1
|
Garcia LE, Sanchez-Puerta MV. Mitochondrial Splicing Efficiency Is Lower in Holoparasites Than in Free-Living Plants. PLANT & CELL PHYSIOLOGY 2024; 65:2018-2029. [PMID: 39540883 DOI: 10.1093/pcp/pcae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a crucial role in eukaryotic organisms, housing their own genome with genes vital for oxidative phosphorylation. Coordination between nuclear and mitochondrial genomes is pivotal for organelle gene expression. Splicing, editing and processing of mitochondrial transcripts are regulated by nuclear-encoded factors. Splicing efficiency (SEf) of the many group II introns present in plant mitochondrial genes is critical for mitochondrial function since a splicing defect or splicing deficiency can severely impact plant growth and development. This study investigates SEf in free-living and holoparasitic plants, focusing on 25 group II introns from 15 angiosperm species. Our comparative analyses reveal distinctive splicing patterns with holoparasites exhibiting significantly lower SEf, potentially linked to their unique evolutionary trajectory. Given the preponderance of horizontal gene transfer (HGT) in parasitic plants, we investigated the effect of HGT on SEf, such as the presence of foreign introns or foreign nuclear-encoded splicing factors. Contrary to expectations, the SEf reductions do not correlate with HGT events, suggesting that other factors are at play, such as the loss of photosynthesis or the transition to a holoparasitic lifestyle. The findings of this study broaden our understanding of the molecular evolution in parasitic plants and shed light on the multifaceted factors influencing organelle gene expression.
Collapse
Affiliation(s)
- Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Facultad de Ciencias Agrarias, Chacras de Coria M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Facultad de Ciencias Agrarias, Chacras de Coria M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| |
Collapse
|
2
|
Kim J, Taketomi T, Yamada A, Uematsu Y, Ueda K, Chiba T, Tsuruta F. USP4 regulates TUT1 ubiquitination status in concert with SART3. Biochem Biophys Res Commun 2024; 701:149557. [PMID: 38310689 DOI: 10.1016/j.bbrc.2024.149557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
The ubiquitin system plays pivotal roles in diverse cellular processes, including signal transduction, transcription and translation, organelle quality control, and protein degradation. Recent investigations have revealed the regulatory influence of ubiquitin systems on RNA metabolism. Previously, we reported that the deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), promotes deubiquitination of terminal uridylyl transferase 1 (TUT1), a key regulator within the U4/U6 spliceosome, thereby instigating significant alterations in global RNA splicing [1]. In this study, we report that ubiquitin specific peptidase 4 (USP4), a homologous protein to USP15, also exerts control over the ubiquitination status of TUT1. Analogous to USP15, the expression of USP4 results in a reduction of TUT1 ubiquitination. Furthermore, squamous cell carcinoma antigen recognized by T-cells 3 (SART3) collaborates in enhancing the deubiquitinating activity of USP4 towards TUT1. A crucial revelation is that USP4 orchestrates the subnuclear relocation of TUT1 from the nucleolus to the nucleoplasm and facilitates the stability of U6 small nuclear RNA (snRNA). Notably, USP4 has a more profound effect on TUT1 redistribution compared to USP15. Our findings suggest that USP4 intricately modulates the ubiquitination status of TUT1, thereby exerting pronounced effects on the spliceosome functions.
Collapse
Affiliation(s)
- Jaehyun Kim
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takumi Taketomi
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Atsuma Yamada
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yukino Uematsu
- Master's and Doctoral Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kentaro Ueda
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tomoki Chiba
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Master's and Doctoral Program in Biology, Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Fuminori Tsuruta
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Master's and Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Master's and Doctoral Program in Biology, Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
3
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
4
|
Zhang P, Philippot Q, Ren W, Lei WT, Li J, Stenson PD, Palacín PS, Colobran R, Boisson B, Zhang SY, Puel A, Pan-Hammarström Q, Zhang Q, Cooper DN, Abel L, Casanova JL. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc Natl Acad Sci U S A 2022; 119:e2211194119. [PMID: 36306325 PMCID: PMC9636908 DOI: 10.1073/pnas.2211194119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.
Collapse
Affiliation(s)
- Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Peter D. Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Pere Soler Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
- Diagnostic Immunology Group, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Immunology Division, Genetics Department, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, 75015 Paris, France
- Paris Cité University, Imagine Institute, 75015 Paris, France
- HHMI, New York, NY 10065
| |
Collapse
|
5
|
Choi Y, Lee HH, Park J, Kim S, Choi S, Moon H, Shin J, Kim JE, Choi GJ, Seo YS, Son H. Intron turnover is essential to the development and pathogenicity of the plant pathogenic fungus Fusarium graminearum. Commun Biol 2022; 5:1129. [PMID: 36289323 PMCID: PMC9606315 DOI: 10.1038/s42003-022-04111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi. RNA lariat debranching enzyme Dbr1 is required for intron turnover in the fungal plant pathogen <i>Fusarium graminearum <i > , and accumulation of lariat RNA affects its development and pathogenesis.
Collapse
Affiliation(s)
- Yejin Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun-Hee Lee
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Jiyeun Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sieun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soyoung Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Heeji Moon
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Shin
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jung-Eun Kim
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gyung Ja Choi
- grid.29869.3c0000 0001 2296 8192Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Young-Su Seo
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Hokyoung Son
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Ko SH, Rhim JW, Shin KS, Hahn YS, Lee SY, Kim JG. Genetic analysis of CYBB gene in 26 korean families with X-linked chronic granulomatous disease. Immunol Invest 2014; 43:585-94. [DOI: 10.3109/08820139.2013.825270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Bartok O, Kyriacou CP, Levine J, Sehgal A, Kadener S. Adaptation of molecular circadian clockwork to environmental changes: a role for alternative splicing and miRNAs. Proc Biol Sci 2013; 280:20130011. [PMID: 23825200 DOI: 10.1098/rspb.2013.0011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Circadian (24 h) clocks provide a source of internal timing in most living organisms. These clocks keep time by using complex transcriptional/post-translational feedback loops that are strikingly resilient to changes in environmental conditions. In the last few years, interest has increased in the role of post-transcriptional regulation of circadian clock components. Post-transcriptional control plays a prominent role in modulating rapid responses of the circadian system to environmental changes, including light, temperature and general stress and will be the focus of this review.
Collapse
Affiliation(s)
- Osnat Bartok
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
8
|
Discovering Weighted Patterns in Intron Sequences Using Self-Adaptive Harmony Search and Back-Propagation Algorithms. ScientificWorldJournal 2013; 2013:249034. [PMID: 23737711 PMCID: PMC3662175 DOI: 10.1155/2013/249034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.
Collapse
|
9
|
Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039-50. [PMID: 22219193 DOI: 10.1074/jbc.m111.285601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.
Collapse
Affiliation(s)
- Tharakeswari Selvakumar
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
10
|
Díez D, Sánchez-Jiménez F, Ranea JAG. Evolutionary expansion of the Ras switch regulatory module in eukaryotes. Nucleic Acids Res 2011; 39:5526-37. [PMID: 21447561 PMCID: PMC3141262 DOI: 10.1093/nar/gkr154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ras proteins control many aspects of eukaryotic cell homeostasis by switching between active (GTP-bound) and inactive (GDP-bound) conformations, a reaction catalyzed by GTPase exchange factors (GEF) and GTPase activating proteins (GAP) regulators, respectively. Here, we show that the complexity, measured as number of genes, of the canonical Ras switch genetic system (including Ras, RasGEF, RasGAP and RapGAP families) from 24 eukaryotic organisms is correlated with their genome size and is inversely correlated to their evolutionary distances from humans. Moreover, different gene subfamilies within the Ras switch have contributed unevenly to the module’s expansion and speciation processes during eukaryote evolution. The Ras system remarkably reduced its genetic expansion after the split of the Euteleostomi clade and presently looks practically crystallized in mammals. Supporting evidence points to gene duplication as the predominant mechanism generating functional diversity in the Ras system, stressing the leading role of gene duplication in the Ras family expansion. Domain fusion and alternative splicing are significant sources of functional diversity in the GAP and GEF families but their contribution is limited in the Ras family. An evolutionary model of the Ras system expansion is proposed suggesting an inherent ‘decision making’ topology with the GEF input signal integrated by a homologous molecular mechanism and bifurcation in GAP signaling propagation.
