1
|
Deluigi J, Bachofen C, Didion-Gency M, Gisler J, Mas E, Mekarni L, Poretti A, Schaub M, Vitasse Y, Grossiord C. Prolonged warming and drought reduce canopy-level net carbon uptake in beech and oak saplings despite photosynthetic and respiratory acclimation. THE NEW PHYTOLOGIST 2025; 246:2015-2028. [PMID: 40178032 DOI: 10.1111/nph.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Tree net carbon (C) uptake may decrease under global warming, as higher temperatures constrain photosynthesis while simultaneously increasing respiration. Thermal acclimation might mitigate this negative effect, but its capacity to do so under concurrent soil drought remains uncertain. Using a 5-yr open-top chamber experiment, we determined acclimation of leaf-level photosynthesis (thermal optimum Topt and rate Aopt) and respiration (rate at 25°C R25 and thermal sensitivity Q10) to chronic +5°C warming, soil drought, and their combination in beech (Fagus sylvatica L.) and oak (Quercus pubescens Willd.) saplings. Process-based modeling was used to evaluate acclimation impacts on canopy-level net C uptake (Atot). Prolonged warming increased Topt by 3.03-2.66°C, but only by 1.58-0.31°C when combined with soil drought, and slightly reduced R25 and Q10. By contrast, drought reduced Topt (-1.93°C in oak), Aopt (c. 50%), and slightly reduced R25 and Q10 (in beech). Mainly because of reduced leaf area, Atot decreased by 47-84% with warming (in beech) and drought, but without additive effects when combined. Our results suggest that, despite photosynthetic and respiratory acclimation to warming and soil drought, canopy-level net C uptake will decline in a persistently hotter and drier climate, primarily due to the prevalent impact of leaf area reduction.
Collapse
Affiliation(s)
- Janisse Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Ecological and Forestry Applications Research Center CREAF, E-08193, Cerdanyola-del-Vallès, Spain
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
- Forest Global Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute (STRI), DC-20560, Washington, DC, USA
| | - Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Alvaro Poretti
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Wilf P. Osmoxylon-like fossils from early Eocene South America: West Gondwana-Malesia connections in Araliaceae. AMERICAN JOURNAL OF BOTANY 2025:e70045. [PMID: 40387275 DOI: 10.1002/ajb2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/20/2025]
Abstract
PREMISE Araliaceae comprise a moderately diverse, predominantly tropical angiosperm family with a limited fossil record. Gondwanan history of Araliaceae is hypothesized in the literature, but no fossils have previously been reported from the former supercontinent. METHODS I describe large (to macrophyll size), palmately compound-lobed leaf fossils and an isolated umbellate infructescence from the early Eocene (52 Ma), late-Gondwanan paleorainforest flora at Laguna del Hunco in Argentine Patagonia. RESULTS The leaf fossils are assigned to Caffapanax canessae gen. et sp. nov. (Araliaceae). Comparable living species belong to five genera that are primarily distributed from Malesia to South China. The most similar genus is Osmoxylon, which is centered in east Malesia and includes numerous threatened species. The infructescence is assigned to Davidsaralia christophae gen. et sp. nov. (Araliaceae) and is also comparable to Osmoxylon. CONCLUSIONS The Caffapanax leaves and Davidsaralia infructescence, potentially representing the same source taxon, are the oldest araliaceous macrofossils and provide direct evidence of Gondwanan history in the family. The new fossils and their large leaves enrich the well-established biogeographic and climatic affinities of the fossil assemblage with imperiled Indo-Pacific, everwet tropical rainforests. The fossils most likely represent shrubs or small trees, adding to the rich record of understory vegetation recovered from Laguna del Hunco.
Collapse
Affiliation(s)
- Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, 16802, PA, USA
- IUCN/SSC Global Tree Specialist Group, Botanic Gardens Conservation International, Richmond TW9 3BW, UK
| |
Collapse
|
3
|
Kang X, Wu X, Liu Y, Zhang A, Duan L, Zhou J, Zhan Z, Qi W. Shrub effect on grassland community assembly depends on plant functional traits and shrub morphology. Oecologia 2025; 207:77. [PMID: 40314734 DOI: 10.1007/s00442-025-05716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025]
Abstract
An accurate assessment of shrub-herb interactions is challenging because shrubs can facilitate herb growth as nurse plants and negatively affect herbs as competitors. As responses to the effects of neighbors are often trait dependent, the impact of shrubs on grassland communities may differ with a variation in herb functional traits. In 2020, we surveyed the structure and functional pattern of 160 Qinghai-Tibet alpine grassland communities under the canopy of four dominant shrub species and their surrounding open areas. We found an overall negative effect of shrubs on grassland productivity, species diversity, and individual abundance, suggesting that interspecific resource competition, rather than facilitation, dominated the effect of shrubs on herb growth. The negative effect was weakest for small deciduous shrub species, implying that seasonal defoliation and low shading conditions could reduce the light competition of shrubs on herbs. Shrubs generally increased grassland functional diversity of vegetative traits, especially leaf economic traits, but decreased that of reproductive traits, especially seed traits, demonstrating that shrubs affected grassland community assembly by offering benign microhabitats to protect herbaceous species with stress-intolerant or fast-acquisition vegetative traits and setting physical barriers to prevent the entry of species with specific reproductive traits. Moreover, as canopy transmittance increased, positive shrub effects on leaf size diversity became more pronounced. However, an increase in canopy size intensified the negative effects of shrubs on the diversity of plant height and some reproductive traits. Results illustrated that the structuring of alpine grassland communities by shrubs depends on their type (semi-evergreen or deciduous) and size.
