1
|
Chu B, Ge S, He W, Sun X, Ma J, Yang X, Lv C, Xu P, Zhao X, Wu K. Gut symbiotic bacteria enhance reproduction in Spodoptera frugiperda (J.E. Smith) by regulating juvenile hormone III and 20-hydroxyecdysone pathways. MICROBIOME 2025; 13:132. [PMID: 40410832 PMCID: PMC12101018 DOI: 10.1186/s40168-025-02121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The insect gut microbiota forms a complex, multifunctional system that significantly affects phenotypic traits linked to environmental adaptation. Strong reproductive potential underpins the migratory success, population growth and destructive impact of the fall armyworm, Spodoptera frugiperda (J.E. Smith). However, the precise role of gut bacteria in S. frugiperda reproductive processes, distribution and transmission dynamics remains unclear. RESULTS We examined the gut microbiota of S. frugiperda a major invasive agricultural pest, identifying Enterococcus, Enterobacter, and Klebsiella as core microorganisms present throughout its life cycle. These microbes showed heightened activity during the egg stage, early larval stages and pre-oviposition period in females. Using an axenic insect re-infection system, Enterococcus quebecensis FAW181, Klebsiella michiganensis FAW071 and Enterobacter hormaechei FAW049 were found to significantly enhance host fecundity, increasing egg production by 62.73%, 59.95%, and 56.71%, respectively. Metagenomic and haemolymph metabolomic analyses revealed a positive correlation between gut symbiotic bacteria and hormone metabolism in female S. frugiperda. Further analysis of metabolites in the insect hormone biosynthesis pathway, along with exogenous injection of juvenile hormone III and 20-hydroxyecdysone, revealed that gut microbes regulate these hormones, maintaining levels equivalent to those in control insects. This regulation supports improved fecundity in S. frugiperda, aiding rapid colonization and population expansion. CONCLUSIONS These findings emphasize the pivotal role of gut bacteria E. quebecensis FAW181, E. hormaechei FAW049, and K. michiganensis FAW071 in enhancing S. frugiperda reproduction by modulating JH III levels through JHAMT regulation and concurrently modulating the levels of 20E and its precursors via PHM. Our results provide novel insights into microbe-host symbiosis and pest management strategies for alien invasive species. Video Abstract.
Collapse
Affiliation(s)
- Bo Chu
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shishuai Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wei He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoting Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jiajie Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunyang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pengjun Xu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xincheng Zhao
- Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Yang H, Guo S, Sun Y, Lu J, Li D, Zhu P. Adult feeding on different carbohydrates affects the reproduction and flight performance of Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf075. [PMID: 40221817 DOI: 10.1093/jee/toaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/14/2025]
Abstract
Adult supplemental nutrition can provide an energy source for insect flight activities and reproduction. Carbohydrate-rich nectar plants are the main food source for migratory lepidopteran moths. However, little is known about the effects of diverse carbohydrates in nature on moth migration and reproduction. This study investigates the impact of various carbohydrates on the fecundity and flight performance of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), a globally migratory pest. The results showed that the oviposition period, longevity, fecundity, and flight capability of adult moths were significantly different when supplemented with different carbohydrates. In particular, adults supplemented with fructose solution exhibited the longest lifespan, the highest number of eggs laid per female, and an earlier age of peak egg production. However, there were no significant differences in the preoviposition period, mating rate, number of matings, or egg hatching rate between moths supplemented with distilled water and those supplemented with carbohydrates. In addition, moths supplemented with honey solution flew the longest distance, at the fastest speed, and over the longest duration. These results indicate that fructose may be a key determinant in the reproduction of S. frugiperda, while honey solution supplementation exhibited superior flight performance. This further enhances our understanding of the trophic ecology of S. frugiperda and is important for improving ecological strategies to manage this pest.
Collapse
Affiliation(s)
- Haibo Yang
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shanshan Guo
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yalan Sun
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jing Lu
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Dingxu Li
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Pinhong Zhu
- College of Horticulture and Plant Protection, Henan Provincial Engineering Technology Research Center of Green Plant Protection, Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
3
|
Li Y, Du T, Yao J, Chen Y, Shi L, Ze S. Transboundary Dispersal Dynamics of Ceracris kiangsu: From Source Regions to Migration Corridors. INSECTS 2025; 16:400. [PMID: 40332884 PMCID: PMC12027984 DOI: 10.3390/insects16040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Yunnan is located on the southwest border of China, with a complex geographical environment and rich biodiversity, which is the first stop for many migratory pests to enter China. In recent years, Ceracris kiangsu has migrated into China through the China-Laos border line. The migratory C. kiangsu has shown typical characteristics of migratory locusts, which has seriously jeopardized the ecological security, biosecurity and food security of China. In order to prevent and control C. kiangsu from the source as soon as possible, this study used hotspot analysis and trajectory analysis to clarify the migration dynamics, source regions and migration corridors of C. kiangsu. The results showed that the migratory C. kiangsu was mainly distributed in the towns of Jiangcheng County, and the source regions were concentrated in Phongsaly, Laos. There are three cross-border migration corridors of C. kiangsu, among which the Laos-Niuluohe border migration corridor running through the entire migration cycle is the most important corridor. The study answered three key questions about the prevention and control of C. kiangsu. Ascertaining when C. kiangsu arrived at Yunnan, where it came from, and where the population then went will greatly improve the efficiency of the prevention and control of C. kiangsu as well as provide a theoretical basis for subsequent monitoring and early warning.
Collapse
Affiliation(s)
- Yangyang Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Y.L.); (T.D.); (J.Y.)
- Yunnan Key Laboratory of Breeding and Utilization of Resource Insects, Kunming 650224, China
- Graduate School, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Du
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Y.L.); (T.D.); (J.Y.)
- Yunnan Key Laboratory of Breeding and Utilization of Resource Insects, Kunming 650224, China
| | - Jun Yao
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Y.L.); (T.D.); (J.Y.)
- Graduate School, Nanjing Forestry University, Nanjing 210037, China
| | - Yunsen Chen
- Yunnan Academy of Agricultural Engineering, Kunming 650216, China;
| | - Lei Shi
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Y.L.); (T.D.); (J.Y.)
- Yunnan Key Laboratory of Breeding and Utilization of Resource Insects, Kunming 650224, China
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China
| |
Collapse
|
4
|
Hawkes WL, Menz MHM, Wotton KR. Lords of the flies: dipteran migrants are diverse, abundant and ecologically important. Biol Rev Camb Philos Soc 2025. [PMID: 40165599 DOI: 10.1111/brv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Insect migrants are hugely abundant, with recent studies identifying the megadiverse order Diptera as the major component of many migratory assemblages. Despite this, their migratory behaviour has been widely overlooked in favour of more 'charismatic' migrant insects such as butterflies, dragonflies, and moths. Herein we review the available literature on dipteran migration to determine its prevalence, identify key migratory routes and elucidate areas that may prove fruitful for future research. Using 13 lines of evidence to determine migratory behaviour, we determined that species from 60 out of 130 dipteran families show evidence of migration, with Syrphidae fulfilling 12 of these criteria, followed by the Tephritidae with 10. By contrast, 22 families met just two criteria or fewer, underlining the need for more research into the migratory characteristics of these groups. In total, 592 species of Diptera were identified as potentially migratory, making them the most speciose group of insect migrants yet described. Despite this, only 0.5% of dipteran species were found to be migrants, a figure rising to 3% for the Syrphidae, a percentage mirrored by other migratory taxa such as butterflies, noctuid moths, and bats. Research was biased to locations in Europe (49% of publications) and while vast regions remain understudied, our review identified major flyways used by dipteran migrants across all biogeographic realms. Finally, we highlight an unsurpassed level of ecological diversity within dipteran migrants, including ecological roles of huge economic value. Overall, this review highlights how little is known about dipteran migration and how vital their migratory behaviour may be to the health of global ecosystems.