Collapse
Affiliation(s)
- Diego Díez
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 Japan.
| | | | | |
Collapse
|
11
|
GAO SP, NIU XL, LUO D, CHANG LJ, YU X, LI YX, LIU YS. Application of Tobacco Transient Expression System to Detect Gene Splicing in Higher Plants*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Jawdekar GW, Henry RW. Transcriptional regulation of human small nuclear RNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:295-305. [PMID: 18442490 PMCID: PMC2684849 DOI: 10.1016/j.bbagrm.2008.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 01/06/2023]
Abstract
The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated.
Collapse
Affiliation(s)
- Gauri W. Jawdekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095
| | - R. William Henry
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
13
|
Narayan P, Rottman FM. Methylation of mRNA. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:255-85. [PMID: 1315118 DOI: 10.1002/9780470123119.ch7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Narayan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
14
|
Yamada T, Ohtani S, Sakurai T, Tsuji T, Kunieda T, Yanagisawa M. Reduced expression of the endothelin receptor type B gene in piebald mice caused by insertion of a retroposon-like element in intron 1. J Biol Chem 2006; 281:10799-807. [PMID: 16500897 DOI: 10.1074/jbc.m512618200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice carrying the piebald mutation exhibit white coat spotting due to the regional absence of neural crest-derived melanocytes. We reported previously that the piebald locus encodes the Ednrb gene and that piebald mice express low levels of structurally intact Ednrb mRNA and EDNRB protein (Hosoda, K., Hammer, R. E., Richardson, J. A., Baynash, A. G., Cheung, J. C., Giaid, A., and Yanagisawa, M. (1994) Cell 79, 1267-1276). Here, we report that both the life span of the Ednrb mRNA and the promoter activity of the Ednrb gene are indistinguishable between wild-type and piebald mice. Introns 2-6 of the Ednrb gene in piebald mice were correctly excised with an efficiency indistinguishable from those in wild-type mice in exon trapping experiments. We found that the piebald allele of the Ednrb gene has a 5.5-kb retroposon-like element in intron 1 possessing canonical sequences of a polyadenylation signal and a splice acceptor site. Abnormal hybrid transcripts carrying exon 1 of the Ednrb gene and a portion of the 5.5-kb element are expressed in piebald mice. The insertion of the 5.5-kb element into a heterologous intron in a mammalian expression vector markedly reduced the expression of the reporter gene. Premature termination and aberrant splicing of the Ednrb transcript caused by the retroposon-like element in intron 1 lead to a reduced level of the normal Ednrb transcript, which is responsible for the partial loss-of-function phenotype of piebald mice.
Collapse
MESH Headings
- Alleles
- Alternative Splicing
- Animals
- Base Sequence
- Blotting, Northern
- COS Cells
- Cell Line, Tumor
- Chlorocebus aethiops
- DNA, Complementary/metabolism
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Genetic Vectors
- Introns
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Genetic
- Molecular Sequence Data
- Phenotype
- Plasmids/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Endothelin B/biosynthesis
- Receptor, Endothelin B/genetics
- Retroelements
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Takahisa Yamada
- Howard Hughes Medical Institute and the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9050, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Pan B, Xiong Y, Shi K, Sundaralingam M. Crystal structure of a bulged RNA tetraplex at 1.1 a resolution: implications for a novel binding site in RNA tetraplex. Structure 2004; 11:1423-30. [PMID: 14604532 DOI: 10.1016/j.str.2003.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bulges are an important structural motif in RNA and can be used as recognition and interaction sites in RNA-protein interaction and RNA-RNA interaction. Here we report the first crystal structure of a bulged RNA tetraplex at 1.1 A resolution. The hexamer r(U)(BrdG)r(UGGU) forms a parallel tetraplex with the uridine sandwiched by guanines bulging out. The bulged uridine adopts the syn glycosidic conformation and its O2 and N3 atoms face outwards, serving as an effective recognition and interaction site. The bulge formation both widens the groove width and changes the groove hydrogen-bonding pattern on its 5' side. However, the bulge does not make any bends or kinks in the tetraplex structure. The present study demonstrates the dramatic difference between uridine and guanine in forming tetraplex structure. In addition, both G(syn) tetrad and G(anti) tetrad have been observed. They display the same base-pairing pattern and similar C1'-C1' distance but different hydrogen-bonding patterns in the groove.
Collapse
Affiliation(s)
- Baocheng Pan
- Department of Chemistry and Biochemistry, The Ohio State University, 200 Johnston Lab, 176 West 19th Avenue, Columbus, OH, USA
| | | | | | | |
Collapse
|
16
|
Giraud S, Diaz-Latoud C, Hacot S, Textoris J, Bourette RP, Diaz JJ. US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-induced cell growth arrest. J Virol 2004; 78:2984-93. [PMID: 14990717 PMCID: PMC353731 DOI: 10.1128/jvi.78.6.2984-2993.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase of the subfamily of dual-specificity Yak1-related kinase proteins. HIPK2 was first described as a homeodomain-interacting protein kinase acting as a corepressor for homeodomain transcription factors. More recently, it was reported that HIPK2 plays a role in p53-mediated cellular apoptosis and could also participate in the regulation of the cell cycle. US11 protein of herpes simplex virus type 1 is a multifunctional protein involved in the regulation of several processes related to the survival of cells submitted to environmental stresses by mechanisms that are not fully elucidated. In an attempt to better understand the multiple functions of US11, we identified cellular binding partners of this protein by using the yeast two-hybrid system. We report that US11 interacts with HIPK2 through the PEST domain of HIPK2 and that this interaction occurs also in human cells. This interaction modifies the subcellular distribution of HIPK2 and protects the cell against the HIPK2-induced cell growth arrest.
Collapse
Affiliation(s)
- Stéphane Giraud
- INSERM U369, Faculté de Médecine Lyon-RTH Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
17
|
Yatsuda AP, Eysker M, Vieira-Bressan MCR, De Vries E. A family of activation associated secreted protein (ASP) homologues of Cooperia punctata. Res Vet Sci 2002; 73:297-306. [PMID: 12443689 DOI: 10.1016/s0034-5288(02)00125-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation-associated secreted proteins (ASP) of nematodes have been studied as potential vaccine components. In this study we report the cloning and analysis of cDNA and genomic sequences of Cooperia punctata and establish the presence of two 75% identical ASP-1 genes in C. punctata. Additional C. punctata ASP paralogues were shown to be present. Analysis of PCR products amplified from genomic DNA from a pool of worms revealed extensive sequence diversity within this family of proteins, reflecting the presence of different ASP paralogues in a single worm as well as extensive polymorphisms between different worms. ASP proteins contain a conserved region called the sperm-coating protein (SCP) domain of unknown function, which is present as a single copy in proteins from yeast and a wide range of multi-cellular organisms. Only in three nematodes has a protein composed of duplicated SCP-domains been identified. C. punctata is the first organism in which at least two such genes are found. Database searches identified similarity of the C-terminal cysteine-rich domain of ASP proteins to a nematode metallothionein motif. Cp-asp-1b was expressed in Escherichia coli and both the N-terminal and C-terminal domain were shown to be recognized by sera of C. punctata infected bovines. The description of the asp gene family of C. punctata provides the basis for more detailed studies into the extent of variation and immunological recognition of this family that may assist in rational vaccine design.
