1
|
Roffler AA, Maurer DP, Lunn TJ, Sironen T, Forbes KM, Schmidt AG. Bat humoral immunity and its role in viral pathogenesis, transmission, and zoonosis. Front Immunol 2024; 15:1269760. [PMID: 39156901 PMCID: PMC11329927 DOI: 10.3389/fimmu.2024.1269760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/08/2024] [Indexed: 08/20/2024] Open
Abstract
Bats harbor viruses that can cause severe disease and death in humans including filoviruses (e.g., Ebola virus), henipaviruses (e.g., Hendra virus), and coronaviruses (e.g., SARS-CoV). Bats often tolerate these viruses without noticeable adverse immunological effects or succumbing to disease. Previous studies have largely focused on the role of the bat's innate immune response to control viral pathogenesis, but little is known about bat adaptive immunity. A key component of adaptive immunity is the humoral response, comprised of antibodies that can specifically recognize viral antigens with high affinity. The antibody genes within the 1,400 known bat species are highly diverse, and these genetic differences help shape fundamental aspects of the antibody repertoire, including starting diversity and viral antigen recognition. Whether antibodies in bats protect, mediate viral clearance, and prevent transmission within bat populations is poorly defined. Furthermore, it is unclear how neutralizing activity and Fc-mediated effector functions contribute to bat immunity. Although bats have canonical Fc genes (e.g., mu, gamma, alpha, and epsilon), the copy number and sequences of their Fc genes differ from those of humans and mice. The function of bat antibodies targeting viral antigens has been speculated based on sequencing data and polyclonal sera, but functional and biochemical data of monoclonal antibodies are lacking. In this review, we summarize current knowledge of bat humoral immunity, including variation between species, their potential protective role(s) against viral transmission and replication, and address how these antibodies may contribute to population dynamics within bats communities. A deeper understanding of bat adaptive immunity will provide insight into immune control of transmission and replication for emerging viruses with the potential for zoonotic spillover.
Collapse
Affiliation(s)
- Anne A. Roffler
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Daniel P. Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
| | - Tamika J. Lunn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
3
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
4
|
Cyr MG, Wilson HD, Spierling AL, Chang J, Peng H, Steinberger P, Rader C. Concerted Antibody and Antigen Discovery by Differential Whole-cell Phage Display Selections and Multi-omic Target Deconvolution. J Mol Biol 2023; 435:168085. [PMID: 37019174 PMCID: PMC10148915 DOI: 10.1016/j.jmb.2023.168085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Monoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display. This method combines a previously reported method for improved whole-cell phage display selections with next-generation sequencing analysis to efficiently identify mAbs with the desired target cell reactivity. Applying this method to multiple myeloma cells yielded a panel of >50 mAbs with unique sequences and diverse reactivities. To uncover the identities of the cognate antigens recognized by this panel, representative mAbs from each unique reactivity cluster were used in a multi-omic target deconvolution approach. From this, we identified and validated three cell surface antigens: PTPRG, ICAM1, and CADM1. PTPRG and CADM1 remain largely unstudied in the context of multiple myeloma, which could warrant further investigation into their potential as therapeutic targets. These results highlight the utility of optimized whole-cell phage display selection methods and could motivate further interest in target-unbiased antibody discovery workflows.
Collapse
Affiliation(s)
- Matthew G Cyr
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA. https://twitter.com/CyrialDilutions
| | - Henry D Wilson
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Anna-Lena Spierling
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christoph Rader
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
5
|
Cai F, Chen WH, Wu W, Jones JA, Choe M, Gohain N, Shen X, LaBranche C, Eaton A, Sutherland L, Lee EM, Hernandez GE, Wu NR, Scearce R, Seaman MS, Moody MA, Santra S, Wiehe K, Tomaras GD, Wagh K, Korber B, Bonsignori M, Montefiori DC, Haynes BF, de Val N, Joyce MG, Saunders KO. Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathog 2021; 17:e1009624. [PMID: 34086838 PMCID: PMC8216552 DOI: 10.1371/journal.ppat.1009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Collapse
Affiliation(s)
- Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Julia A. Jones
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neelakshi Gohain
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Esther M. Lee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nelson R. Wu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
6
|
Jones K, Savulescu AF, Brombacher F, Hadebe S. Immunoglobulin M in Health and Diseases: How Far Have We Come and What Next? Front Immunol 2020; 11:595535. [PMID: 33193450 PMCID: PMC7662119 DOI: 10.3389/fimmu.2020.595535] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
B lymphocytes are important in secreting antibodies that protect against invading pathogens such as viruses, bacteria, parasites, and also in mediating pathogenesis of allergic diseases and autoimmunity. B lymphocytes develop in the bone marrow and contain heavy and light chains, which upon ligation form an immunoglobulin M (IgM) B cell receptor (BCR) expressed on the surface of naïve immature B cells. Naïve B cells expressing either IgM or IgD isotypes are thought to play interchangeable functions in antibody responses to T cell-dependent and T cell-independent antigens. IgM short-lived plasma cells (SLPCs) and antigen-specific IgM memory B cells (MBCs-M) are critical in the first few days of infection, as well as long-term memory induced by vaccination, respectively. At mucosal surfaces, IgM is thought to play a critical part in promoting mucosal tolerance and shaping microbiota together with IgA. In this review, we explore how IgM structure and BCR signaling shapes B cell development, self and non-self-antigen-specific antibody responses, responses to infectious (such as viruses, parasites, and fungal) and non-communicable diseases (such as autoimmunity and allergic asthma). We also explore how metabolism could influence other B cell functions such as mucosal tolerance and class switching. Finally, we discuss some of the outstanding critical research questions in both experimental and clinical settings targeting IgM.
Collapse
Affiliation(s)
- Katelyn Jones
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Faculty of Health Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Health Science Faculty, International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2020; 153:103038. [PMID: 32739830 DOI: 10.1016/j.critrevonc.2020.103038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
MCL is a well-characterized generally aggressive lymphoma with a poor prognosis. However, patients with a more indolent disease have been reported in whom the initiation of therapy can be delayed without any consequence for the survival. In 2017 the World Health Organization updated the classification of MCL describing two main subtypes with specific molecular characteristics and clinical features, classical and indolent leukaemic nonnodal MCL. Recent research results suggested an improving outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it did not improve overall survival compared to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidation with autologous stem cell transplantation ameliorated response rate and prolonged progression-free survival in young fit patients, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better understanding of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy and spare the toxicity of intense therapy in most patients. Cases not eligible for intensive regimens, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy as the first-line strategy in a wide range of patients. Finally, since the optimal approach to the management of MCL is still evolving, it is critical that these patients are enrolled in clinical trials to identify the better treatment options.