Collapse
Affiliation(s)
- Xiaomei Kang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyang Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanjun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Aoran Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lijie Duan
- Gansu Provincial Extension Station of Grassland Techniques, Lanzhou, 730000, China
| | - Jieyang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhixi Zhan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Wei Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Zhou YJ, Ning QR, Cui HX, Hao GY. Corner's Rules and Their Linkages With Twig Functions and Tree Productivity in Simple- and Compound-Leaved Tree Species. PLANT, CELL & ENVIRONMENT 2025; 48:3314-3325. [PMID: 39737624 DOI: 10.1111/pce.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Corner's rules are well known in describing inter-specific scaling relationships for plant organ size-related traits, from species with thick terminal stems, large leaves, and sparsely branched twigs to species with opposite traits; however, the implications of organ size on physiological functions and growth performance of trees remain unclear. Moreover, whether Corner's rules spectra differ between tree species with simple and compound leaves is not known. Here, we measured key twig morphological traits, physiological characteristics, and radial growth rates of 27 simple- and 6 compound-leaved tree species in a common garden in Northeast China. The size scaling relationships between leaf lamina and supporting structures were mostly allometric (slope < 1) in simple-leaved species. In contrast, such relationships were predominantly isometric (slope = 1) in compound-leaved species. Consistently, twig hydraulic conductance and photosynthetic rate increased significantly faster as twig size increased across the compound-leaved species. Consequently, compound-leaved species equipped with twigs of fewer but larger leaves have the potential to achieve remarkably high growth rates. Our study revealed divergent investment-return strategies between the two functional groups, that is, 'diminishing returns' in simple-leaved species and 'stable returns' in compound-leaved species, and identified mechanistic associations among twig architecture, physiological characteristics and tree growth rate.
Collapse
Affiliation(s)
- Yong-Jiao Zhou
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Rui Ning
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Han-Xiao Cui
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, China
| |
Collapse
|
5
|
Pan T, Britton TG, Schrader J, Sumner E, Nicolle D, Choat B, Wright IJ. Adaptation in Wood Anatomical Traits to Temperature and Precipitation-A Common Garden Study. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269634 DOI: 10.1111/pce.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Indisputably, temperature and precipitation are key environmental variables driving plant trait variation and shaping plant ecological strategies. However, it is challenging to ascertain their relative influences because site temperature and precipitation are often correlated. Here, using Eucalyptus as a model system representing woody evergreen species more broadly, we sought to disentangle their influence on wood anatomical traits underpinning plant hydraulics. From a common garden we sampled 29 pairs of closely-related Eucalyptus species, each species-pair representing either a contrast in site temperature or precipitation, but never both. Very clearly, and both in phylogenetic and non-phylogenetic analyses, species from lower-rainfall and from colder regions had thicker vessel walls, likely an adaptation to drought and freezing, enabling water transport at more negative water potentials with reduced risk of cavitation or vessel implosion. On average, species from warmer regions had smaller vessels, but theoretical hydraulic conductivity remained stable across site temperatures due to increased vessel density compensating for reduced diameters. These trends being observed for adult plants grown under common conditions suggests that key hydraulic anatomy traits are "hard-wired", and gene × environment interactions are relatively weak. This is a key insight for understanding the trait-basis of plant ecological strategies related to site climate.