Collapse
Affiliation(s)
- A P Yatsuda
- Division of Parasitology and Tropical Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
18
|
Kim KB, Park K, Kong EB. A method for identifying splice sites and translation start sites in human genomic sequences. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 35:513-7. [PMID: 12359095 DOI: 10.5483/bmbrep.2002.35.5.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a new method for identifying the sequences that signal the start of translation, and the boundaries between exons and introns (donor and acceptor sites) in human mRNA. According to the mandatory keyword, ORGANISM, and feature key, CDS, a large set of standard data for each signal site was extracted from the ASCII flat file, gbpri.seq, in the GenBank release 108.0. This was used to generate the scoring matrices, which summarize the sequence information for each signal site. The scoring matrices take into account the independent nucleotide frequencies between adjacent bases in each position within the signal site regions, and the relative weight on each nucleotide in proportion to their probabilities in the known signal sites. Using a scoring scheme that is based on the nucleotide scoring matrices, the method has great sensitivity and specificity when used to locate signals in uncharacterized human genomic DNA. These matrices are especially effective at distinguishing true and false sites.
Collapse
Affiliation(s)
- Ki-Bong Kim
- Information Technology Institute, SmallSoft Co, Ltd, Daejeon 305-811, Korea.
| | | | | |
Collapse
|
19
|
Hertweck M, Hiller R, Mueller MW. Inhibition of nuclear pre-mRNA splicing by antibiotics in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:175-83. [PMID: 11784311 DOI: 10.1046/j.0014-2956.2001.02636.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of antibiotics have been reported to disturb the decoding process in prokaryotic translation and to inhibit the function of various natural ribozymes. We investigated the effect of several antibiotics on in vitro splicing of a eukaryotic nuclear pre-mRNA (beta-globin). Of the eight antibiotics studied, erythromycin, Cl-tetracycline and streptomycin were identified as splicing inhibitors in nuclear HeLa cell extract. The K(i) values were 160, 180 and 230 microm, respectively. Cl-tetracycline-mediated and streptomycin-mediated splicing inhibition were in the molar inhibition range for hammerhead and human hepatitis delta virus ribozyme self-cleavage (tetracycline), of group-I intron self-splicing (streptomycin) and inhibition of RNase P cleavage by some aminoglycosides. Cl-tetracycline and the aminocyclitol glycoside streptomycin were found to have an indirect effect on splicing by unspecific binding to the pre-mRNA, suggesting that the inhibition is the result of disturbance of the correct folding of the pre-mRNA into the splicing-compatible tertiary structure by the charged groups of these antibiotics. The macrolide, erythromycin, the strongest inhibitor, had only a slight effect on formation of the presplicing complexes A and B, but almost completely inhibited formation of the splicing-active C complex by binding to nuclear extract component(s). This results in direct inhibition of the second step of pre-mRNA splicing. To our knowledge, this is the first report on specific inhibition of nuclear splicing by an antibiotic. The functional groups involved in the interaction of erythromycin with snRNAs and/or splicing factors require further investigation.
Collapse
Affiliation(s)
- Maren Hertweck
- Vienna BioCenter, Institute of Microbiology and Genetics, Vienna, Austria
| | | | | |
Collapse
|
20
|
Sud R, Wells D, Talbot IC, Delhanty JD. Genetic alterations in gastric cancers from British patients. ACTA ACUST UNITED AC 2001; 126:111-9. [PMID: 11376803 DOI: 10.1016/s0165-4608(00)00397-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Twenty-six gastric carcinoma and matching normal tissue DNAs, which had previously been analyzed for alterations of the APC (adenomatous polyposis coli) and MCC (mutated in colorectal cancer) genes were further investigated for the following genetic alterations: mutation and loss of heterozygosity (LOH) of the p53 gene, replication error (RER) and LOH at 12 microsatellite repeat loci, and mutation of the hMSH2 gene. In addition, 9 of the 26 gastric carcinomas were analyzed for genetic alterations using comparative genomic hybridization (CGH). Somatic mutations of the p53 gene were found to be frequent being detected in 31% of gastric carcinomas while LOH at the p53 locus was observed in 37.5% of informative cases. Loss of wild type p53 allele was detected in the majority (7 of 8) tumors found to be harboring a mutation. In the hMSH2 gene, an intronic 4 base pair insertion at 31 base pairs upstream of the beginning of exon 13 was detected in both tumor and normal tissue from one gastric carcinoma case. RER was detected in 11.5% of gastric carcinomas, at one or more microsatellite repeat loci. Of the 12 microsatellite repeat loci analyzed LOH was most frequently observed at D22S351 (30% informative cases) suggesting that a tumor suppressor gene on 22q may be important in gastric carcinogenesis. In support of this, CGH analysis carried out on 9 of the gastric carcinomas identified loss of chromosome 22 in 5 of these tumors.
Collapse
Affiliation(s)
- R Sud
- The Department of Obstetrics and Gynaecology, University College London Medical School, 86-96 Chenies Mews, WC1E 6HX, London, UK
| | | | | | | |
Collapse
|
21
|
Rojas Martínez A, Ortiz López R, Delgado Enciso I. [Genetics and molecular medicine in cardiology]. Rev Esp Cardiol 2001; 54:91-108. [PMID: 11141459 DOI: 10.1016/s0300-8932(01)76268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discoveries on molecular aspects of cellular function are changing the concepts of health and disease. All medical fields, including cardiology, have been enriched with several diagnostic test to determine predisposition and to detect molecular dysfunctions. This review on the genetic and molecular aspects of cardiovascular diseases is written at the Centenary of the rediscovery of Mendel's principles on heredity and at the time of the announcement of the end of the human genome sequencing task. The review starts with considerations on the pluricellular constitution of the human body, and the principles of genetics with their molecular bases; including a short description of the methods for gene mapping. The following sections give a historic synopsis on the concepts of medical genetics, molecular medicine, and the Human Genome Project. The review ends with a brief description of the spectrum of genetic diseases, using examples of cardiovascular diseases.
Collapse
Affiliation(s)
- A Rojas Martínez
- Departamento de Bioquímica. Facultad de Medicina. Universidad Autónoma de Nuevo León. Monterrey. México.