Collapse
Affiliation(s)
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy; Medical Oncology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Dreyling
- Medizinische Klinik III der Universität München-Grosshadern, München, Germany
| |
Collapse
|
8
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
9
|
Caldwell RB, Braselmann H, Heuer S, Schötz U, Zitzelsberger H. Gain-of-function analysis of cis-acting diversification elements in DT40 cells. Immunol Cell Biol 2018; 96:948-957. [PMID: 29665088 DOI: 10.1111/imcb.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Activation-induced cytidine deaminase (AID) is required for the immunoglobulin diversification processes of somatic hypermutation, gene conversion and class-switch recombination. The targeting of AID's deamination activity is thought to be a combination of cis- and trans-acting elements, but has not been fully elucidated. Deletion analysis of putative proximal cis-regulatory motifs, while helpful, fails to identify additive versus cumulative effects, redundancy, and may create new motifs where none previously existed. In contrast, gain-of-function analysis can be more insightful with fewer of the same drawbacks and the output is a positive result. Here, we show five defined DNA regions of the avian Igλ locus that are sufficient to confer events of hypermutation to a target gene. In our analysis, the essential cis-targeting elements fully reconstituted diversification of a transgene under heterologous promotion in the avian B-cell line DT40. Furthermore, to the best of our knowledge two of the five regions we report on here have not previously been described as individually having an influence on somatic hypermutation.
Collapse
Affiliation(s)
- Randolph B Caldwell
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Herbert Braselmann
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Steffen Heuer
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, 35043, Germany
| | - Horst Zitzelsberger
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany.,Helmholtz Center Munich, Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Neuherberg, 85764, Germany.,Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universitaet, University Hospital Munich, Munich, 81377, Germany
| |
Collapse
|
10
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Bulutoglu B, Dooley K, Szilvay G, Blenner M, Banta S. Catch and Release: Engineered Allosterically Regulated β-Roll Peptides Enable On/Off Biomolecular Recognition. ACS Synth Biol 2017; 6:1732-1741. [PMID: 28520402 DOI: 10.1021/acssynbio.7b00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alternative scaffolds for biomolecular recognition are being developed to overcome some of the limitations associated with immunoglobulin domains. The repeat-in-toxin (RTX) domain is a repeat protein sequence that reversibly adopts the β-roll secondary structure motif specifically upon calcium binding. This conformational change was exploited for controlled biomolecular recognition. Using ribosome display, an RTX peptide library was selected to identify binders to a model protein, lysozyme, exclusively in the folded state of the peptide. Several mutants were identified with low micromolar dissociation constants. After concatenation of the mutants, a 500-fold increase in the overall affinity for lysozyme was achieved leading to a peptide with an apparent dissociation constant of 65 nM. This mutant was immobilized for affinity chromatography experiments, and the on/off nature of the molecular recognition was demonstrated as the target is captured from a mixture in the presence of calcium and is released in the absence of calcium as the RTX peptides lose their β-roll structure. This work presents the design of a new stimulus-responsive scaffold that can be used for environmentally responsive specific molecular recognition and self-assembly.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kevin Dooley
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Géza Szilvay
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Mark Blenner
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies. Protein Expr Purif 2017; 136:39-44. [DOI: 10.1016/j.pep.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/05/2023]
|
13
|
Meagher S. GENETIC DIVERSITY AND CAPILLARIA HEPATICA (NEMATODA) PREVALENCE IN MICHIGAN DEER MOUSE POPULATIONS. Evolution 2017; 53:1318-1324. [PMID: 28565518 DOI: 10.1111/j.1558-5646.1999.tb04547.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1997] [Accepted: 03/01/1999] [Indexed: 11/29/2022]
Abstract
There have been few field tests of the hypothesis that homozygous populations are prone to high levels of disease. I tested for a negative correlation between genetic diversity and parasitism by estimating the allozyme heterozygosity, population density, and proportion of individuals infected by Capillaria hepatica (Nematoda) in nine Michigan populations of deer mice (Peromyscus maniculatus). Parasite prevalence was correlated negatively with heterozygosity when the effects of density were held constant, but was not correlated with population density after controlling for the effects of genetic diversity. These data support the prediction that inbred populations will be more susceptible to parasite infestations.
Collapse
Affiliation(s)
- Shawn Meagher
- Museum of Zoology and Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
14
|
Kuah E, Toh S, Yee J, Ma Q, Gao Z. Enzyme Mimics: Advances and Applications. Chemistry 2016; 22:8404-30. [PMID: 27062126 DOI: 10.1002/chem.201504394] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications.
Collapse
Affiliation(s)
- Evelyn Kuah
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Seraphina Toh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Jessica Yee
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Qian Ma
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax
| | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Fax.
| |
Collapse
|
15
|
Carey AJ, Gracias DT, Thayer JL, Boesteanu AC, Kumova OK, Mueller YM, Hope JL, Fraietta JA, van Zessen DBH, Katsikis PD. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:2602-13. [PMID: 26873987 DOI: 10.4049/jimmunol.1502126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRβ high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential Vβ family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type A virus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different Vβ gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA(257-264)-specific (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment.
Collapse
Affiliation(s)
- Alison J Carey
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102; Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102;
| | - Donald T Gracias
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jillian L Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Alina C Boesteanu
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ogan K Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yvonne M Mueller
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jennifer L Hope
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David B H van Zessen
- Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; Bioinformatics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Peter D Katsikis
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
16
|
Wang Y, Kapoor P, Parks R, Silva-Sanchez A, Alam SM, Verkoczy L, Liao HX, Zhuang Y, Burrows P, Levinson M, Elgavish A, Cui X, Haynes BF, Schroeder H. HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics 2016; 68:145-55. [PMID: 26687685 PMCID: PMC4729650 DOI: 10.1007/s00251-015-0890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
Complementarity Determining Region 3 of the immunoglobulin (Ig) H chain (CDR-H3) lies at the center of the antigen-binding site where it often plays a decisive role in antigen recognition and binding. Amino acids encoded by the diversity (DH) gene segment are the main component of CDR-H3. Each DH has the potential to rearrange into one of six DH reading frames (RFs), each of which exhibits a characteristic amino acid hydrophobicity signature that has been conserved among jawed vertebrates by natural selection. A preference for use of RF1 promotes the incorporation of tyrosine into CDR-H3 while suppressing the inclusion of hydrophobic or charged amino acids. To test the hypothesis that these evolutionary constraints on DH sequence influence epitope recognition, we used mice with a single DH that has been altered to preferentially use RF2 or inverted RF1. B cells in these mice produce a CDR-H3 repertoire that is enriched for valine or arginine in place of tyrosine. We serially immunized this panel of mice with gp140 from HIV-1 JR-FL isolate and then used enzyme-linked immunosorbent assay (ELISA) or peptide microarray to assess antibody binding to key or overlapping HIV-1 envelope epitopes. By ELISA, serum reactivity to key epitopes varied by DH sequence. By microarray, sera with Ig CDR-H3s enriched for arginine bound to linear peptides with a greater range of hydrophobicity but had a lower intensity of binding than sera containing Ig CDR-H3s enriched for tyrosine or valine. We conclude that patterns of epitope recognition and binding can be heavily influenced by DH germ line sequence. This may help explain why antibodies in HIV-infected patients must undergo extensive somatic mutation in order to bind to specific viral epitopes and achieve neutralization.