Collapse
Affiliation(s)
- Will L Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Swiss Ornithological Institute, Sempach, 6204, Switzerland
| | - Myles H M Menz
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4814, Australia
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
5
|
Chen H, Xu CF, Wang YH, Li XR, Yu DH, Chen AD, Lyu BQ, Wu YF, Wang YM, Chapman JW, Hu G. Characteristics and seasonal variation of fall armyworm migratory behavior in their year-round breeding areas in South China. PEST MANAGEMENT SCIENCE 2025. [PMID: 40099473 DOI: 10.1002/ps.8772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The occurrence of migratory takeoff behavior is the essential first step for long-distance migration of insects. However, its characteristics, frequency of occurrence, and the identity of environmental and physiological factors influencing this process remain largely unknown. RESULTS We investigate the global pest fall armyworm (FAW, Spodoptera frugiperda) as an exemplar species to investigate the behavioral traits associated with migratory takeoff of nocturnally migrating moths in year-round breeding areas. Our studies of FAW were carried out in Yunnan (2020-2022) and Hainan (2023) provinces of South China. Most migratory FAW moths were observed to takeoff at the age of Day (D)1-3, with the highest migratory proportion on D2, whereas mating behavior mostly happened during the first half night on D1. Typically, the migratory individuals took off within 40 min after sunset when the illumination fell below 2.7 lx, reaching its peak within 15 min. The optimal conditions for their takeoff are warm and dry weather with gentle winds. Yunnan and Hainan field populations showed a similar seasonal pattern in their migratory proportion, with the highest proportion in spring, and then decreasing as the seasons progress. Additionally, FAW moths emerging from caterpillars fed on maize plants at V14-R1 stages showed a higher migratory proportion than those from larvae fed on maize plants at other growth stages. Compared with nonmigratory individuals, migratory ones had slightly longer forewings (marginally significant) and flew faster, with higher wingbeat frequency, but other morphological characteristics and flight parameters were similar. CONCLUSION The study of FAW moths in Yunnan and Hainan from 2020 to 2023 found that migratory moths take off under specific conditions and show a seasonal pattern, with those from certain maize stages having higher migratory proportion, longer forewings and faster flight. These findings advance our understanding of the migratory takeoff behavior of FAW and, thus, provide a basis for the accurate prediction and management of the migratory dynamics. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Chuan-Feng Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Ecology and Environment, YuZhang Normal University, Nanchang, China
| | - Yi-Han Wang
- Sanya Research Institute, Nanjing Agricultural University, Sanya, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xin-Ran Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dai-Hong Yu
- Plant Protection and Plant Quarantine Station of Yuanjiang County, Yuanjiang, China
| | - Ai-Dong Chen
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Bao-Qian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi-Fan Wu
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Meng Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jason W Chapman
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Gao Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Sanya Research Institute, Nanjing Agricultural University, Sanya, China
| |
Collapse
|
6
|
Zhang SY, Zhang YY, Yang F, Zhou C, Shen HM, Wang BB, Zeng J, Reynolds DR, Chapman JW, Hu G. Climate change is leading to an ecological trap in a migratory insect. Proc Natl Acad Sci U S A 2025; 122:e2422595122. [PMID: 39993203 PMCID: PMC11892621 DOI: 10.1073/pnas.2422595122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Many insect migrants rely on favorable seasonal winds to carry out long-range latitudinal migrations. In East China, the annual advance and retreat of the East Asian summer monsoon produces ideal conditions for seasonal range expansion and contraction of many migratory crop pests. However, climate-induced changes in the strength, timing, and location of the monsoon are impacting wind systems which may, in turn, affect migration patterns. We investigated these questions in the rice leafroller (RLR) moth, a severe pest of rice that annually invades the Lower Yangtze River Valley (LYRV) of China from winter-breeding areas further south. Using a 24-y dataset of RLR population dynamics from 31 monitoring stations across Southeast China, we investigated the impact of changes in monsoon wind regimes on fall migration patterns of the pest. Historically, RLR emigrated from the LYRV to South China on the favorably directed winds produced by the retreat of the monsoon at the end of the outbreak season (from mid-August onward). We show that in the recent 12-y period, prevailing late-season winds remain northward for longer than previously, preventing locally produced moths from emigrating southward. Additionally, winds now facilitate mass late-season immigrations into the LYRV, creating an ecological trap, as immigrants do not have time to produce another generation. As a consequence of the changing wind patterns, pest pressure is declining, and climate-induced changes to the East Asian summer monsoon result in seasonal migration becoming a riskier strategy. Such changes in insect migration patterns have severe implications for the population dynamics of windborne migrants, ecosystem functioning, and pest management strategies.
Collapse
Affiliation(s)
- Shi-Yan Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Yi-Yang Zhang
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing100026, China
| | - Fan Yang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan430345, China
| | - Chen Zhou
- Plant Protection Station of Jiangsu Province, Nanjing210036, China
| | - Hui-Mei Shen
- Shanghai City Agro-Tech Extension and Service Center, Shanghai201103, China
| | - Bei-Bei Wang
- Plant Protection Station of Anhui Province, Hefei23001, China
| | - Juan Zeng
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing100026, China
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, KentME4 4 TB, United Kingdom
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQ, United Kingdom
| | - Jason W. Chapman
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
| | - Gao Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
- Sanya Research Institute, Nanjing Agricultural University, Sanya572025, China
| |
Collapse
|
7
|
Desmet P, Shamoun-Baranes J, Kranstauber B, Dokter AM, Weisshaupt N, Schmid B, Bauer S, Haase G, Hoekstra B, Huybrechts P, Leijnse H, Noé N, Van Hoey S, Wijers B, Nilsson C. Biological data derived from European weather radars. Sci Data 2025; 12:361. [PMID: 40021718 PMCID: PMC11871220 DOI: 10.1038/s41597-025-04641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Weather radars detect more than weather, they also continuously register the movements of billions of animals aloft in the lower atmosphere. This makes archived, unfiltered weather radar data a goldmine for biological monitoring purposes, providing coverage of the aerial habitat in a way no other method can. Here we present two datasets of biological data extracted from European weather radar data, obtained through a collaboration with the Operational Programme for the Exchange of Weather Radar Information (OPERA) and three national meteorological services. The datasets were created by processing weather radar data with methods optimized for extracting bird targets, resulting in vertical profiles of biological targets. The datasets collectively cover 141 radar stations in 18 countries, from 2008 to 2023. Data quality and coverage differs between years, countries, and radar stations, so care must be taken when evaluating data for each specific use case. Despite these challenges the datasets are currently the most comprehensive of their kind in Europe and open new avenues in understanding continental scale movements of aerial animals.
Collapse
Affiliation(s)
- Peter Desmet
- Research Institute for Nature and Forest (INBO), Brussels, Belgium.
| | - Judy Shamoun-Baranes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart Kranstauber
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Silke Bauer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Swiss Ornithological Institute, Sempach, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department Environmental Systems Science, Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Günther Haase
- Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden
| | - Bart Hoekstra
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Hidde Leijnse
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
| | - Nicolas Noé
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
- The Binary Forest, Braine-l'Alleud, Belgium
| | - Stijn Van Hoey
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
- Fluves, Ghent, Belgium
| | - Berend Wijers
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Welty Peachey AM, Moses ER, Johnson AJ, Lehman MGM, Yoder JM, De Faveri SG, Cheesman J, Manoukis NC, Siderhurst MS. Wind effects on individual male and female Bactrocera jarvisi (Diptera: Tephritidae) tracked using harmonic radar. ENVIRONMENTAL ENTOMOLOGY 2025; 54:1-14. [PMID: 39470151 DOI: 10.1093/ee/nvae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Wind affects the movement of most volant insects. While the effects of wind on dispersal are relatively well understood at the population level, how wind influences the movement parameters of individual insects in the wild is less clear. Tephritid fruit flies, such as Bactrocera jarvisi, are major horticultural pests worldwide and while most tephritids are nondispersive when host plants are plentiful, records exist for potentially wind-assisted movements up to 200 km. In this study, harmonic radar (HR) was used to track the movements of both male and female lab-reared B. jarvisi in a papaya field. Overall flight directions were found to be correlated with wind direction, as were the subset of between-tree movements, while within-tree movements were not. Furthermore, the effect of wind direction on fly trajectories varied by step-distance but not strongly with wind speed. Mean path distance, step distance, flight direction, turning angle, and flight propensity did not vary by sex. Both male and female movements are well fit by 2-state hidden Markov models further supporting the observation that B. jarvisi move differently within (short steps with random direction) and between (longer more directional steps) trees. Data on flight directionality and step-distances determined in this study provide parameters for models that may help enhance current surveillance, control, and eradication methods, such as optimizing trap placements and pesticide applications, determining release sites for parasitoids, and setting quarantine boundaries after incursions.
Collapse
Affiliation(s)
| | - Ethan R Moses
- Department of Biology and Environmental Science, Bridgewater College, Bridgewater, VA, USA
| | - Adesola J Johnson
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA,USA
| | | | - James M Yoder
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA,USA
| | - Stefano G De Faveri
- Department of Agriculture and Fisheries, Queensland Government, Mareeba, QLD, Australia
| | - Jodie Cheesman
- Department of Agriculture and Fisheries, Queensland Government, Mareeba, QLD, Australia
| | - Nicholas C Manoukis
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Hilo, HI, USA
| | - Matthew S Siderhurst
- Daniel K. Inouye US Pacific Basin Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Hilo, HI, USA
| |
Collapse
|
9
|
Stefanescu C. Millions of insects migrate across the Pyrenees: heavy transit and conflicting ecological roles. Proc Biol Sci 2025; 292:20242096. [PMID: 39809310 PMCID: PMC11732392 DOI: 10.1098/rspb.2024.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
|
10
|
Hu G, Feng H, Otuka A, Reynolds DR, Drake VA, Chapman JW. The East Asian Insect Flyway: Geographical and Climatic Factors Driving Migration Among Diverse Crop Pests. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:1-22. [PMID: 39499909 DOI: 10.1146/annurev-ento-012524-124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The East Asian Insect Flyway is a globally important migration route stretching from the Indochina Peninsula and the Philippines through East China to Northeast China and northern Japan, although most migrants utilize only part of the flyway. In this review, we focus on long-range windborne migrations of lepidopteran and planthopper pests. We outline the environment in which migrations occur, with emphasis on the seasonal atmospheric circulations that influence the transporting wind systems. Northward movement in spring is facilitated by favorable prevailing winds, allowing migrants to colonize vast areas of East Asia. Migrants may be subject to contemporary natural selection for long flights as succeeding generations progressively advance northward. Overshooting into far northern areas from which there is little chance of return seems common in planthoppers. Moths are less profligate and have evolved complex flight behaviors that can facilitate southward transport in autumn, although timely spells of favorable winds may not occur in some years.