Collapse
Affiliation(s)
- Tiantian Pan
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Travis G Britton
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Julian Schrader
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emma Sumner
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Dean Nicolle
- Currency Creek Arboretum, Adelaide, South Australia, Australia
| | - Brendan Choat
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Ian J Wright
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Vander Mijnsbrugge K, Moreels S, Moreels S, Buisset D, Vancampenhout K, Notivol Paino E. Influence of Summer Drought on Post-Drought Resprouting and Leaf Senescence in Prunus spinosa L. Growing in a Common Garden. PLANTS (BASEL, SWITZERLAND) 2025; 14:1132. [PMID: 40219200 PMCID: PMC11991280 DOI: 10.3390/plants14071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Understanding how woody plants cope with severe water shortages is critical, especially for regions where droughts are becoming more frequent and intense. We studied the effects of drought intensity, focusing on post-drought resprouting, autumn leaf senescence and the subsequent spring bud burst. Furthermore, we aimed to study population differentiation in the drought and post-drought responses. We performed a summer dry-out experiment in a common garden of potted Prunus spinosa L. (Rosaceae) saplings. We analysed responses across different visual stress symptom categories and examined differentiation between provenances from a local origin (Western Europe, Belgium), a lower latitude (Spain) and a higher latitude (Sweden). The chance of post-drought resprouting was greater for the more severely affected plants than for the less severely affected ones, and it occurred earlier. The plants that displayed wilting of the leaves during the drought had a leaf senescence 2.7 days earlier than the controls, whereas that of plants with 25 to 75% and more than 75% of desiccated leaves was 7 and 15 days later, respectively. During the drought, the local provenance was the first to develop visual symptoms compared to the other two provenances. However, among plants that exhibited no or only mild symptoms, this provenance also had a higher likelihood of post-drought resprouting. Among the control plants, the higher-latitude provenance displayed leaf senescence earlier, while the lower-latitude provenance senesced later compared to the local provenance. However, these differences in the timing of leaf senescence among the three provenances disappeared in treated plants with more than 25% of desiccated leaves due to the drought. Whereas leaf senescence could be earlier or later depending on the developed drought symptoms, the timing of bud burst was only delayed. Results indicate that resprouting and timing of leaf senescence are responsive to the severity of the experienced drought in a provenance-dependent way.
Collapse
Affiliation(s)
- Kristine Vander Mijnsbrugge
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Stefaan Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Sharon Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Damien Buisset
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Karen Vancampenhout
- Department of Earth and Environmental Sciences, KU Leuven Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium;
| | - Eduardo Notivol Paino
- Department for Environment, Agricultural and Forest Systems, Agri-Food Research and Technology Centre of Aragon (CITA), 50059 Zaragoza, Spain;
| |
Collapse
|
7
|
Brito C, Mantuano D, De Toni KL, Mantovani A. Increasing leaf sizes of the vine Epipremnum aureum (Araceae): photosynthesis and respiration. PeerJ 2025; 13:e19214. [PMID: 40196307 PMCID: PMC11974542 DOI: 10.7717/peerj.19214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The canopy leaves of allomorphic aroid vines can exceed 2,000 cm2, up to 30 times larger than respective understorey leaves. In the literature, this allomorphic increase in leaf area of aroid vines was hypothesized to improve its light foraging capacity. The viability of these large leaves depends on carbon acquisition obtained from their larger area and on the respective costs of production, maintenance and support. To evaluate and understand how leaf enlargement affects performance, we analyzed the photosynthesis and respiration of Epipremnum aureum leaves of different sizes via photosynthetic response light curves, morpho-physiology and anatomical parameters. Leaf size was increased by varying growth direction (horizontal vs. vertical) and light conditions (low vs. high). Vertical plants in high light produced leaves 9-13 times larger than those under other conditions. Saturated photosynthetic rates per area were similar across leaves of E. aureum, regardless of size, but respiration rates increased while specific leaf area decreased in larger leaves. This may suggests that larger leaves do not offset their costs per unit area in the short term, despite field observations of continuous enlargement with increased plant size. However, the high light levels able to saturate photosynthesis under field conditions are achieved only by larger leaves of E. aureum positioned at canopies (PPFD around 1,000 µmol m-2 s-1), not occurring at understory where smaller leaves are positioned (PPFD around 100 µmol m-2 s-1). This is confirmed by the higher values of the relative growth rate (RGR) and net assimilation rate (NAR) parameters exhibited by the vertical plants in high light. The saturated photosynthetic rates found here under experimental conditions for the smaller leaves of E. aureum could be related to their high invasive capacities as alien species around the world. We propose that the costs of larger aroid leaves might be outweighed by a strategy that optimizes size, morphophysiology, anatomy, photosynthesis and, lifespan to maximize lifetime carbon gain in tropical forests.
