Li W, Liu Y, Tang H, Xu Q, Deng M, Jiang Q, Chen G, Peng Y, Jiang Y, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J. Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment. FRONTIERS IN PLANT SCIENCE 2022; 13:999414. [PMID: 36172559 PMCID: PMC9511226 DOI: 10.3389/fpls.2022.999414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maximum root length (MRL) plays an important role in the uptake of nutrients and resisting abiotic stresses. Understanding the genetic mechanism of root development is of great significance for genetic improvement of wheat. Previous studies have confirmed that parental reproductive environment (PRE) has a significant impact on growth and development of the next generation in the whole life cycle of a given plant. In this study, a recombinant inbred line population genotyped using the Wheat55K SNP array, was used to map quantitative trait loci (QTL) for wheat seedling MRL based on the harvested seeds from five different PREs. A total of 5 QTL located on chromosomes 3D and 7A were identified. Among them, QMrl.sicau-2SY-3D.2 located in a 4.0 cM interval on chromosome 3D was likely independent of PREs. QMrl.sicau-2SY-7A.2 was detected in two tests and probably influenced by PREs. The effect of QMrl.sicau-2SY-3D.2 was further validated using the tightly linked kompetitive allele specific PCR (KASP) marker, KASP-AX-111589572, in populations with different genetic backgrounds. Lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 have significantly longer MRL. Furthermore, four genes (TraesCS3D03G0612000, TraesCS3D03G0608400, TraesCS3D03G0613600, and TraesCS3D03G0602400) mainly expressed in wheat root were predicted to be associated with root growth. Taken together, this study reports on a major QTL independent of PREs and lays a foundation for understanding the regulation mechanism of wheat MRL at the seedling stage.
Collapse
Affiliation(s)
- Huangxin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Conghao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoyong Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Salina E, Muterko A, Kiseleva A, Liu Z, Korol A. Dissection of Structural Reorganization of Wheat 5B Chromosome Associated With Interspecies Recombination Suppression. FRONTIERS IN PLANT SCIENCE 2022; 13:884632. [PMID: 36340334 PMCID: PMC9629394 DOI: 10.3389/fpls.2022.884632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.
Collapse
Affiliation(s)
- Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Alexander Muterko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
25
|
Wang S, Xie H, Mao F, Wang H, Wang S, Chen Z, Zhang Y, Xu Z, Xing J, Cui Z, Gao X, Jin H, Hua J, Xiong B, Wu Y. N 4-acetyldeoxycytosine DNA modification marks euchromatin regions in Arabidopsis thaliana. Genome Biol 2022; 23:5. [PMID: 34980211 PMCID: PMC8722123 DOI: 10.1186/s13059-021-02578-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Direct analogs of chemically modified bases that carry important epigenetic information, such as 5-methylcytosine (m5C)/5-methyldeoxycytosine (5mC), 5-hydroxymethylcytosine (hm5C)/5-hydroxymethyldeoxycytosine (5hmC), and N6-methyladenosine (m6A)/N6-methyldeoxyadenosine (6mA), are detected in both RNA and DNA, respectively. The modified base N4-acetylcytosine (ac4C) is well studied in RNAs, but its presence and epigenetic roles in cellular DNA have not been explored. RESULTS Here, we demonstrate the existence of N4-acetyldeoxycytosine (4acC) in genomic DNA of Arabidopsis with multiple detection methods. Genome-wide profiling of 4acC modification reveals that 4acC peaks are mostly distributed in euchromatin regions and present in nearly half of the expressed protein-coding genes in Arabidopsis. 4acC is mainly located around transcription start sites and positively correlates with gene expression levels. Imbalance of 5mC does not directly affect 4acC modification. We also characterize the associations of 4acC with 5mC and histone modifications that cooperatively regulate gene expression. Moreover, 4acC is also detected in genomic DNA of rice, maize, mouse, and human by mass spectrometry. CONCLUSIONS Our findings reveal 4acC as a hitherto unknown DNA modification in higher eukaryotes. We identify potential interactions of this mark with other epigenetic marks in gene expression regulation.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Fei Mao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Shu Wang
