1
|
Isogai T, Hirosawa KM, Kanno M, Sho A, Kasai RS, Komura N, Ando H, Furukawa K, Ohmi Y, Furukawa K, Yokota Y, Suzuki KG. Extracellular vesicles adhere to cells primarily by interactions of integrins and GM1 with laminin. J Cell Biol 2025; 224:e202404064. [PMID: 40304687 PMCID: PMC12042775 DOI: 10.1083/jcb.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Tumor-derived extracellular vesicles (EVs) have attracted significant attention, yet the molecular mechanisms that govern their specific binding to recipient cells remain elusive. Our in vitro study utilizing single-particle tracking demonstrated that integrin heterodimers comprising α6β4 and α6β1 and ganglioside, GM1, are responsible for the binding of small EV (sEV) subtypes to laminin. EVs derived from four distinct tumor cell lines, regardless of size, exhibited high binding affinities for laminin but not for fibronectin, although fibronectin receptors are abundant in EVs and have functional roles in EV-secreting cells. Our findings revealed that integrins in EVs bind to laminin via the conventional molecular interface, facilitated by CD151 rather than by inside-out signaling of talin-1 and kindlin-2. Super-resolution movie observation revealed that sEV integrins bind only to laminin on living recipient cells. Furthermore, sEVs bound to HUVEC and induced cell branching morphogenesis in a laminin-dependent manner. Thus, we demonstrated that EVs predominantly bind to laminin on recipient cells, which is indispensable for cell responses.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | | | - Miki Kanno
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Ayano Sho
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Rinshi S. Kasai
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Innovation Research Center for Quantum Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Yasunari Yokota
- Department of Information Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kenichi G.N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan
- Innovation Research Center for Quantum Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Jochum K, Miccoli A, Sommersdorf C, Poetz O, Braeuning A, Tralau T, Marx-Stoelting P. NAM-based analysis of contaminant short-term organ toxicity in HepaRG and RPTEC/TERT1 cells. Toxicology 2025; 514:154104. [PMID: 40054833 DOI: 10.1016/j.tox.2025.154104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
New Approach Methodologies (NAMs), including cell culture and multi-level omics analyses, are promising alternatives to animal testing. To become useable for risk assessment purposes, they have to be applicable for different substance groups. One important group of substances is food contaminants, including synthetic chemicals, such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and natural compounds, such as mycotoxins and pyrrolizidine alkaloids. We tested five known contaminants affecting the liver and/or the kidney - PFOS, PFOA, Aflatoxin B1 (AB1), lasiocarpine (Las), and cadmium chloride - using HepaRG and RPTEC/TERT1 cells at non-cytotoxic concentrations for 36 and 72 h. Our NAM-based testing protocol included marker protein analysis for cellular functions and targeted transcriptomics followed by bioinformatics pathway analysis. The effects observed were compared with established in vivo results. Protein analysis indicated various affected pathways in HepaRG cells, with generally fewer effects in RPTEC/TERT1 cells. The strongest transcriptional impact was noted for Las in HepaRG cells. This study demonstrated the test protocol's applicability across different substances, revealing significant differences between HepaRG and RPTEC/TERT1 cell lines. RPTEC/TERT1 cells, while expressing renal-specific CYP enzymes, were less suitable for detecting effects of substances requiring hepatic metabolic activation, like Las and AB1. Our data supports the concept of specific pathway toxicity, with pathway analysis enabling the prediction of effects based on mechanism rather than target organ. Employing multiple omics techniques provided comprehensive insights into various compound effects, including steatosis, reactive oxygen species production and DNA damage, highlighting the potential of an extended omics approach for advancing toxicological assessments.
Collapse
Affiliation(s)
- Kristina Jochum
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany; German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | | | - Oliver Poetz
- Signatope GmbH, Reutlingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Berlin, Germany.
| |
Collapse
|
3
|
Dübbel L, Göken-Riebisch A, Koch KW. Intracellular and exosomal localization of the negative checkpoint regulator VISTA in immune cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119966. [PMID: 40262722 DOI: 10.1016/j.bbamcr.2025.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Strategies in immunotherapy often target the immunosuppressive environment of tumor cells. One route of therapeutic interference could involve negative checkpoint regulators of which V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA) has raised more interest recently. The protein is expressed on the surface of tumor cells, T-lymphocytes, and antigen-presenting cells (APCs), but its intracellular expression pattern has not been investigated yet. We examined the intracellular distribution of VISTA and its possible role in translocation processes by immunofluorescence and Western blots. We analyzed the expression and localization of VISTA in murine bone marrow-derived macrophages (BMDMs), human monocyte-derived macrophages, and human T lymphocytes (Jurkat). We obtained different cell fractions and organelles of various cell types and analyzed for the presence of VISTA. Monitoring a VISTA-GFP fusion construct in transfected cell lines HL-60 and THP-1 confirmed VISTA localization in these cell lines. All used cell lines showed the colocalization of VISTA and several vesicle markers together with VISTA staining along microtubule fibers. Additionally, we found VISTA in secreted exosomes and have the first hints for nucleic expression in all tested cell lines. Therefore, the storage of VISTA in vesicles and its potential presence in nuclei resembles two other well-described checkpoint regulators, CTLA-4 and PD-L1, respectively. We conclude that VISTA storage in vesicles enables a fast response to immunogenic stimuli, which needs to be considered for inhibitory experiments. The localization of VISTA in exosomes suggests a signaling function to facilitate cell-cell communication. Furthermore, the VISTA expression in the nucleus proposes a transcriptional role.
Collapse
Affiliation(s)
- Lena Dübbel
- Division of Biochemistry, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; University Clinic of Gynaecology and Obstetrics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany.
| | - Anna Göken-Riebisch
- University Clinic of Gynaecology and Obstetrics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Caneve P, Schraps N, Möller K, Büyücek S, Lutz F, Chirico V, Viehweger F, Reiswich V, von Bargen C, Kind S, Menz A, Kluth M, Hube-Magg C, Bernreuther C, Sauter G, Marx AH, Simon R, Krech T, Steurer S, Fraune C, Minner S, Gorbokon N, Lennartz M, Burandt E, Rico SD, Freytag M, Luebke AM. Brachyury expression is highly specific for chordoma: A tissue microarray study involving 14,976 cancers from 135 different tumor types and subtypes. Ann Diagn Pathol 2025; 76:152448. [PMID: 39929118 DOI: 10.1016/j.anndiagpath.2025.152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Brachyury protein plays a role in defining the midline of bilaterian organisms. Commonly expressed in chordomas, brachyury immunohistochemistry is used to distinguish chordomas from their differential diagnoses. However, brachyury expression has also been described to frequently occur in other cancer entities. To better comprehend the role of brachyury expression in cancer, a tissue microarray containing 14,976 samples from 135 different tumor entities and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. Brachyury staining was found in 55 (0.44 %) of the 12,409 interpretable tumor samples, including 37 (0.3 %) with weak, 10 (0.08 %) with moderate, and 8 (0.06 %) with strong positivity. Brachyury staining strongly predominated in chordomas. Of ten chordomas, 7 were strongly and 3 moderately positive. Only 5 of the 134 analyzed further tumor categories showed brachyury staining, 4 of which originated from testicular germ cells. Brachyury positivity occurred in 21.4 % of 42 yolk sac tumors, 15.2 % of 46 embryonal carcinomas, 4.4 % of 562 seminomas, and 2.4 % of 41 teratomas of the testis. Our data support the previously suggested high specificity of brachyury for chordoma detection, and demonstrate that germ cell tumors represent the only additional group of unrelated cancer entities expressing brachyury at a significant level.
Collapse
Affiliation(s)
- Piero Caneve
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Schraps
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara von Bargen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Madarász K, Mótyán JA, Chang Chien YC, Bedekovics J, Csoma SL, Méhes G, Mokánszki A. BCOR-rearranged sarcomas: In silico insights into altered domains and BCOR interactions. Comput Biol Med 2025; 191:110144. [PMID: 40228447 DOI: 10.1016/j.compbiomed.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
BCOR (BCL-6 corepressor) rearranged small round cell sarcoma (BRS) represents an uncommon soft tissue malignancy, frequently characterized by the BCOR::CCNB3 fusion. Other noteworthy fusions include BCOR::MAML3, BCOR::CLGN, BCOR::MAML1, ZC3H7B::BCOR, KMT2D::BCOR, CIITA::BCOR, RTL9::BCOR, and AHR::BCOR. The BCOR gene plays a pivotal role in the Polycomb Repressive Complex 1 (PRC1), essential for histone modification and gene silencing. It interfaces with the Polycomb group RING finger homolog (PCGF1). This study employed comprehensive in silico methodologies to investigate the structural and functional effects of BCOR fusion events in BRS. The analysis revealed significant alterations in the domain architecture of BCOR, which resulted in the loss of BCL6-regulated transcriptional repression. Furthermore, IUPred3 prediction indicated a significant increase in disorder in the C-terminal regions of the BCOR in the fusion proteins. A detailed analysis of the physicochemical properties by ProtParam revealed a decrease in isoelectric point, stability, and hydrophobicity. The analysis of protein structures predicted by AlphaFold3 using the PRODIGY algorithm revealed statistically significant deviations in binding affinities for BCOR-PCGF1 dimers and a non-canonical PRC1 variant tetramer compared to the wild-type BCOR. The findings provide a comprehensive summary and elucidation of the fusion proteome associated with BRS, suggesting a substantial impact on the stability and functionality of the fusion proteins, thereby contributing to the oncogenic mechanisms underlying BRS. In this study, we provide the first compilation and comparative analysis of the known BCOR fusions of BRS and introduce a new in silico approach to enhance a better understanding of the molecular basis of BRS.