Collapse
Affiliation(s)
- Carolina Brito
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Escola Nacional de Botânica Tropical, Programa de Pós-Graduação em Botânica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dulce Mantuano
- Departamento de Botânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L.G. De Toni
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Mantovani
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Andrew SC, Harris RJ, Coppin C, Nicotra AB, Leigh A, Mokany K. Transcriptomic Temperature Stress Responses Show Differentiation Between Biomes for Diverse Plants. Genome Biol Evol 2025; 17:evaf056. [PMID: 40127678 PMCID: PMC11997244 DOI: 10.1093/gbe/evaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025] Open
Abstract
Plants are foundational to terrestrial ecosystems, and because they are sessile, they are particularly reliant on physiological plasticity to respond to weather extremes. However, variation in conserved transcriptomic responses to temperature extremes is not well described across plants from contrasting environments. Beyond molecular responses, photosystem II thermal tolerance traits are widely used to assay plant thermal tolerance. To explore options for improving the prediction of thermal tolerance capacity, we investigated variation in the transcriptomic stress responses of 20 native Australian plant species from varied environments, using de novo transcriptome assemblies and 188 RNA-sequencing libraries. We documented gene expression responses for biological processes, to both hot and cold temperature treatments, that were consistent with conserved transcriptomic stress responses seen in model species. The pathways with the most significant responses were generally related to signaling and stress responses. The magnitude of some responses showed differentiation between the species from contrasting arid, alpine, and temperate biomes. This variation among biomes indicated that postheat exposure, alpine and temperate species had greater shifts in expression than arid species and alpine species had weaker responses to the cold treatment. Changes in the median expression of biological processes were also compared to plasticity in photosystem II heat and cold tolerance traits. Gene expression responses showed some expected relationships with photosystem II thermal tolerance plasticity, but these two response types appeared to be mostly independent. Our findings demonstrate the potential for using variation in conserved transcriptomic traits to characterize the sensitivity of plants from diverse taxa to temperature extremes.
Collapse
Affiliation(s)
- Samuel C Andrew
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Rosalie J Harris
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Chris Coppin
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Adrienne B Nicotra
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Andrea Leigh
- School of Life Sciences, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Karel Mokany
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Kowalski AJ, Wyka TP. Narrow vessels - a hallmark of frost-adapted evergreen leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:434-442. [PMID: 40035320 DOI: 10.1111/plb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
The freezing-induced formation of embolisms in xylem conduits presents one of the challenges faced by evergreen leaves in frost-experiencing regions. Given that the probability of permanent embolism formation is related to the conduit diameter, we hypothesized that diameters of the vessels in evergreen leaves should be smaller than in deciduous leaves. We used live botanical garden collections to sample leaves of 21 evergreen and 47 deciduous species originating from various temperate biotopes and representing a broad taxonomic diversity. We determined the diameters of the largest vessels in their petioles. After controlling for conductive path length, the vessels in evergreen leaves were significantly smaller than those in deciduous leaves. Our results suggest a selective advantage of vessel diameter reduction for the evergreen leaf habit in cold climates. This result recapitulates the contrast between deciduous and evergreen species previously reported for stems. Moreover, the strong scaling relationships of vessel diameter with distance to leaf tip found in both leaf forms suggest that evolutionary reduction in vessel diameter associated with the evergreen habit may necessitate leaf size reduction, consistent with the trend documented in other studies.
Collapse
Affiliation(s)
- A J Kowalski
- General Botany Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - T P Wyka
- General Botany Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
10
|
Nemetschek D, Fortunel C, Marcon E, Auer J, Badouard V, Baraloto C, Boisseaux M, Bonal D, Coste S, Dardevet E, Heuret P, Hietz P, Levionnois S, Maréchaux I, Stahl C, Vleminckx J, Wanek W, Ziegler C, Derroire G. Love Thy Neighbour? Tropical Tree Growth and Its Response to Climate Anomalies Is Mediated by Neighbourhood Hierarchy and Dissimilarity in Carbon- and Water-Related Traits. Ecol Lett 2025; 28:e70028. [PMID: 40197814 PMCID: PMC11977451 DOI: 10.1111/ele.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 04/10/2025]
Abstract
Taxonomic diversity effects on forest productivity and response to climate extremes range from positive to negative, suggesting a key role for complex interactions among neighbouring trees. To elucidate how neutral interactions, hierarchical competition and resource partitioning between neighbours' shape tree growth and climate response in a highly diverse Amazonian forest, we combined 30 years of tree censuses with measurements of water- and carbon-related traits. We modelled individual tree growth response to climate and neighbourhood to disentangle the relative effect of neighbourhood densities, trait hierarchies and dissimilarities. While neighbourhood densities consistently decreased growth, trait dissimilarity increased it, and both had the potential to influence climate response. Greater water conservatism provided a competitive advantage to focal trees in normal years, but water-spender neighbours reduced this effect in dry years. By underlining the importance of density and trait-mediated neighbourhood interactions, our study offers a way towards improving predictions of forest dynamics.