- Jiangbei New Area Biopharmaceutical Public Service Platform Co., Ltd., Nanjing, China
| | - Zhenglin Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Yuxia Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Jinming Xing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Hua
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, USA
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
26
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
27
|
Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans 2021; 49:2241-2251. [PMID: 34495315 DOI: 10.1042/bst20210337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Plant genomes are largely comprised of retrotransposons which can replicate through 'copy and paste' mechanisms. Long terminal repeat (LTR) retrotransposons are the major class of retrotransposons in plant species, and importantly they broadly affect the expression of nearby genes. Although most LTR retrotransposons are non-functional, active retrotranspositions have been reported in plant species or mutants under normal growth condition and environmental stresses. With the well-defined reference genome and numerous mutant alleles, Arabidopsis studies have significantly expanded our understanding of retrotransposon regulation. Active LTR retrotransposon loci produce virus-like particles to perform reverse transcription, and their complementary DNA can be inserted into new genomic loci. Due to the detrimental consequences of retrotransposition, plants like animals, have developed transcriptional and post-transcriptional silencing mechanisms. Recently several different genome-wide techniques have been developed to understand LTR retrotransposition in Arabidopsis and different plant species. Transposome, methylome, transcriptome, translatome and small RNA sequencing data have revealed how host silencing mechanisms can affect multiple steps of retrotransposition. These recent advances shed light on future mechanistic studies of retrotransposition as well as retrotransposon diversity.
Collapse
|
28
|
Błaszczyk L, Salamon S, Mikołajczak K. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021; 10:1288. [PMID: 34684238 PMCID: PMC8539314 DOI: 10.3390/pathogens10101288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Wheat production is influenced by changing environmental conditions, including climatic conditions, which results in the changing composition of microorganisms interacting with this cereal. The group of these microorganisms includes not only endophytic fungi associated with the wheat endosphere, both pathogenic and symbiotic, but also those with yet unrecognized functions and consequences for wheat. This paper reviews the literature in the context of the general characteristics of endophytic fungi inhabiting the internal tissues of wheat. In addition, the importance of epigenetic regulation in wheat-fungus interactions is recognized and the current state of knowledge is demonstrated. The possibilities of using symbiotic endophytic fungi in modern agronomy and wheat cultivation are also proposed. The fact that the current understanding of fungal endophytes in wheat is based on a rather small set of experimental conditions, including wheat genotypes, plant organs, plant tissues, plant development stage, or environmental conditions, is recognized. In addition, most of the research to date has been based on culture-dependent methods that exclude biotrophic and slow-growing species and favor the detection of fast-growing fungi. Additionally, only a few reports of studies on the entire wheat microbiome using high-throughput sequencing techniques exist. Conducting comprehensive research on the mycobiome of the endosphere of wheat, mainly in the context of the possibility of using this knowledge to improve the methods of wheat management, mainly the productivity and health of this cereal, is needed.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszyńska Street, 60-479 Poznań, Poland; (S.S.); (K.M.)
| | | | | |
Collapse
|
29
|
Huang X, Zhang X, Zong L, Gao Q, Zhang C, Wei R, Guan Y, Huang L, Zhang L, Lyu G, Tao W. Gene body methylation safeguards ribosomal DNA transcription by preventing PHF6-mediated enrichment of repressive histone mark H4K20me3. J Biol Chem 2021; 297:101195. [PMID: 34520760 PMCID: PMC8511956 DOI: 10.1016/j.jbc.2021.101195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.