Collapse
Affiliation(s)
- Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Yi-Che Chang Chien
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Szilvia Lilla Csoma
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| |
Collapse
|
6
|
Carmona-Carmona CA, Bisello G, Franchini R, Lunardi G, Galavotti R, Perduca M, Ribeiro RP, Belviso BD, Giorgetti A, Caliandro R, Lievens PMJ, Bertoldi M. The CRISPR-Cas9 knockout DDC SH-SY5Y in vitro model for AADC deficiency provides insight into the pathogenicity of R347Q and L353P variants: a cross-sectional structural and functional analysis. FEBS J 2025. [PMID: 40318155 DOI: 10.1111/febs.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Aromatic amino acid decarboxylase (AADC) deficiency is a severe inherited recessive neurotransmitter disorder caused by an impairment in dopamine synthesis due to the lack/modification of AADC, the enzyme converting l-dopa to dopamine. Patients exhibit severe movement disorders and neurodevelopmental delay, with a high risk of premature mortality. Given the lack of a reliable model for the disease, we developed a dopa decarboxylase knockout model using CRISPR/Cas9 technology in the SH-SY5Y neuroblastoma cell line. This model showed a deficiency in AADC protein and activity, with an altered dopamine metabolites profile (low homovanillic acid and high 3-O-methyldopa) and a modified expression of key enzymes, such as dopamine beta-hydroxylase and monoamine oxidases, which are involved in the catecholamine pathway. We then transfected the DDC-KO cells with two AADC catalytic variants, R347Q and L353P, which resulted in loss-of-function and an altered profile of dopamine metabolites. By combining several structural approaches (X-ray crystallography, molecular dynamics, small angle X-ray scattering, dynamic light scattering, and spectroscopy), we determined that both variants alter the flexibility of the structural element to which they belong, whose integrity is essential for catalysis. This change causes a mispositioning of essential residues at the active site, leading, in turn, to an unproductive external aldimine, identifying the molecular basis for the loss-of-function. Overall, the DDC-KO model recapitulates some key features of AADC deficiency, is useful to study the molecular basis of the disease, and represents an ideal system for small molecule screening regarding specific enzyme defects, paving the way for a precision therapeutic approach.
Collapse
Affiliation(s)
| | - Giovanni Bisello
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Rossella Franchini
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusional Medicine, IRCCS-Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Roberta Galavotti
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | | | - Rui P Ribeiro
- Department of Biotechnology, University of Verona, Italy
| | | | | | | | - Patricia M-J Lievens
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| | - Mariarita Bertoldi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Italy
| |
Collapse
|
7
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Sansbury SE, Serebrenik YV, Lapidot T, Smith DG, Burslem GM, Shalem O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. Mol Cell 2025; 85:1868-1886.e12. [PMID: 40273915 DOI: 10.1016/j.molcel.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/07/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
To achieve system-level insights into proteome organization, regulation, and function, we developed an approach to generate complex cell pools with endogenously tagged proteins amenable to high-throughput visualization and perturbation. Pooled imaging coupled to in situ barcode sequencing identified the subcellular localization of each HaloTag-tagged protein, and subsequent ligand-induced misfolding of the library followed by single-cell RNA sequencing revealed responses to spatially restricted protein misfolding. These datasets characterized protein quality control responses in previously uninterrogated cellular compartments, and cross-compartment analyses revealed mutually exclusive rather than collaborative responses, whereby the heat shock response (HSR) is induced in some compartments and repressed in others where autophagy genes are induced. We further assign protein quality control functions to previously uncharacterized genes based on shared transcriptional responses to protein misfolding across cellular compartments. Altogether, we present an efficient method for large-scale studies of proteome dynamics, function, and homeostasis.
Collapse
Affiliation(s)
- Stephanie E Sansbury
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yevgeniy V Serebrenik
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tomer Lapidot
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David G Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Bueno D, Schäfer MK, Wang S, Schmeisser MJ, Methner A. NECAB family of neuronal calcium-binding proteins in health and disease. Neural Regen Res 2025; 20:1236-1243. [PMID: 38934399 PMCID: PMC11624857 DOI: 10.4103/nrr.nrr-d-24-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.
Collapse
Affiliation(s)
- Diones Bueno
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Câmara GA, Yokoo S, Granato DC, Simabuco FM, Ribeiro-Filho HV, Melo RM, Pauletti BA, Nascimento Filho EG, Domingues RR, Paes Leme AF. Mapping the Interactome of OSCC Prognostic-Associated Proteins NDRG1 and PGK1 Through Proximity Labeling Using TurboID. J Proteome Res 2025. [PMID: 40304068 DOI: 10.1021/acs.jproteome.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, comprising over 90% of all oral malignancies worldwide. The identification of diagnostic and prognostic markers for OSCC is crucial for improving patient outcomes, as early detection and treatment are critical for the successful management of this disease. Previously, we demonstrated that N-myc downstream-regulated gene 1 (NDRG1) and phosphoglycerate kinase 1 (PGK1) are prognostic markers for OSCC; however, their role in OSCC development remains unclear. To investigate this, we used TurboID-based proximity labeling to identify the interactomes of NDRG1 and PGK1 in HEK293 cells. Herein, protein abundance patterns from three time points were used for clustering 364 proteins with a "fast" or "slow" response to biotin. Of these, 65 proteins were also identified in neoplastic islands of OSCC patients from our previous study, and 28 of these proteins have their gene expression associated with prognostic features, including death, metastasis, and relapse. PRM-MS enabled the quantification of 17 of these proteins, providing further evidence of their presence in the OSCC prognostic interactome. Finally, we characterized a prognostic-associated interactome composed of 28 proteins, which enabled the prioritization of candidates that can be further explored in OSCC progression. The mass spectrometry data generated in this study have been deposited in ProteomeXchange with the data set identifier PXD048046.
Collapse
Affiliation(s)
- Guilherme A Câmara
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Sami Yokoo
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Daniela C Granato
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Fernando M Simabuco
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Helder V Ribeiro-Filho
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Reynaldo M Melo
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Bianca A Pauletti
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Edson G Nascimento Filho
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Romênia R Domingues
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory - LNBio, Brazilian Center for Research in Energy and Materials - CNPEM, Campinas, São Paulo 13083-100, Brazil
| |
Collapse
|
11
|
Schmitt MT, Kroll J, Ruiz-Fernandez MJA, Hauschild R, Ghosh S, Kameritsch P, Merrin J, Schmid J, Stefanowski K, Thomae AW, Cheng J, Öztan GN, Konopka P, Ortega GC, Penz T, Bach L, Baumjohann D, Bock C, Straub T, Meissner F, Kiermaier E, Renkawitz J. Protecting centrosomes from fracturing enables efficient cell navigation. SCIENCE ADVANCES 2025; 11:eadx4047. [PMID: 40279414 PMCID: PMC12024656 DOI: 10.1126/sciadv.adx4047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
The centrosome is a microtubule orchestrator, nucleating and anchoring microtubules that grow radially and exert forces on cargos. At the same time, mechanical stresses from the microenvironment and cellular shape changes compress and bend microtubules. Yet, centrosomes are membraneless organelles, raising the question of how centrosomes withstand mechanical forces. Here, we discover that centrosomes can deform and even fracture. We reveal that centrosomes experience deformations during navigational pathfinding within motile cells. Coherence of the centrosome is maintained by Dyrk3 and cNAP1, preventing fracturing by forces. While cells can compensate for the depletion of centriolar-based centrosomes, the fracturing of centrosomes impedes cellular function by generating coexisting microtubule organizing centers that compete during path navigation and thereby cause cellular entanglement in the microenvironment. Our findings show that cells actively maintain the integrity of the centrosome to withstand mechanical forces. These results suggest that centrosome stability preservation is fundamental, given that almost all cells in multicellular organisms experience forces.
Collapse
Affiliation(s)
- Madeleine T. Schmitt
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Mauricio J. A. Ruiz-Fernandez
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shaunak Ghosh
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Petra Kameritsch
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jack Merrin
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johanna Schmid
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Kasia Stefanowski
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Andreas W. Thomae
- Bioimaging Facility, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Jingyuan Cheng
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gamze Naz Öztan
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Peter Konopka
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Faculty of Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eva Kiermaier
- Life and Medical Sciences (LIMES) Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| |
Collapse
|
12
|
Kutsuna YJ, Aibara N, Hashizume J, Omori W, Okada-Tsuchioka M, Kajitani N, Nakashima M, Kawakami A, Ohyama K, Takebayashi M. Identification of shared pathophysiological molecules of major psychiatric disorders: A comprehensive analysis of serum immune complex antigens before and after electroconvulsive therapy. J Neuroimmunol 2025; 405:578623. [PMID: 40306147 DOI: 10.1016/j.jneuroim.2025.578623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Recent studies indicate common inflammatory findings have been identified in peripheral blood in patients with major psychiatric disorders, including schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Electroconvulsive therapy (ECT) frequently improves both severe symptoms and inflammatory markers in these conditions. However, the shared inflammatory mechanisms underlying these disorders, and thus, reliable biomarkers remain unclear. We hypothesized that the activation of immune complexes (ICs) contributes to inflammatory pathogenesis of these disorders. Using immune complexome analysis, we examined antigens forming ICs (IC-antigens) in the serum of patients with SCZ, BD, and MDD (n = 60) before and after ECT. Our analysis showed that although the overall quantity of ICs did not change before and after ECT, four proteins significantly decreased following ECT. These proteins were DENN domain-containing protein 1C (DENND1C), double-stranded RNA-specific editase 1 (ADARB1), perilipin-4, and coagulation factor XI, which were all consistently detected as IC-antigens across patient groups. Notably, DENND1C, ADARB1, and perilipin-4 were specific to psychiatric patients and absent in healthy controls. The abundance of these IC-antigens significantly correlated with psychiatric symptom scores, with DENND1C showing a particularly strong correlation with total symptom scores across all three disorders. These findings suggest that DENND1C may contribute to the shared pathophysiology of SCZ, BD, and MDD through antigenization or IC formation. This highlights its potential as a biomarker for ECT treatment availability and diagnostic/treatment efficacy monitoring.
Collapse
Affiliation(s)
- Yuki Jimbayashi Kutsuna
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Wataru Omori
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikiro Nakashima
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
13
|
Teng X, Wang Q, Ma J, Li D. Integrating bioinformatics and machine learning to discover sumoylation associated signatures in sepsis. Sci Rep 2025; 15:14398. [PMID: 40274894 PMCID: PMC12022290 DOI: 10.1038/s41598-025-96956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Small Ubiquitin-like MOdifier-mediated modification (SUMOylation) is associated with sepsis; however, its molecular mechanism remains unclear. Herein, hub genes and regulatory mechanisms in sepsis was investigated. The GSE65682 and GSE95233 datasets were extracted from public databases. Differential analysis and Weighted Gene Co-expression Network Analysis (WGCNA) were conducted in GSE65682 to identify differentially expressed genes (DEGs) and key module genes. Candidate genes were derived by intersecting with SUMOylation-related genes (SUMO-RGs). The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) were utilized to identify significant feature genes. The convergence of those genes was utilized for diagnostic assessment and expression validation. Hub genes were defined as those exhibiting an area under the curve (AUC) greater than 0.7, significant gene expression, and a consistent trend. Localization and functional analyses of hub genes were conducted to enhance the understanding of these genes. Immune analysis, regulatory network construction, and drug prediction were performed. Six hub genes were identified: RORA, L3MBTL2, PHC1, RPA1, CHD3, and RANGAP1. These genes possessed considerable diagnostic significance for sepsis and were also markedly downregulated in the condition. Hub genes were predominantly enriched in the ribosome pathway and exhibited a strong correlation with differential immune cells. Activated CD8 + T cells exhibited a positive correlation with RORA. Based on the predicted and established regulatory network, AC004687.1 was observed to modulate PHC1 expression via hsa-miR- 142 - 5p. A total of six hub genes (RORA, L3MBTL2, PHC1, RPA1, CHD3, and RANGAP1) associated with SUMOylation was identified in sepsis in the current study. The findings are likely to aid in the differentiation between control and disease states, offering substantiation for the diagnosis of sepsis.