Collapse
Affiliation(s)
- Yuge Wang
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pratibha Kapoor
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aaron Silva-Sanchez
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yingxin Zhuang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peter Burrows
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Levinson
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ada Elgavish
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiangqin Cui
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Harry Schroeder
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Guo X, Schwartz JC, Murtaugh MP. Genomic variation in the porcine immunoglobulin lambda variable region. Immunogenetics 2016; 68:285-93. [PMID: 26791019 DOI: 10.1007/s00251-016-0899-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/03/2016] [Indexed: 11/27/2022]
Abstract
Production of a vast antibody repertoire is essential for the protection against pathogens. Variable region germline complexity contributes to repertoire diversity and is a standard feature of mammalian immunoglobulin loci, but functional V region genes are limited in swine. For example, the porcine lambda light chain locus is composed of 23 variable (V) genes and 4 joining (J) genes, but only 10 or 11 V and 2 J genes are functional. Allelic variation in V and J may increase overall diversity within a population, yet lead to repertoire holes in individuals lacking key alleles. Previous studies focused on heavy chain genetic variation, thus light chain allelic diversity is not known. We characterized allelic variation of the porcine immunoglobulin lambda variable (IGLV) region genes. All intact IGLV genes in 81 pigs were amplified, sequenced, and analyzed to determine their allelic variation and functionality. We observed mutational variation across the entire length of the IGLV genes, in both framework and complementarity determining regions (CDRs). Three recombination hotspot motifs were also identified suggesting that non-allelic homologous recombination is an evolutionarily alternative mechanism for generating germline antibody diversity. Functional alleles were greatest in the most highly expressed families, IGLV3 and IGLV8. At the population level, allelic variation appears to help maintain the potential for broad antibody repertoire diversity in spite of reduced gene segment choices and limited germline sequence modification. The trade-off may be a reduction in repertoire diversity within individuals that could result in an increased variation in immunity to infectious disease and response to vaccination.
Collapse
Affiliation(s)
- Xi Guo
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108, USA
| | - John C Schwartz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108, USA
- Present address: Livestock Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108, USA.
| |
Collapse
|
18
|
Dunn-Walters DK. The ageing human B cell repertoire: a failure of selection? Clin Exp Immunol 2015; 183:50-6. [PMID: 26332693 DOI: 10.1111/cei.12700] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/15/2022] Open
Abstract
B cells undergo a number of different developmental stages, from initial formation of their B cell receptor (BCR) genes to differentiation into antibody-secreting plasma cells. Because the BCR is vital in these differentiation steps, autoreactive and exogenous antigen binding to the BCR exert critical selection pressures to shape the B cell repertoire. Older people are more prone to infectious disease, less able to respond well to vaccination and more likely to have autoreactive antibodies. Here we review evidence of changes in B cell repertoires in older people, which may be a reflection of age-related changes in B cell selection processes.
Collapse
Affiliation(s)
- D K Dunn-Walters
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
19
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
20
|
Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers. Proc Natl Acad Sci U S A 2015; 112:E5281-9. [PMID: 26324941 DOI: 10.1073/pnas.1511270112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our knowledge about the clonal composition and intraclonal diversity of the human memory B-cell compartment and the relationship between memory B-cell subsets is still limited, although these are central issues for our understanding of adaptive immunity. We performed a deep sequencing analysis of rearranged immunoglobulin (Ig) heavy chain genes from biological replicates, covering more than 100,000 memory B lymphocytes from two healthy adults. We reveal a highly similar B-cell receptor repertoire among the four main human IgM(+) and IgG(+) memory B-cell subsets. Strikingly, in both donors, 45% of sequences could be assigned to expanded clones, demonstrating that the human memory B-cell compartment is characterized by many, often very large, B-cell clones. Twenty percent of the clones consisted of class switched and IgM(+)(IgD(+)) members, a feature that correlated significantly with clone size. Hence, we provide strong evidence that the vast majority of Ig mutated B cells--including IgM(+)IgD(+)CD27(+) B cells--are post-germinal center (GC) memory B cells. Clone members showed high intraclonal sequence diversity and high intraclonal versatility in Ig class and IgG subclass composition, with particular patterns of memory B-cell clone generation in GC reactions. In conclusion, GC produce amazingly large, complex, and diverse memory B-cell clones, equipping the human immune system with a versatile and highly diverse compartment of IgM(+)(IgD(+)) and class-switched memory B cells.
Collapse
|
21
|
Adhikary R, Yu W, Oda M, Walker RC, Chen T, Stanfield RL, Wilson IA, Zimmermann J, Romesberg FE. Adaptive mutations alter antibody structure and dynamics during affinity maturation. Biochemistry 2015; 54:2085-93. [PMID: 25756188 PMCID: PMC5061043 DOI: 10.1021/bi501417q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While adaptive mutations can bestow new functions on proteins via the introduction or optimization of reactive centers, or other structural changes, a role for the optimization of protein dynamics also seems likely but has been more difficult to evaluate. Antibody (Ab) affinity maturation is an example of adaptive evolution wherein the adaptive mutations may be identified and Abs may be raised to specific targets that facilitate the characterization of protein dynamics. Here, we report the characterization of three affinity matured Abs that evolved from a common germline precursor to bind the chromophoric antigen (Ag), 8-methoxypyrene-1,3,6-trisulfonate (MPTS). In addition to characterizing the sequence, molecular recognition, and structure of each Ab, we characterized the dynamics of each complex by determining their mechanical response to an applied force via three-pulse photon echo peak shift (3PEPS) spectroscopy and deconvoluting the response into elastic, anelastic, and plastic components. We find that for one Ab, affinity maturation was accomplished via the introduction of a single functional group that mediates a direct contact with MPTS and results in a complex with little anelasticity or plasticity. In the other two cases, more mutations were introduced but none directly contact MPTS, and while their effects on structure are subtle, their effects on anelasticity and plasticity are significant, with the level of plasticity correlated with specificity, suggesting that the optimization of protein dynamics may have contributed to affinity maturation. A similar optimization of structure and dynamics may contribute to the evolution of other proteins.