Collapse
Affiliation(s)
- Xiaoke Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xuebin Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Le Zong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qianqian Gao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Ran Wei
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yiting Guan
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Li Huang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Lijun Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Guoliang Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
30
|
Jacques C, Salon C, Barnard RL, Vernoud V, Prudent M. Drought Stress Memory at the Plant Cycle Level: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:1873. [PMID: 34579406 PMCID: PMC8466371 DOI: 10.3390/plants10091873] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Plants are sessile organisms whose survival depends on their strategy to cope with dynamic, stressful conditions. It is urgent to improve the ability of crops to adapt to recurrent stresses in order to alleviate the negative impacts on their productivity. Although our knowledge of plant adaptation to drought has been extensively enhanced during the last decades, recent studies have tackled plant responses to recurrent stresses. The present review synthesizes the major findings from studies addressing plant responses to multiple drought events, and demonstrates the ability of plants to memorize drought stress. Stress memory is described as a priming effect allowing a different response to a reiterated stress when compared to a single stress event. Here, by specifically focusing on water stress memory at the plant cycle level, we describe the different underlying processes at the molecular, physiological and morphological levels in crops as well as in the model species Arabidopsis thaliana. Moreover, a conceptual analysis framework is proposed to study drought stress memory. Finally, the essential role of interactions between plants and soil microorganisms is emphasized during reiterated stresses because their plasticity can play a key role in supporting overall plant resilience.
Collapse
Affiliation(s)
| | | | | | | | - Marion Prudent
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (C.J.); (C.S.); (R.L.B.); (V.V.)
| |
Collapse
|
31
|
Kubiak-Szymendera M, Pryszcz LP, Białas W, Celińska E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms 2021; 9:microorganisms9091798. [PMID: 34576693 PMCID: PMC8471669 DOI: 10.3390/microorganisms9091798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation is a common, but not universal, epigenetic modification that plays an important role in multiple cellular processes. While definitely settled for numerous plant, mammalian, and bacterial species, the genome methylation in different fungal species, including widely studied and industrially-relevant yeast species, Yarrowia lipolytica, is still a matter of debate. In this paper, we report a differential DNA methylation level in the genome of Y. lipolytica subjected to sequential subculturing and to heat stress conditions. To this end, we adopted repeated batch bioreactor cultivations of Y. lipolytica subjected to thermal stress in specific time intervals. To analyze the variation in DNA methylation between stressed and control cultures, we (a) quantified the global DNA methylation status using an immuno-assay, and (b) studied DNA methylation patterns through whole-genome sequencing. Primarily, we demonstrated that 5 mC modification can be detected using a commercial immuno-assay, and that the modifications are present in Y. lipolytica’s genome at ~0.5% 5 mC frequency. On the other hand, we did not observe any changes in the epigenetic response of Y. lipolytica to heat shock (HS) treatment. Interestingly, we identified a general phenomenon of decreased 5 mC level in Y. lipolytica’s genome in the stationary phase of growth, when compared to a late-exponential epigenome. While this study provides an insight into the subculturing stress response and adaptation to the stress at epigenetic level by Y. lipolytica, it also leaves an open question of inability to detect any genomic DNA methylation level (either in CpG context or context-less) through whole-genome sequencing. The results of ONT sequencing, suggesting that 5 mC modification is either rare or non-existent in Y. lipolytica genome, are contradicted with the results of the immunoassay.
Collapse
Affiliation(s)
- Monika Kubiak-Szymendera
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Leszek P. Pryszcz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 460-637 Poznań, Poland; (M.K.-S.); (W.B.)