Collapse
Affiliation(s)
- Xue Teng
- Department of Anesthesiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Qi Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jinling Ma
- Department of Intensive Care Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Dongmei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, Heilongjiang, China.
| |
Collapse
|
14
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
15
|
Liao X, Xie Q, Liang M, Liao Q, Huang B, Zhang S, Zhang F, Wang L, Yuan L, Liu X, Wen S, Luo C, Wang D, Chen Y, Luo H, Shu Y. Glucosidase alpha neutral C promotes influenza virus replication by inhibiting proteosome-dependent degradation of hemagglutinin. Signal Transduct Target Ther 2025; 10:131. [PMID: 40263249 PMCID: PMC12015365 DOI: 10.1038/s41392-025-02227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
The H7N9 influenza virus poses a significant threat to human health, and the mechanism by which it infects humans remains incompletely understood. Our investigation has unveiled significant insights into the role of glucosidase alpha, neutral C (GANC) gene in human H7N9 infections. Through whole genome sequencing (WGS), we identified five low-frequency functional and heterozygous variants of GANC strongly associated with human H7N9 infections compared to healthy controls. Furthermore, we observed a reduction in mRNA and protein expression of GANC following H7N9 virus infection in vitro and in vivo. Subsequent experiments involving GANC demonstrated the promotion of H7N9 virus replication in a stable strain with GANC overexpression. Conversely, GANC knockdown exhibited the ability to restrict influenza A virus (IAV) replication, including H7N9, H9N2, and H1N1, both in vitro and in vivo. This inhibition was mediated by GANC's ability to promote the degradation of H7N9 hemagglutinin (HA). Moreover, we discovered that GANC knockdown facilitated the degradation of HA in a proteasome-dependent manner. The inhibition caused by GANC knockdown was mediated by promoting direct binding of HA with the proteasome 26S subunit, non-ATPase, 1 (PSMD1) and PSMD2. All five variants in the GANC gene reduced their ability to promote H7N9 virus replication, and also diminished the levels of GANC-induced HA protein expression. Our findings revealed a novel mechanism by which GANC inhibits the proteasome-dependent degradation of HA to promote H7N9 virus replication. These results suggest that GANC may play an important role in IAV replication.
Collapse
Affiliation(s)
- Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minqi Liang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Feng Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Simin Wen
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Matsushima T, Naito Y, Chiba T, Kurimoto R, Itano K, Ochiai K, Takahashi K, Goshima N, Asahara H. Localizatome: a database for stress-dependent subcellular localization changes in proteins. Database (Oxford) 2025; 2025:baaf028. [PMID: 40257905 PMCID: PMC12010962 DOI: 10.1093/database/baaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Understanding protein subcellular localization and its dynamic changes is crucial for elucidating cellular function and disease mechanisms, particularly under stress conditions, where protein localization changes can modulate cellular responses. Currently available databases provide insights into protein localization under steady-state conditions; however, stress-related dynamic localization changes remain poorly understood. Here, we present the Localizatome, a comprehensive database that captures stress-induced protein localization dynamics in living cells. Using an original high-throughput microscopy system and machine learning algorithms, we analysed the localization patterns of 10 287 fluorescent protein-fused human proteins in HeLa cells before and after exposure to oxidative stress. Our analysis revealed that 1910 proteins exhibited oxidative stress-dependent localization changes, particularly forming distinct foci. Among them, there were stress granule assembly factors and autophagy-related proteins, as well as components of various signalling pathways. Subsequent characterization identified some specific amino acid motifs and intrinsically disordered regions associated with stress-induced protein redistribution. The Localizatome provides open access to these data through a web-based interface, supporting a wide range of studies on cellular stress response and disease mechanisms. Database URL https://localizatome.embrys.jp/.
Collapse
Affiliation(s)
- Takahide Matsushima
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuki Naito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Keiko Itano
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Ochiai
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Koichi Takahashi
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Human Science, Faculty of Human Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
| |
Collapse
|
17
|
Aggarwal B, Sinha S. CellSP: Module discovery and visualization for subcellular spatial transcriptomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632553. [PMID: 39868198 PMCID: PMC11761418 DOI: 10.1101/2025.01.12.632553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Spatial transcriptomics has enabled the study of mRNA distributions within cells, a key aspect of cellular function. However, there is a dearth of tools that can identify and interpret functionally relevant spatial patterns of subcellular transcript distribution. To address this, we present CellSP, a computational framework for identifying, visualizing, and characterizing consistent subcellular spatial patterns of mRNA. CellSP introduces the concept of "gene-cell modules", which are gene sets with coordinated subcellular transcript distributions in many cells. It provides intuitive visualizations of the captured patterns and offers functional insights into each discovered module. We demonstrate that CellSP reliably identifies functionally significant modules across diverse tissues and technologies. We use the tool to discover subcellular spatial phenomena related to myelination, axonogenesis and synapse formation in the mouse brain. We find immune response-related modules that change between kidney cancer and healthy samples, and myelination-related modules specific to mouse models of Alzheimer's Disease.
Collapse
|
18
|
Mei Y, Gosztyla ML, Tan X, Dozier LE, Wilkinson B, McKetney J, Lee J, Chen M, Tsai D, Kopalle H, Gritsenko MA, Hartel N, Graham NA, Flores I, Gilmore-Hall SK, Xu S, Marquez CA, Liu SN, Fong D, Chen J, Licon K, Hong D, Wright SN, Kreisberg JF, Nott A, Smith RD, Qian WJ, Swaney DL, Iakoucheva LM, Krogan NJ, Patrick GN, Zhou Y, Feng G, Coba MP, Yeo GW, Ideker T. Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders. Cell Syst 2025; 16:101204. [PMID: 40054464 DOI: 10.1016/j.cels.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.
Collapse
Affiliation(s)
- Yuan Mei
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lara E Dozier
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin McKetney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - John Lee
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorothy Tsai
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hema Kopalle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ilse Flores
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen K Gilmore-Hall
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Charlotte A Marquez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan Fong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kate Licon
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah N Wright
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, White City Campus, London W12 7RH, UK; UK Dementia Research Institute, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Gentry N Patrick
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| | - Trey Ideker
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Bertacchi M, Theiß S, Ahmed A, Eibl M, Loubat A, Maharaux G, Phromkrasae W, Chakrabandhu K, Camgöz A, Antonaci M, Schaaf CP, Studer M, Laugsch M. Unravelling the conundrum of nucleolar NR2F1 localization using antibody-based approaches in vitro and in vivo. Commun Biol 2025; 8:594. [PMID: 40204944 PMCID: PMC11982218 DOI: 10.1038/s42003-025-07985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
As a transcription factor, NR2F1 regulates spatiotemporal gene expression in the nucleus particularly during development. Aberrant NR2F1 causes the rare neurodevelopmental disorder Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. In addition, altered NR2F1 expression is frequently observed in various cancers and is considered a prognostic marker or potential therapeutic target. NR2F1 has been found in both the nucleus and nucleoli, suggesting a non-canonical and direct role in the latter compartment. Hence, we studied this phenomenon employing various in vitro and in vivo models using different antibody-dependent approaches. Examination of seven commonly used anti-NR2F1 antibodies in different human cancer and stem cells as well as in wild type and null mice revealed that NR2F1 nucleolar localization is artificial and has no functional role. Our subsequent comparative analysis demonstrated which anti-NR2F1 antibody best fits which approach. The data allow for correct data interpretation and underline the need to optimize any antibody-mediated technique.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France.
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ayat Ahmed
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Michael Eibl
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Gwendoline Maharaux
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Wanchana Phromkrasae
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Krittalak Chakrabandhu
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KITZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marco Antonaci
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose (iBV), 06108, Nice, France
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Schaffer LV, Hu M, Qian G, Moon KM, Pal A, Soni N, Latham AP, Pontano Vaites L, Tsai D, Mattson NM, Licon K, Bachelder R, Cesnik A, Gaur I, Le T, Leineweber W, Palar A, Pulido E, Qin Y, Zhao X, Churas C, Lenkiewicz J, Chen J, Ono K, Pratt D, Zage P, Echeverria I, Sali A, Harper JW, Gygi SP, Foster LJ, Huttlin EL, Lundberg E, Ideker T. Multimodal cell maps as a foundation for structural and functional genomics. Nature 2025:10.1038/s41586-025-08878-3. [PMID: 40205054 DOI: 10.1038/s41586-025-08878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Human cells consist of a complex hierarchy of components, many of which remain unexplored1,2. Here we construct a global map of human subcellular architecture through joint measurement of biophysical interactions and immunofluorescence images for over 5,100 proteins in U2OS osteosarcoma cells. Self-supervised multimodal data integration resolves 275 molecular assemblies spanning the range of 10-8 to 10-5 m, which we validate systematically using whole-cell size-exclusion chromatography and annotate using large language models3. We explore key applications in structural biology, yielding structures for 111 heterodimeric complexes and an expanded Rag-Ragulator assembly. The map assigns unexpected functions to 975 proteins, including roles for C18orf21 in RNA processing and DPP9 in interferon signalling, and identifies assemblies with multiple localizations or cell type specificity. It decodes paediatric cancer genomes4, identifying 21 recurrently mutated assemblies and implicating 102 validated new cancer proteins. The associated Cell Visualization Portal and Mapping Toolkit provide a reference platform for structural and functional cell biology.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mengzhou Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gege Qian
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abantika Pal
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Neelesh Soni
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew P Latham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Dorothy Tsai
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anthony Cesnik
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Trang Le
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | | | - Aji Palar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ernst Pulido
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA
| | - Yue Qin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Xiaoyu Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christopher Churas
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joanna Lenkiewicz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Keiichiro Ono
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, Palo Alto, CA, USA.
- Department of Pathology, Stanford University, Palo Alto, CA, USA.