Collapse
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wayne Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ross C. Walker
- Department of Chemistry and Biochemistry, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Abstract
The development of high-throughput DNA sequencing technologies has enabled large-scale characterization of functional antibody repertoires, a new method of understanding protective and pathogenic immune responses. Important parameters to consider when sequencing antibody repertoires include the methodology, the B-cell population and clinical characteristics of the individuals analysed, and the bioinformatic analysis. Although focused sequencing of immunoglobulin heavy chains or complement determining regions can be utilized to monitor particular immune responses and B-cell malignancies, high-fidelity analysis of the full-length paired heavy and light chains expressed by individual B cells is critical for characterizing functional antibody repertoires. Bioinformatic identification of clonal antibody families and recombinant expression of representative members produces recombinant antibodies that can be used to identify the antigen targets of functional immune responses and to investigate the mechanisms of their protective or pathogenic functions. Integrated analysis of coexpressed functional genes provides the potential to further pinpoint the most important antibodies and clonal families generated during an immune response. Sequencing antibody repertoires is transforming our understanding of immune responses to autoimmunity, vaccination, infection and cancer. We anticipate that antibody repertoire sequencing will provide next-generation biomarkers, diagnostic tools and therapeutic antibodies for a spectrum of diseases, including rheumatic diseases.
Collapse
Affiliation(s)
- William H. Robinson
- Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
|
24
|
Tallmadge RL, Tseng CT, King RA, Felippe MJB. Developmental progression of equine immunoglobulin heavy chain variable region diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:33-43. [PMID: 23567345 PMCID: PMC3672396 DOI: 10.1016/j.dci.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Humoral immunity is a critical component of the immune system that is established during fetal life and expands upon exposure to pathogens. The extensive humoral immune response repertoire is generated in large part via immunoglobulin (Ig) heavy chain variable region diversity. The horse is a useful model to study the development of humoral diversity because the placenta does not transfer maternal antibodies; therefore, Igs detected in the fetus and pre-suckle neonate were generated in utero. The goal of this study was to compare the equine fetal Ig VDJ repertoire to that of neonatal, foal, and adult horse stages of life. We found similar profiles of IGHV, IGHD, and IGHJ gene usage throughout life, including predominant usage of IGHV2S3, IGHD18S1, and IGHJ1S5. CDR3H lengths were also comparable throughout life. Unexpectedly, Ig sequence diversity significantly increased between the fetal and neonatal age, and, as expected, between the foal and adult age.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | |
Collapse
|
25
|
Briney BS, Jr. JEC. Secondary mechanisms of diversification in the human antibody repertoire. Front Immunol 2013; 4:42. [PMID: 23483107 PMCID: PMC3593266 DOI: 10.3389/fimmu.2013.00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/05/2013] [Indexed: 12/25/2022] Open
Abstract
V(D)J recombination and somatic hypermutation (SHM) are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(D)J recombination efficiently generate a virtually limitless diversity through random recombination of variable (V), diversity (D), and joining (J) genes with diverse non-templated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs), which form the bulk of the antigen recognition site. While V(D)J recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DD)J recombination (or D-D fusion), SHM-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.
Collapse
Affiliation(s)
- Bryan S. Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - James E. Crowe Jr.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
26
|
Persson H, Ye W, Wernimont A, Adams JJ, Koide A, Koide S, Lam R, Sidhu SS. CDR-H3 diversity is not required for antigen recognition by synthetic antibodies. J Mol Biol 2012; 425:803-11. [PMID: 23219464 DOI: 10.1016/j.jmb.2012.11.037] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 01/17/2023]
Abstract
A synthetic phage-displayed antibody repertoire was constructed with equivalent chemical diversity in the third complementarity-determining regions of the heavy (CDR-H3) and light (CDR-L3) chains, which contrasts with natural antibodies in which CDR-H3 is much more diverse than CDR-L3 due to the genetic mechanisms that generate antibody encoding genes. Surprisingly, the synthetic repertoire yielded numerous functional antibodies that contained mutated CDR-L3 sequences but a fixed CDR-H3 sequence. Alanine-scanning analysis of antibodies that recognized 10 different antigens but contained a common CDR-H3 loop showed that, in most cases, the fixed CDR-H3 sequence was able to contribute favorably to antigen recognition, but in some cases, the loop was functionally inert. Structural analysis of one such antibody in complex with antigen showed that the inert CDR-H3 loop was nonetheless highly buried at the antibody-antigen interface. Taken together, these results show that CDR-H3 diversity is not necessarily required for the generation of antibodies that recognize diverse protein antigens with high affinity and specificity, and if given the chance, CDR-L3 readily assumes the dominant role for antigen recognition. These results contrast with the commonly accepted view of antigen recognition derived from the analysis of natural antibodies, in which CDR-H3 is presumed to be dominant and CDR-L3 is presumed to play an auxiliary role. Furthermore, the results show that natural antibody function is genetically constrained, and it should be possible to develop more functional synthetic antibody libraries by expanding the diversity of CDR-L3 beyond what is observed in nature.
Collapse
Affiliation(s)
- Helena Persson
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Briney BS, Willis JR, Hicar MD, Thomas JW, Crowe JE. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire. Immunology 2012; 137:56-64. [PMID: 22612413 DOI: 10.1111/j.1365-2567.2012.03605.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.