- Correspondence:
| |
Collapse
|
32
|
Zhang Z, He C, Chen Y, Li B, Tian S. DNA Methyltransferases Regulate Pathogenicity of Botrytis cinerea to Horticultural Crops. J Fungi (Basel) 2021; 7:jof7080659. [PMID: 34436198 PMCID: PMC8399656 DOI: 10.3390/jof7080659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens that cause gray mold rot in horticultural products, including fresh fruits, vegetables, and flowers, leading to serious economic losses. B. cinerea is difficult to control because it has strong stress resistance and complex infection modes. The pathogenic mechanisms of B. cinerea have been revealed at multiple levels, but little is known at the epigenetic level. In this study, we first revealed the important role of DNA methyltransferases in regulating the development and pathogenicity of B. cinerea. We showed that two DNA methyltransferases, BcDIM2 and BcRID2, showed a strong synergistic effect in regulating the pathogenicity of B. cinerea. The double knockout mutant ΔBcdim2rid2 showed slower mycelial growth, lower spore germination, attenuated oxidative tolerance, and complete pathogenicity loss on various hosts, which is related to the reduced expression of virulence-related genes in ΔBcdim2rid2 and the induced resistance of the host. Although B. cinerea has multiple DNA methyltransferases, the global methylation level is very low, and few 5mC sites can be detected by BS-seq. These results first revealed the important role and the action mode of DNA methyltransferases in B. cinerea.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
33
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
34
|
Ren K, Mou YN, Tong SM, Ying SH, Feng MG. DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36. Virulence 2021; 12:1306-1322. [PMID: 33955325 PMCID: PMC8115510 DOI: 10.1080/21505594.2021.1923232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mono-, di- and tri-methylation of histone H3 Lys 9, Lys 4, and Lys 36 (H3K_me1/me2/me3) required for mediation of DNA-based cellular events in eukaryotes usually rely upon the activities of histone lysine methyltransferases (KMTs) classified to the KMT1, KMT2, and KMT3 families, respectively. Here, an H3K9-specific DIM5/KMT1 orthologue, which lacks a C-terminal post-SET domain and localizes mainly in nucleus, is reported to have both conserved and noncanonical roles in methylating the H3 core lysines in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of wide-spectrum fungal insecticides. Disruption of dim5 led to abolishment of H3K9me3 and marked attenuation of H3K4me1/me2, H3K9me1/me2 and H3K36me2. Consequently, the Δdim5 mutant lost the whole insect pathogenicity through normal cuticle infection, and was compromised severely in virulence through cuticle-bypassing infection (hemocoel injection) and also in a series of cellular events critical for the fungal virulence and lifecycle in vivo and in vitro, including reduced hyphal growth, blocked conidiation, impeded proliferation in vivo, altered carbohydrate epitopes, disturbed cell cycle, reduced biosynthesis and secretion of cuticle-degrading enzymes, and increased sensitivities to various stresses. Among 1,201 dysregulated genes (up/down ratio: 712:489) associated with those phenotypic changes, 92 (up/down ratio: 59:33) encode transcription factors and proteins or enzymes involved in posttranslational modifications, implying that the DIM5-methylated H3 core lysines could act as preferential marks of those transcription-active genes crucial for global gene regulation. These findings uncover a novel scenario of DIM5 and its indispensability for insect-pathogenic lifestyle and genome stability of B. bassiana.
Collapse
Affiliation(s)
- Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Möller M, Habig M, Lorrain C, Feurtey A, Haueisen J, Fagundes WC, Alizadeh A, Freitag M, Stukenbrock EH. Recent loss of the Dim2 DNA methyltransferase decreases mutation rate in repeats and changes evolutionary trajectory in a fungal pathogen. PLoS Genet 2021; 17:e1009448. [PMID: 33750960 PMCID: PMC8016269 DOI: 10.1371/journal.pgen.1009448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/01/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with or without functional dim2 alleles. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying non-functional dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of Dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking functional dim2. We found that presence of a functional dim2 allele alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.
Collapse
Affiliation(s)
- Mareike Möller
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Janine Haueisen
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Wagner C. Fagundes
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alireza Alizadeh
- Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
36
|
Zhang C, Wu Z, Jiang X, Li W, Lu Y, Wang K. De novo transcriptomic analysis and identification of EST-SSR markers in Stephanandra incisa. Sci Rep 2021; 11:1059. [PMID: 33441871 PMCID: PMC7806653 DOI: 10.1038/s41598-020-80329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Stephanandra incisa is a wild-type shrub with beautiful leaves and white flowers and is commonly used as a garden decoration accessory. However, the limited availability of genomic data of S. incisa has restricted its breeding process. Here, we identified EST-SSR markers using de novo transcriptome sequencing. In this study, a transcriptome database containing 35,251 unigenes, having an average length of 985 bp, was obtained from S. incisa. From these unigene sequences, we identified 5,555 EST-SSRs, with a distribution density of one SSR per 1.60 kb. Dinucleotides (52.96%) were the most detected SSRs, followed by trinucleotides (34.64%). From the EST-SSR loci, we randomly selected 100 sites for designing primer and used the DNA of 60 samples to verify the polymorphism. The average value of the effective number of alleles (Ne), Shannon's information index (I), and expective heterozygosity (He) was 1.969, 0.728, and 0.434, respectively. The polymorphism information content (PIC) value was in the range of 0.108 to 0.669, averaging 0.406, which represented a middle polymorphism level. Cluster analysis of S. incisa were also performed based on the obtained EST-SSR data in our work. As shown by structure analysis, 60 individuals could be classified into two groups. Thus, the identification of these novel EST-SSR markers provided valuable sequence information for analyzing the population structure, genetic diversity, and genetic resource assessment of S. incisa and other related species.