| | | | | |
Collapse
|
22
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Divoky V, Trka JM, Watzinger F, Lion T. Cryptic splice site activation during RNA processing of MLL/AF4 chimeric transcripts in infants with t(4;11) positive ALL. Gene 2000; 247:111-8. [PMID: 10773450 DOI: 10.1016/s0378-1119(00)00111-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Co-expression of multiple variants of the MLL/AF4 fusion transcript is a common phenomenon in patients with acute lymphoblastic leukemia (ALL) with t(4;11)(q21;q23). Different transcriptional and post-transcriptional mechanisms were found to contribute to the heterogeneity of the chimeric transcripts. Multiple splice variants are generated by utilizing alternative splice sites that result in the joining of different MLL-exons within the breakpoint cluster region to one of three exons in the AF4 fusion partner. To address the question of how splice site selection occurs during RNA processing, we investigated der(11) transcripts in 10 infants with t(4;11) positive ALL. Specific RT-PCR products were analyzed by Southern blot hybridization, SSCP, endonuclease digestion, cloning and sequencing. In patients co-expressing as many as six different chimeric mRNA species, activation of cryptic splice sites has been detected in MLL-exons 8 and 10. This led to the formation of four novel transcript variants, three of which maintained open reading frames (ORFs). Patients with cryptic donor site activation in MLL-exon 8 did not have any MLL-exon 8/AF4 transcripts using the authentic 5' splice site, although this site is 100% homologous to the consensus sequence. However, since MLL-exon 8 does not end in-phase, the use of the authentic splice site would result in loss of the ORF of the fusion message. The activated cryptic splicing sites are located in the vicinity of the polypurine stretches present in MLL-exons 8 and 10, which are known to function as splicing enhancers recognized by SR proteins. We postulate that both the nonsense-mediated decay eliminating correctly spliced MLL-exon 8/AF4 mRNAs and activation of suboptimal splicing sites contribute to the diversity of MLL/AF4 RNA species.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Binding Sites
- Chromosome Breakage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- DNA-Binding Proteins/genetics
- Exons
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Genetic Variation
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Introns
- Mutation
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Open Reading Frames
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Proto-Oncogenes
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors
- Transcription, Genetic
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- V Divoky
- Children's Cancer Research Institute (CCRI), St. Anna Children's Hospital, Kinderspitalgasse 6, A-1090, Wien, Austria
| | | | | | | |
Collapse
|
24
|
Ihn H, Yamane K, Yazawa N, Kubo M, Fujimoto M, Sato S, Kikuchi K, Tamaki K. Distribution and antigen specificity of anti-U1RNP antibodies in patients with systemic sclerosis. Clin Exp Immunol 1999; 117:383-7. [PMID: 10444274 PMCID: PMC1905346 DOI: 10.1046/j.1365-2249.1999.00961.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/1999] [Indexed: 11/20/2022] Open
Abstract
Systemic sclerosis (SSc) is a generalized connective tissue disease which is characterized by the presence of several autoantibodies. To determine the prevalence and antigen specificity of anti-U1RNP antibodies (anti-U1RNP) in patients with SSc, serum samples from 223 patients with SSc, 117 patients with systemic lupus erythematosus (SLE), 18 patients with mixed connective tissue disease (MCTD) and 40 healthy control subjects were examined by indirect immunofluorescent analysis (IIF), double immunodiffusion, and immunoblotting using nuclear extract of HeLa cells. Eighteen of the 223 (8%) serum samples from patients with SSc were shown to be positive for anti-U1RNP. The frequency of anti-U1RNP positivity in limited cutaneous SSc (14%) was significantly higher than that in those with diffuse cutaneous SSc (3%). Anti-Sm antibodies were detected in patients with SLE positive for anti-U1RNP, but not in those with SSc positive for anti-U1RNP or those with MCTD. Immunoblotting demonstrated that anti-70-kD antibodies were detected more often in patients with SSc positive for anti-U1RNP and in those with MCTD than in those with SLE. Furthermore, anti-U1RNP was closely correlated with pulmonary fibrosis and joint involvement in patients with SSc. These results suggest that anti-70-kD antibodies are useful in the classification of patients with anti-U1RNP.
Collapse
Affiliation(s)
- H Ihn
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Silver K, Walston J, Yang Y, Pratley R, Ravussin E, Raben N, Shuldiner AR. Molecular scanning of the beta-3-adrenergic receptor gene in Pima Indians and Caucasians. Diabetes Metab Res Rev 1999; 15:175-80. [PMID: 10441039 DOI: 10.1002/(sici)1520-7560(199905/06)15:3<175::aid-dmrr34>3.0.co;2-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The beta-3-adrenergic receptor (beta3AR) stimulates lipolysis and thermogenesis in adipocytes. The Trp64Arg beta3AR variant is associated in some, but not all, studies with an earlier onset of Type 2 diabetes mellitus and features of the insulin resistance syndrome. Functional studies as to the role of the Trp64Arg variant have been inconclusive. Earlier studies screened the beta3AR gene in only ten obese, diabetic Pima Indians. Potentially another yet to be identified polymorphism in the beta3AR gene in linkage disequilibrium with the Trp64Arg polymorphism could explain the findings in the association and functional studies. METHODS We scanned the beta3AR gene in 20 diabetic Pima subjects and 20 Caucasian subjects using single stranded conformational polymorphism (SSCP) analysis. Variants were sequenced using dideoxy sequence analysis and further characterized using allele specific oligonucleotide hybridization (ASO) and RNA template specific-polymerase chain reaction (RS-PCR) assays. RESULTS We found a guanine to thymidine substitution in the first intron, 14 bases from the splice donor site in both groups. In virtually all subjects, only two haplotypes were detected, Trp64/g1856 and Arg64/t1856, indicating that the g1856t polymorphism is in linkage disequilibrium with the Trp64Arg polymorphism. The g1856t substitution introduces a new consensus splice donor site which, if used, would encode a truncated protein. RNA levels of the two beta3AR alleles were approximately equal in omental adipose tissue of heterozygotes. No aberrantly spliced beta3AR mRNA was detected, indicating that the new consensus splice donor site is not used in vivo. CONCLUSION The g1856t polymorphism is in linkage disequilibrium with the Trp64Arg variant, but does not appear to have a functional role.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Arginine/genetics
- Arginine/metabolism
- Diabetes Mellitus, Type 2/genetics
- Genotype
- Humans
- Indians, North American/genetics
- Mutation
- Polymorphism, Restriction Fragment Length
- Polymorphism, Single-Stranded Conformational
- RNA Splicing
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta-3
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis
- Tryptophan/genetics
- Tryptophan/metabolism
- White People/genetics
Collapse
Affiliation(s)
- K Silver
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bandyopadhyay RS, Faller DV. Establishment of order in the flow of genetic information in cells. Cell Biochem Biophys 1999; 30:35-70. [PMID: 10099822 DOI: 10.1007/bf02737884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The activities related to the flow of genetic information encoded in DNA in a cell are very orderly. This order, in a living cell, is achieved through specific, but noncovalent, interactions of varieties of structurally dynamic macromolecules under constantly changing physiological conditions. Hence, it is expected that there should be some force that can stabilize the multicomponent reaction processes and establish (or maintain) order in genetic regulatory functions under far-from-equilibrium conditions. The genetic regulatory functions in a cell, however, are believed to be energetically coupled. Expression of genes in a cell is often modulated under changing environmental conditions, raising the possibility of a state controlled nature of the genetic regulatory functions. Adenosine triphosphate (ATP) is the major free-energy contributor for these energy-consuming cellular activities. Enzymatic transfer of high-energy phosphate group from ATP to other reactive components is considered to be the chief mode of energy-transduction in a cell for various biosynthetic processes, as well as other activities related to the flow of information. In an effort to find a solution of the paradox, we assessed the contribution of physiological state of a cell in the process of maintaining order in genetic regulatory functions. As an approach, we systematically perturbed the normal energy flow of a cellular system (bovine aortic endothelial [BAE] cell) by a protein kinase inhibitor (staurosporine), and then followed the expression patterns of several constitutively-expressed protein-encoding genes to measure the effects. Staurosporine, as a function of its concentration, disintegrated the membrane structure of these cells, and eventually caused their death. These secondary consequences of staurosporine treatment offered two additional grossly altered physiological states of the cell to study. Under all of these dramatically altered energy states of the system, an extreme degree of functional coherence prevailed at every level of genetic regulatory function. Integrity at the level of gene transcription remained unaffected. Degradation rate of specific mRNA remained unaltered. Translational activities involving varieties of mRNA species continued in an well-ordered manner. Other state changes, resulting from nutrient and metabolic starvation, or inhibition of oxidative phosphorylation, in addition to the staurosporine treatments, also failed to disintegrate these ordered activities. The steady-state levels of specific mRNA underwent certain changes in these conditions, however, without maintaining any proportional relationships with the staurosporine concentrations applied or the ATP levels in the cell. These results thus led us to propose that the internal energy or a certain intrinsic property of the participating components, rather than the physiological state of the cell, acts as the dominant force in maintaining order and stability of genetic regulatory functions in a cell. Kinetic analyses under different energy states of the cell also supported the hypothesis, and further demonstrated the autoregulatory nature of the genetic order establishment. All of these results suggest a process of molecular self-organization as the fundamental principle for genetic regulation in a cellular system.
Collapse
Affiliation(s)
- R S Bandyopadhyay
- Cancer Research Center, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
27
|
Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 1999; 96:375-87. [PMID: 10025403 DOI: 10.1016/s0092-8674(00)80550-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.