Collapse
Affiliation(s)
- Bryan S Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
28
|
Duvvuri B, Wu GE. Gene Conversion-Like Events in the Diversification of Human Rearranged IGHV3-23*01 Gene Sequences. Front Immunol 2012; 3:158. [PMID: 22715339 PMCID: PMC3375636 DOI: 10.3389/fimmu.2012.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/25/2012] [Indexed: 11/13/2022] Open
Abstract
Gene conversion (GCV), a mechanism mediated by activation-induced cytidine deaminase (AID) is well established as a mechanism of immunoglobulin diversification in a few species. However, definitive evidence of GCV-like events in human immunoglobulin genes is scarce. The lack of evidence of GCV in human rearranged immunoglobulin gene sequences is puzzling given the presence of highly similar germline donors and the presence of all the enzymatic machinery required for GCV. In this study, we undertook a computational analysis of rearranged IGHV3-23(*)01 gene sequences from common variable immunodeficiency (CVID) patients, AID-deficient patients, and healthy individuals to survey "GCV-like" activities. We analyzed rearranged IGHV3-23(*)01 gene sequences obtained from total PBMC RNA and single-cell polymerase chain reaction of individual B cell lysates. Our search identified strong evidence of GCV-like activity. We observed that GCV-like tracts are flanked by AID hotspot motifs. Structural modeling of IGHV3-23(*)01 gene sequence revealed that hypermutable bases flanking GCV-like tracts are in the single stranded DNA (ssDNA) of stable stem-loop structures (SLSs). ssDNA is inherently fragile and also an optimal target for AID. We speculate that GCV could have been initiated by the targeting of hypermutable bases in ssDNA state in stable SLSs, plausibly by AID. We have observed that the frequency of GCV-like events is significantly higher in rearranged IGHV3-23-(*)01 sequences from healthy individuals compared to that of CVID patients. We did not observe GCV-like events in rearranged IGHV3-23-(*)01 sequences from AID-deficient patients. GCV, unlike somatic hypermutation (SHM), can result in multiple base substitutions that can alter many amino acids. The extensive changes in antibody affinity by GCV-like events would be instrumental in protecting humans against pathogens that diversify their genome by antigenic shift.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology and Health Science, Faculty of Health, York UniversityToronto, ON, Canada
| | - Gillian E. Wu
- School of Kinesiology and Health Science, Faculty of Health, York UniversityToronto, ON, Canada
| |
Collapse
|
29
|
B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30:423-33. [PMID: 22565972 DOI: 10.1038/nbt.2197] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.
Collapse
|
30
|
Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat Immunol 2011; 12:1212-20. [PMID: 22037603 PMCID: PMC3233979 DOI: 10.1038/ni.2136] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022]
Abstract
During B lymphopoiesis, recombination of the locus encoding the immunoglobulin κ-chain complex (Igk) requires expression of the precursor to the B cell antigen receptor (pre-BCR) and escape from signaling via the interleukin 7 receptor (IL-7R). By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that a STAT5 tetramer bound the Igk intronic enhancer (E(κi)), which led to recruitment of the histone methyltransferase Ezh2. Ezh2 marked trimethylation of histone H3 at Lys27 (H3K27me3) throughout the κ-chain joining region (J(κ)) to the κ-chain constant region (C(κ)). In the absence of Ezh2, IL-7 failed to repress Igk germline transcription. H3K27me3 modifications were lost after termination of IL-7R-STAT5 signaling, and the transcription factor E2A bound E(κi), which resulted in acquisition of H3K4me1 and acetylated histone H4 (H4Ac). Genome-wide analyses showed a STAT5 tetrameric binding motif associated with transcriptional repression. Our data demonstrate how IL-7R signaling represses Igk germline transcription and provide a general model for STAT5-mediated epigenetic transcriptional repression.
Collapse
|
31
|
Verma S, Aitken R. Somatic hypermutation leads to diversification of the heavy chain immunoglobulin repertoire in cattle. Vet Immunol Immunopathol 2011; 145:14-22. [PMID: 22070825 DOI: 10.1016/j.vetimm.2011.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 10/02/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
The availability of unique variable (VH), diversity (D), and joining (JH) gene segments in the vertebrate germline determines the extent to which a primary immunoglobulin (Ig) repertoire can be generated through combinatorial rearrangement. Although bovine D segments possess unusual properties, the diversity of the primary Ig heavy chain (IgH) repertoire in cattle is restricted by the dominance of a single family of germline VH genes of limited number and diversity. Cattle therefore must employ other diversification strategies in order to generate a functional IgH repertoire, the main candidates being gene conversion and somatic hypermutation. In considering these possibilities, we predicted that if somatic hypermutation was active during B lymphocyte development, the process would introduce nucleotide substitutions to the VDJ exon and also non-coding region lying downstream of the rearranged JH segment. In contrast, our expectation was that gene conversion would show a greater tendency to confine modification to the IgH coding sequence, leaving intron regions substantially unmodified. An analysis of rearranged IgH sequences from cattle of different ages revealed that the diversification of germline sequences could be observed in very young calves and that substitution frequency increased with age. The age-dependent accumulation of mutations was particularly apparent in the second IgH complementarity-determining region (CDR2). Single base substitutions were found to predominate, with purines targeted more frequently than pyrimidines and transitions favoured over transversions. In non-coding regions, mutations were detected at a normalised frequency that was indistinguishable from that observed in CDR2. These data are consistent with a process of IgH diversification driven predominantly by somatic hypermutation.
Collapse
Affiliation(s)
- Subhash Verma
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | | |
Collapse
|
32
|
Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma. Int J Mol Sci 2011; 12:5684-97. [PMID: 22016619 PMCID: PMC3189743 DOI: 10.3390/ijms12095684] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 11/16/2022] Open
Abstract
Primary vitreoretinal lymphoma (PVRL) or primary intraocular lymphoma, a subtype of primary central nervous system lymphoma, often masquerades as uveitis. The diagnosis of PVRL requires identification of lymphoma cells inside the eye, which is often challenging due to the frequent necrosis and admixing of PVRL cells with reactive lymphocytes. Therefore, detection of immunoglobulin heavy chain (IgH) and T-cell receptor (TCR) gene rearrangements provide molecular diagnosis of B- and T-cell lymphoma, respectively. We retrospectively evaluated 208 cases with a clinical diagnosis of masquerade syndrome from 1998 to 2010. In 200 cases with molecular analyses using microdissection and polymerase chain reaction, we found that 110 cases had IgH gene rearrangement, 5 cases had TCR gene rearrangement, and 85 cases were negative for these two gene arrangements. The molecular data corroborated the cytopathological diagnoses of PVRL and uveitis in the majority of cases. Cytokine above the detected levels in the specimens were also measured in 80 of the 208 cases. A ratio of vitreous IL-10 to IL-6 greater than 1, suggesting PVRL, was found in 56/80 cases; 53/56 had the correct diagnosis. A ratio less than 1, suggesting uveitis, was found in 24/80 cases; 17/24 correctly confirmed the diagnosis. Moreover, the molecular data corresponded well with the clinical course of the diseases. The sensitivity and specificity of these molecular biomarkers for the diagnosis of PVRL are higher than 95%.
Collapse
|
33
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2011; 82:78-101. [PMID: 21658968 DOI: 10.1016/j.critrevonc.2011.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 10/25/2022] Open
Abstract
MCL is a well-characterized clinically aggressive lymphoma with a poor prognosis. Recent research findings have slightly improved the outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it does not improve overall survival with respect to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidated by ASCT ameliorates response rate and prolongs progression-free survival, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better dissection of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy in most patients and spare the toxicity of intense therapy in a minority of MCL patients characterized by a relatively indolent disease. Patients not eligible for intensive regimens, such as hyperC-VAD, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy for relapsed disease, although there are currently no data to recommend this approach as the first-line strategy. As the optimal approach to the management of MCL is still evolving, it is critical that these patients be enrolled in clinical trials to identify better treatment options.