Collapse
Affiliation(s)
- Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhonglan Wu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, 250102, Shandong, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
37
|
Markulin L, Škiljaica A, Tokić M, Jagić M, Vuk T, Bauer N, Leljak Levanić D. Taking the Wheel - de novo DNA Methylation as a Driving Force of Plant Embryonic Development. FRONTIERS IN PLANT SCIENCE 2021; 12:764999. [PMID: 34777448 PMCID: PMC8585777 DOI: 10.3389/fpls.2021.764999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 05/16/2023]
Abstract
During plant embryogenesis, regardless of whether it begins with a fertilized egg cell (zygotic embryogenesis) or an induced somatic cell (somatic embryogenesis), significant epigenetic reprogramming occurs with the purpose of parental or vegetative transcript silencing and establishment of a next-generation epigenetic patterning. To ensure genome stability of a developing embryo, large-scale transposon silencing occurs by an RNA-directed DNA methylation (RdDM) pathway, which introduces methylation patterns de novo and as such potentially serves as a global mechanism of transcription control during developmental transitions. RdDM is controlled by a two-armed mechanism based around the activity of two RNA polymerases. While PolIV produces siRNAs accompanied by protein complexes comprising the methylation machinery, PolV produces lncRNA which guides the methylation machinery toward specific genomic locations. Recently, RdDM has been proposed as a dominant methylation mechanism during gamete formation and early embryo development in Arabidopsis thaliana, overshadowing all other methylation mechanisms. Here, we bring an overview of current knowledge about different roles of DNA methylation with emphasis on RdDM during plant zygotic and somatic embryogenesis. Based on published chromatin immunoprecipitation data on PolV binding sites within the A. thaliana genome, we uncover groups of auxin metabolism, reproductive development and embryogenesis-related genes, and discuss possible roles of RdDM at the onset of early embryonic development via targeted methylation at sites involved in different embryogenesis-related developmental mechanisms.
Collapse
|
38
|
Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 2020; 20:739-761. [PMID: 33089419 DOI: 10.1007/s10142-020-00756-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.
Collapse
|
39
|
Application of the MSAP Technique to Evaluate Epigenetic Changes in Plant Conservation. Int J Mol Sci 2020; 21:ijms21207459. [PMID: 33050382 PMCID: PMC7589462 DOI: 10.3390/ijms21207459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.