Collapse
Affiliation(s)
- Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China;
| | - Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Japan;
| | - Don R Reynolds
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom;
| | - V Alistair Drake
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
- School of Science, The University of New South Wales, Canberra, Australian Capital Territory, Australia;
| | - Jason W Chapman
- Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom;
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| |
Collapse
|
11
|
Bamou R, Dao A, Yaro AS, Kouam C, Ergunay K, Bourke BP, Diallo M, Sanogo ZL, Samake D, YA A, Mohammed AR, Owusu-Asenso CM, Akosah-Brempong G, Pambit-Zong CM, Krajacich BJ, Faiman R, Pacheco MA, Escalante AA, Weaver SC, Nartey R, Chapman JW, Reynolds DR, Linton YM, Lehmann T. Pathogens spread by high-altitude windborne mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630351. [PMID: 39763833 PMCID: PMC11703268 DOI: 10.1101/2024.12.26.630351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recent studies have revealed that many mosquito species regularly engage in high-altitude windborne migration, but its epidemiological significance was debated. The hypothesis that high-altitude mosquitoes spread pathogens over large distances has not been directly tested. Here, we report for the first time that high-altitude windborne mosquitoes are commonly infected with arboviruses, protozoans, and helminths affecting vertebrates and humans, and provide the first description of this pathogen-vector aerial network. A total of 1,017 female mosquitoes (81.4%, N=1,249) intercepted on nets suspended from helium balloons at altitudes of 120-290 m above ground over Mali and Ghana were screened for infection with arboviruses, plasmodia, and filariae, using pan-genus qPCR analyses followed by sequencing of positive samples. The mosquito fauna collected at altitude comprised 61 species, across 9 genera, dominated by Culex, Aedes, and Anopheles. Infection and infectiousness rates of high-altitude migrant mosquitoes were 7.2% and 4.4% with plasmodia, 1.6% and 0.6% with filariae, 3.5% and 1.1% with flaviviruses, respectively. Nineteen mosquito-borne pathogens were identified, including three arboviruses: dengue, West Nile and M'Poko viruses, 13 putative plasmodia species including Plasmodium matutinum and P. relictum, three filariids, including Pelecitus spp., 27 insect-specific viruses and 5 non-mosquito-borne pathogens (e.g., Trypanosoma theileri). Confirmed head-thorax (disseminated) infections of multiple pathogens in multiple mosquito species, eg., Culex perexiguus, Coquilletidia metallica, Mansonia uniformis, and Anopheles squamosus provides evidence that pathogens carried by high-altitude windborne mosquitoes are infectious and likely capable of infecting naïve hosts far from their starting location. This traffic of sylvatic pathogens may be key to their maintenance among foci as well as initiating outbreaks away from them.
Collapse
Affiliation(s)
- R Bamou
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - A Dao
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - AS Yaro
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - C Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - K Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - BP Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Diallo
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - ZL Sanogo
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - D Samake
- Malaria Research and Training Center (MRTC) / Faculty of Medicine, Pharmacy and Odonto-stomatology, Bamako, Mali
| | - Afrane YA
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - AR Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
- Department of Animal Biology and Conservation Science, University of Ghana
| | - CM Owusu-Asenso
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - G Akosah-Brempong
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, 25 Accra Ghana
| | - CM Pambit-Zong
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana
| | - BJ Krajacich
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - R Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - MA Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - AA Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - SC Weaver
- Department of Microbiology & Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
| | - R Nartey
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| | - JW Chapman
- Centre for Ecology and Conservation, and Environment and Sustainability Inst., University of Exeter, Penryn, Cornwall, UK
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, P. R. China
| | - DR Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rothamsted Research, Harpenden, Hertfordshire, Kent, UK
| | - Y-M Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland Maryland, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington DC, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - T Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH. Rockville, MD, USA
| |
Collapse
|
12
|
Massy R, Hawkes W, Weston S, Doyle T, Wotton KR. Enhanced flight performance in hoverfly migrants. iScience 2024; 27:111345. [PMID: 39640581 PMCID: PMC11617951 DOI: 10.1016/j.isci.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Many animals undergo seasonal migrations in which they travel long distances aided by variations in morphology, physiology, and behavior. Here, we compare the flight characteristics, measured in a tethered flight mill, of autumn migratory and summer non-migratory morphs of the marmalade hoverfly Episyrphus balteatus (Diptera: Syrphidae), an ecologically and economically important pollinator, pest predator, and long-distance migrant. Our results show that migratory morphs flew twice as far as the non-migratory morphs. Body condition, reflecting the quantity of energy stores, had an even greater effect as hoverflies with fat abdomens flew almost five times the distance of those with thin abdomens, whereas speed varied only by size. These findings demonstrate enhanced flight capabilities in migratory morphs and underscore the importance of body condition for long-distance flight. Consequently, resource availability, feeding behavior, and the ability to accumulate and utilize fuel are likely to be key factors influencing the migration of hoverflies.
Collapse
Affiliation(s)
- Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| | - Will Hawkes
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| | - Scarlett Weston
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK
| |
Collapse
|
13
|
Shepard ELC, Garde B, Krishnan K, Fell A, Tatayah V, Jones CG, Cole NC, Lempidakis E. Latitudinal gradients in air density create invisible topography at sea level, affecting animal flight costs. Curr Biol 2024; 34:5846-5851.e4. [PMID: 39610251 DOI: 10.1016/j.cub.2024.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/21/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Regional patterns in wind underpin the low-cost migratory flyways of billions of birds and insects,1,2,3 but the effect of large-scale changes in temperature on flight is unknown. Flight costs should increase with rising temperatures because lift decreases as density decreases, whereas weight remains unchanged. The effects of density are well-established in the context of high-altitude movements and migration.4,5,6,7 Here, we examine the impact of air density on low-flying birds in relation to seasonal, regional, and global changes in temperature. We deployed multi-sensor loggers on red-tailed tropicbirds (Phaethon rubricauda), a large and widely distributed seabird breeding year round in Mauritius. Seasonal changes in air density caused very small differences in flight costs (1%-2%, estimated using aeronautical models) despite being the major driver of seasonal differences in wingbeat frequency. Flight costs should vary in space as well as time, and aeronautical models predicted ≥10% variation in power across the tropicbird's range due to latitudinal temperature gradients. Changes in air density can therefore modulate flight costs across regional scales, even when birds are operating close to sea level. Indeed, creating a 20-year climatology of air density at sea level revealed that temperature gradients cause effective altitude to vary by >2 km at a global scale within a given season. This "invisible topography" at sea level could influence the biogeography of flight morphologies, particularly the distribution of birds with the highest flight costs, which generally occur in regions with relatively high air density.
Collapse
Affiliation(s)
- Emily L C Shepard
- Department of Biological Sciences, Swansea University, Swansea SA2 8PP, UK.
| | - Baptiste Garde
- Department of Biological Sciences, Swansea University, Swansea SA2 8PP, UK
| | | | - Adam Fell
- School of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas 73418, Mauritius
| | - Carl G Jones
- Mauritian Wildlife Foundation, Grannum Road, Vacoas 73418, Mauritius; Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey JE3 5BP, Jersey
| | - Nik C Cole
- Mauritian Wildlife Foundation, Grannum Road, Vacoas 73418, Mauritius; Durrell Wildlife Conservation Trust, La Profonde Rue, Jersey JE3 5BP, Jersey
| | | |
Collapse
|
14
|
Shi X, Soderholm J, Chapman JW, Meade J, Farnsworth A, Dokter AM, Fuller RA. Distinctive and highly variable bird migration system revealed in Eastern Australia. Curr Biol 2024; 34:5359-5365.e3. [PMID: 39442517 DOI: 10.1016/j.cub.2024.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Our understanding of bird migration is heavily biased toward long-distance movements in the Northern Hemisphere,1,2,3 with only fragmented knowledge from the Southern Hemisphere.4,5 In Australia, while some species migrate,4,6,7,8 the timing and direction of large-scale, multi-species seasonal movements remain critically understudied due to the complexity of movement in this region and a lack of research personnel and infrastructure.7,9 It is still unclear whether there are pronounced and structured mass movements resembling those in the Northern Hemisphere.10,11,12 Here, we analyze data from a latitudinal transect of weather radars spanning the entire coastline of Eastern Australia to determine the magnitude, directions, timing, and variability of bird migration compared to that of Northern Hemisphere migration systems. Bird movements exhibited sequential seasonal peaks along a latitudinal gradient with seasonally contrasting flight directions, confirming that a structured bird migration system exists. Three features were distinct from Northern Hemisphere migrations. First, distinct movements occurred around sunrise with comparable magnitudes to nocturnal migration, likely representing a strong diurnal component to the bird movements. Second, migration intensity averaged 0.06 million birds km-1 in autumn, much lower than Northern Hemisphere migrations.11,12,13 Finally, flight directions were more dispersed, and the timing and amount of migration were highly variable between years compared to Northern Hemisphere migration systems, perhaps in response to variable climate.7 This first quantification of continental-scale movements in Australia revealed a distinctive migration system, and it suggests that much remains to be discovered about the ecological and evolutionary factors shaping animal migrations in the Southern Hemisphere.