Collapse
Affiliation(s)
- C Kambach
- MRC Laboratory of Molecular Biology, Cambridge, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Z Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
29
|
Famulok M, Jenne A. Catalysis Based on Nucleic Acid Structures. IMPLEMENTATION AND REDESIGN OF CATALYTIC FUNCTION IN BIOPOLYMERS 1999. [DOI: 10.1007/3-540-48990-8_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN, Lin-Chao S. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci U S A 1998; 95:11423-8. [PMID: 9736752 PMCID: PMC21658 DOI: 10.1073/pnas.95.19.11423] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth arrest-specific (gas) genes are expressed preferentially in cells that enter a quiescent state. gas7, which we identified in serum-starved murine fibroblasts, is reported here to be expressed in vivo selectively in neuronal cells of the mature cerebral cortex, hippocampus, and cerebellum. gas7 transcripts encode a 48-kDa protein containing a structural domain that resembles sequences of OCT2, a POU transcription factor implicated in neuronal development, and synapsins, which have a role in modulating neurotransmitter release. Using in situ hybridization and immunocytochemical analysis, we show that GAS7 expression occurs prominently in cerebellar Purkinje cells and that inhibition of production in terminally differentiating cultures of embryonic murine cerebellum impedes neurite outgrowth from maturing Purkinje cells. Conversely, GAS7 overexpression in undifferentiated neuroblastoma cell cultures dramatically promotes neurite-like outgrowth. Collectively, our results provide evidence for an association between expression of this gas gene and neuronal development.
Collapse
Affiliation(s)
- Y T Ju
- Institute of Molecular Biology, Academia Sinica, Nankang Taipei, Taiwan 115, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bruno C, Manfredi G, Andreu AL, Shanske S, Krishna S, Ilse WK, DiMauro S. A splice junction mutation in the alpha(M) gene of phosphorylase kinase in a patient with myopathy. Biochem Biophys Res Commun 1998; 249:648-51. [PMID: 9731190 DOI: 10.1006/bbrc.1998.9211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a 28-year-old man with myopathy and phosphorylase kinase (PhK) deficiency, we found a G-to-C substitution at the 5' end of an intron in the muscle-specific alpha-subunit gene. The mutation destroys the high-consensus GT sequences at the 5' splice junction of the intron, which causes skipping of the preceding exon. This is the second molecular genetic defect identified in the myopathic variant of PhK deficiency.
Collapse
Affiliation(s)
- C Bruno
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of Neurology, Columbia College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Klein B, Sellos D, Van Wormhoudt A. Genomic organisation and polymorphism of a crustacean trypsin multi-gene family. Gene X 1998; 216:123-9. [PMID: 9714772 DOI: 10.1016/s0378-1119(98)00331-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The coding sequences of three trypsin genes, obtained by polymerase chain reaction (PCR), were determined in Penaeus vannamei (Crustacea, Decapoda). These genes were characterised by two short introns, which occur at a position quasi-conserved as the first two introns in vertebrate counterparts. Belonging to three different families, two of the genes are expressed in the digestive gland. A 5' RACE-PCR amplification of hepatopancreatic mRNA, together with the presence of short 5' extensions, confirmed that the third gene family is not expressed in this tissue. The second intron in the genes expressed in the hepatopancreas presents a 5' splice site consensus, beginning with a GC motive which is reported for the first time in trypsin genes and is of phase I in mammals. A high copy number was determined for these genes. Several restricted PCR were performed to describe the polymorphism of these sequences. Five genes were partially sequenced for each family and five genes coding the different, previously described cDNAs were recovered. These sequences also confirm that the third family resembles a mosaic of type I and type II gene families. A high degree of polymorphism in the introns (54-59% identity) among the three families is observed, but mutations in corresponding introns inside each of the families are low (3-6%).
Collapse
Affiliation(s)
- B Klein
- Station of Marine Biology, Muséum National d'Histoire Naturelle and Collège de France, BP 225, 29 900, Concarneau, France
| | | | | |
Collapse
|
33
|
Ogawa S, Inoue S, Watanabe T, Orimo A, Hosoi T, Ouchi Y, Muramatsu M. Molecular cloning and characterization of human estrogen receptor betacx: a potential inhibitor ofestrogen action in human. Nucleic Acids Res 1998; 26:3505-12. [PMID: 9671811 PMCID: PMC147730 DOI: 10.1093/nar/26.15.3505] [Citation(s) in RCA: 331] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have identified and characterized a novel human estrogen receptor (ER) beta isoform, ERbetacx, which is truncated at the C-terminal region but has an extra 26 amino acids due to alternative splicing. The ERbetacx transcript is expressed in testis, ovary, thymus and prostate as well as in human cultured cell lines such as HEC-1, HOS-TE85 and Saos-2 cells. ERbetacx protein is also immunodetectable in these human cells. Biochemical analysis reveals that the average dissociation constants ( K d) of ERalpha and ERbeta for 17beta-estradiol (E2) are 0.2 and 0.6 nM respectively, but ERbetacx has no ligand binding ability. ERalpha and ERbeta proteins bind to the estrogen response element, whereas ERbetacx does not form any shifted complex in gel shift assays. In a transient expression assay, ERbetacx shows no ligand-dependent transactivation ability of a basal promoter and also cannot interact with a cofactor, TIF1alpha, in the presence or absence of E2. ERbetacx preferentially forms a heterodimer with ERalpha rather than that with ERbeta, inhibiting DNA binding by ERalpha. Interestingly, however, it shows a significant dominant negative activity only against ERalpha transactivation. Thus, this study indicates that ERbetacx potentially inhibits ERalpha-mediated estrogen action and that alternative splicing of the C-terminal region and its inhibitory properties are characteristic of several members of nuclear receptor isoforms.
Collapse
Affiliation(s)
- S Ogawa
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama-machi, Iruma-gun,Saitama 350-0495, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL, Su JL, Kliewer SA, Lehmann JM, Willson TM. Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 1998; 247:75-8. [PMID: 9636657 DOI: 10.1006/bbrc.1998.8738] [Citation(s) in RCA: 367] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple transcripts which arise from the human estrogen receptor beta (ER beta) gene have been characterized. Three full length isoforms of the hER beta gene, designated hER beta 1-3, were identified in a testis cDNA library. An additional two isoforms, designated hER beta 4 and hER beta 5, were identified by PCR amplification from testis cDNA and from the MDA-MB 435 cell line. hER beta 1 corresponds to the previously described hER beta. All five isoforms diverge at a common position within the predicted helix 10 of the ligand binding domain of hER beta, with nucleotide sequences consistent with differential exon usage. The hER beta isoform mRNAs displayed a differential pattern of expression in human tissues and in tumor cell lines when analyzed by RT-PCR. Further characterization of the three full length isoforms, hER beta 1-3, by in vitro band shift studies indicated that the isoforms were able to form DNA-binding homodimers and heterodimers with each other and with the ER alpha subtype.