Collapse
Affiliation(s)
- Daniela Nemetschek
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
- School of Biological SciencesUniversity of BristolBristolUK
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Eric Marcon
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Johanna Auer
- Center of Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Vincyane Badouard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Christopher Baraloto
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
- Department of Biological Sciences, Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Marion Boisseaux
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Damien Bonal
- INRAEUniversité de Lorraine, AgroParisTech, UMR SILVANancyFrance
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Elia Dardevet
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Peter Hietz
- Institute of BotanyBOKU UniversityViennaAustria
| | - Sébastien Levionnois
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | - Isabelle Maréchaux
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
| | | | - Wolfgang Wanek
- Center of Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de la GuyaneKourouFrance
- INRAEUniversité de Lorraine, AgroParisTech, UMR SILVANancyFrance
- University of Bordeaux, INRAE, UMR BIOGECOPessacFrance
| | - Géraldine Derroire
- CiradUMR EcoFoG, AgroParisTech, CNRS, INRAE, Université des Antilles, Université de la Guyane, KourouFrance
- Cirad, UPR Forêts et SociétésUniversity of MontpellierMontpellierFrance
| |
Collapse
|
11
|
Ma Z, Buckley TN, Sack L. The determination of leaf size on the basis of developmental traits. THE NEW PHYTOLOGIST 2025; 246:461-480. [PMID: 39994877 DOI: 10.1111/nph.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Mature leaf area (LA) is a showcase of diversity - varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA. We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal 'developmental traits': initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments. Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade-offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade-offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild-type comparisons showed these trade-offs have a genetic basis in Arabidopsis. Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts.
Collapse
Affiliation(s)
- Zeqing Ma
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Qi M, Wang J, Wang R, Song Y, Ueno S, Luo Y, Du FK. Intraspecific character displacement in oaks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70165. [PMID: 40265977 DOI: 10.1111/tpj.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Character displacement refers to the process by which species diverge more in sympatry due to competition for resources. This competition-driven speciation can also occur within populations, known as intraspecific character displacement (ICD). ICD can promote divergence within species by influencing intraspecific competition or encouraging the evolution of alternative phenotypes. Despite its significance, ICD remains understudied and requires further exploration. In this study, we investigate how competition influences genetic and morphological differentiation within species in sympatric and allopatric populations. We focused on Quercus serrata (in China and Japan) and Q. serrata var. brevipetiolata (found only in China), which belong to a small monophyletic group of oak species nested within Section Quercus (white oaks). Using genetic markers, we detected divergence between Chinese and Japanese populations and further diversification within China, with asymmetric historical gene flow primarily from Q. serrata (the earlier diverged species) to Q. serrata var. brevipetiolata (the later variety). Although genetic differentiation did not differ between sympatric and allopatric populations, leaf morphological variation, analyzed through the geometric morphometric method (GMM) and traditional morphological method, revealed greater trait variation in sympatry. In addition, we found an allometric growth relationship between leaf size and leaf mass of Q. serrata and Q. serrata var. brevipetiolata, with the leaf area of Q. serrata var. brevipetiolata decreasing more disproportionately to leaf mass. This suggests a resource trade-off, where Q. serrata var. brevipetiolata, the later diverged variety, adopts more resource-conservative traits in sympatry. Further analysis of trait variation with environmental factors supports these findings, while genetic variation along climate gradients showed significant responses primarily in Q. serrata, regardless of sympatric or allopatric conditions. Although neutral genetic markers are insufficient to capture selection-driven adaptive differentiation, we inferred that Q. serrata var. brevipetiolata is progressing towards ecological divergence from Q. serrata. Overall, our results highlight the role of ICD in driving morphological diversification and resource-use strategies within species in response to competitive pressures.
Collapse
Affiliation(s)
- Min Qi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jing Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Rongle Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yigang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, People's Republic of China
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, 3058687, Japan
| | - Yibo Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Ibaraki, 3058687, Japan
| |
Collapse
|
13
|
Xiang X, De K, Lin W, Feng T, Li F, Wei X. Effects of warming and nitrogen deposition on species and functional diversity of plant communities in the alpine meadow of Qinghai-Tibet Plateau. PLoS One 2025; 20:e0319581. [PMID: 40127083 PMCID: PMC11932474 DOI: 10.1371/journal.pone.0319581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Plant species and functional diversity play an important role in the stability and sustainability of grassland ecosystems. However, the changes and mechanisms of plant species and functional diversity under warming and nitrogen deposition are still unclear. In this study, we investigated the plant and soil characteristics of alpine meadows on the Qinghai-Tibet Plateau to explore the changes in species and functional diversity of plant communities under warming and nitrogen deposition, as well as their interrelationships and key determinants. The results showed that warming, nitrogen deposition, and their interactions had significant effects on plant species diversity (plant Shannon-Wiener index) and functional diversity (functional richness index, functional differentiation index, functional dispersion, and Rao's quadratic entropy index). With the increase of warming and nitrogen deposition, the Shannon-Wiener index of plants increased first and then decreased. The plant functional richness index, functional diversity index, functional dispersion index, and Rao's quadratic entropy index showed a decreasing trend. At the same time, with the increase in temperature and nitrogen deposition, the relationship between plant species diversity index and functional diversity index in the alpine meadow of Qinghai-Tibet Plateau gradually weakened. Redundancy analysis and structural equation modeling showed that both warming and nitrogen deposition had significant negative effects on the plant species diversity index and plant functional diversity index. Plant factors (Grasses importance value, leaf nitrogen weighted mean, specific leaf area-weighted mean, leaf area-weighted mean, and leaf weight weighted mean) and soil environmental factors (soil total nitrogen and soil carbon-nitrogen ratio) directly or indirectly affect plant community diversity under warming and nitrogen deposition.