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Patterson A, Boyle N, John J, Wang M, Mannochio-Russo H, Pyo JJ, Kim MS, Tian S, Koo I, Anitha M, Tian Y, Morgan E, Murray I, Perdew G, Wu G, Dorrestein P, Bisanz J, Redinbo M. Glucuronidation Metabolomic Fingerprinting to Map Host-Microbe Metabolism. RESEARCH SQUARE 2025:rs.3.rs-6321321. [PMID: 40297700 PMCID: PMC12036448 DOI: 10.21203/rs.3.rs-6321321/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Glucuronidation is an important detoxification pathway that operates in balance with gastrointestinal microbial β-glucuronidase (GUS) enzymes that can regenerate active metabolites from their glucuronidated forms. Although significant progress has been made in characterizing GUS enzymes, methods to comprehensively define the glucuronidome - the collection of glucuronidated metabolites - remain limited. In this study we employed pattern-filtering data science approaches alongside untargeted LC-MS/MS metabolomics to map the glucuronidome in urine, serum, and colon/fecal samples from gnotobiotic and conventional mice. Our findings reveal microbiome-driven shifts in the glucuronidome, highlighting how differential GUS activity can influence host metabolite profiles. Reverse metabolomics of known glucuronidated chemicals and glucuronidation pattern filtering searches in public metabolomics datasets exposed the diversity of glucuronidated metabolites in human and mouse ecosystems. In summary, we present a new glucuronidation fingerprint resource that provides broader access to and analysis of the glucuronidome. By systematically capturing glucuronidation patterns, this resource enhances unknown metabolite annotation efforts and provides new insights into the dynamic relationship between the host and bacterial biotransformation activities.
Collapse
|
22
|
Gorzkowska J, Kozak W, Bobis-Wozowicz S, Cherepashuk I, Madeja Z, Lasota S. The dynamics of chemoattractant receptors redistribution in the electrotaxis of 3T3 fibroblasts. Cell Commun Signal 2025; 23:173. [PMID: 40200280 PMCID: PMC11980103 DOI: 10.1186/s12964-025-02165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Electrotaxis, the directed cell movement in direct current electric field (dcEF), is crucial for wound healing and development. We recently proposed a biphasic electrotaxis mechanism, where an initial rapid response is driven by ionic mechanisms, while redistribution of membrane components come into play during prolonged exposure to dcEF. METHODS To verify this hypothesis, we studied the redistribution dynamics of EGFR, PDGFRα/β, and TGFβR1 in dcEF. For this purpose, we utilized cells transfected with plasmids encoding fluorescently tagged receptors, which were exposed to dcEF in a custom-designed electrotactic chamber. Fluorescent images were captured using wide-field or TIRF microscopy, enabling precise quantitative analysis of receptor redistribution. Additionally, the functional significance of these selected receptors in electrotaxis was evaluated by silencing their expression using an siRNA library. RESULTS Although EGFR moved immediately to cathode after dcEF application, maximum distribution asymmetry was reached after 30-40 min. This process was more efficient at higher dcEF intensities, specifically, asymmetry was greater at 3 V/cm compared to 1 V/cm, consistent with the biphasic mechanism observed only under the stronger dcEF. Additionally, redistribution was more effective under alkaline conditions and near the cell base, but decreased when glass was coated with poly-L-lysine, indicating electroosmosis as a key factor. Importantly, EGFR redistribution did not correlate with the rapid reaction of 3T3 cells to dcEF reversal, which occurred within 1-2 min, when receptor orientation was not yet reversed. PDGFRα exhibited similar but less marked cathodal redistribution, while PDGFRβ and TGFβR1 did not redistribute. siRNA knockdown experiments confirmed the importance of EGFR and ErbB4 in the electrotaxis. EGFR's role was largely ligand-independent, and it had a significant impact on the response of 3T3 cells to dcEF during the first hour of the experiment, but was not involved in the fastest response, which was Kir-dependent. CONCLUSIONS Our study suggests that EGFR redistribution may play a role in the early stages and partially contribute to the long-term electrotaxis of 3T3 fibroblasts. However, this mechanism alone does not fully explain rapid responses to dcEF orientation changes indicating a more complex, multimodal mechanism of electrotaxis in these cells.
Collapse
Affiliation(s)
- Jagoda Gorzkowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wiktoria Kozak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ivan Cherepashuk
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Sławomir Lasota
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
23
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry. Viruses 2025; 17:542. [PMID: 40284985 PMCID: PMC12031361 DOI: 10.3390/v17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions.
Collapse
Affiliation(s)
- Daniel J. Fernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Cheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. Curr Biol 2025; 35:1601-1611.e5. [PMID: 40101718 PMCID: PMC11981834 DOI: 10.1016/j.cub.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allow us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell-cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Gottschlich A, Grünmeier R, Hoffmann GV, Nandi S, Kavaka V, Müller PJ, Jobst J, Oner A, Kaiser R, Gärtig J, Piseddu I, Frenz-Wiessner S, Fairley SD, Schulz H, Igl V, Janert TA, Di Fina L, Mulkers M, Thomas M, Briukhovetska D, Simnica D, Carlini E, Tsiverioti CA, Trefny MP, Lorenzini T, Märkl F, Mesquita P, Brabenec R, Strzalkowski T, Stock S, Michaelides S, Hellmuth J, Thelen M, Reinke S, Klapper W, Gelebart PF, Nicolai L, Marr C, Beltrán E, Megens RTA, Klein C, Baran-Marszak F, Rosenwald A, von Bergwelt-Baildon M, Bröckelmann PJ, Endres S, Kobold S. Dissection of single-cell landscapes for the development of chimeric antigen receptor T cells in Hodgkin lymphoma. Blood 2025; 145:1536-1552. [PMID: 40178843 PMCID: PMC12002222 DOI: 10.1182/blood.2023022197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/11/2024] [Indexed: 04/05/2025] Open
Abstract
ABSTRACT The success of targeted therapies for hematological malignancies has heralded their potential as both salvage treatment and early treatment lines, reducing the need for high-dose, intensive, and often toxic chemotherapeutic regimens. For young patients with classic Hodgkin lymphoma (cHL), immunotherapies provide the possibility to lessen long-term, treatment-related toxicities. However, suitable therapeutic targets are lacking. By integrating single-cell dissection of the tumor landscape and an in-depth, single-cell-based off-tumor antigen prediction, we identify CD86 as a promising therapeutic target in cHL. CD86 is highly expressed on Hodgkin and Reed-Sternberg cancer cells and cHL-specific tumor-associated macrophages. We reveal CD86-CTLA-4 as a key suppressive pathway in cHL, driving T-cell exhaustion. Cellular therapies targeting CD86 had extraordinary efficacy in vitro and in vivo and were safe in immunocompetent mouse models without compromising bacterial host defense in sepsis models. Our results prove the potential value of anti-CD86 immunotherapies for treating cHL.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Gordon Victor Hoffmann
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Sayantan Nandi
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Vladyslav Kavaka
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Philipp Jie Müller
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Jakob Jobst
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Arman Oner
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Jan Gärtig
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Ignazio Piseddu
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Child and Adolescent Health, Partner Site Munich, Munich, Germany
| | - Savannah D. Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Institute of Cardiovascular Prevention, LMU Munich, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Veronika Igl
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Thomas Alexander Janert
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Lea Di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maité Mulkers
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Donjetë Simnica
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Christina Angeliki Tsiverioti
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Marcel P. Trefny
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Theo Lorenzini
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Florian Märkl
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Pedro Mesquita
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Ruben Brabenec
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Thaddäus Strzalkowski
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Sophia Stock
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Stefanos Michaelides
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
| | - Johannes Hellmuth
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Martin Thelen
- Department of General, Visceral, Thoracic, and Transplantation Surgery
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sarah Reinke
- Hematopathology Section, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Pascal Francois Gelebart
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Hematology, Haukeland University Hospital, Bergen, Norway
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Remco T. A. Megens
- Institute of Cardiovascular Prevention, LMU Munich, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Child and Adolescent Health, Partner Site Munich, Munich, Germany
- Gene Center, Ludwig Maximilian University Munich, Munich, Germany
| | - Fanny Baran-Marszak
- INSERM U978, University of Paris 13, Bobigny, France
- Service d’Hématologie Biologique, Hôpitaux Universitaire Paris Seine Saint Denis, Hôpital Avicenne, Université Sorbonne Paris Nord Bobigny, Paris, France
| | - Andreas Rosenwald
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Bavarian Cancer Research Center, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
| | - Paul J. Bröckelmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf and German Hodgkin Study Group, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
- Einheit für Klinische Pharmakologie, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Member of the German Center for Lung Research, Munich, Germany
- German Cancer Consortium, a partnership between Ludwig Maximilian University Hospital and German Cancer Consortium Heidelberg, Munich, Germany
- Einheit für Klinische Pharmakologie, Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Neuherberg, Germany
| |
Collapse
|
26
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Carroll BS, Plassmeyer SP, Emenecker RJ, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Moyer DC, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Holehouse AS, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. Mol Cell 2025; 85:1445-1466.e13. [PMID: 40147441 DOI: 10.1016/j.molcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Most human transcription factor (TF) genes encode multiple protein isoforms differing in DNA-binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators," both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Brent S Carroll
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen P Plassmeyer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Devlin C Moyer
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Martha L Bulyk
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Juan I Fuxman Bass
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Büyücek S, Viehweger F, Reiswich V, Gorbokon N, Chirico V, Bernreuther C, Lutz F, Kind S, Schlichter R, Weidemann S, Clauditz TS, Hinsch A, Bawahab AA, Jacobsen F, Luebke AM, Dum D, Hube-Magg C, Kluth M, Möller K, Menz A, Marx AH, Krech T, Lebok P, Fraune C, Sauter G, Simon R, Burandt E, Minner S, Steurer S, Lennartz M, Freytag M. Reduced occludin expression is related to unfavorable tumor phenotype and poor prognosis in many different tumor types: A tissue microarray study on 16,870 tumors. PLoS One 2025; 20:e0321105. [PMID: 40173205 PMCID: PMC11964279 DOI: 10.1371/journal.pone.0321105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 04/04/2025] Open
Abstract
Occludin is a key component of tight junctions. Reduced occludin expression has been linked to cancer progression in individual tumor types, but a comprehensive and standardized analysis across human tumor types is lacking. To study the prevalence and clinical relevance of occludin expression in cancer, a tissue microarray containing 16,870 samples from 148 different tumor types and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Occludin immunostaining was observed in 10,746 (76.6%) of 14,017 analyzable tumors, including 18.9% with weak, 16.2% with moderate, and 41.6% with strong staining intensity. Occludin positivity was found in 134 of 148 tumor categories and was most frequent in adenocarcinomas (37.5-100%) and neuroendocrine neoplasms (67.9-100%), less common in squamous cell carcinomas (23.8-93%) and in malignant mesotheliomas (up to 48.1%), and rare in Non-Hodgkin's lymphomas (1-2%) and most mesenchymal tumors. Reduced occludin staining was linked to adverse tumor features in several tumor types, including colorectal adenocarcinoma (advanced pT stage, p < 0.0001; L1 status, p = 0.0384; absence of microsatellite instability, p < 0.0001), pancreatic adenocarcinoma (advanced pT stage, p = 0.005), clear cell renal cell carcinoma (high ISUP grade, p < 0.0001; advanced pT stage, p < 0.0001; high UICC stage, p < 0.0001; distant metastasis, p = 0.0422; shortened overall or recurrence-free survival, p ≤ 0.0116), papillary renal cell carcinoma (high pT stage, p < 0.0001; high UICC stage, p = 0.0228; distant metastasis, p = 0.0338; shortened recurrence-free survival, p = 0.006), and serous high-grade ovarian cancer (advanced pT stage, p = 0.0133). Occludin staining was unrelated to parameters of tumor aggressiveness in breast, gastric, endometrial, and thyroidal cancer. Our data demonstrate significant levels of occludin expression in many different tumor entities and identify reduced occludin expression as a potentially useful prognostic feature in several tumor entities.