Collapse
Affiliation(s)
- J T Moore
- Department of Molecular Sciences, Glaxo Wellcome Research and Development, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Azumaya Y, Kominami S, Tsutsui K. Existence and localization of a protein in zebra finch brain with similar structural features as the large subunit of the splicing factor U2AF. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980601)281:2<90::aid-jez3>3.0.co;2-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Hasegawa H, Uchiumi T, Sato T, Arakawa M, Kominami R. Anti-Sm autoantibodies cross-react with ribosomal protein S10: a common structural unit shared by the small nuclear RNP proteins and the ribosomal protein. ARTHRITIS AND RHEUMATISM 1998; 41:1040-6. [PMID: 9627013 DOI: 10.1002/1529-0131(199806)41:6<1040::aid-art10>3.0.co;2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cross-reactivity of anti-Sm autoantibodies with a certain ribosomal protein has been reported previously. The present study was undertaken to identify the anti-Sm-reactive ribosomal protein, and to characterize the cross-reactive epitope. METHODS Two-dimensional gel electrophoresis followed by immunoblotting was used to identify the ribosomal protein (S10) which was reactive with the Y12 anti-Sm monoclonal antibody (MAb). Human anti-Sm antibodies were also tested for cross-reactivity with the Sm-B/B', Sm-D, and isolated S10 proteins by immunoblotting. Epitope analysis was performed by immunoprecipitation of in vitro-translated products of the recombinant S10 and its various mutants. RESULTS The Y12 MAb and the affinity-purified human anti-Sm autoantibodies cross-reacted with ribosomal S10 protein. Reactivity of the Y12 MAb with S10 protein was abolished by deletion of 19 amino acids at the carboxyl-terminus of S10, containing the Gly-Arg-Gly sequence motif shared by Sm-B/B' and Sm-D (D1 and D3). Replacements of Arg-158 with Gly and of Arg-158/Arg-160 with Gly/Gly at the carboxyl-terminal 157-Gly-Arg-Gly-Arg-Gly region disrupted the Y12 MAb recognition. CONCLUSION At least a part of human anti-Sm antibodies and Y12 MAb show cross-reactivity among Sm-B/B', Sm-D, and ribosomal protein S10. The carboxyl-terminal Gly-Arg-Gly region of S10 protein is involved in constructing the cross-reactive epitope. This demonstrates that a common structural feature is shared by the ribosomal protein and the small nuclear RNP proteins.
Collapse
Affiliation(s)
- H Hasegawa
- Niigata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
37
|
Lim JH, He J, Korzh V, Gong Z. A new splicing variant of a type III POU gene from zebrafish encodes a POU protein with a distinct C-terminal. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:253-6. [PMID: 9582430 DOI: 10.1016/s0167-4781(98)00032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A zebrafish POU protein cDNA clone was isolated and sequenced. It appears to be a novel splicing variant of the previously reported zebrafish POU gene zp-12. There are four splicing variants and at least three of them lead to different C-terminal amino acid sequences. The four splicing variants are differentially regulated during development, indicating that they may be functionally diversified.
Collapse
Affiliation(s)
- J H Lim
- School of Biological Sciences, National University of Singapore, Singapore 0511, Singapore
| | | | | | | |
Collapse
|
38
|
Liberator P, Anderson J, Feiglin M, Sardana M, Griffin P, Schmatz D, Myers RW. Molecular cloning and functional expression of mannitol-1-phosphatase from the apicomplexan parasite Eimeria tenella. J Biol Chem 1998; 273:4237-44. [PMID: 9461622 DOI: 10.1074/jbc.273.7.4237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A metabolic pathway responsible for the biosynthesis and utilization of mannitol is present in the seven species of Eimeria that infect chickens, but is not in the avian host. Mannitol-1-phosphatase (M1Pase), a key enzyme for mannitol biosynthesis, is a highly substrate-specific phosphatase and, accordingly, represents an attractive chemotherapeutic target. Amino acid sequence of tryptic peptides obtained from biochemically purified Eimeria tenella M1Pase was used to synthesize degenerate oligonucleotide hybridization probes. Using these reagents, a partial genomic clone and full-length cDNA clones have been isolated and characterized. The deduced amino acid sequence of E. tenella M1Pase shows limited overall homology to members of the phosphohistidine family of phosphatases. This limited homology to other histidine phosphatases does, however, include several conserved residues that have been shown to be essential for their catalytic activity. Kinetic parameters of recombinant M1Pase expressed in bacteria are essentially identical to those of the biochemically purified preparation from E. tenella. Moreover, recombinant M1Pase is subject to active site-directed, hydroxylamine-reversible inhibition by the histidine-selective acylating reagent diethyl pyrocarbonate. These results indicate the presence of an essential histidine residue(s) at the M1Pase active site, as predicted for a histidine phosphatase.
Collapse
Affiliation(s)
- P Liberator
- Department of Parasite Biochemistry and Cell Biology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sahba S, Nechiporuk A, Figueroa KP, Nechiporuk T, Pulst SM. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 1998; 47:359-64. [PMID: 9480749 DOI: 10.1006/geno.1997.5131] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a member of a group of neurodegenerative diseases that are caused by instability of a DNA CAG repeat. We report the genomic structure of the SCA2 gene. Its 25 exons, encompassing approximately 130 kb of genomic DNA, were mapped onto the physical map of the region. Exonic sizes varied from 37 to 890 bp, and intronic sizes ranged from 323 bp to more than 15 kb. The CAG repeat was contained in the 5' coding region of the gene in exon 1. Determination of the splice junction sequences indicated the presence of only one deviation from the GT-AG rule at the donor splice site of intron 9, which contained a GC instead of a GT dinucleotide. Exon 10, immediately downstream from this rare splice donor site, was alternatively spliced. Alternative splicing does not affect the reading frame and is predicted to encode an isoform containing 70 amino acids less.
Collapse
Affiliation(s)
- S Sahba
- Division of Neurology, Cedars-Sinai Medical Center, CSMC Burns and Allen Research Institute, Los Angeles, California, 90048, USA
| | | | | | | | | |
Collapse
|
40
|
Antoniou M, Geraghty F, Hurst J, Grosveld F. Efficient 3'-end formation of human beta-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucleic Acids Res 1998; 26:721-9. [PMID: 9443963 PMCID: PMC147328 DOI: 10.1093/nar/26.3.721] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The second intron (betaIVS-II) of the human beta-globin gene is essential for the accumulation of stable cytoplasmic mRNA and is implicated in promoting efficient 3'-end formation. This report presents quantitative comparisons between betaIVS-II mutants at physiological levels of expression from within a natural chromatin context in vivo which further defines it's function. In marked contrast to a beta-globin gene lacking a second intron, two mutants defective in splicing (small size or a splice donor mutation), still undergo essentially normal levels of 3'-end formation and in the absence of exon skipping. Therefore, 3' cleavage of beta-globin transcripts requires the presence of betaIVS-II sequences, but not the splicing reaction. The placement of betaIVS-II in the IVS-I position did not reduce the efficiency of 3' cleavage indicating that the distance between the necessary element(s) in this intron and the polyadenylation recognition site is not a crucial factor. Subsequent placement of betaIVS-I in the intron II position, reduced the efficiency of 3'-end formation to only 16% of normal. A direct replacement of intron II by the heterologous introns betaIVS-I or alpha-globin IVS-II, only partially substitute (16 and 30% respectively) for betaIVS-II. Hybrid introns show that efficient 3'-end formation is strongly enhanced by the presence of the terminal 60 nt of betaIVS-II. These data imply that the last intervening sequence of multiple intron containing genes is a principal determinant of the efficiency of 3'-end formation and may act as a post-transcriptional regulatory step in gene expression.
Collapse
Affiliation(s)
- M Antoniou
- Department of Experimental Pathology, UMDS, Guy's Hospital, London Bridge, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
41
|
Simmons AD, Püschel AW, McPherson JD, Overhauser J, Lovett M. Molecular cloning and mapping of human semaphorin F from the Cri-du-chat candidate interval. Biochem Biophys Res Commun 1998; 242:685-91. [PMID: 9464278 DOI: 10.1006/bbrc.1997.8027] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cri-du-chat is a human contiguous gene deletion syndrome resulting from hemizygous deletions of chromosome 5p. Here we describe the isolation from within this interval of the human Semaphorin F (SEMAF) gene, a member of a family of proteins that has been implicated in axonal pathfinding. The human SEMAF gene covers at least 10% of the deleted region and defines a new class within this large gene family characterized by the presence of seven type 1 thrombospondin repeats. Prominent expression of murine semaphorin F (Semaf) was observed in the mouse brain, consistent with a role for semaphorin F as a signaling molecule that guides axons or migrating neuronal precursors during development. The known functions of semaphorins and the interesting pattern of expression for Semaf suggest that haploinsufficiency for SEMAF may disrupt normal brain development and might lead to some of the features of Cri-du-chat.