Collapse
Affiliation(s)
- Xuemei Xiang
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Kejia De
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Weishan Lin
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Tingxu Feng
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Fei Li
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| | - Xijie Wei
- College of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
14
|
Hočevar K, Vuleta A, Manitašević Jovanović S. Plastic Responses of Iris pumila Functional and Mechanistic Leaf Traits to Experimental Warming. PLANTS (BASEL, SWITZERLAND) 2025; 14:960. [PMID: 40338248 PMCID: PMC11944494 DOI: 10.3390/plants14060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025]
Abstract
Phenotypic plasticity is an important adaptive strategy that enables plants to respond to environmental changes, particularly temperature fluctuations associated with global warming. In this study, the phenotypic plasticity of Iris pumila leaf traits in response to an elevated temperature (by 1 °C) was investigated under controlled experimental conditions. In particular, we investigated important functional and mechanistic leaf traits: specific leaf area (SLA), leaf dry matter content (LDMC), specific leaf water content (SLWC), stomatal density (SD), leaf thickness (LT), and chlorophyll content. The results revealed that an elevated temperature induced trait-specific plastic responses, with mechanistic traits exhibiting greater plasticity than functional traits, reflecting their role in short-term acclimation. SLA and SD increased at higher temperatures, promoting photosynthesis and gas exchange, while reductions in SLWC, LDMC, LT, and chlorophyll content suggest a trade-off in favor of growth and metabolic activity over structural investment. Notably, chlorophyll content exhibited the highest plasticity, emphasizing its crucial role in modulating photosynthetic efficiency under thermal stress. Correlation analyses revealed strong phenotypic integration between leaf traits, with distinct trait relationships emerging under different temperature conditions. These findings suggest that I. pumila employs both rapid physiological adjustments and longer-term structural strategies to cope with thermal stress, with mechanistic traits facilitating rapid adjustments and functional traits maintaining ecological stability.
Collapse
Affiliation(s)
| | | | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| |
Collapse
|
15
|
Baker J, Cottrell J, Ennos R, Perry A, Green S, Cavers S. Local Genetic Adaptations Among Remnant Populations of British Common Juniper, Juniperus communis, Indicated by a Common Garden Trial. Ecol Evol 2025; 15:e71049. [PMID: 40104630 PMCID: PMC11917131 DOI: 10.1002/ece3.71049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025] Open
Abstract
Habitat fragmentation and genetic isolation pose threats to the genetic diversity and resilience of natural populations. Protecting the genetic diversity of populations, and the processes that sustain it, optimizes their ability to adapt to changing conditions and new threats: an approach known as "dynamic conservation." The common juniper, Juniperus communis, is a keystone species that provides habitat and resources for many plants and animals. It is highly polymorphic, and across its natural range is found in a variety of habitats and diverse growth forms. Juniper populations have been shrinking and becoming increasingly fragmented for over a century in the UK and elsewhere in Europe, raising concerns about the genetic diversity present in remnant populations and their capacity to adapt to changing conditions or adaptive potential. This paper presents an analysis of the partitioning of phenotypic diversity among regions, populations, and families from 16 UK populations assessed in a common garden trial. Our findings suggest high phenotypic variation among populations compared to the variation among families within populations, indicating barriers to gene flow between juniper populations, relatively homogeneous populations, and therefore potentially reduced adaptive potential. This information is a useful baseline for conservation managers and will help to protect the genetic diversity and adaptive potential of populations.
Collapse
Affiliation(s)
- J. Baker
- UKCEHPenicuikUK
- University of EdinburghEdinburghScotland
| | - J. Cottrell
- Forest Research and University of EdinburghEdinburghScotland
| | - R. Ennos
- University of EdinburghEdinburghScotland
| | | | - S. Green
- Forest Research and University of EdinburghEdinburghScotland
| | | |
Collapse
|
16
|
Xu H, Song Y, Tan YH, He D, Yang Y, van Bodegom PM, Peñuelas J, Pan Y, Chen L. Convergent Strategies for Leaf Traits in Tree Species From Divergent Habitats. GLOBAL CHANGE BIOLOGY 2025; 31:e70108. [PMID: 40052266 DOI: 10.1111/gcb.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025]
Abstract
Plant trait expressions and their trade-offs reflect the responses and long-term ecological adaptation to environmental gradients. However, how such expressions and trade-offs help plants to acclimate to a new environment remains poorly understood, which is a fundamental preset for plants' survival under a global change scenario. By comparing the trait-trait relationships of 4403 tree species from different climatic regions and the variation in trait trade-offs of 746 tree species that have been transplanted to a tropical botanical garden for several decades, our results reveal convergent but consistent alteration in trait-trait relationships of trees transplanted from different climatic regions to a common environment. The convergent trends enhance the capability of tree species in buffering the impacts of climate change through allocating more resources to growth and tolerance. We propose that altered trait-trait relationships may be the key mechanisms that underlie the long-term ecological stability and resilience of tree species.