Collapse
Affiliation(s)
- Sergio Cortelazzo
- Hematology and Bone Marrow Transplantation Unit, Azienda Ospedaliera Bolzano, Italy
| | | | | | | |
Collapse
|
34
|
Evaluating the clonal hierarchy in light-chain multiple myeloma: implications against the myeloma stem cell hypothesis. Leukemia 2011; 25:1213-6. [DOI: 10.1038/leu.2011.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Daley-Bauer LP, Purdy SR, Smith MC, Gagliardo LF, Davis WC, Appleton JA. Contributions of conventional and heavy-chain IgG to immunity in fetal, neonatal, and adult alpacas. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:2007-15. [PMID: 20926693 PMCID: PMC3008178 DOI: 10.1128/cvi.00287-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/06/2010] [Accepted: 09/20/2010] [Indexed: 01/18/2023]
Abstract
In addition to conventional immunoglobulins, camelids produce antibodies that do not incorporate light chains into their structures. These so-called heavy-chain (HC) antibodies have incited great interest in the biomedical community, as they have considerable potential for biotechnological and therapeutic application. Recently, we have begun to elucidate the immunological functions of HC antibodies, yet little is known about their significance in maternal immunity or about the B lymphocytes that produce them. This study describes the application of isotype-specific reagents toward physiological assessments of camelid IgGs and the B cells that produce them. We document the specificities of monoclonal antibodies that distinguish two conventional IgG1 isotypes and two HC IgG3 variants produced by alpacas. Next, we report that the relative concentrations of five isotypes are similar in serum, milk, and colostrum; however, following passive transfer, the concentrations of HC IgG2 and IgG3 declined more rapidly than the concentration of conventional IgG1 in the sera of neonates. Finally, we assessed the distribution of B cells of distinct isotypes within lymphoid tissues during fetal and adult life. We detected IgG1, IgG2, and IgG3 in lymphocytes located in lymph node follicles, suggesting that HC B cells affinity mature and/or class switch. One IgG3 isotype was present in B cells located in ileal Peyer's patches, and one conventional IgG1 isotype was detected in splenic marginal zone B cells. Our findings contribute to the growing body of knowledge pertaining to HC antibodies and are compatible with functional specialization among conventional and HC IgGs in the alpaca.
Collapse
Affiliation(s)
- L. P. Daley-Bauer
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| | - S. R. Purdy
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| | - M. C. Smith
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| | - L. F. Gagliardo
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| | - W. C. Davis
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| | - J. A. Appleton
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Hadley, Massachusetts 01035, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, Pullman, Washington 99164
| |
Collapse
|
36
|
Poltoratsky V, Heacock M, Kissling GE, Prasad R, Wilson SH. Mutagenesis dependent upon the combination of activation-induced deaminase expression and a double-strand break. Mol Immunol 2010; 48:164-70. [PMID: 20828826 PMCID: PMC3023910 DOI: 10.1016/j.molimm.2010.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022]
Abstract
We explored DNA metabolic events potentially relevant to somatic hypermutation (SHM) of immunoglobulin genes using a yeast model system. Double-strand break (DSB) formation has been discussed as a possible component of the SHM process during immunoglobulin gene maturation. Yet, possible mechanisms linking DSB formation with mutagenesis have not been well understood. In the present study, a linkage between mutagenesis in a reporter gene and a double-strand break at a distal site was examined as a function of activation-induced deaminase (AID) expression. Induction of the DSB was found to be associated with mutagenesis in a genomic marker gene located 7 kb upstream of the break site: mutagenesis was strongest with the combination of AID expression and DSB induction. The mutation spectrum of this DSB and AID-mediated mutagenesis was characteristic of replicative bypass of uracil in one strand and was dependent on expression of DNA polymerase delta (Polδ). These results in a yeast model system illustrate that the combination of DSB induction and AID expression could be associated with mutagenesis observed in SHM. Implications of these findings for SHM of immunoglobulin genes in human B cells are discussed.
Collapse
Affiliation(s)
- Vladimir Poltoratsky
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Michelle Heacock
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Grace E. Kissling
- Biostatistics Branch, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Rajendra Prasad
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709 USA
| |
Collapse
|
37
|
Sun Y, Wang C, Wang Y, Zhang T, Ren L, Hu X, Zhang R, Meng Q, Guo Y, Fei J, Li N, Zhao Y. A comprehensive analysis of germline and expressed immunoglobulin repertoire in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1009-1020. [PMID: 20466019 DOI: 10.1016/j.dci.2010.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Based on the recently released horse genome, we have characterized the genomic organization of the horse Ig gene loci. The horse IgH locus in genomic scaffold Un0011 contains 40 D(H) segments, 8 J(H) segments and 50 V(H) segments. The Igkappa locus contains only a single C(kappa) gene, 5 J(kappa) segments and a 60 V(kappa) segments, whereas the Iglambda locus contains 7 C(lambda) genes each preceded by a J(lambda) gene segment. A total of 110 V(lambda) segments with the same transcriptional polarity as J(lambda)-C(lambda) were identified upstream of the J(lambda)-C(lambda) cluster. However, 34 V(lambda) segments locating downstream of the J(lambda)-C(lambda) cluster showed an opposite transcriptional polarity. Our results reveal that the horse germline V repertoires were more complex than previously estimated. By analyzing the cloned IgH/L cDNA, we further showed that several selected V subgroups were utilized in the expressed V(H), V(kappa), or V(lambda) and a high frequency of nucleotide deletions and insertions were introduced by somatic hypermutation in these expressed V genes.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
CD4(+)CD25(+) regulatory T (Treg) cells can play a critical role in the prevention of autoimmunity, as evidenced by the cataclysmic autoimmune disease that develops in mice and humans lacking the key transcription factor forkhead box protein 3 (Foxp3). At present, however, how and whether Treg cells participate in the development of rheumatoid arthritis (RA), which has both systemic manifestations and a joint-targeted pathology that characterizes the disease, remains unclear. In this review, we describe work that has been carried out aimed at determining the role of Treg cells in disease development in RA patients and in mouse models of inflammatory arthritis. We also describe studies in a new model of spontaneous autoimmune arthritis (TS1 x HACII mice), in which disease is caused by CD4(+) T cells recognizing a neo-self-antigen expressed by systemically distributed antigen-presenting cells. We show that TS1 x HACII mice develop arthritis despite the presence of CD4(+)CD25(+)Foxp3(+) Treg cells that recognize this target autoantigen, and we outline steps in the development of arthritis at which Treg cells might potentially act, or fail to act, in the development of inflammatory arthritis.