Collapse
Affiliation(s)
- A D Simmons
- Department of Otorhinolaryngology, University of Texas Southwestern Medical Center, Dallas 75235-8591, USA
| | | | | | | | | |
Collapse
|
42
|
Huang W, Flint SJ. The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 1998; 72:225-35. [PMID: 9420219 PMCID: PMC109368 DOI: 10.1128/jvi.72.1.225-235.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subgroup C human adenoviruses induce selective export of newly synthesized viral mRNA from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of cellular mRNA species. Such posttranscriptional regulation of viral and cellular gene expression in infected cells requires viral E1B and E4 proteins. To facilitate the investigation of parameters that govern selective export in adenovirus-infected cells, we constructed a marked human beta-actin minigene under the control of the glucocorticoid-inducible enhancer-promoter of mouse mammary tumor virus and introduced it into the left end of the adenovirus type 5 (Ad5) genome. Transcription of this reporter gene (designated MA) as well as of a sibling, which differed only in the inclusion of a cDNA copy of the Ad2 major late tripartite leader sequence upstream of beta-actin sequences (termed MtplA), in recombinant virus-infected cells was strictly dependent on the addition of dexamethasone to the medium. When transcription of the MA gene was induced during the late phase of infection, newly synthesized MA RNA entered the cytoplasm. These transcripts, which contain no viral sequences, therefore reproduce the behavior of exceptional cellular mRNA species observed when transcription of their genes is activated during the late phase of infection (U.-C. Yang, W. Huang, and S. J. Flint, J. Virol. 70:4071-4080, 1996). Unexpectedly, however, higher concentrations of newly synthesized RNA accumulated in the cytoplasm when the tripartite leader sequence was present in the reporter RNA, despite equal rates of transcription of the two reporter genes. Examination of the partitioning of both newly synthesized and steady-state populations of MA and MtplA RNAs between nuclear and cytoplasmic compartments indicated that the tripartite leader sequence did not increase RNA stability in the cytoplasm. Comparison of nuclear and cytoplasmic reporter RNA species by Northern blotting, primer extension, and reverse transcription-PCR provided no evidence for altered processing induced by the tripartite leader sequence. We therefore conclude that the tripartite leader sequence, long known to facilitate the translation of mRNAs during the late phase of adenovirus infection, can also modulate mRNA export from the nucleus.
Collapse
MESH Headings
- Actins/genetics
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Biological Transport, Active
- Cell Line
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Chimera/genetics
- Cytoplasm/metabolism
- Cytoplasm/virology
- Gene Expression Regulation, Viral
- Genes, Reporter
- Humans
- Mice
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombination, Genetic
Collapse
Affiliation(s)
- W Huang
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
43
|
Wang A, Forman-Kay J, Luo Y, Luo M, Chow YH, Plumb J, Friesen JD, Tsui LC, Heng HH, Woolford JL, Hu J. Identification and characterization of human genes encoding Hprp3p and Hprp4p, interacting components of the spliceosome. Hum Mol Genet 1997; 6:2117-26. [PMID: 9328476 DOI: 10.1093/hmg/6.12.2117] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA splicing occurs in an RNA-protein complex, termed the spliceosome. U4/U6 snRNP is one of four essential small nuclear ribonucleoprotein (snRNP) particles (U1, U2, U5 and U4/U6) present in the spliceosome. U4/U6 snRNP contains two snRNAs (U4 and U6) and a number of proteins. We report here the identification and characterization of two human genes encoding U4/U6-associated splicing factors, Hprp3p and Hprp4p, respectively. Hprp3p is a 77 kDa protein, which is homologous to the Saccharomyces cerevisiae splicing factor Prp3p. Amino acid sequence analysis revealed two putative homologues in Caenorhabditis elegans and Schizosaccharomyces pombe. Polyclonal antibodies against Hprp3p were generated with His-tagged Hprp3p over-produced in Escherichia coli . This splicing factor can co-immunoprecipitate with U4, U6 and U5 snRNAs, suggesting that it is present in the U4/U6.U5 tri-snRNP. Hprp4p is a 58 kDa protein homologous to yeast splicing factor Prp4p. Like yeast Prp4p, the human homologue contains repeats homologous to the beta-subunit of G-proteins. These repeats are called WD repeats because there is a highly conserved dipeptide of tryptophan and aspartic acid present at the end of each repeat. The primary amino acid sequence homology between human Hprp4p and yeast Prp4p led to the discovery of two additional WD repeats in yeast Prp4p. Structural homology between these human and yeast splicing factors and the beta-subunit of G-proteins has been identified by sequence-similarity comparison and analysis of the protein folding by threading. Structural models of Hprp4p and Prp4p with a seven-blade beta-propeller topology have been generated based on the structure of beta-transducin. Hprp3p and Hprp4p have been shown to interact with each other and the first 100 amino acids of Hprp3p are not essential for this interaction. These experiments suggest that both Hprp3p and Hprp4p are components of human spliceosomes.
Collapse
Affiliation(s)
- A Wang
- Division of Respiratory Research, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oda H, Nakabeppu Y, Furuichi M, Sekiguchi M. Regulation of expression of the human MTH1 gene encoding 8-oxo-dGTPase. Alternative splicing of transcription products. J Biol Chem 1997; 272:17843-50. [PMID: 9211940 DOI: 10.1074/jbc.272.28.17843] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The enzyme 8-oxo-7,8-dihydrodeoxyguanosine triphosphatase (8-oxo-dGTPase) hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, thereby preventing misincorporation of 8-oxo-dGTP into DNA. We investigated expression of MTH1 gene encoding 8-oxo-dGTPase. Large amounts of MTH1 mRNA were present in thymus and testis, embryonic tissues, and certain cell lines. In peripheral blood lymphocytes, the level of MTH1 mRNA was significantly increased after concomitant treatment with phytohemagglutinin and interleukin-2. Analyses of the 5' regions of the MTH1 transcripts revealed that 7 types of MTH1 mRNAs, which may be produced by transcription initiation at different sites and/or alternative splicing. The MTH1 gene consists of 5 major exons, some of which are composed of differentially processed segments. All types of MTH1 mRNAs carry the entire coding region, and may be functional. Three ATG initiation codons in-frame were found in the 5' regions of some of the MTH1 mRNAs. There is a polymorphic alteration at the 5' splicing site (GT to GC) located in exon 2, an event which affects splicing patterns of the MTH1 transcript. Allele frequency of this polymorphism is about 20% among healthy volunteers.
Collapse
Affiliation(s)
- H Oda
- Department of Biochemistry, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | |
Collapse
|
45
|
Wiser MF, Jennings GJ, Uparanukraw P, van Belkum A, van Doorn LJ, Kumar N. Further characterization of a 58 kDa Plasmodium berghei phosphoprotein as a cochaperone. Mol Biochem Parasitol 1996; 83:25-33. [PMID: 9010839 DOI: 10.1016/s0166-6851(96)02743-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are important for proper protein folding during protein biogenesis. This report describes a protein from Plasmodium berghei which is 30% identical and 40% similar to a recently described mammalian cochaperone, or heat shock protein 70 interacting protein. The P. berghei cochaperone accumulates throughout the trophozoite stage and decreases during the schizont stage. The stage specific expression is consistent with its presumed role in protein folding or protein-protein interactions. The largest difference between the Plasmodium and mammalian sequences is a more extensive domain of imperfect glycine-glycine-methionine-proline (GGMP) tandem repeats in the parasite's cochaperone sequence. Immunofluorescence studies show that the protein is an abundant cytosolic protein of the parasite. However, antibodies raised against the GGMP repeat domain, which is also found in other parasite chaperones, react with both the parasite and host erythrocyte membrane. The reactivity with the host membrane suggests that the parasite exports molecular chaperones into the infected erythrocyte.