Collapse
Affiliation(s)
- Xu Shi
- School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Joshua Soderholm
- Science and Innovation Group, Bureau of Meteorology, Melbourne, VIC 3001, Australia
| | - Jason W Chapman
- Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK; Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2751, Australia
| | - Andrew Farnsworth
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Adriaan M Dokter
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Richard A Fuller
- School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Hidaka N, Tian C, Zhang S, Akiduki G, Li G, Tayasu I, Shin KC, Niiyama T, Hu G, Li S, Otuka A, Feng H. Strontium isotope and trajectory method elucidating overseas migration of Mythimna separata to Japan. iScience 2024; 27:111160. [PMID: 39524358 PMCID: PMC11544078 DOI: 10.1016/j.isci.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
The oriental armyworm, Mythimna separata, generally migrates from eastern to northeastern China in early summer, and some individuals are believed to migrate overseas to Japan depending on meteorological conditions. This potential migration was investigated with the immigrants' strontium radiogenic isotope ratio 87Sr/86Sr and backward flight trajectories from Japanese trapping sites. The results showed that the 87Sr/86Sr ratios of Chinese reared M. separata were significantly higher than those of reared insects of Japanese immigration areas. As some individuals trapped in western Japan had 87Sr/86Sr ratios higher than a statistical discriminating ratio, they likely originated in China. Trajectory analysis also indicated those individuals might have originated from the East Asian continent, such as the first-generation outbreak region in China and their migration waypoint regions. Our analysis, thus, suggests direct or multistep overseas migration of individual M. separata from the East Asian continent to Japan, giving insight into migration pathways and population dynamics.
Collapse
Affiliation(s)
- Naoya Hidaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Caihong Tian
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Shengnan Zhang
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Gaku Akiduki
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Guoping Li
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, Kyoto 603-8047, Japan
| | - Ki-Cheol Shin
- Research Institute for Humanity and Nature, Kyoto 603-8047, Japan
| | | | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Shimin Li
- Institute of Plant Protection, Luohe Academy of Agricultural Sciences, Luohe, Henan 462300, P.R. China
| | - Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Hongqiang Feng
- International Joint Research Laboratory for Crop Protection of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
16
|
Hale KRS, Curlis JD, Auteri GG, Bishop S, French RLK, Jones LE, Mills KL, Scholtens BG, Simons M, Thompson C, Tourville J, Valdovinos FS. A highly resolved network reveals the role of terrestrial herbivory in structuring aboveground food webs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230180. [PMID: 39034695 PMCID: PMC11293847 DOI: 10.1098/rstb.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/23/2024] [Accepted: 05/05/2024] [Indexed: 07/23/2024] Open
Abstract
Comparative studies suggest remarkable similarities among food webs across habitats, including systematic changes in their structure with diversity and complexity (scale-dependence). However, historic aboveground terrestrial food webs (ATFWs) have coarsely grouped plants and insects such that these webs are generally small, and herbivory is disproportionately under-represented compared to vertebrate predator-prey interactions. Furthermore, terrestrial herbivory is thought to be structured by unique processes compared to size-structured feeding in other systems. Here, we present the richest ATFW to date, including approximately 580 000 feeding links among approximately 3800 taxonomic species, sourced from approximately 27 000 expert-vetted interaction records annotated as feeding upon one of six different resource types: leaves, flowers, seeds, wood, prey and carrion. By comparison to historical ATFWs and null ecological hypotheses, we show that our temperate forest web displays a potentially unique structure characterized by two properties: (i) a large fraction of carnivory interactions dominated by a small number of hyper-generalist, opportunistic bird and bat predators; and (ii) a smaller fraction of herbivory interactions dominated by a hyper-rich community of insects with variably sized but highly specific diets. We attribute our findings to the large-scale, even resolution of vertebrate, insect and plant guilds in our food web.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Kayla R. S. Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - John David Curlis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Giorgia G. Auteri
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Sasha Bishop
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rowan L. K. French
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lance E. Jones
- Department of Plant Biology, University of Illinois at Urbana-Champaign, UrbanaIL, USA
| | - Kirby L. Mills
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | | | - Meagan Simons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cody Thompson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Jordon Tourville
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA
- Research Department, Appalachian Mountain Club, Boston, MA, USA
| | - Fernanda S. Valdovinos
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Sun T, Yang F, Zhang H, Yang Y, Lu Z, Zhai B, Xu H, Lu J, Lu Y, Wang Y, Guo J, Hu G. CRY1 is involved in the take-off behaviour of migratory Cnaphalocrocis medinalis individuals. BMC Biol 2024; 22:169. [PMID: 39135045 PMCID: PMC11320853 DOI: 10.1186/s12915-024-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Numerous insect species undertake long-distance migrations on an enormous scale, with great implications for ecosystems. Given that take-off is the point where it all starts, whether and how the external light and internal circadian rhythm are involved in regulating the take-off behaviour remains largely unknown. Herein, we explore this issue in a migratory pest, Cnaphalocrocis medinalis, via behavioural observations and RNAi experiments. RESULTS The results showed that C. medinalis moths took off under conditions where the light intensity gradually weakened to 0.1 lx during the afternoon or evening, and the take-off proportions under full spectrum or blue light were significantly higher than that under red and green light. The ultraviolet-A/blue light-sensitive type 1 cryptochrome gene (Cmedcry1) was significantly higher in take-off moths than that of non-take-off moths. In contrast, the expression of the light-insensitive CRY2 (Cmedcry2) and circadian genes (Cmedtim and Cmedper) showed no significant differences. After silencing Cmedcry1, the take-off proportion significantly decreased. Thus, Cmedcry1 is involved in the decrease in light intensity induced take-off behaviour in C. medinalis. CONCLUSIONS This study can help further explain the molecular mechanisms behind insect migration, especially light perception and signal transmission during take-off phases.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fan Yang
- Institute of Vegetables, Wuhan Academy of Agricultural Sciences, Wuhan, 430345, China
| | - Haiyan Zhang
- Station of Plant Protection and Plant Inspection, Agricultural Technology Extension Centre of Jiangyan District, Taizhou, 225529, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Baoping Zhai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiahao Lu
- Songjiang Agriculture Technology Extension Centre, Shanghai, 201600, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yumeng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, 550005, China.
| |
Collapse
|
18
|
Suchan T, Bataille CP, Reich MS, Toro-Delgado E, Vila R, Pierce NE, Talavera G. A trans-oceanic flight of over 4,200 km by painted lady butterflies. Nat Commun 2024; 15:5205. [PMID: 38918383 PMCID: PMC11199637 DOI: 10.1038/s41467-024-49079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
The extent of aerial flows of insects circulating around the planet and their impact on ecosystems and biogeography remain enigmatic because of methodological challenges. Here we report a transatlantic crossing by Vanessa cardui butterflies spanning at least 4200 km, from West Africa to South America (French Guiana) and lasting between 5 and 8 days. Even more, we infer a likely natal origin for these individuals in Western Europe, and the journey Europe-Africa-South America could expand to 7000 km or more. This discovery was possible through an integrative approach, including coastal field surveys, wind trajectory modelling, genomics, pollen metabarcoding, ecological niche modelling, and multi-isotope geolocation of natal origins. The overall journey, which was energetically feasible only if assisted by winds, is among the longest documented for individual insects, and potentially the first verified transatlantic crossing. Our findings suggest that we may be underestimating transoceanic dispersal in insects and highlight the importance of aerial highways connecting continents by trade winds.
Collapse
Affiliation(s)
- Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Clément P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric Toro-Delgado
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, 08003, Catalonia, Spain
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Catalonia, Spain.