Collapse
Affiliation(s)
- Hanfeng Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, China
| | - Yun-Hong Tan
- Southeast Asia Biodiversity Research Institute & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Dashan He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuchuan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
| | - Yingji Pan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Dubey G, Phillips AL, Kemp DJ, Atwell BJ. Physiological and structural traits contribute to thermotolerance in wild Australian cotton species. ANNALS OF BOTANY 2025; 135:577-588. [PMID: 38980751 PMCID: PMC11897598 DOI: 10.1093/aob/mcae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND AIMS Five species of cotton (Gossypium) were exposed to 38 °C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (Gossypium australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS Plants were grown at daytime maxima of 30 or 38 °C for 25 days, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, in addition to electron transport rates and carboxylation efficiency in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape) were quantified, along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38 than at 30 °C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and the number of leaves both contributed to these contrasting growth responses, with fewer, smaller leaves at 38 °C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced electron transport rates and carboxylation efficiency in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Likewise, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38 °C.
Collapse
Affiliation(s)
- Garima Dubey
- Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSW, Australia
| | - Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
| | - Darrell J Kemp
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Zailaa J, Trueba S, Browne M, Fletcher LR, Buckley TN, Brodersen CR, Scoffoni C, Sack L. Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California Ceanothus. PLANT, CELL & ENVIRONMENT 2025; 48:1555-1573. [PMID: 39462892 DOI: 10.1111/pce.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleaf and gs, respectively) to dehydration, and their association with anatomy, in seven species of California Ceanothus grown in a common garden, including some of the most drought-tolerant species in the semi-arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline of Kleaf in driving stomatal closure. Across Ceanothus species, maximum Kleaf and gs were negatively correlated, and both Kleaf and gs showed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline in gs was linked with a low ratio of maximum hydraulic supply to demand (i.e., maximum Kleaf:gs). This sensitivity of gs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg. Cerastes includes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastes show traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry-climate adapted species.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Marvin Browne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Leila R Fletcher
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, California
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
González-Carrera S, Fernández-Fuentes A, Escudero A, García-Estévez I, Martínez-Ortega M, Mediavilla S. Leaf traits and insect herbivory levels in two Mediterranean oaks and their hybrids through contrasting environmental gradients. TREE PHYSIOLOGY 2025; 45:tpae170. [PMID: 39729020 DOI: 10.1093/treephys/tpae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work, we address all these issues in two species of Mediterranean Quercus (Quercus faginea subsp. faginea Lam. and Quercus pyrenaica Wild.) and their hybrids. Over 2 years, we analyzed leaf emergence and 11 leaf traits (biomechanical, chemical and morphological), as well as the levels of herbivory by insects in leaves of the three genetic groups in different locations distributed along a climatic gradient. The hybrids showed intermediate values between both species in leaf emergence, chemical traits and structural reinforcement. By contrast, they were more similar to Q. faginea in leaf size and shape. Despite their intermediate leaf traits, hybrids always showed lower losses by consumption than both parental species, which suggests that they possess inherent higher resistance to herbivores, which cannot be explained by their dissimilarities in leaf traits. Within each genetic group, differences in leaf size were the most important determinant of differences in herbivory losses, which increased with leaf size. In turn, leaf size increased significantly with the increase in mean annual temperatures across the climatic gradient, in parallel with herbivory losses. In conclusion, contrary to our expectations, hybrids maintained lower levels of herbivory than their parent species. Given the potential negative effect of leaf herbivory on carbon fixation, this advantage of the hybrids would imply a threat to the persistence of both pure species. More research is needed to elucidate possible alternative mechanisms that allow for maintaining species integrity in the absence of reproductive barriers.