Collapse
Affiliation(s)
- Soyoung Oh
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
39
|
|
40
|
Dias da Silva W, Tambourgi DV. IgY: a promising antibody for use in immunodiagnostic and in immunotherapy. Vet Immunol Immunopathol 2010; 135:173-80. [PMID: 20083313 PMCID: PMC7126787 DOI: 10.1016/j.vetimm.2009.12.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/16/2009] [Accepted: 12/30/2009] [Indexed: 11/26/2022]
Abstract
Immunoglobulin IgY is the major antibody produced by chickens (Gallus domesticus). After their V-C gene is rearranged in B cells, IgY is continually synthesized, excreted into the blood and transferred to the egg yolk, where it is accumulated. IgY is produced by hens to provide their offspring with an effective humoral immunity against the commonest avian pathogens until full maturation of their own immune system. In this review we aim to give an overview about the generation, structure, properties of IgY, as well as the advantages of chicken antibodies use over mammalian antibodies in immunodiagnostics and immunotherapy.
Collapse
Affiliation(s)
- Wilmar Dias da Silva
- Immunochemistry Laboratory, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, Brazil.
| | | |
Collapse
|
41
|
Feige MJ, Hendershot LM, Buchner J. How antibodies fold. Trends Biochem Sci 2009; 35:189-98. [PMID: 20022755 DOI: 10.1016/j.tibs.2009.11.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
B cells use unconventional strategies for the production of a seemingly unlimited number of antibodies from a very limited amount of DNA. These methods dramatically increase the likelihood of producing proteins that cannot fold or assemble appropriately. B cells are therefore particularly dependent on 'quality control' mechanisms to oversee antibody production. Recent in vitro experiments demonstrate that Ig domains have evolved diverse folding strategies ranging from robust spontaneous folding to intrinsically disordered domains that require assembly with their partner domains to fold; in vivo experiments reveal that these different folding characteristics form the basis for cellular checkpoints in Ig transport. Taken together, these reports provide a detailed understanding of how B cells monitor and ensure the functional fidelity of Ig proteins.
Collapse
Affiliation(s)
- Matthias J Feige
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
42
|
Giles AJ, Bender TP, Ravichandran KS. The adaptor protein Shc plays a key role during early B cell development. THE JOURNAL OF IMMUNOLOGY 2009; 183:5468-76. [PMID: 19828641 DOI: 10.4049/jimmunol.0902344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Shc is phosphorylated downstream of many cell surface receptors, including Ag and cytokine receptors. However, the role of Shc in B cell development has not been addressed. Here, through conditional expression of a dominant negative Shc mutant and conditional loss of Shc protein expression, we tested a role for Shc during early B lymphopoiesis. We identified a requirement for Shc beginning at the transition from the pre-pro-B to pro-B stage, with a strong reduction in the number of pre-B cells. This developmental defect is due to increased cell death rather than impaired proliferation or commitment to the B lineage. Additional studies suggest a role for Shc in IL-7-dependent signaling in pro-B cells. Shc is phosphorylated in response to IL-7 stimulation in pro-B cells, and pro-B cells from mice with impaired Shc signaling display increased apoptosis. Together, these data demonstrate a critical role for Shc in early B lymphopoiesis with a requirement in early B cell survival. In addition, we also identify Shc as a required player in signaling downstream of the IL-7R in early B cells.
Collapse
Affiliation(s)
- Amber J Giles
- Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
43
|
Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin Microbiol Rev 2009; 22:396-414. [PMID: 19597006 DOI: 10.1128/cmr.00001-09] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary antibody deficiencies are the most common primary immunodeficiency diseases. They are a heterogeneous group of disorders with various degrees of dysfunctional antibody production resulting from a disruption of B-cell differentiation at different stages. While there has been tremendous recent progress in the understanding of some of these disorders, the etiology remains unknown for the majority of patients. As there is a large spectrum of underlying defects, the age at presentation varies widely, and the clinical manifestations range from an almost complete absence of B cells and serum immunoglobulins to selectively impaired antibody responses to specific antigens with normal total serum immunoglobulin concentrations. However, all of these disorders share an increased susceptibility to infections, affecting predominantly the respiratory tract. A delay of appropriate treatment for some diseases can result in serious complications related to infections, while timely diagnosis and adequate therapy can significantly decrease morbidity and increase life expectancy and quality of life.
Collapse
|
44
|
Cadera EJ, Wan F, Amin RH, Nolla H, Lenardo MJ, Schlissel MS. NF-kappaB activity marks cells engaged in receptor editing. ACTA ACUST UNITED AC 2009; 206:1803-16. [PMID: 19581408 PMCID: PMC2722169 DOI: 10.1084/jem.20082815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of the extreme diversity in immunoglobulin genes, tolerance mechanisms are necessary to ensure that B cells do not respond to self-antigens. One such tolerance mechanism is called receptor editing. If the B cell receptor (BCR) on an immature B cell recognizes self-antigen, it is down-regulated from the cell surface, and light chain gene rearrangement continues in an attempt to edit the autoreactive specificity. Analysis of a heterozygous mutant mouse in which the NF-κB–dependent IκBα gene was replaced with a lacZ (β-gal) reporter complementary DNA (cDNA; IκBα+/lacZ) suggests a potential role for NF-κB in receptor editing. Sorted β-gal+ pre–B cells showed increased levels of various markers of receptor editing. In IκBα+/lacZ reporter mice expressing either innocuous or self-specific knocked in BCRs, β-gal was preferentially expressed in pre–B cells from the mice with self-specific BCRs. Retroviral-mediated expression of a cDNA encoding an IκBα superrepressor in primary bone marrow cultures resulted in diminished germline κ and rearranged λ transcripts but similar levels of RAG expression as compared with controls. We found that IRF4 transcripts were up-regulated in β-gal+ pre–B cells. Because IRF4 is a target of NF-κB and is required for receptor editing, we suggest that NF-κB could be acting through IRF4 to regulate receptor editing.