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Gao B, Hu G, Chapman JW. Effects of nocturnal celestial illumination on high-flying migrant insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230115. [PMID: 38705175 PMCID: PMC11070249 DOI: 10.1098/rstb.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2024] [Indexed: 05/07/2024] Open
Abstract
Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
20
|
Bauer S, Tielens EK, Haest B. Monitoring aerial insect biodiversity: a radar perspective. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230113. [PMID: 38705181 PMCID: PMC11070259 DOI: 10.1098/rstb.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs 'species population', 'species traits', 'community composition' and 'ecosystem function'. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Silke Bauer
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- Swiss Ornithological Institute, Sempach, LU 6204, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Noord-Holland, The Netherlands
- Department of Environmental System Science, Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Elske K. Tielens
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019-0390, USA
| | - Birgen Haest
- Swiss Ornithological Institute, Sempach, LU 6204, Switzerland
| |
Collapse
|
21
|
Drake VA, Hao Z, Wang H. Monitoring insect numbers and biodiversity with a vertical-beam entomological radar. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230117. [PMID: 38705193 PMCID: PMC11070261 DOI: 10.1098/rstb.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 05/07/2024] Open
Abstract
Concerns about perceived widespread declines in insect numbers have led to recognition of a requirement for long-term monitoring of insect biodiversity. Here we examine whether an existing, radar-based, insect monitoring system developed for research on insect migration could be adapted to this role. The radar detects individual larger (greater than 10 mg) insects flying at heights of 150-2550 m and estimates their size and mass. It operates automatically and almost continuously through both day and night. Accumulation of data over a 'half-month' (approx. 15 days) averages out weather effects and broadens the source area of the wind-borne observation sample. Insect counts are scaled or interpolated to compensate for missed observations; adjustment for variation of detectability with range and insect size is also possible. Size distributions for individual days and nights exhibit distinct peaks, representing different insect types, and Simpson and Shannon-Wiener indices of biodiversity are calculated from these. Half-month count, biomass and index statistics exhibit variations associated with the annual cycle and year to year changes that can be attributed to drought and periods of high rainfall. While species-based biodiversity measures cannot be provided, the radar's capacity to estimate insect biomass over a wide area indicates utility for tracking insect population sizes. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- V. Alistair Drake
- School of Science, The University of New South Wales, Canberra, ACT 2610, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - Zhenhua Hao
- School of Science, The University of New South Wales, Canberra, ACT 2610, Australia
- Australian Bureau of Agricultural and Resource Economics and Science, Australian Government, Canberra, ACT 2601, Australia
| | - Haikou Wang
- Australian Plague Locust Commission, Department of Agriculture, Fisheries and Forestry, Australian Government, Canberra, ACT 2601, Australia
| |
Collapse
|
22
|
van Klink R, Sheard JK, Høye TT, Roslin T, Do Nascimento LA, Bauer S. Towards a toolkit for global insect biodiversity monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230101. [PMID: 38705179 PMCID: PMC11070268 DOI: 10.1098/rstb.2023.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 1 06120 Halle, Germany
| | - Julie Koch Sheard
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Straße 159, Jena 07743, Germany
- Department of Biology, Animal Ecology, University of Marburg, Karl-von-Frisch-Straße 8, Marburg 35043, Germany
| | - Toke T. Høye
- Department of Ecoscience, Aarhus University, C. F. Møllers Allé 8, Aarhus C 8000, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, Aarhus C 8000, Denmark
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Ulls väg 18B, Uppsala 75651, Sweden
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Leandro A. Do Nascimento
- Science Department, biometrio.earth, Dr.-Schoenemann-Str. 38, Saarbrücken 66123 Deutschland, Germany
| | - Silke Bauer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, Sciencepark 904, Amsterdam 1098 XH, The Netherlands
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16 Zürich 8092, Switzerland
| |
Collapse
|
23
|
Haest B, Liechti F, Hawkes WL, Chapman J, Åkesson S, Shamoun-Baranes J, Nesterova AP, Comor V, Preatoni D, Bauer S. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230116. [PMID: 38705191 PMCID: PMC11070267 DOI: 10.1098/rstb.2023.0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024] Open
Abstract
Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Birgen Haest
- Swiss Ornithological Institute, Seerose 1, Sempach, 6204, Switzerland
| | - Felix Liechti
- Swiss Birdradar Solution AG, Technoparkstrasse 2, 8406, Winterthur, Switzerland
| | - Will L. Hawkes
- Swiss Ornithological Institute, Seerose 1, Sempach, 6204, Switzerland
| | - Jason Chapman
- Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| | - Judy Shamoun-Baranes
- Theoretical and Computational Ecology, IBED, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| | | | - Vincent Comor
- Independent researcher, Les Pennes-Mirabeau, 13170, France
| | - Damiano Preatoni
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.-H. Dunant 3, Varese, 21100 Italy
| | - Silke Bauer
- Swiss Ornithological Institute, Seerose 1, Sempach, 6204, Switzerland
- Theoretical and Computational Ecology, IBED, University of Amsterdam, P.O. Box 94240, Amsterdam, GE 1090, The Netherlands
| |
Collapse
|
24
|
Gorki JL, López-Mañas R, Sáez L, Menchetti M, Shapoval N, Andersen A, Benyamini D, Daniels S, García-Berro A, Reich MS, Scalercio S, Toro-Delgado E, Bataille CP, Domingo-Marimon C, Vila R, Suchan T, Talavera G. Pollen metabarcoding reveals the origin and multigenerational migratory pathway of an intercontinental-scale butterfly outbreak. Curr Biol 2024; 34:2684-2692.e6. [PMID: 38848713 DOI: 10.1016/j.cub.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.
Collapse
Affiliation(s)
- Johanna Luise Gorki
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain
| | - Roger López-Mañas
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain; Departament de Biologia Animal, Biologia Vegetal i Ecologia (BABVE), Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Catalonia, Spain
| | - Llorenç Sáez
- Departament de Biologia Animal, Biologia Vegetal i Ecologia (BABVE), Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Catalonia, Spain; Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC (IBB), Bellaterra, Spain
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Nazar Shapoval
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, Russia, 199034 Saint-Petersburg, Russia
| | - Anne Andersen
- Entomological Society of Denmark, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Dubi Benyamini
- The Israeli Lepidopterist Society, Beit Arye 7194700, Israel
| | | | - Aurora García-Berro
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Scalercio
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Foreste e Legno, 87036 Rende, Italy
| | - Eric Toro-Delgado
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain; Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Clément P Bataille
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cristina Domingo-Marimon
- Center for Ecological Research and Forestry Applications (CREAF), Grumets Research Group, Cerdanyola del Vallès, 08193 Catalonia, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona Catalonia, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Kraków, Poland
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona 08038 Catalonia, Spain.
| |
Collapse
|
25
|
Hawkes WL, Doyle T, Massy R, Weston ST, Davies K, Cornelius E, Collier C, Chapman JW, Reynolds DR, Wotton KR. The most remarkable migrants-systematic analysis of the Western European insect flyway at a Pyrenean mountain pass. Proc Biol Sci 2024; 291:20232831. [PMID: 38864145 DOI: 10.1098/rspb.2023.2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
In autumn 1950 David and Elizabeth Lack chanced upon a huge migration of insects and birds flying through the Pyrenean Pass of Bujaruelo, from France into Spain, later describing the spectacle as combining both grandeur and novelty. The intervening years have seen many changes to land use and climate, posing the question as to the current status of this migratory phenomenon. In addition, a lack of quantitative data has prevented insights into the ecological impact of this mass insect migration and the factors that may influence it. To address this, we revisited the site in autumn over a 4 year period and systematically monitored abundance and species composition of diurnal insect migrants. We estimate an annual mean of 17.1 million day-flying insect migrants from five orders (Diptera, Hymenoptera, Hemiptera, Lepidoptera and Odonata) moving south, with observations of southward 'mass migration' events associated with warmer temperatures, the presence of a headwind, sunlight, low windspeed and low rainfall. Diptera dominated the migratory assemblage, and annual numbers varied by more than fourfold. Numbers at this single site hint at the likely billions of insects crossing the entire Pyrenean mountain range each year, and we highlight the importance of this route for seasonal insect migrants.
Collapse
Affiliation(s)
- Will L Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
- Swiss Ornithological Institute, Seerose 1, Sempach, 6204, Switzerland
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Scarlett T Weston
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Kelsey Davies
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Elliott Cornelius
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Connor Collier
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Jason W Chapman
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent SE10 9LS, UK
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
26
|
Nartey R, Chamorro L, Buffington M, Afrane YA, Mohammed AR, Owusu-Asenso CM, Akosah-Brempong G, Pambit Zong CMA, Hendrix SV, Dao A, Yaro AS, Diallo M, Sanogo ZL, Djibril S, Halbert SE, Bamou R, Nance CE, Bartlett CR, Reynolds DR, Chapman JW, Obiri-Danso K, Lehmann T. Invasion and spread of the neotropical leafhopper Curtara insularis (Hemiptera: Cicadellidae) in Africa and North America and the role of high-altitude windborne migration in invasive insects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595796. [PMID: 38854158 PMCID: PMC11160610 DOI: 10.1101/2024.05.24.595796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Invasive insects threaten ecosystem stability, public health, and food security. Documenting newly invasive species and understanding how they reach into new territories, establish populations, and interact with other species remain vitally important. Here, we report on the invasion of the South American leafhopper, Curtara insularis into Africa, where it has established populations in Ghana, encroaching inland at least 350 km off the coast. Importantly, 80% of the specimens collected were intercepted between 160 and 190 m above ground. Further, the fraction of this species among all insects collected was also higher at altitude, demonstrating its propensity to engage in high-altitude windborne dispersal. Its aerial densities at altitude translate into millions of migrants/km over a year, representing massive propagule pressure. Given the predominant south-westerly winds, these sightings suggest an introduction of C. insularis into at least one of the Gulf of Guinea ports. To assess the contribution of windborne dispersal to its spread in a new territory, we examine records of C. insularis range-expansion in the USA. Reported first in 2004 from central Florida, it reached north Florida (Panhandle) by 2008-2011 and subsequently spread across the southeastern and south-central US. Its expansion fits a "diffusion-like" process with 200-300 km long "annual displacement steps"-a pattern consistent with autonomous dispersal rather than vehicular transport. Most "steps" are consistent with common wind trajectories from the nearest documented population, assuming 2-8 hours of wind-assisted flight at altitude. Curtara insularis has been intercepted at US ports and on trucks. Thus, it uses multiple dispersal modalities, yet its rapid overland spread is better explained by its massive propagule pressure linked with its high-altitude windborne dispersal. We propose that high-altitude windborne dispersal is common yet under-appreciated in invasive insect species.
Collapse
|
27
|
Chen H, Li M, Månefjord H, Travers P, Salvador J, Müller L, Dreyer D, Alison J, Høye TT, Gao Hu, Warrant E, Brydegaard M. Lidar as a potential tool for monitoring migratory insects. iScience 2024; 27:109588. [PMID: 38646171 PMCID: PMC11031831 DOI: 10.1016/j.isci.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The seasonal migrations of insects involve a substantial displacement of biomass with significant ecological and economic consequences for regions of departure and arrival. Remote sensors have played a pivotal role in revealing the magnitude and general direction of bioflows above 150 m. Nevertheless, the takeoff and descent activity of insects below this height is poorly understood. Our lidar observations elucidate the low-height dusk movements and detailed information of insects in southern Sweden from May to July, during the yearly northward migration period. Importantly, by filtering out moths from other insects based on optical information and wingbeat frequency, we have introduced a promising new method to monitor the flight activities of nocturnal moths near the ground, many of which participate in migration through the area. Lidar thus holds the potential to enhance the scientific understanding of insect migratory behavior and improve pest control strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Meng Li
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Hampus Månefjord
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Paul Travers
- Department Biological Engineering, Polytech Clermont, 2 Av. Blaise Pascal, 63100 Aubière, France
| | - Jacobo Salvador
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Lauro Müller
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - David Dreyer
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Jamie Alison
- Department Ecoscience, Aarhus University, C. F. Møllers Allé 8, 8000 Aarhus C, Denmark
| | - Toke T. Høye
- Department Ecoscience, Aarhus University, C. F. Møllers Allé 8, 8000 Aarhus C, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Eric Warrant
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Mikkel Brydegaard
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
- Department Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
- FaunaPhotonics, Støberigade 14, 2450 Copenhagen, Denmark
- Norsk Elektro Optikk, Østensjøveien 34, 0667 Oslo, Norway
| |
Collapse
|
28
|
Huang J, Feng H, Drake VA, Reynolds DR, Gao B, Chen F, Zhang G, Zhu J, Gao Y, Zhai B, Li G, Tian C, Huang B, Hu G, Chapman JW. Massive seasonal high-altitude migrations of nocturnal insects above the agricultural plains of East China. Proc Natl Acad Sci U S A 2024; 121:e2317646121. [PMID: 38648486 PMCID: PMC11067063 DOI: 10.1073/pnas.2317646121] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.