Collapse
|
40
|
Mei Y, Wang Y, Li F, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog 2020; 16:e1008829. [PMID: 33002088 PMCID: PMC7529289 DOI: 10.1371/journal.ppat.1008829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
In plants, cytosine DNA methylation is an efficient defense mechanism against geminiviruses, since methylation of the viral genome results in transcriptional gene silencing (TGS). As a counter-defense mechanism, geminiviruses encode viral proteins to suppress viral DNA methylation and TGS. However, the molecular mechanisms by which viral proteins contribute to TGS suppression remain incompletely understood. In this study, we found that the C4 protein encoded by tomato leaf curl Yunnan virus (TLCYnV) suppresses methylation of the viral genome through interacting with and impairing the DNA-binding ability of NbDRM2, a pivotal DNA methyltransferase in the methyl cycle. We show that NbDRM2 catalyzes the addition of methyl groups on specific cytosine sites of the viral genome, hence playing an important role in anti-viral defense. Underscoring the relevance of the C4-mediated suppression of NbDRM2 activity, plants infected by TLCYnV producing C4(S43A), a point mutant version of C4 unable to interact with NbDRM2, display milder symptoms and lower virus accumulation, concomitant with enhanced viral DNA methylation, than plants infected by wild-type TLCYnV. Expression of TLCYnV C4, but not of the NbDRM2-interaction compromised C4(S43A) mutant, in 16c-TGS Nicotiana benthamiana plants results in the recovery of GFP, a proxy for suppression of TGS. This study provides new insights into the molecular mechanisms by which geminiviruses suppress TGS, and uncovers a new viral strategy based on the inactivation of the methyltransferase NbDRM2.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Xia Z, Wang Z, Kav NNV, Ding C, Liang Y. Characterization of microRNA-like RNAs associated with sclerotial development in Sclerotinia sclerotiorum. Fungal Genet Biol 2020; 144:103471. [PMID: 32971275 DOI: 10.1016/j.fgb.2020.103471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum is a model necrotrophic pathogen causing great economic losses worldwide. Sclerotia are dormant structures that play significant biological and ecological roles in the life and disease cycles of S. sclerotiorum and other species of sclerotia-forming fungi. microRNA-like RNAs (milRNAs) as non-coding small RNAs play regulatory roles in fungal development and pathogenicity. Therefore, milRNAs associated with sclerotial development in S. sclerotiorum were investigated in this study. A total of 275 milRNAs with induced expression during sclerotia development were identified, in which 51 were differentially expressed. The target genes of all milRNAs were predicted. The putative functions of the targets regulated by milRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The expression levels of six selected milRNAs that coordinated with their corresponding targets were validated by qRT-PCR. Among these six milRNAs, Ssc-milR-240 was potentially associated with sclerotial development by epigenetic regulation of its target histone acetyltransferase. This study will facilitate the better understanding of the milRNA regulation associated with sclerotial development in S. sclerotiorum and even other sclerotia-forming fungi. This work will provide novel insights into the molecular regulations of fungal morphogenesis and the candidate targets of milRNAs used for the sustainable management of plant diseases caused by S. sclerotiorum.
Collapse
Affiliation(s)
- Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
42
|
Yuan N, Li M, Jia C. De novo transcriptome assembly and population genetic analyses of an important coastal shrub, Apocynum venetum L. BMC PLANT BIOLOGY 2020; 20:408. [PMID: 32883231 PMCID: PMC7470449 DOI: 10.1186/s12870-020-02626-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Apocynum venetum L. is an important medicinal plant that is mainly distributed in the coastal areas and northwest of China. In addition to its high medical and economic value, its adaptation to saline-alkali and coastal saline lands makes A. venetum an ideal candidate for use in vegetation restoration. To date, the study of A. venetum has been limited in the northwest region of China, little attention has been paid to the genetic diversity and population structure of A. venetum populations in the coastal region. Here, we performed transcriptome sequencing of total RNA from A. venetum leaves and developed efficient expressed sequence tag-simple sequence repeat (EST-SSR) markers for analyzing the genetic diversity and population structure of A. venetum in the coastal region. RESULTS A total of 86,890 unigenes were generated after de novo assembly, and 68,751 of which were successfully annotated by searching against seven protein databases. Furthermore, 14,072 EST-SSR loci were detected and 10,243 primer pairs were successfully designed from these loci. One hundred primer pairs were randomly selected and synthesized, twelve primer pairs were identified as highly polymorphic and further used for population genetic analysis. Population genetic analyses showed that A. venetum exhibited low level of genetic diversity (mean alleles per locus, NA = 3.3; mean expected heterozygosity, HE = 0.342) and moderate level of genetic differentiation among the populations (genetic differentiation index, FST = 0.032-0.220) in the coastal region. Although the contemporary (mean mc = 0.056) and historical (mean mh = 0.106) migration rates among the six A. venetum populations were moderate, a decreasing trend over the last few generations was detected. Bayesian structure analysis clustered six populations into two major groups, and genetic bottlenecks were found to have occurred in two populations (QG, BH). CONCLUSIONS Using novel EST-SSR markers, we evaluated the genetic variation of A. venetum in the coastal region and determined conservation priorities based on these findings. The large dataset of unigenes and SSRs identified in our study, combining samples from a broader range, will support further research on the conservation and evolution of this important coastal plant and its related species.