Collapse
Affiliation(s)
- Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pathology-Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Breyer M, Lamer S, Schlosser A, Üçeyler N. Human sensory-like neuron surfaceome analysis. PLoS One 2025; 20:e0320056. [PMID: 40173182 PMCID: PMC11964241 DOI: 10.1371/journal.pone.0320056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/12/2025] [Indexed: 04/04/2025] Open
Abstract
Acral and triggerable pain is a hallmark of diseases involving small nerve fiber impairment, yet the underlying cellular mechanisms remain elusive. A key role is attributed to pain-related proteins located within the neuronal plasma membrane of nociceptive neurons. To explore this, we employed human induced pluripotent stem cell-derived sensory-like neurons and enriched their surface proteins by biotinylation. Samples from three independent cell differentiations were analyzed via liquid chromatography tandem mass spectrometry. Detected proteins were categorized by cellular location and function, followed by generating an interaction network for deregulated surface proteins. Gene expression of selected proteins was quantified using real-time PCR. A comparative analysis was performed between a patient with Fabry disease (FD) and a healthy control, which we used as model system. We successfully extracted surfaceome proteins from human sensory-like neurons, revealing deregulation of 48 surface proteins in FD-derived neurons. Among the candidates with potential involvement in pain pathophysiology were CACNA2D3, GPM6A, EGFR, and ABCA7. Despite the lack of gene expression differences in these candidates, the interaction network indicated compromised neuronal network integrity. Our approach successfully enabled the extraction and comprehensive analysis of the surfaceome from human sensory-like neurons, establishing a novel methodological framework for investigating human sensory-like neuron biology and cellular disease mechanisms.
Collapse
Affiliation(s)
- Maximilian Breyer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Stephanie Lamer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Murakami C, Atsuta-Tsunoda K, Inomata S, Kawai T, Hijikata Y, Dilimulati K, Sakai H, Sakane F. Human PHOSPHO1 exhibits phosphatidylcholine- and phosphatidylethanolamine-phospholipase C activities and interacts with diacylglycerol kinase δ. FEBS Lett 2025; 599:1169-1186. [PMID: 39992810 DOI: 10.1002/1873-3468.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025]
Abstract
Phosphatidylcholine- and phosphatidylethanolamine-specific phospholipase C (PC-PLC and PE-PLC) activities, which generate diacylglycerol (DG) and are tricyclodecan-9-yl-xanthogenate (D609)-sensitive, have been detected in both the membrane and cytosolic fractions. We have previously demonstrated that sphingomyelin synthase isozymes, which are transmembrane proteins, exhibit PC-/PE-PLC activities. However, mammalian cytosolic PC-PLC and PE-PLC remain unidentified. Here, we demonstrated that phosphatase orphan 1 (PHOSPHO1), a cytosolic protein, exhibits D609-sensitive PC-PLC and PE-PLC activities. Moreover, the overexpression of PHOSPHO1 in HEK293 cells significantly increased the levels of cellular saturated and/or monounsaturated fatty acid-containing DG. Furthermore, DGKδ cosedimented and colocalized with PHOSPHO1. Collectively, these in vitro findings provide, for the first time, a promising candidate for the long-sought cytosolic PC-/PE-PLC, which may act as DG supply enzyme upstream of DGKδ.
Collapse
Affiliation(s)
- Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
- Institute for Advanced Academic Research, Chiba University, Japan
| | | | - Sho Inomata
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Takuma Kawai
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Yasuhisa Hijikata
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
30
|
Pilcher C, Buco PAV, Truong JQ, Ramsland PA, Smeets MF, Walkley CR, Holien JK. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS Lett 2025; 599:1094-1112. [PMID: 39887712 PMCID: PMC12035522 DOI: 10.1002/1873-3468.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The Kelch protein superfamily is an evolutionary conserved family containing 63 alternate protein coding members. The superfamily is split into three subfamilies: Kelch like (KLHL), Kelch-repeat and bric-a-bracs (BTB) domain containing (KBTBD) and Kelch domain containing protein (KLHDC). The KLHDC subfamily is one of the smallest within the Kelch superfamily, containing 10 primary members. There is little known about the structures and functions of the subfamily; however, they are thought to be involved in several cellular and molecular processes. Recently, there have been significant structural and biochemical advances for KLHDC2, which has aided our understanding of other KLHDC family members. Furthermore, small molecules directly targeting KLHDC2 have been identified, which act as tools for targeted protein degradation. This review utilises this information, in conjunction with a thorough exploration of the structural aspects and potential biological functions to summarise the relationship between KLHDCs and human disease.
Collapse
Affiliation(s)
- Courtney Pilcher
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
| | - Paula Armina V. Buco
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| | - Jia Q. Truong
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
| | - Paul A. Ramsland
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- Department of ImmunologyMonash UniversityMelbourneAustralia
- Department of Surgery, Austin HealthThe University of MelbourneMelbourneAustralia
| | | | - Carl R. Walkley
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchMelbourneAustralia
- Department of Molecular and Translational ScienceMonash UniversityMelbourneAustralia
| | - Jessica K. Holien
- School of Science, STEM CollegeRMIT UniversityMelbourneAustralia
- St Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical SchoolThe University of MelbourneCarltonAustralia
| |
Collapse
|
31
|
Yang C, Zhang Y, Yan L, Liu A, Li F, Li Y, Zhang Y. Comprehensive Analysis of GPSM2: From Pan-Cancer Analysis to Experimental Validation. J Cell Mol Med 2025; 29:e70527. [PMID: 40208185 PMCID: PMC11984320 DOI: 10.1111/jcmm.70527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/04/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
G-protein signalling modulator 2 (GPSM2) plays an important role in maintaining cell polarisation and regulating the cell cycle; however, a systematic and comprehensive analysis of GPSM2 in cancer is still lacking. Using extensive multi-omics data, we explored the pan-cancer expression levels of GPSM2 from multiple perspectives and its association with prognosis, diagnosis, tumour stemness, immune-related genes, immune cell infiltration, genomic instability, and response to immunotherapy. We also elucidated the potential pan-cancer biological functions of GPSM2 using gene set enrichment analysis (GSEA) and searched for targeted drugs that affect GPSM2 expression using connectivity map analysis. To elucidate the effect of GPSM2 on colon cancer, we evaluated its effect on the biological behaviour of two colon cancer cell lines. In this study, GPSM2 was systematically analysed and shown to have satisfactory performance in disease diagnosis and prognostic prediction of various cancers. G-protein signalling modulator 2 plays an important role in the genesis and development of various tumours and is a potential tumour diagnostic and prognostic biomarker as well as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Chunjiao Yang
- Department of OncologyThe Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of NanningNanningChina
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| | - Yuzhe Zhang
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| | - Lirong Yan
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| | - Aoran Liu
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| | - Fang Li
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| | - Yanke Li
- Department of Anorectal SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Ye Zhang
- The First Laboratory of Cancer InstituteThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
32
|
Hao H, Yuan Y, Ito A, Eberand BM, Tjondro H, Cielesh M, Norris N, Moreno CL, Maxwell JWC, Neely GG, Payne RJ, Kebede MA, Urbauer RJB, Passam FH, Larance M, Haltiwanger RS. FUT10 and FUT11 are protein O-fucosyltransferases that modify protein EMI domains. Nat Chem Biol 2025; 21:598-610. [PMID: 39775168 PMCID: PMC11949838 DOI: 10.1038/s41589-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
O-Fucosylation plays crucial roles in various essential biological events. Alongside the well-established O-fucosylation of epidermal growth factor-like repeats by protein O-fucosyltransferase 1 (POFUT1) and thrombospondin type 1 repeats by POFUT2, we recently identified a type of O-fucosylation on the elastin microfibril interface (EMI) domain of Multimerin-1 (MMRN1). Here, using AlphaFold2 screens, co-immunoprecipitation, enzymatic assays combined with mass spectrometric analysis and CRISPR-Cas9 knockouts, we demonstrate that FUT10 and FUT11, originally annotated in UniProt as α1,3-fucosyltransferases, are actually POFUTs responsible for modifying EMI domains; thus, we renamed them as POFUT3 and POFUT4, respectively. Like POFUT1/2, POFUT3/4 function in the endoplasmic reticulum, require folded domain structures for modification and participate in a non-canonical endoplasmic reticulum quality control pathway for EMI domain-containing protein secretion. This finding expands the O-fucosylation repertoire and provides an entry point for further exploration in this emerging field of O-fucosylation.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Youxi Yuan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Regional Fish Institute, Ltd., Kyoto, Japan
| | - Benjamin M Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry Tjondro
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Norris
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Joshua W C Maxwell
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Freda H Passam
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|
33
|
Lin HY, Chu PY. Mitochondrial calcium uniporter as biomarker and therapeutic target for breast cancer: Prognostication, immune microenvironment, epigenetic regulation and precision medicine. J Adv Res 2025; 70:445-461. [PMID: 38663838 PMCID: PMC11976406 DOI: 10.1016/j.jare.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Mitochondrial calcium uniporter (MCU) is a central subunit of MCU complex that regulate the levels of calcium ions within mitochondria. A comprehensive understanding the implications of MCU in clinical prognostication, biological understandings and therapeutic opportunity of breast cancer (BC) is yet to be determined. OBJECTIVES This study aims to investigate the role of MCU in predictive performance, tumor progression, epigenetic regulation, shaping of tumor immune microenvironment, and pharmacogenetics and the development of anti-tumor therapy for BC. METHODS The downloaded TCGA datasets were used to identify predictive ability of MCU expressions via supervised learning principle. Functional enrichment, mutation landscape, immunological profile, drug sensitivity were examined using bioinformatics analysis and confirmed by experiments exploiting human specimens, in vitro and in vivo models. RESULTS MCU copy numbers increase with MCU gene expression. MCU expression, but not MCU genetic alterations, had a positive correlation with known BC prognostic markers. Higher MCU levels in BC showed modest efficacy in predicting overall survival. In addition, high MCU expression was associated with known BC prognostic markers and with malignancy. In BC tumor and sgRNA-treated cell lines, enrichment pathways identified the involvement of cell cycle and immunity. miR-29a was recognized as a negative epigenetic regulator of MCU. High MCU levels were associated with increased mutation levels in oncogene TP53 and tumor suppression gene CDH1, as well as with an immunosuppressive microenvironment. Sigle-cell sequencing indicated that MCU mostly mapped on to tumor cell and CD8 T-cells. Inter-databases verification further confirmed the aforementioned observation. miR-29a-mediated knockdown of MCU resulted in tumor suppression and mitochondrial dysfunction, as well as diminished metastasis. Furthermore, MCU present pharmacogenetic significance in cellular docetaxel sensitivity and in prediction of patients' response to chemotherapeutic regimen. CONCLUSION MCU shows significant implication in prognosis, outcome prediction, microenvironmental shaping and precision medicine for BC. miR-29a-mediated MCU inhibition exerts therapeutic effect in tumor growth and metastasis.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