Collapse
Affiliation(s)
- Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
- Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - V. Alistair Drake
- School of Science, UNSW Canberra, The University of New South Wales, Canberra, ACT2610, Australia
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT2617, Australia
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, KentME4 4 TB, United Kingdom
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, HertsAL5 2JQ, United Kingdom
| | - Boya Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, Henan450002, China
| | - Junsheng Zhu
- Shandong Agricultural Technology Extension Center, Jinan, Shandong250100, China
| | - Yuebo Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin136100, China
| | - Baoping Zhai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Guoping Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Bo Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Jason W. Chapman
- Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| |
Collapse
|
29
|
Goyal P, van Leeuwen JL, Muijres FT. Bumblebees compensate for the adverse effects of sidewind during visually guided landings. J Exp Biol 2024; 227:jeb245432. [PMID: 38506223 PMCID: PMC11112349 DOI: 10.1242/jeb.245432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Flying animals often encounter winds during visually guided landings. However, how winds affect their flight control strategy during landing is unknown. Here, we investigated how sidewind affects the landing performance and sensorimotor control of foraging bumblebees (Bombus terrestris). We trained bumblebees to forage in a wind tunnel, and used high-speed stereoscopic videography to record 19,421 landing maneuvers in six sidewind speeds (0 to 3.4 m s-1), which correspond to winds encountered in nature. Bumblebees landed less often in higher windspeeds, but the landing durations from free flight were not increased by wind. By testing how bumblebees adjusted their landing control to compensate for adverse effects of sidewind on landing, we showed that the landing strategy in sidewind resembled that in still air, but with important adaptations. Bumblebees landing in a sidewind tended to drift downwind, which they controlled for by performing more hover maneuvers. Surprisingly, the increased hover prevalence did not increase the duration of free-flight landing maneuvers, as these bumblebees flew faster towards the landing platform outside the hover phases. Hence, by alternating these two flight modes along their flight path, free-flying bumblebees negated the adverse effects of high windspeeds on landing duration. Using control theory, we hypothesize that bumblebees achieve this by integrating a combination of direct aerodynamic feedback and a wind-mediated mechanosensory feedback control, with their vision-based sensorimotor control loop. The revealed landing strategy may be commonly used by insects landing in windy conditions, and may inspire the development of landing control strategies onboard autonomously flying robots.
Collapse
Affiliation(s)
- Pulkit Goyal
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
30
|
Ma HT, Zhou LH, Tan H, Xiu XZ, Wang JY, Wang XY. Population dynamics and seasonal migration patterns of Spodoptera exigua in northern China based on 11 years of monitoring data. PeerJ 2024; 12:e17223. [PMID: 38618573 PMCID: PMC11015832 DOI: 10.7717/peerj.17223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Background The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.
Collapse
Affiliation(s)
- Hao-Tian Ma
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, China
| | - Li-Hong Zhou
- Liaoning Academy of Agricultural Sciences, Institute of Flower, Shenyang, Liaoning, China
| | - Hao Tan
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, China
| | - Xian-Zhi Xiu
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, China
| | - Jin-Yang Wang
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, China
| | - Xing-Ya Wang
- Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Yang F, Wang P, Zheng M, Hou XY, Zhou LL, Wang Y, Si SY, Wang XP, Chapman JW, Wang YM, Hu G. Physiological and behavioral basis of diamondback moth Plutella xylostella migration and its association with heat stress. PEST MANAGEMENT SCIENCE 2024; 80:1751-1760. [PMID: 38009258 DOI: 10.1002/ps.7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Migration is a strategy that shifts insects to more favorable habitats in response to deteriorating local environmental conditions. The ecological factors that govern insect migration are poorly understood for many species. Plutella xylostella causes great losses in Brassica vegetable and oilseed crops, and undergoes mass migration. However, the physiological and behavioral basis for distinguishing migratory individuals and the factors driving its migration remain unclear. RESULTS Daily light trap catches conducted from April to July in a field population of P. xylostella in central China revealed a sharp decline in abundance from late-May. Analysis of ovarian development levels showed that the proportion of sexually immature females gradually increased, while the mating rate decreased, indicating that generations occurring in May mainly resulted from local breeding and that emigration began in late-May. Physiological and behavioral analyses revealed that emigrant populations had a higher take-off proportion, stronger flight capacity and greater energy reserves of triglyceride compared to residents. Furthermore, a gradual increase in temperature from 24 °C to >30 °C during larval development resulted in a significant delay in oogenesis and increased take-off propensity of adults compared with the control treatment reared at a constant temperature of 24 °C. CONCLUSION Our results provide the physiological and behavioral factors that underpin mass migration in P. xylostella, and demonstrate that exposure to increased temperature increases their migration propensity at the cost of reproductive output. This study sheds light on understanding the factors that influence population dynamics, migratory propensity and reproductive tradeoffs in migratory insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Pan Wang
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Min Zheng
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Xiao-Yu Hou
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Li-Lin Zhou
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Yong Wang
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Sheng-Yun Si
- Institute of Vegetables, Wuhan Academy of Agricultural Science, Wuhan, P. R. China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, P. R. China
- Center for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter - Cornwall Campus, Penryn, UK
| | - Yu-Meng Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
32
|
van Klink R, Bowler DE, Gongalsky KB, Shen M, Swengel SR, Chase JM. Disproportionate declines of formerly abundant species underlie insect loss. Nature 2024; 628:359-364. [PMID: 38123681 PMCID: PMC11006610 DOI: 10.1038/s41586-023-06861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, UK
| | - Konstantin B Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Minghua Shen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Ghouri S, Reich MS, Lopez-Mañas R, Talavera G, Bowen GJ, Vila R, Talla VNK, Collins SC, Martins DJ, Bataille CP. A hydrogen isoscape for tracing the migration of herbivorous lepidopterans across the Afro-Palearctic range. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9675. [PMID: 38211347 DOI: 10.1002/rcm.9675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
RATIONALE Many insect species undertake multigenerational migrations in the Afro-tropical and Palearctic ranges, and understanding their migratory connectivity remains challenging due to their small size, short life span and large population sizes. Hydrogen isotopes (δ2 H) can be used to reconstruct the movement of dispersing or migrating insects, but applying δ2 H for provenance requires a robust isotope baseline map (i.e. isoscape) for the Afro-Palearctic. METHODS We analyzed the δ2 H in the wings (δ2 Hwing ) of 142 resident butterflies from 56 sites across the Afro-Palearctic. The δ2 Hwing values were compared to the predicted local growing-season precipitation δ2 H values (δ2 HGSP ) using a linear regression model to develop an insect wing δ2 H isoscape. We used multivariate linear mixed models and high-resolution and time-specific remote sensing climate and environmental data to explore the controls of the residual δ2 Hwing variability. RESULTS A strong linear relationship was found between δ2 Hwing and δ2 HGSP values (r2 = 0.53). The resulting isoscape showed strong patterns across the Palearctic but limited variation and high uncertainty for the Afro-tropics. Positive residuals of this relationship were correlated with dry conditions for the month preceding sampling whereas negative residuals were correlated with more wet days for the month preceding sampling. High intra-site δ2 Hwing variance was associated with lower relative humidity for the month preceding sampling and higher elevation. CONCLUSION The δ2 Hwing isoscape is applicable for tracing herbivorous lepidopteran insects that migrate across the Afro-Palearctic range but has limited geolocation potential in the Afro-tropics. The spatial analysis of uncertainty using high-resolution climatic data demonstrated that many African regions with highly variable evaporation rates and relative humidity have δ2 Hwing values that are less related to δ2 HGSP values. Increasing geolocation precision will require new modeling approaches using more time-specific environmental data and/or independent geolocation tools.