Collapse
Affiliation(s)
- M F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Huang Y, Carmichael GG. A suboptimal 5' splice site is a cis-acting determinant of nuclear export of polyomavirus late mRNAs. Mol Cell Biol 1996; 16:6046-54. [PMID: 8887634 PMCID: PMC231607 DOI: 10.1128/mcb.16.11.6046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mouse polyomavirus has been used as a model system to study nucleocytoplasmic transport of mRNA. Three late mRNAs encoding the viral capsid proteins are generated by alternative splicing from common pre-mRNA molecules. mRNAs encoding the virion protein VP2 (mVP2) harbor an unused 5' splice site, and more than half of them remain fully unspliced yet are able to enter the cytoplasm for translation. Examination of the intracellular distribution of late viral mRNAs revealed, however, that mVP2 molecules are exported less efficiently than are mVP1 and mVP3, in which the 5' splice site has been removed by splicing. Point mutations and deletion analyses demonstrated that the efficiency of mVP2 export is inversely correlated with the strength of the 5' splice site and that unused 3' splice sites present in the mRNA have little or no effect on export. These results suggest that the unused 5' splice site is a key player in mVP2 export. Interestingly, mRNAs carrying large deletions but retaining the 5' splice site exhibited a wild-type mVP2 export phenotype, suggesting that there are no other constitutive cis-acting sequences involved in mVP2 export. RNA stability measurements confirmed that the subcellular distribution differences between these mRNAs were not due to differential half-lives between the two cellular compartments. We therefore conclude that the nuclear export of mVP2 is strongly influenced by a suboptimal 5' splice site. Furthermore, results comparing spliced and unspliced forms of mVP2 molecules indicated that the process of splicing does not enhance nuclear export. Since mVP2 and some of its mutant forms can accumulate in the cytoplasm in the absence of splicing, we propose that splicing is not a prerequisite for mRNA export in the polyomavirus system; rather, removal of splicing machinery from mRNAs may be required. The possibility that export of other viral mRNAs can be influenced by suboptimal splicing signals is also discussed.
Collapse
Affiliation(s)
- Y Huang
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA.
| | | |
Collapse
|
47
|
Jin Y, Dietz HC, Montgomery RA, Bell WR, McIntosh I, Coller B, Bray PF. Glanzmann thrombasthenia. Cooperation between sequence variants in cis during splice site selection. J Clin Invest 1996; 98:1745-54. [PMID: 8878424 PMCID: PMC507612 DOI: 10.1172/jci118973] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glanzmann thrombasthenia (GT), an autosomal recessive bleeding disorder, results from abnormalities in the platelet fibrinogen receptor, GP(IIb)-IIIa (integrin alpha(IIb)beta3). A patient with GT was identified as homozygous for a G-->A mutation 6 bp upstream of the GP(IIIa) exon 9 splice donor site. Patient platelet GP(IIIa) transcripts lacked exon 9 despite normal DNA sequence in all of the cis-acting sequences known to regulate splice site selection. In vitro analysis of transcripts generated from mini-gene constructs demonstrated that exon skipping occurred only when the G-->A mutation was cis to a polymorphism 116 bp upstream, providing precedence that two sequence variations in the same exon which do not alter consensus splice sites and do not generate missense or nonsense mutations, can affect splice site selection. The mutant transcript resulted from utilization of a cryptic splice acceptor site and returned the open reading frame. These data support the hypothesis that pre-mRNA secondary structure and allelic sequence variants can influence splicing and provide new insight into the regulated control of RNA processing. In addition, haplotype analysis suggested that the patient has two identical copies of chromosome 17. Markers studied on three other chromosomes suggested this finding was not due to consanguinity. The restricted phenotype in this patient may provide information regarding the expression of potentially imprinted genes on chromosome 17.
Collapse
Affiliation(s)
- Y Jin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Marshall B, Isidro G, Boavida MG. Naturally occurring splicing variants of the hMSH2 gene containing nonsense codons identify possible mRNA instability motifs within the gene coding region. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:88-92. [PMID: 8765755 DOI: 10.1016/0167-4781(96)00078-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have identified certain unusually spliced cDNA species following PCR amplification of peripheral blood lymphocyte (PBL) mRNA from the hMSH2 gene. A naturally occurring transcript containing a nonsense codon due to the skipping of 5 exons was amplified from PBLs of several healthy individuals. A feature of this and another unusual splicing product was the presence of sequence motifs which bore significant similarity to mRNA instability determinants in the region immediately downstream of the stop codon. In particular, the rare tetranucleotide GAUG, previously identified in yeast as being of critical importance to the rapid degradation of nonsense-containing mRNAs was situated 23 base pairs downstream of the stop codon. Furthermore the region downstream of the stop codon was A:U rich and contained 2 copies of the AUUUA motif. As other forms of alternative splicing would not result in the same juxtaposition of stop codons and instability motifs, we suggest that the stop codons may have been deliberately introduced by the splicing process for their proximity to these destabilising motifs, and that splicing may play a role in channeling mRNAs into degradative pathways. These results are consistent with the hypothesis that nuclear factors may scan pre-mRNAs prior to splicing.
Collapse
Affiliation(s)
- B Marshall
- Departamento de Genética Humana, Instituto Nacional de Saúde, Lisboa, Portugal.
| | | | | |
Collapse
|
49
|
Kuivenhoven JA, Weibusch H, Pritchard PH, Funke H, Benne R, Assmann G, Kastelein JJ. An intronic mutation in a lariat branchpoint sequence is a direct cause of an inherited human disorder (fish-eye disease). J Clin Invest 1996; 98:358-64. [PMID: 8755645 PMCID: PMC507438 DOI: 10.1172/jci118800] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The first step in the splicing of an intron from nuclear precursors of mRNA results in the formation of a lariat structure. A distinct intronic nucleotide sequence, known as the branchpoint region, plays a central role in this process. We here describe a point mutation in such a sequence. Three sisters were shown to suffer from fish-eye disease (FED), a disorder which is caused by mutations in the gene coding for lecithin:cholesterol acyltransferase (LCAT). Sequencing of the LCAT gene of all three probands revealed compound heterozygosity for a missense mutation in exon 4 which is reported to underlie the FED phenotype, and a point mutation located in intron 4 (IVS4:T-22C). By performing in vitro expression of LCAT minigenes and reverse transcriptase PCR on mRNA isolated from leukocytes of the patient, this gene defect was shown to cause a null allele as the result of complete intron retention. In conclusion, we demonstrated that a point mutation in a lariat branchpoint consensus sequence causes a null allele in a patient with FED. In addition, our finding illustrates the importance of this sequence for normal human mRNA processing. Finally, this report provides a widely applicable strategy which ensures fast and effective screening for intronic defects that underlie differential gene expression.
Collapse
Affiliation(s)
- J A Kuivenhoven
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Lau AL, Nishimori K, Matzuk MM. Structural analysis of the mouse activin beta C gene. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:145-8. [PMID: 8679697 DOI: 10.1016/0167-4781(96)00061-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a mouse activin beta C cDNA probe, we have cloned over 38 kb of genomic DNA encompassing the mouse activin beta C gene. Mouse activin beta C is encoded by 2 exons separated by a large 12.1 kb intron. Exon 1 encodes the 17 amino acid signal peptide and 88 amino acids of the propeptide. Exon 2 encodes the remaining 130 amino acids of the propeptide and the entire 117 amino acid mature peptide. Unlike the activin beta A and beta B expression patterns, Northern blot analysis of adult mouse tissues shows that the activin beta C mRNA is expressed only in the liver as a major species of approximately 2.1 kb. The liver-specific expression of activin beta C suggests an important role of dimeric activin beta C in normal liver function. These studies allow us to address the function of activin beta C in mammalian development.
Collapse
Affiliation(s)
- A L Lau
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|