34
|
Niland S, Eble JA. Decoding the MMP14 integrin link: Key player in the secretome landscape. Matrix Biol 2025; 136:36-51. [PMID: 39828138 DOI: 10.1016/j.matbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion. Integrins serve as mechanosensors that mediate the contact of cells with the scaffold of the extracellular matrix and are significantly involved in the precise positioning and activity control of the membrane-bound collagenase MMP14. As a secretome proteinase, MMP14 influences and modifies the secretome itself. While integrins and MT-MMPs are membrane bound, but can be released and are therefore border crossers between the cell surface and the secretome, the extracellular matrix is not constitutively cell-bound, but its binding to integrins and other cell receptors is a stringently regulated process. To understand the mutual interactions in detail, we first summarize the structure and function of MMP14 and how it is regulated at the enzymatic and cellular level. In particular, the mutual interactions between integrins and MMP14 include the proteolytic cleavage of integrins themselves by MMP14. We then review the biochemical, cell biological and physiological effects of MMP14 on the composition and associated functions in the tumor secretome when either bound to the cell membrane, or located on extracellular microvesicles, or as a proteolytically shed non-membrane-bound ectodomain. Novel methods of proteomics, including the analysis of extravesicular vesicles, and new methods for the quantification of MMP14 will provide new research and diagnostic tools. The proteolytic modification of the tumor secretome, especially by MMP14, may bring an additional aspect to tumor secretome studies and will have an impact on the diagnosis and most likely also on the therapy of cancer patients.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
35
|
Remmel A. Where do proteins go in cells? Next-generation methods map the molecules' hidden lives. Nature 2025; 640:556-560. [PMID: 40195513 DOI: 10.1038/d41586-025-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
|
36
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Vinciguerra M, Blennow K, Zetterberg H, Di Rosa M. Sex-specific modulation of FOLR1 and its cycle enzyme genes in Alzheimer's disease brain regions. Metab Brain Dis 2025; 40:163. [PMID: 40153031 DOI: 10.1007/s11011-025-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/13/2025] [Indexed: 03/30/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive and functional decline. Its incidence increases significantly with age and is more prevalent in women than men. We investigated the folate receptor alpha (FOLR1) gene expression levels in the central nervous system (CNS) of AD and non-demented healthy control (NDHC) subjects. Our cohort included 3,946 samples: 2,391 NDHC and 1,555 AD patients, stratified by brain region, age, and sex. Interestingly, a significant increase in FOLR1 expression was observed only in females with AD compared to NDHC females. Furthermore, we found that FOLR1 expression was differentially increased in the prefrontal cortex (PFC) and diencephalon (DIE) only in AD females. Moreover, in females, genes involved in the folic acid (FA) cycle that drives DNA synthesis were significantly modulated. In contrast, in males, downregulation of TYMS effectively blocks the completion of the cycle, thereby preventing downstream DNA synthesis. Tissue Transcriptome Deconvolution (TTD) analysis revealed astrocytes and endothelial cells associated with FOLR1 expression in both AD males and females. Gene Ontology analysis supported these findings, showing enrichment in processes aligned with these cell types. Positive correlations between brain FOLR1 expression and markers for astrocytes (glial fibrillary acidic protein) and endothelial cells (CD31) provided further validation. Our findings suggest a potential role for sex-dependent FOLR1 expression and its association with specific brain regions and cellular processes in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, Sicily, 95100, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer'S Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
37
|
Sunshine S, Puschnik A, Retallack H, Laurie MT, Liu J, Peng D, Knopp K, Zinter MS, Ye CJ, DeRisi JL. Defining the host dependencies and the transcriptional landscape of RSV infection and bystander activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645108. [PMID: 40196489 PMCID: PMC11974880 DOI: 10.1101/2025.03.26.645108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Respiratory syncytial virus (RSV) is a globally prevalent pathogen, causes severe disease in older adults, and is the leading cause of bronchiolitis and pneumonia in the United States for children during their first year of life [1]. Despite its prevalence worldwide, RSV-specific treatments remain unavailable for most infected patients. Here, we leveraged a combination of genome-wide CRISPR knockout screening and single-cell RNA sequencing to improve our understanding of the host determinants of RSV infection and the host response in both infected cells, and uninfected bystanders. These data reveal temporal transcriptional patterns that are markedly different between RSV infected and bystander activated cells. Our data show that expression of interferon-stimulated genes is primarily observed in bystander activated cells, while genes implicated in the unfolded protein response and cellular stress are upregulated specifically in RSV infected cells. Furthermore, genome-wide CRISPR screens identified multiple host factors important for viral infection, findings which we contextualize relative to 29 previously published screens across 17 additional viruses. These unique data complement and extend prior studies that investigate the proinflammatory response to RSV infection, and juxtaposed to other viral infections, provide a rich resource for further hypothesis testing.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew T. Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Duo Peng
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Kristeene Knopp
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Matt S. Zinter
- Department of Pediatrics, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute (BARI), University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Ramirez A, Orcutt-Jahns BT, Pascoe S, Abraham A, Remigio B, Thomas N, Meyer AS. Integrative, high-resolution analysis of single cell gene expression across experimental conditions with PARAFAC2-RISE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605698. [PMID: 39131377 PMCID: PMC11312543 DOI: 10.1101/2024.07.29.605698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Effective and scalable exploration and analysis tools are vital for the extraction of insights from large-scale single-cell data. However, current techniques for modeling single-cell studies performed across experimental conditions (e.g., samples, perturbations, or patients) require restrictive assumptions, lack flexibility, or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that Reduction and Insight in Single-cell Exploration (RISE), an adaptation of the tensor decomposition method PARAFAC2, enables the dimensionality reduction and analysis of single-cell data across conditions. We demonstrate the benefits of RISE across two distinct examples of single-cell RNA-sequencing experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus (SLE) patient samples. RISE enables straightforward associations of gene variation patterns with specific patients or perturbations, while connecting each coordinated change to single cells without requiring cell type annotations. The theoretical grounding of RISE suggests a unified framework for many single-cell data modeling tasks. Thus, RISE provides an intuitive universal dimensionality reduction approach for multi-sample single-cell studies across diverse biological contexts.
Collapse
Affiliation(s)
- Andrew Ramirez
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | | | - Sean Pascoe
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Armaan Abraham
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
| | | | | | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles (UCLA), CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, CA, USA
| |
Collapse
|
39
|
Flörkemeier I, Hotze HL, Heyne AL, Hildebrandt J, Weimer JP, Hedemann N, Rogmans C, Holthaus D, Siebert FA, Hirt M, Polten R, Morgan M, Klapdor R, Schambach A, Dempfle A, Maass N, van Mackelenbergh MT, Clement B, Bauerschlag DO. Dual Topoisomerase Inhibitor Is Highly Potent and Improves Antitumor Response to Radiotherapy in Cervical Carcinoma. Int J Mol Sci 2025; 26:2829. [PMID: 40243435 PMCID: PMC11988843 DOI: 10.3390/ijms26072829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in vaccination and early detection, the total number of cases and deaths from cervical cancer has risen steadily in recent decades, making it the fourth most common type of cancer in women worldwide. Low-income countries in particular struggle with limited resources and treatment limitations for cervical cancer. Thus, effective medicines that are simple to manufacture are needed. The newly developed dual topoisomerase inhibitor P8-D6, with its outstanding ability to induce apoptosis, could be a promising option. In this study, the efficacy of P8-D6 in combination with radiochemotherapy against cervical carcinoma was investigated in established cell lines and in a translational approach in ex vivo patient cells by measuring the cytotoxicity, cell viability and caspase activity in vitro in 2D and 3D cell cultures. Treatment with P8-D6 resulted in significantly greater cytotoxicity and apoptosis induction compared to standard therapeutic cisplatin in both 2D and 3D cell cultures. Specifically, a considerably stronger anti-proliferative effect was observed. The treatment also led to morphological changes and a loss of membrane integrity in the 3D spheroids. Radiotherapy also benefited greatly from P8-D6 treatment. In fact, P8-D6 was a more potent radiosensitizer than cisplatin. Simple synthesis, favorable physicochemical properties and high potency make P8-D6 a promising cervical cancer drug candidate.
Collapse
Affiliation(s)
- Inken Flörkemeier
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Hannah L. Hotze
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Anna Lena Heyne
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Jonas Hildebrandt
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Jörg P. Weimer
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Nina Hedemann
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Christoph Rogmans
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Frank-André Siebert
- Clinic of Radiotherapy, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Markus Hirt
- Clinic of Radiotherapy, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Rüdiger Klapdor
- Department of Gynecology and Obstetrics, Hannover Medical School, 30625 Hannover, Germany
- Department of Gynecology and Obstetrics, Albertinen Hospital Hamburg, 22457 Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Marion T. van Mackelenbergh
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
| | - Bernd Clement
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
| | - Dirk O. Bauerschlag
- Department of Gynecology and Obstetrics, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany (D.O.B.)