Collapse
Affiliation(s)
- Sana Ghouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roger Lopez-Mañas
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain
| | - Gabriel J Bowen
- Geology and Geophysics, University of Utah, Salt Lake City, Utah, USA
| | - Roger Vila
- Institut de Biologia Evolutiva, CSIC-UPF, Barcelona, Catalonia, Spain
| | - Valery N K Talla
- Laboratory of Applied Biology and Ecology, Faculty of Science, University of Dschang, Dschang, West Region, Cameroon
| | | | - Dino J Martins
- Mpala Research Centre, Nanyuki, Kenya
- Turkana Basin Institute, Stony Brook University NY, Stony Brook, New York, USA
| | - Clement P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Zhang S, Song F, Wang J, Li X, Zhang Y, Zhou W, Xu L. Gut microbiota facilitate adaptation of invasive moths to new host plants. THE ISME JOURNAL 2024; 18:wrae031. [PMID: 38423525 PMCID: PMC10980833 DOI: 10.1093/ismejo/wrae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Gut microbiota are important in the adaptation of phytophagous insects to their plant hosts. However, the interaction between gut microbiomes and pioneering populations of invasive insects during their adaptation to new hosts, particularly in the initial phases of invasion, has been less studied. We studied the contribution of the gut microbiome to host adaptation in the globally recognized invasive pest, Hyphantria cunea, as it expands its range into southern China. The southern population of H. cunea shows effective adaptation to Metasequoia glyptostroboides and exhibits greater larval survival on Metasequoia than the original population. Genome resequencing revealed no significant differences in functions related to host adaptation between the two populations. The compatibility between southern H. cunea populations and M. glyptostroboides revealed a correlation between the abundance of several gut bacteria genera (Bacteroides, Blautia, and Coprococcus) and H. cunea survival. Transplanting the larval gut microbiome from southern to northern populations enhanced the adaptability of the latter to the previously unsuitable plant M. glyptostroboides. This research provides evidence that the gut microbiome of pioneering populations can enhance the compatibility of invasive pests to new hosts and enable more rapid adaptation to new habitats.
Collapse
Affiliation(s)
- Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Feng Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiayu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenwu Zhou
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
35
|
Chen H, Wan G, Li J, Ma Y, Reynolds DR, Dreyer D, Warrant EJ, Chapman JW, Hu G. Adaptive migratory orientation of an invasive pest on a new continent. iScience 2023; 26:108281. [PMID: 38187194 PMCID: PMC10767162 DOI: 10.1016/j.isci.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Many species of insects undertake long-range, seasonally reversed migrations, displaying sophisticated orientation behaviors to optimize their migratory trajectories. However, when invasive insects arrive in new biogeographical regions, it is unclear if migrants retain (or how quickly they regain) ancestral migratory traits, such as seasonally preferred flight headings. Here we present behavioral evidence that an invasive migratory pest, the fall armyworm moth (Spodoptera frugiperda), a native of the Americas, exhibited locally adaptive migratory orientation less than three years after arriving on a new continent. Specimens collected from China showed flight orientations directed north-northwest in spring and southwest in autumn, and this would promote seasonal forward and return migrations in East Asia. We also show that the driver of the seasonal switch in orientation direction is photoperiod. Our results thus provide a clear example of an invasive insect that has rapidly exhibited adaptive migratory behaviors, either inherited or newly evolved, in a completely alien environment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Guijun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianchun Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yibo Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, UK
- Rothamsted Research, Harpenden AL5 2JQ, UK
| | - David Dreyer
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
37
|
Freedman MG, Kronforst MR. Migration genetics take flight: genetic and genomic insights into monarch butterfly migration. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101079. [PMID: 37385346 PMCID: PMC10592233 DOI: 10.1016/j.cois.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Monarch butterflies have emerged as a model system in migration genetics. Despite inherent challenges associated with studying the integrative phenotypes that characterize migration, recent research has highlighted genes and transcriptional networks underlying aspects of the monarch's migratory syndrome. Circadian clock genes and the vitamin A synthesis pathway regulate reproductive diapause initiation, while diapause termination appears to involve calcium and insulin signaling. Comparative approaches have highlighted genes that distinguish migratory and nonmigratory monarch populations, as well as genes associated with natural variation in propensity to initiate diapause. Population genetic techniques demonstrate that seasonal migration can collapse patterns of spatial structure at continental scales, whereas loss of migration can drive differentiation between even nearby populations. Finally, population genetics can be applied to reconstruct the monarch's evolutionary history and search for contemporary demographic changes, which can provide relevant context for understanding recently observed declines in overwintering North American monarch numbers.
Collapse
|
38
|
Knop E, Grimm ML, Korner-Nievergelt F, Schmid B, Liechti F. Patterns of high-flying insect abundance are shaped by landscape type and abiotic conditions. Sci Rep 2023; 13:15114. [PMID: 37704700 PMCID: PMC10499926 DOI: 10.1038/s41598-023-42212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Insects are of increasing conservation concern as a severe decline of both biomass and biodiversity have been reported. At the same time, data on where and when they occur in the airspace is still sparse, and we currently do not know whether their density is linked to the type of landscape above which they occur. Here, we combined data of high-flying insect abundance from six locations across Switzerland representing rural, urban and mountainous landscapes, which was recorded using vertical-looking radar devices. We analysed the abundance of high-flying insects in relation to meteorological factors, daytime, and type of landscape. Air pressure was positively related to insect abundance, wind speed showed an optimum, and temperature and wind direction did not show a clear relationship. Mountainous landscapes showed a higher insect abundance than the other two landscape types. Insect abundance increased in the morning, decreased in the afternoon, had a peak after sunset, and then declined again, though the extent of this general pattern slightly differed between landscape types. We conclude that the abundance of high-flying insects is not only related to abiotic parameters, but also to the type of landscapes and its characteristics, which, on a long-term, should be taken into account for when designing conservation measures for insects.
Collapse
Affiliation(s)
- Eva Knop
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Reckenholzstrasse 191, 8046, Zürich, Switzerland.
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland.
| | - Majken Leonie Grimm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | | | | | - Felix Liechti
- Swiss Ornithological Institute, Sempach, Switzerland
- Swiss Birdradar Solution, Winterthur, Switzerland
| |
Collapse
|
39
|
Pan YF, Zhao H, Gou QY, Shi PB, Tian JH, Feng Y, Li K, Yang WH, Wu D, Tang G, Zhang B, Ren Z, Peng S, Luo GY, Le SJ, Xin GY, Wang J, Hou X, Peng MW, Kong JB, Chen XX, Yang CH, Mei SQ, Liao YQ, Cheng JX, Wang J, Chaolemen, Wu YH, Wang JB, An T, Huang X, Eden JS, Li J, Guo D, Liang G, Jin X, Holmes EC, Li B, Wang D, Li J, Wu WC, Shi M. Metagenomic analysis of individual mosquitos reveals the ecology of insect viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555221. [PMID: 37732272 PMCID: PMC10508733 DOI: 10.1101/2023.08.28.555221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.
Collapse
Affiliation(s)
- Yuan-fei Pan
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Hailong Zhao
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Qin-yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Pei-bo Shi
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Jun-hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei-hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Guangpeng Tang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China
| | - Bing Zhang
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences Xinjiang Medical University, Urumqi 830011, China
| | - Zirui Ren
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Shiqin Peng
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Geng-yan Luo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Shi-jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Hou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Min-wu Peng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jian-bin Kong
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin-xin Chen
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun-hui Yang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Shi-qiang Mei
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu-qi Liao
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jing-xia Cheng
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali 671099, China
| | - Chaolemen
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir 021500, China
| | - Yu-hui Wu
- Old Barag Banner Center for Disease Control and Prevention, Hulunbuir 021500, China
| | - Jian-bo Wang
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir 021008, China
| | - Tongqing An
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xinyi Huang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510000, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bo Li
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Daxi Wang
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Junhua Li
- BGI Research, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Wei-chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
40
|
Bassetto M, Reichl T, Kobylkov D, Kattnig DR, Winklhofer M, Hore PJ, Mouritsen H. No evidence for magnetic field effects on the behaviour of Drosophila. Nature 2023; 620:595-599. [PMID: 37558871 PMCID: PMC10432270 DOI: 10.1038/s41586-023-06397-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field1,2. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5. Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23. Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception.
Collapse
Affiliation(s)
- Marco Bassetto
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Thomas Reichl
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dmitry Kobylkov
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Center for Mind/Brain Science, University of Trento, Rovereto, Italy
| | - Daniel R Kattnig
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Physics, University of Exeter, Exeter, UK
| | - Michael Winklhofer
- AG Sensory Biology of Animals, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - P J Hore
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Henrik Mouritsen
- AG Neurosensory Sciences/Animal Navigation, Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
41
|
Homberg U, Pfeiffer K. Unraveling the neural basis of spatial orientation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01635-9. [PMID: 37198448 DOI: 10.1007/s00359-023-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The neural basis underlying spatial orientation in arthropods, in particular insects, has received considerable interest in recent years. This special issue of the Journal of Comparative Physiology A seeks to take account of these developments by presenting a collection of eight review articles and eight original research articles highlighting hotspots of research on spatial orientation in arthropods ranging from flies to spiders and the underlying neural circuits. The contributions impressively illustrate the wide range of tools available to arthropods extending from specific sensory channels to highly sophisticated neural computations for mastering complex navigational challenges.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany.
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
42
|
Lv H, Zhai MY, Zeng J, Zhang YY, Zhu F, Shen HM, Qiu K, Gao BY, Reynolds DR, Chapman JW, Hu G. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest. GLOBAL CHANGE BIOLOGY 2023; 29:2655-2668. [PMID: 36794561 DOI: 10.1111/gcb.16636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 05/31/2023]
Abstract
Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.
Collapse
Affiliation(s)
- Hua Lv
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yuan Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Juan Zeng
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Yi-Yang Zhang
- China National Agro-Tech Extension and Service Center, Beijing, China
| | - Feng Zhu
- Plant Protection Station of Jiangsu Province, Nanjing, China
| | - Hui-Mei Shen
- Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Kun Qiu
- Plant Protection Station of Anhui Province, Hefei, China
| | - Bo-Ya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, UK
- Rothamsted Research, Harpenden, UK
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Centre for Ecology and Conservation, Environment and Sustainability Institute, University of Exeter, Cornwall, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Jia H, Wang T, Li X, Zhao S, Guo J, Liu D, Liu Y, Wu K. Pollen Molecular Identification from a Long-Distance Migratory Insect, Spodoptera exigua, as Evidenced for Its Regional Pollination in Eastern Asia. Int J Mol Sci 2023; 24:ijms24087588. [PMID: 37108751 PMCID: PMC10141172 DOI: 10.3390/ijms24087588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.