Collapse
Affiliation(s)
- Emily J Cadera
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
45
|
Cain D, Kondo M, Chen H, Kelsoe G. Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 2009; 129:266-277. [PMID: 19148216 PMCID: PMC2778726 DOI: 10.1038/jid.2008.286] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our understanding of hematopoiesis and the development of the immune system has fundamentally changed, leading to significant discoveries with important clinical relevance. Hematopoiesis, once described in terms of irreversible and discrete developmental branch points, is now understood to exist as a collection of alternative developmental pathways capable of generating functionally identical progeny. Developmental commitment to a particular blood-cell lineage is gradually acquired and reflects both cell intrinsic and extrinsic signals. Chief among the extrinsic factors are the environmental cues of hematopoietic microenvironments that comprise specific "developmental niches" that support hematopoietic stem and progenitor cells. Most of this new understanding comes from the study of normal, steady-state hematopoiesis, but there is ample reason to expect that special developmental and/or differentiative mechanisms operate in response to inflammation. For example, both stem and progenitor cells are now known to express Toll-like receptors that can influence hematopoietic cell fates in response to microbial products. Likewise, proinflammatory cytokines mobilize hematopoietic stem cells to peripheral tissues. In this Perspective, we review inflammation's effects on central and extramedullary B lymphopoiesis and discuss the potential consequences of peripheral B-cell development in the context of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Derek Cain
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
46
|
Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 2009; 27:173-81. [DOI: 10.1038/nbt.1521] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 12/23/2008] [Indexed: 11/09/2022]
|
47
|
Gottipati P, Helleday T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 2009; 24:203-10. [PMID: 19139058 DOI: 10.1093/mutage/gen072] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Homologous recombination (HR) is an important DNA repair pathway and is essential for cellular survival. It plays a major role in repairing replication-associated lesions and is functionally connected to replication. Transcription is another cellular process, which has emerged to have a connection with HR. Transcription enhances HR, which is a ubiquitous phenomenon referred to as transcription-associated recombination (TAR). Recent evidence suggests that TAR plays a role in inducing genetic instability, for example in the THO mutants (Tho2, Hpr1, Mft1 and Thp2) in yeast or during the development of the immune system leading to genetic diversity in mammals. On the other hand, evidence also suggests that TAR may play a role in preventing genetic instability in many different ways, one of which is by rescuing replication during transcription. Hence, TAR is a double-edged sword and plays a role in both preventing and inducing genetic instability. In spite of the interesting nature of TAR, the mechanism behind TAR has remained elusive. Recent advances in the area, however, suggest a link between TAR and replication and show specific genetic requirements for TAR that differ from regular HR. In this review, we aim to present the available evidence for TAR in both lower and higher eukaryotes and discuss its possible mechanisms, with emphasis on its connection with replication.
Collapse
Affiliation(s)
- Ponnari Gottipati
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Feeney AJ. Genetic and epigenetic control of V gene rearrangement frequency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:73-81. [PMID: 19731802 DOI: 10.1007/978-1-4419-0296-2_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The antibody repertoire is enormous and reflects the power of combinatorial and junctional diversity to generate avast repertoire with a moderate number of V, D and J gene segments. However, although there are many VH and VK gene segments, the usage of these genes is highly unequal. In this chapter, we summarize our studies elucidating many of the factors that contribute to this unequal rearrangement frequency of individual gene segments. Firstly, there is much natural variation in the sequence of the Recombination Signal Sequences (RSS) that flank each recombining gene. This genetic variation contributes greatly to unequal recombination frequencies. However, other factors also play a major role in recombination frequencies, as evidenced by the fact that some genes with identical RSS rearrange at very different frequencies in vivo. Analysis of these gene segments by chromatin immunoprecipitation (ChIP) suggests that differences in the structure of the chromatin associated with each gene is also a major factor in differential accessibility for rearrangement. Finally, transcription factors can direct accessibility for recombination, possibly by recruiting chromatin-modifying enzymes to the vicinity of the gene segment. Together, these factors dictate the composition of the newly formed antibody repertoire.
Collapse
Affiliation(s)
- Ann J Feeney
- The Scripps Research Institute, Department of Immunology, IMM22, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
A role for DNA polymerase mu in the emerging DJH rearrangements of the postgastrulation mouse embryo. Mol Cell Biol 2008; 29:1266-75. [PMID: 19103746 DOI: 10.1128/mcb.01518-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular complexes involved in the nonhomologous end-joining process that resolves recombination-activating gene (RAG)-induced double-strand breaks and results in V(D)J gene rearrangements vary during mammalian ontogeny. In the mouse, the first immunoglobulin gene rearrangements emerge during midgestation periods, but their repertoires have not been analyzed in detail. We decided to study the postgastrulation DJ(H) joints and compare them with those present in later life. The embryo DJ(H) joints differed from those observed in perinatal life by the presence of short stretches of nontemplated (N) nucleotides. Whereas most adult N nucleotides are introduced by terminal deoxynucleotidyl transferase (TdT), the embryo N nucleotides were due to the activity of the homologous DNA polymerase mu (Polmu), which was widely expressed in the early ontogeny, as shown by analysis of Polmu(-/-) embryos. Based on its DNA-dependent polymerization ability, which TdT lacks, Polmu also filled in small sequence gaps at the coding ends and contributed to the ligation of highly processed ends, frequently found in the embryo, by pairing to internal microhomology sites. These findings show that Polmu participates in the repair of early-embryo, RAG-induced double-strand breaks and subsequently may contribute to preserve the genomic stability and cellular homeostasis of lymphohematopoietic precursors during development.
Collapse
|
50
|
Closely related antibody receptors exploit fundamentally different strategies for steroid recognition. Proc Natl Acad Sci U S A 2008; 105:11725-30. [PMID: 18689687 DOI: 10.1073/pnas.0801783105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular recognition by the adaptive immune system relies on specific high-affinity antibody receptors that are generated from a restricted set of starting sequences through homologous recombination and somatic mutation. The steroid binding antibody DB3 and the catalytic Diels-Alderase antibody 1E9 derive from the same germ line sequences but exhibit very distinct specificities and functions. However, mutation of only two of the 36 sequence differences in the variable domains, Leu(H47)Trp and Arg(H100)Trp, converts 1E9 into a high-affinity steroid receptor with a ligand recognition profile similar to DB3. To understand how these changes switch binding specificity and function, we determined the crystal structures of the 1E9 Leu(H47)Trp/Arg(H100)Trp double mutant (1E9dm) as an unliganded Fab at 2.05 A resolution and in complex with two configurationally distinct steroids at 2.40 and 2.85 A. Surprisingly, despite the functional mimicry of DB3, 1E9dm employs a distinct steroid binding mechanism. Extensive structural rearrangements occur in the combining site, where residue H47 acts as a specificity switch and H100 adapts to different ligands. Unlike DB3, 1E9dm does not use alternative binding pockets or different sets of hydrogen-bonding interactions to bind configurationally distinct steroids. Rather, the different steroids are inserted more deeply into the 1E9dm combining site, creating more hydrophobic contacts that energetically compensate for the lack of hydrogen bonds. These findings demonstrate how subtle mutations within an existing molecular scaffold can dramatically modulate the function of immune receptors by inducing unanticipated, but compensating, mechanisms of ligand interaction.
Collapse
|