- Department of Gynecology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
40
|
Mulvey JF, Meyer EL, Svenningsen MS, Lundby A. Integrating -Omic Technologies across Modality, Space, and Time to Decipher Remodeling in Cardiac Disease. Curr Cardiol Rep 2025; 27:74. [PMID: 40116972 PMCID: PMC11928419 DOI: 10.1007/s11886-025-02226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE OF REVIEW Despite significant efforts to understand pathophysiological processes underlying cardiac diseases, the molecular causes for the most part remain unresolved. Rapid advancements in -omics technologies, and their application in cardiac research, offer new insight into cardiac remodeling in disease states. This review aims to provide an accessible overview of recent advances in omics approaches for studying cardiac remodeling, catering to readers without extensive prior expertise. RECENT FINDINGS We provide a methodologically focused overview of current methods for performing transcriptomics and proteomics, including their extensions for single-cell and spatial measurements. We discuss approaches to integrate data across modalities, resolutions and time. Key recent applications within the cardiac field are highlighted. Each -omics modality can provide insight, yet each existing experimental method has technical or conceptual limitations. Integrating data across multiple modalities can leverage strengths and mitigate weaknesses, ultimately enhancing our understanding of cardiac pathophysiology.
Collapse
Affiliation(s)
- John F Mulvey
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily L Meyer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Skjoldan Svenningsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Ravi S, Sharma T, Yip M, Yang H, Xie J, Gao G, Tai PL. A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences. Nucleic Acids Res 2025; 53:gkaf233. [PMID: 40156867 PMCID: PMC11954528 DOI: 10.1093/nar/gkaf233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/01/2025] Open
Abstract
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result in higher expression levels and can lead to protein misfolding and reduced expression. Here, we aimed to develop a novel deep learning (DL) tool using a recurrent neural network (RNN) to define cell type-dependent codon biases. Using gene expression data from three different tissue types (brain, liver, and muscle) and all secretory genes, we trained DL models to predict optimal codon usage. Codon-optimized sequences for test reporter genes exhibited enhanced protein expression compared to their original sequences and those optimized using a publicly available tool. Interestingly, DL models trained on genes expressed in liver cells (hepatocytes) resulted in the highest levels of expression when tested in vitro, irrespective of the cell type. Our findings also demonstrate that DL-based codon optimization algorithms can significantly enhance protein translation, particularly for secretory proteins, which are crucial for therapeutic applications. This research represents a novel approach to codon optimization with broader implications for protein-based pharmaceuticals, vaccine manufacturing, gene therapy, and other recombinant DNA products.
Collapse
Affiliation(s)
- Sandhiya Ravi
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Tapan Sharma
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Mitchell Yip
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Huiya Yang
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Jun Xie
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Guangping Gao
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| | - Phillip W L Tai
- Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, United States
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, United States
- Li Weibo Institute of Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01605, United States
| |
Collapse
|
42
|
Du X, Chen W. Bioinformatic analysis of serpina1 expression in papillary thyroid carcinoma and its potential association with Hashimoto's thyroiditis. Discov Oncol 2025; 16:356. [PMID: 40106166 PMCID: PMC11923347 DOI: 10.1007/s12672-025-02079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
PURPOSE Previous studies have suggested that SERPINA1 may promote a better prognosis in papillary thyroid carcinoma (PTC) along with Hashimoto's thyroiditis (HT). This study aims to further explore the role of the SERPINA1 gene in PTC and its relationship with HT using multiple databases. METHODS Transcriptomic data from The Cancer Genome Atlas (TCGA) were utilized to analyze differences in SERPINA1 expression between PTC patients with and without HT. The expression levels of SERPINA1 in tumor tissues and its association with tumor characteristics were assessed using the Wilcoxon test across both patient groups. The impact of SERPINA1 expression on immune cell infiltration in PTC was evaluated using the CIBERSORT tool. Single-cell transcriptomic data from the Gene Expression Omnibus (GEO) were further analyzed to identify SERPINA1-expressing subpopulations based on Thyroid Differentiation Score (TDS) and pseudotime analysis. Gene Set Variation Analysis (GSVA) was employed to characterize pathways associated with SERPINA1, inferring its potential functions. Finally, CellChat was used to investigate key ligand-receptor interactions between SERPINA1-positive subpopulations and other cell types. RESULTS TCGA data analysis reveals that, compared to normal thyroid tissue, the transcriptional level of SERPINA1 is significantly elevated in PTC tissues. Moreover, the expression of SERPINA1 is closely linked to certain clinical pathological features of PTC and the infiltration of immune cells in the tumor microenvironment. Single-cell transcriptome analysis reveals that SERPINA1 is primarily expressed in thyrocytes and myeloid cells. In thyrocytes, SERPINA1 is associated with complement-related proteins (e.g., C3, CD55). In poorly differentiated thyrocytes, it is linked to protease inhibitors and epithelial-mesenchymal transition (EMT) pathways, while in moderately differentiated thyrocytes, it associates with apolipoproteins APOE and APOC1. In macrophages, SERPINA1 is highly expressed in HT-associated macrophages and unpolarized macrophages, correlating with inflammation and extracellular matrix regulation pathways. Cell-cell interaction analysis indicates that SERPINA1-positive cells interact with other cells in the tumor microenvironment through macrophage migration inhibitory factor (MIF) and fibronectin 1 (FN1). CONCLUSION Compared to normal thyroid tissue or cells, the expression level of SERPINA1 is elevated in PTC. In cancer cells, SERPINA1 may be associated with the complement system and complement regulator functions. In poorly differentiated thyrocytes, SERPINA1 may primarily function as a protease inhibitor and is closely related to FN1. In moderately differentiated thyrocytes, SERPINA1 is associated with apolipoproteins. In unpolarized macrophages, the function of SERPINA1 may be to act as a serine protease inhibitor, participating in the remodeling of the extracellular matrix. In macrophages within an HT environment, the elevated expression of SERPINA1 may serve as a protective mechanism to limit inflammation. In the tumor microenvironment coexisting with HT, SERPINA1 outside the tumor cells may enter the tumor cells through lipid metabolism pathways. The potential role of SERPINA1 in PTC progression is complex, and the findings of this study require further validation.
Collapse
Affiliation(s)
- Xiuyuan Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Highway, Huaiyin District, Jinan, 250000, Shandong, China
| | - Wanjun Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Highway, Huaiyin District, Jinan, 250000, Shandong, China.
| |
Collapse
|
43
|
Latham AP, Zhang W, Tempkin JOB, Otsuka S, Ellenberg J, Sali A. Integrative spatiotemporal modeling of biomolecular processes: Application to the assembly of the nuclear pore complex. Proc Natl Acad Sci U S A 2025; 122:e2415674122. [PMID: 40085653 PMCID: PMC11929490 DOI: 10.1073/pnas.2415674122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Dynamic processes involving biomolecules are essential for the function of the cell. Here, we introduce an integrative method for computing models of these processes based on multiple heterogeneous sources of information, including time-resolved experimental data and physical models of dynamic processes. First, for each time point, a set of coarse models of compositional and structural heterogeneity is computed (heterogeneity models). Second, for each heterogeneity model, a set of static integrative structure models is computed (a snapshot model). Finally, these snapshot models are selected and connected into a series of trajectories that optimize the likelihood of both the snapshot models and transitions between them (a trajectory model). The method is demonstrated by application to the assembly process of the human nuclear pore complex in the context of the reforming nuclear envelope during mitotic cell division, based on live-cell correlated electron tomography, bulk fluorescence correlation spectroscopy-calibrated quantitative live imaging, and a structural model of the fully assembled nuclear pore complex. Modeling of the assembly process improves the model precision over static integrative structure modeling alone. The method is applicable to a wide range of time-dependent systems in cell biology and is available to the broader scientific community through an implementation in the open source Integrative Modeling Platform (IMP) software.
Collapse
Affiliation(s)
- Andrew P. Latham
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| | - Wanlu Zhang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Jeremy O. B. Tempkin
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| | - Shotaro Otsuka
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, CA94143
| |
Collapse
|
44
|
Papale A, Segueni J, El Maroufi H, Noordermeer D, Holcman D. Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms. Proc Natl Acad Sci U S A 2025; 122:e2413112122. [PMID: 40063813 PMCID: PMC11929393 DOI: 10.1073/pnas.2413112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/27/2025] [Indexed: 03/25/2025] Open
Abstract
Topologically associating domains (TADs) are sub-Megabase regions in vertebrate genomes with enriched intradomain interactions that restrict enhancer-promoter contacts across their boundaries. However, the mechanisms that separate TADs remain incompletely understood. Most boundaries between TADs contain CTCF binding sites (CBSs), which individually contribute to the blocking of Cohesin-mediated loop extrusion. Using genome-wide classification, here we show that the width of TAD boundaries forms a continuum from narrow to highly extended and correlates with CBSs distribution, chromatin features, and gene regulatory elements. To investigate how these boundary widths emerge, we modified the random crosslinker polymer model to incorporate specific boundary configurations, enabling us to evaluate the differential impact of boundary composition on TAD insulation. Our analysis, using three generic boundary categories, identifies differential influence on TAD insulation, with varying local and distal effects on neighboring domains. Notably, we find that increasing boundary width reduces long-range inter-TAD contacts, as confirmed by Hi-C data. While blocking loop extrusion at boundaries indirectly promotes spurious intermingling of neighboring TADs, extended boundaries counteract this effect, emphasizing their role in establishing genome organization. In conclusion, TAD boundary width not only enhances the efficiency of loop extrusion blocking but may also modulate enhancer-promoter contacts over long distances across TAD boundaries, providing a further mechanism for transcriptional regulation.