Collapse
Affiliation(s)
- Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Tengli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaokang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianglong Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
44
|
Dittemore CM, Tyers DB, Weaver DK, Nunlist EA, Sowell BF, Peterson E, Peterson RKD. Using Stable Isotopes to Determine Natal Origin and Feeding Habits of the Army Cutworm Moth, Euxoa auxiliaris (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2023; 52:230-242. [PMID: 36801934 PMCID: PMC10112843 DOI: 10.1093/ee/nvad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 06/18/2023]
Abstract
The army cutworm, Euxoa auxiliaris (Grote), is a migratory noctuid that is both an agricultural pest and an important late-season food source for grizzly bears, Ursus arctos horribilis (Linnaeus, Carnivora: Ursidae), within the Greater Yellowstone Ecosystem. Beyond the confirmation of the moths' seasonal, elevational migration in the mid-1900s, little else has been documented about their migratory patterns. To address this missing ecological component, we examined (1) migratory routes during their spring and fall migratory periods throughout their natal range, the Great Plains, and (2) natal origin at two of their summering ranges using stable hydrogen (δ2H) analyses of wings from samples collected within the areas of interest. Stable carbon (δ13C) and stable nitrogen (δ15N) analyses of wings were used to evaluate larval feeding habits of the migrants and agricultural intensity of natal origin sites, respectively. Results suggest that, rather than migrating exclusively east to west, army cutworm moths are also migrating north to south during their spring migration. Moths did not exhibit natal origin site fidelity when returning to the Great Plains. Migrants collected from the Absaroka Range had the highest probability of natal origin in Alberta, British Columbia, Saskatchewan, the most southern region of the Northwest Territories, and second highest probability of origin in Montana, Wyoming, and Idaho. Migrants collected in the Lewis Range had the highest probability of origin in the same provinces of Canada. Results suggest that migrants of the Absaroka Range fed exclusively on C3 plants as larvae and rarely fed in heavily fertilized agroecosystems.
Collapse
Affiliation(s)
| | - Daniel B Tyers
- USDA Forest Service, Interagency Grizzly Bear Study Team, Northern Rockies Science Center, Bozeman, MT 59715, USA
| | - David K Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Erika A Nunlist
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Bok F Sowell
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Erik Peterson
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| | - Robert K D Peterson
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
45
|
Talavera G, García-Berro A, Talla VNK, Ng’iru I, Bahleman F, Kébé K, Nzala KM, Plasencia D, Marafi MAJ, Kassie A, Goudégnon EOA, Kiki M, Benyamini D, Reich MS, López-Mañas R, Benetello F, Collins SC, Bataille CP, Pierce NE, Martins DJ, Suchan T, Menchetti M, Vila R. The Afrotropical breeding grounds of the Palearctic-African migratory painted lady butterflies ( Vanessa cardui). Proc Natl Acad Sci U S A 2023; 120:e2218280120. [PMID: 37036992 PMCID: PMC10120051 DOI: 10.1073/pnas.2218280120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/25/2023] [Indexed: 04/12/2023] Open
Abstract
Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Aurora García-Berro
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
| | - Valery N. K. Talla
- Laboratory of Applied Biology and Ecology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Ivy Ng’iru
- Mpala Research Centre, Nanyuki555-10400, Kenya
| | | | - Khadim Kébé
- Department of Chemical Engineering and Applied Biology, Polytechnic Higher School of Dakar, BP 5085Dakar, Senegal
| | | | - Dulce Plasencia
- Asociación Española para la Protección de las Mariposas y su Medio - Zerynthia, Sección Tenerife, E-26004Logroño, Spain
| | - Mohammad A. J. Marafi
- Department of Restoration of Terrestrial and Marine Ecosystems, Public Authority of Agriculture Affairs and Fish Resources, 13075Kuwait City, Kuwait
| | - Abeje Kassie
- Ethiopian Biodiversity Institute, 30726Addis Ababa, Ethiopia
| | - Eude O. A. Goudégnon
- Laboratoire d'Écologie Appliquée, Université d'Abomey-Calavi, BP 526Cotonou, Benin
| | - Martial Kiki
- Laboratoire d'Écologie Appliquée, Université d'Abomey-Calavi, BP 526Cotonou, Benin
| | - Dubi Benyamini
- The Israeli Lepidopterist Society, Beit Arye7194700, Israel
| | - Megan S. Reich
- Department of Biology, University of Ottawa, ONK1N 6N5Ottawa, Canada
| | - Roger López-Mañas
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
| | - Fulvia Benetello
- Dipartimento di Biologia, Università degli Studi di Firenze, 50019Sesto Fiorentino, Italy
| | | | - Clément P. Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, ONK1N 6N5Ottawa, Canada
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Dino J. Martins
- Institut Botànic de Barcelona, Consejo Superior de Investigaciones Científicas and Ajuntament de Barcelona, Barcelona, Catalonia08038, Spain
- Mpala Research Centre, Nanyuki555-10400, Kenya
- Turkana Basin Institute, Stony Brook University, NY11794
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków31-512, Poland
| | - Mattia Menchetti
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Barcelona, Catalonia08003, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Barcelona, Catalonia08003, Spain
| |
Collapse
|
46
|
Rosenberg Y, Bar-On YM, Fromm A, Ostikar M, Shoshany A, Giz O, Milo R. The global biomass and number of terrestrial arthropods. SCIENCE ADVANCES 2023; 9:eabq4049. [PMID: 36735788 PMCID: PMC9897674 DOI: 10.1126/sciadv.abq4049] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
Insects and other arthropods are central to terrestrial ecosystems. However, data are lacking regarding their global population abundance. We synthesized thousands of evaluations from around 500 sites worldwide, estimating the absolute biomass and abundance of terrestrial arthropods across different taxa and habitats. We found that there are ≈1 × 1019 (twofold uncertainty range) soil arthropods on Earth, ≈95% of which are soil mites and springtails. The soil contains ≈200 (twofold uncertainty range) million metric tons (Mt) of dry biomass. Termites contribute ≈40% of the soil biomass, much more than ants at ≈10%. Our estimate for the global biomass of above-ground arthropods is more uncertain, highlighting a knowledge gap that future research should aim to close. We estimate the combined dry biomass of all terrestrial arthropods at ≈300 Mt (uncertainty range, 100 to 500), similar to the mass of humanity and its livestock. These estimates enhance the quantitative understanding of arthropods in terrestrial ecosystems and provide an initial holistic benchmark on their decline.
Collapse
Affiliation(s)
| | | | - Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Ostikar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Shoshany
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Giz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Zhou Y, Zhang H, Liu D, Khashaveh A, Li Q, Wyckhuys KA, Wu K. Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia. SCIENCE ADVANCES 2023; 9:eade9341. [PMID: 36735783 PMCID: PMC9897670 DOI: 10.1126/sciadv.ade9341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/05/2023] [Indexed: 05/13/2023]
Abstract
Insects provide critical ecosystem services such as biological pest control, in which natural enemies (NE) regulate the populations of crop-feeding herbivores (H). While H-NE dynamics are routinely studied at small spatiotemporal scales, multiyear assessments over entire agrolandscapes are rare. Here, we draw on 18-year radar and searchlight trapping datasets (2003-2020) from eastern Asia to (i) assess temporal population trends of 98 airborne insect species and (ii) characterize the associated H-NE interplay. Although NE consistently constrain interseasonal H population growth, their summer abundance declined by 19.3% over time and prominent agricultural pests abandoned their equilibrium state. Within food webs composed of 124 bitrophic couplets, NE abundance annually fell by 0.7% and network connectance dropped markedly. Our research unveils how a progressive decline in insect numbers debilitates H trophic regulation and ecosystem stability at a macroscale, carrying implications for food security and (agro)ecological resilience during times of global environmental change.
Collapse
Affiliation(s)
| | | | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
48
|
García-Berro A, Talla V, Vila R, Wai HK, Shipilina D, Chan KG, Pierce NE, Backström N, Talavera G. Migratory behaviour is positively associated with genetic diversity in butterflies. Mol Ecol 2023; 32:560-574. [PMID: 36336800 PMCID: PMC10100375 DOI: 10.1111/mec.16770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.
Collapse
Affiliation(s)
- Aurora García-Berro
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain
| | - Venkat Talla
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Hong Kar Wai
- Novel Bacteria and Drug Discovery Research Group (NBDD) and Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Daria Shipilina
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden.,Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China.,Guangdong Provincial Key Laboratory of Marine Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Niclas Backström
- Department of Ecology and Genetics, Program of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Catalonia, Spain.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
49
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
50
|
Tong D, Zhang L, Wu N, Xie D, Fang G, Coates BS, Sappington TW, Liu Y, Cheng Y, Xia J, Jiang X, Zhan S. The oriental armyworm genome yields insights into the long-distance migration of noctuid moths. Cell Rep 2022; 41:111843. [PMID: 36543122 DOI: 10.1016/j.celrep.2022.111843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.
Collapse
Affiliation(s)
- Dandan Tong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Thomas W Sappington
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jixing Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|