Collapse
Affiliation(s)
- Na Yuan
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Mimi Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunlin Jia
- Institute of Agricultural and Sustainable Development, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
43
|
Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3-GENES GENOMES GENETICS 2020; 10:3099-3108. [PMID: 32631950 PMCID: PMC7466979 DOI: 10.1534/g3.120.401340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is an opportunistic yeast pathogen within the human microbiota with significant medical importance because of its pathogenic potential. The yeast produces highly resistant biofilms, which are crucial for maintaining infections. Though antifungals are available, their effectiveness is dwindling due to resistance. Alternate options that comprise the combination of existing azoles and polyunsaturated fatty acids, such as arachidonic acid (AA), have been shown to increase azoles susceptibility of C. albicans biofilms; however, the mechanisms are still unknown. Therefore, transcriptome analysis was conducted on biofilms exposed to sub-inhibitory concentrations of AA alone, fluconazole alone, and AA combined with fluconazole to understand the possible mechanism involved with the phenomenon. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis from the differentially expressed genes revealed that the combination of AA and fluconazole influences biological processes associated with essential processes including methionine synthesis and those involved in ATP generation, such as AMP biosynthesis, fumarate metabolism and fatty acid oxidation. These observations suggests that the interference of AA with these processes may be a possible mechanisms to induce increased antifungal susceptibility.
Collapse
|
44
|
Wambui Mbichi R, Wang QF, Wan T. RNA directed DNA methylation and seed plant genome evolution. PLANT CELL REPORTS 2020; 39:983-996. [PMID: 32594202 DOI: 10.1007/s00299-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 05/28/2023]
Abstract
RNA Directed DNA Methylation (RdDM) is a pathway that mediates de novo DNA methylation, an evolutionary conserved chemical modification of cytosine bases, which exists in living organisms and utilizes small interfering RNA. Plants utilize DNA methylation for transposable element (TE) repression, regulation of gene expression and developmental regulation. TE activity strongly influences genome size and evolution, therefore making DNA methylation a key component in understanding divergence in genome evolution among seed plants. Multiple proteins that have extensively been studied in model plant Arabidopsis thaliana catalyze RNA dependent DNA Methylation pathway along with small interfering RNA. Several developmental functions have also been attributed to DNA methylation. This review will highlight aspects of RdDM pathway dynamics, evolution and functions in seed plants with focus on recent findings on conserved and non-conserved attributes between angiosperms and gymnosperms to potentially explain how methylation has impacted variations in evolutionary and developmental complexity among them and advance current understanding of this crucial epigenetic pathway.
Collapse
Affiliation(s)
- R Wambui Mbichi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China
- Key laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Tao Wan
- Key laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China.
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, 430074, China.
| |
Collapse
|
45
|
Wambui Mbichi R, Wang QF, Wan T. RNA directed DNA methylation and seed plant genome evolution. PLANT CELL REPORTS 2020; 39:983-996. [PMID: 32594202 PMCID: PMC7359171 DOI: 10.1007/s00299-020-02558-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
RNA Directed DNA Methylation (RdDM) is a pathway that mediates de novo DNA methylation, an evolutionary conserved chemical modification of cytosine bases, which exists in living organisms and utilizes small interfering RNA. Plants utilize DNA methylation for transposable element (TE) repression, regulation of gene expression and developmental regulation. TE activity strongly influences genome size and evolution, therefore making DNA methylation a key component in understanding divergence in genome evolution among seed plants. Multiple proteins that have extensively been studied in model plant Arabidopsis thaliana catalyze RNA dependent DNA Methylation pathway along with small interfering RNA. Several developmental functions have also been attributed to DNA methylation. This review will highlight aspects of RdDM pathway dynamics, evolution and functions in seed plants with focus on recent findings on conserved and non-conserved attributes between angiosperms and gymnosperms to potentially explain how methylation has impacted variations in evolutionary and developmental complexity among them and advance current understanding of this crucial epigenetic pathway.