Collapse
Affiliation(s)
- Andrea Papale
- Department of Biology, Computational Biology and Applied Mathematics, Ecole Normale Supérieure, Institute of Biology at Ecole normale Superieure, Université Paris Sciences et Lettres, Paris 75005, France
| | - Julie Segueni
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Hanae El Maroufi
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - Daan Noordermeer
- Genome Biology Department, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette 91198, France
| | - David Holcman
- Department of Biology, Computational Biology and Applied Mathematics, Ecole Normale Supérieure, Institute of Biology at Ecole normale Superieure, Université Paris Sciences et Lettres, Paris 75005, France
- Department of Applied Mathematics and Theoretical Physics, Churchill College, University of Cambridge, Cambridge CB30DS, United Kingdom
| |
Collapse
|
45
|
Cardinale CJ, Liu Y, Kevadia A, Strong A, Watts VJ, Hakonarson H. The ulcerative colitis risk gene adenylyl cyclase 7 restrains the T-helper 2 phenotype and Class II antigen presentation. J Crohns Colitis 2025; 19:jjaf030. [PMID: 39957491 PMCID: PMC11920793 DOI: 10.1093/ecco-jcc/jjaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have shown that the most risk-conferring genetic polymorphism for ulcerative colitis (UC) outside the human leukocyte antigen locus is the amino acid substitution p.Asp439Glu in the adenylyl cyclase 7 gene (ADCY7). ADCY7 is the main isoform in the hematopoietic system and produces the second messenger cyclic AMP (cAMP) downstream of G protein-coupled receptor signaling. Our aim was to determine the contribution of this polymorphism to UC risk by analyzing its effect on ADCY7 function in cell-based assays. METHODS We characterized the p.Asp439Glu variant in cell lines using western blots, immunofluorescence, cAMP assay, and luciferase assay. We modeled this variant using siRNA knock-down in human primary CD4+ T cells and characterized them by RNA-seq, viability assay, flow cytometry, cAMP assay, and ELISA. RESULTS The p.Asp439Glu variant is deficient in protein expression but retains membrane localization. This results in a 40% reduction in cAMP synthesis and luciferase reporter expression. Knock-down of ADCY7 in T cells reduces the expression of ribosomal proteins and cAMP signaling proteins, while skewing cytokine production toward a T-helper 2 pattern and upregulating antigen presentation accompanied by increased surface expression of major histocompatibility complex Class II and CD86. CONCLUSIONS The UC risk-conferring variant, p.Asp439Glu, in ADCY7 reduces cyclic AMP signaling, leading to modifications in cytokine profile and antigen presentation. Medications that enhance cyclic AMP by direct activation of ADCY7 or by phosphodiesterase inhibition may be beneficial in this disease.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aayush Kevadia
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alanna Strong
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Yuan GH, Li J, Yang Z, Chen YQ, Yuan Z, Chen T, Ouyang W, Dong N, Yang L. Deep generative model for protein subcellular localization prediction. Brief Bioinform 2025; 26:bbaf152. [PMID: 40211979 PMCID: PMC11986326 DOI: 10.1093/bib/bbaf152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Protein sequence not only determines its structure but also provides important clues of its subcellular localization. Although a series of artificial intelligence models have been reported to predict protein subcellular localization, most of them provide only textual outputs. Here, we present deepGPS, a deep generative model for protein subcellular localization prediction. After training with protein primary sequences and fluorescence images, deepGPS shows the ability to predict cytoplasmic and nuclear localizations by reporting both textual labels and generative images as outputs. In addition, cell-type-specific deepGPS models can be developed by using distinct image datasets from different cell lines for comparative analyses. Moreover, deepGPS shows potential to be further extended for other specific organelles, such as vesicles and endoplasmic reticulum, even with limited volumes of training data. Finally, the openGPS website (https://bits.fudan.edu.cn/opengps) is constructed to provide a publicly accessible and user-friendly platform for studying protein subcellular localization and function.
Collapse
Affiliation(s)
- Guo-Hua Yuan
- Center for Molecular Medicine, Children’s Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Jinzhe Li
- Shanghai Artificial Intelligence Laboratory, 129 Longwen Road, Xuhui District, Shanghai 200232, China
- School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200433, China
| | - Zejun Yang
- Shanghai Artificial Intelligence Laboratory, 129 Longwen Road, Xuhui District, Shanghai 200232, China
| | - Yao-Qi Chen
- Center for Molecular Medicine, Children’s Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Zhonghang Yuan
- Shanghai Artificial Intelligence Laboratory, 129 Longwen Road, Xuhui District, Shanghai 200232, China
| | - Tao Chen
- School of Information Science and Technology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200433, China
| | - Wanli Ouyang
- Shanghai Artificial Intelligence Laboratory, 129 Longwen Road, Xuhui District, Shanghai 200232, China
| | - Nanqing Dong
- Shanghai Artificial Intelligence Laboratory, 129 Longwen Road, Xuhui District, Shanghai 200232, China
- Shanghai Innovation Institute, 699 Huafa Road, Xuhui District, Shanghai 200231, China
| | - Li Yang
- Center for Molecular Medicine, Children’s Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
47
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
48
|
Carvalho SM, Mansur AAP, Lobato ZIP, Leite MF, Mansur HS. Bioengineering chitosan-antibody/fluorescent quantum dot nanoconjugates for targeted immunotheranostics of non-hodgkin B-cell lymphomas. Int J Biol Macromol 2025; 294:139515. [PMID: 39761883 DOI: 10.1016/j.ijbiomac.2025.139515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e., anti-CD20, anti-CD19, and bispecific biopolymer-antibody) against NHL, conjugated with fluorescent nanoprobes. These bioengineered immunoconjugates formed water-dispersed hybrid colloidal nanostructures consisting of a photoluminescent ZnS-based quantum dots core and an antibody-modified chitosan macromolecular shell. The aim was to apply them simultaneously for the diagnosis, bioimaging, and immunotherapy of NHL cancers. The chitosan backbone was covalently functionalized with anti-CD20, anti-CD19, and both antibodies, resulting in biocompatible immunoconjugates through an eco-friendly aqueous process. Importantly, these biopolymer-antibody nanoimmunoconjugates exhibited bioaffinity for both antigenic membrane receptors, CD19 and CD20, which are overexpressed by NHL cancer cells. They served as fluorescent nanoprobes for bioimaging and specifically killing NHL cells, while remarkably preserving nonmalignant cells. Furthermore, biopsies from tumor tissues of a patient with NHL confirmed the effective anticancer potential for clinical applications in fluorescent ex vivo immunohistochemistry diagnosis of NHL cancers. It can be envisioned that these dual-antibody-modified biopolymer nanoarchitectures offer a new realm to be exploited in immunotheranostic applications for fighting cancer.
Collapse
Affiliation(s)
- Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
49
|
Kawahara R, Kautto L, Bansal N, Dipta P, Chau TH, Liquet-Weiland B, Ahn SB, Thaysen-Andersen M. HEXB Drives Raised Paucimannosylation in Colorectal Cancer and Stratifies Patient Risk. Mol Cell Proteomics 2025; 24:100927. [PMID: 39947398 PMCID: PMC11932691 DOI: 10.1016/j.mcpro.2025.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Noninvasive prognostic markers are needed to improve the survival of colorectal cancer (CRC) patients. Toward this goal, we applied untargeted systems glycobiology approaches to snap-frozen and formalin-fixed paraffin-embedded tumor tissues and peripheral blood mononuclear cells from CRC patients spanning different disease stages and matching controls to faithfully uncover molecular changes associated with CRC. Quantitative glycomics and immunohistochemistry revealed that noncanonical paucimannosidic N-glycans are elevated in CRC tumors relative to normal adjacent tissues. Cell origin-focused glycoproteomics enabled using the well-curated Human Protein Atlas combined with immunohistochemistry of CRC tumor tissues recapitulated these findings and indicated that the paucimannosidic proteins were in part from tumor-infiltrating monocytes (e.g., MPO, AZU1) and of CRC cell origin (e.g., LGALS3BP, PSAP). Biosynthetically explaining these observations, N-acetyl-β-D-hexosaminidase (Hex) subunit β (HEXB) was found to be overexpressed in CRC tissues relative to normal adjacent colorectal tissues and colocalization and enzyme inhibition studies confirmed that HEXB facilitates paucimannosidic protein biosynthesis in CRC cells. Employing a sensitive, quick, and robust enzyme activity assay, we then showed that Hex activity was elevated in plasma and peripheral blood mononuclear cells from patients with advanced CRC relative to controls and those with early-stage disease. Surveying a large donor cohort, the plasma Hex activity was found to be raised in CRC patients relative to normal controls and correlated with the 5-year survival of CRC patients indicating that elevated plasma Hex activity is a potential disease risk marker for patient outcome. Our glycoproteomics-driven findings open avenues for better prognostication and disease risk stratification in CRC.
Collapse
Affiliation(s)
- Rebeca Kawahara
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| | - Liisa Kautto
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Naaz Bansal
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Benoit Liquet-Weiland
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales, Australia; Université de Pau et Pays de L'Adour, Laboratoire de Mathématiques et de leurs Applications de PAU, CNRS, E2S-UPPA, Pau, France
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
50
|
Viehweger F, Gusinde J, Leege N, Tinger LM, Gorbokon N, Menz A, Schlichter R, Hinsch A, Dum D, Bernreuther C, Weidemann S, Lutz F, Kind S, Chirico V, Möller K, Reiswich V, Luebke AM, Freytag M, Lennartz M, Jacobsen F, Clauditz TS, Burandt E, Krech T, Lebok P, Fraune C, Marx AH, Simon R, Kluth M, Hube-Magg C, Wilczak W, Steurer S, Sauter G, Minner S. Estrogen receptor expression in human tumors: A tissue microarray study evaluating more than 18,000 tumors from 149 different entities. Hum Pathol 2025; 157:105757. [PMID: 40054585 DOI: 10.1016/j.humpath.2025.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 04/25/2025]
Abstract
Estrogen receptor (ER) is a ligand-activated transcription factor with a critical role in development and function of multiple organ systems and a well-established drug target for breast cancer. To comprehensively evaluate ER expression in normal and tumor tissues, a tissue microarray containing 18,560 samples from 149 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry (IHC). ER positivity was found in 55 different tumor types including 26 entities with at least one strongly positive tumor. ER positivity strongly predominated in breast neoplasms (81.1%) and in other gynecological tumors (39.4%) while only 0.8% of non-gynecological and non-mammary tumors showed ER positivity. Among these, ER staining - often at lower intensity - especially occurred in neuroendocrine neoplasms (up to 9.1%), salivary gland tumors (up to 8.3%), and in squamous cell carcinomas of different sites of origin (up to 6.7%). In invasive breast carcinoma (NST), reduced ER immunostaining was linked to high pT (p < 0.0001), high grade (p < 0.0001), distant metastasis (p = 0.0012), HER2 positivity (p < 0.0001), PR negativity (p < 0.0001) and shorter overall survival (p = 0.0576). In serous high-grade ovarian cancer, reduced ER staining was linked to nodal metastasis (p = 0.0012). ER staining was unrelated to histopathological features in 145 analyzable endometroid endometrial carcinomas. Within non-mammary, non-gynecological, non-prostate, and non-testicular tumors, ER positivity was more common in tumors from female (1.4% of 2528) than from male patients (0.6% of 3228; p = 0.0003). In summary, our data provide a ranking list of tumor entities according to their prevalence of ER positivity and shows that ER can be strongly expressed in a small number of non-breast and non-gynecological tumors which could potentially represent a diagnostic pitfall in a cancer of unknown primary but also represents a therapeutic opportunity.
Collapse
Affiliation(s)
- Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Justus Gusinde
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolai Leege
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa-Maria Tinger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Pathologie-Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|