Collapse
Affiliation(s)
- R Wambui Mbichi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China
- Key laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Tao Wan
- Key laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China.
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, 430074, China.
| |
Collapse
|
46
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
47
|
Li R, Hu F, Li B, Zhang Y, Chen M, Fan T, Wang T. Whole genome bisulfite sequencing methylome analysis of mulberry (Morus alba) reveals epigenome modifications in response to drought stress. Sci Rep 2020; 10:8013. [PMID: 32415195 PMCID: PMC7228953 DOI: 10.1038/s41598-020-64975-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
DNA methylation plays a significant role in many biological processes. Although some studies of DNA methylation have been performed in woody plant, none is known about the methylation patterns of mulberry (Morus alba). In this study, we performed whole genome bisulfite sequencing under drought stress to generate a methylated cytosines map and assessed the effects of the changes on gene expression combined with transcriptomics. We found that the percentage of methylated cytosines varied depending on the local sequence context (CG, CHG and CHH) and external treatment (control, CK; drought stress, DS). The methylation levels under DS were 8.64% higher than that of CK, and differences that were mainly due to the contribution of mCG (6.24%). Additionally, there were 3,243 different methylation and expression associated genes. In addition, methylated genes were enriched within GO subcategories including catalytic activity, cellular process, metabolic process, response to stimulus and regulation of biological process. This is the first study to comprehensively present methylation patterns in mulberry and reveal widespread DNA methylation changes in response to drought stress, which has the potential to enhance our understanding of links between DNA methylation and the modulation of gene expression in plants subjected to abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China
| | - Fei Hu
- Plant Protection and Agroproducts Safety Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Bing Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China
| | - Yuping Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China
| | - Ming Chen
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China
| | - Tao Fan
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230061, China.
| |
Collapse
|
48
|
Jia X, Tang L, Mei X, Liu H, Luo H, Deng Y, Su J. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. Sci Rep 2020; 10:6755. [PMID: 32317724 PMCID: PMC7174332 DOI: 10.1038/s41598-020-63814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Rhododendron lapponicum L. is a familiar ornamental plant worldwide with important ornamental and economic value. However, a full-length R. lapponicum transcriptome is still lacking. In the present study, we used the Pacific Biosciences single-molecule real-time sequencing technology to generate the R. lapponicum transcriptome. A total of 346,270 full-length non-chimeric reads were generated, from which we obtained 75,002 high-quality full-length transcripts. We identified 55,255 complete open reading frames, 7,140 alternative splicing events and 2,011 long non-coding RNAs. In gene annotation analyses, 71,155, 33,653, 30,359 and 31,749 transcripts were assigned to the Nr, GO, COG and KEGG databases, respectively. Additionally, 3,150 transcription factors were detected. KEGG pathway analysis showed that 96 transcripts were identified coding for the enzymes associated with anthocyanin synthesis. Furthermore, we identified 64,327 simple sequence repeats from 45,319 sequences, and 150 pairs of primers were randomly selected to develop SSR markers. This study provides a large number of full-length transcripts, which will facilitate the further study of the genetics of R. lapponicum.
Collapse
Affiliation(s)
- Xinping Jia
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| | - Ling Tang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Xueying Mei
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Huazhou Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Hairong Luo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yanming Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| |
Collapse
|
49
|
The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms 2020; 8:microorganisms8020227. [PMID: 32046339 PMCID: PMC7074731 DOI: 10.3390/microorganisms8020227] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.
Collapse
|
50
|
Han Q, Bartels A, Cheng X, Meyer A, An YQC, Hsieh TF, Xiao W. Epigenetics Regulates Reproductive Development in Plants. PLANTS 2019; 8:plants8120564. [PMID: 31810261 PMCID: PMC6963493 DOI: 10.3390/plants8120564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Xi Cheng
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
| | - Angela Meyer
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, Donald Danforth Plant Science Center, MO 63132, USA;
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA (A.B.); (X.C.)
- Correspondence: ; Tel.: +1-314-977-2547
| |
Collapse
|