Collapse
Affiliation(s)
- Santiago González-Carrera
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alejandro Fernández-Fuentes
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Alfonso Escudero
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Ignacio García-Estévez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Pharmacy, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| | - Montserrat Martínez-Ortega
- Department of Botany and Plant Physiology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
- Herbarium and Plant DNA Biobank, University of Salamanca, c/ Espejo, 2, Salamanca 37007, Spain
| | - Sonia Mediavilla
- Department of Ecology, Faculty of Biology, University of Salamanca, c/ Licenciado Méndez Nieto, s/n, Salamanca 37071, Spain
| |
Collapse
|
20
|
Bian X, Chen C, Wang Y, Qu C, Jiang J, Sun Y, Liu G. Identification of a potential homeodomain-like gene governing leaf size and venation architecture in birch. FRONTIERS IN PLANT SCIENCE 2025; 15:1502569. [PMID: 39845490 PMCID: PMC11751010 DOI: 10.3389/fpls.2024.1502569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing. A total of 267 HD-like genes were identified based on Arabidopsis HD-containing transcription factors, which were members of KNOTTED1-like homeobox (KNOX) family, BELL1-like homeobox (BLH) family, Zinc finger-HD (ZHD) family, HD-leucine zipper (HD-Zip) family, Golden2, ARR-B, Psr1 (GARP) family, WUSCHEL-related homeobox (WOX) family, and Myeloblastosis (MYB) and MYB-like family. Further, 41 HD-like genes showing co-expression with marker genes related to leaf vascular tissues exhibited differential expression during primary vein development. Among them, a potential HD-like gene (BpPHD4) of GARP family served as a negative factor in governing leaf size and venation patterning. Compared to non-transgenic plants, BpPHD4 repression transgenic plants showed increased leaf length, leaf width, leaf area, leaf thickness, spongy tissue thickness, stomata number, epidermal cell size, primary vein length, the distance between the secondary veins, and primary vein diameter, which was opposite to those of BpPHD4 overexpression transgenic plants. Meanwhile, reduced expression levels of BpPHD4 could remarkably promote phloem tissue development. Transcriptome analysis of BpPHD4 overexpression transgenic plants showed two candidate genes (Bpev01.c0518.g0018 and Bpev01.c2797.g0002) probably regulated by BpPHD4. To conclude, our findings contribute to a better understanding of HD-like superfamily genes and unravel the role of a potential HD-like gene in genetically controlling leaf size and venation patterning in birch, which provides clues to genetic improvement of woody plants with diverse geometric and topological properties of leaf vascular network.
Collapse
Affiliation(s)
- Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Harbin Daowai District Bureau of Agriculture and Rural Affairs, Harbin, China
| | - Yang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Encyclopedia of China Publishing House, Beijing, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yao Sun
- National Forestry and Grassland Administration Key State-owned Forest Areas Forest Resources Monitoring Center, Jiagedaqi, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Shi P, Li BL, Wang J, Mu Y, Yao W, Lian M, Deng L, Niklas KJ. Geometric series exists in nature: Evidence from sorted area sequences of floral parts and leaves. Ann N Y Acad Sci 2025; 1543:79-85. [PMID: 39746156 DOI: 10.1111/nyas.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The concept of a geometric series (GS) plays an important role in mathematics. However, it has been neglected in describing biological size series. Herein, we show that a GS describes the nonreproductive (perianth) parts of the flowers of four Magnoliaceae species and two Rosaceae species and the leaves of 60 Alangium chinense and 60 Shibataea chinensis shoots. The sorted areas of floral parts and leaves formed a sequence that was fitted by a GS with the mean of the quotients of two adjacent members in the sequence as the common ratio of a GS. The mean absolute percent error (MAPE) was used to measure the goodness of fit of each GS. Over 99.7% of the MAPE values (371 out of the 372 tested flowers) were less than 10%, and over 97.8% of the MAPE values were less than 5%. Likewise, over 77.5% of the MAPE values (93 out of the 120 tested shoots) were less than 10%, and over 35% of the MAPE values were less than 5%. These analyses provide empirical evidence that the GS exists in nature, and confirm the usefulness of a classical algebraic formula for the study of plant developmental biology.
Collapse
Affiliation(s)
- Peijian Shi
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bailian Larry Li
- Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Jinfeng Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Youying Mu
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Weihao Yao
- Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Meng Lian
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Linli Deng
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, Nanjing, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
Dai D, Yu D, Gao W, Perry GLW, Paterson AM, You C, Zhou S, Xu Z, Huang C, Cao D, Curran TJ, Cui X. Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity. Ecol Lett 2025; 28:e70056. [PMID: 39755937 DOI: 10.1111/ele.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.
Collapse
Affiliation(s)
- Dachuan Dai
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Adrian M Paterson
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Chengming You
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| | - Congde Huang
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongyu Cao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Timothy J Curran
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| |
Collapse
|
23
|
Middleby KB, Cheesman AW, Hopkinson R, Baker L, Ramirez Garavito S, Breed MF, Cernusak LA. Ecotypic Variation in Leaf Thermoregulation and Heat Tolerance but Not Thermal Safety Margins in Tropical Trees. PLANT, CELL & ENVIRONMENT 2025; 48:649-663. [PMID: 39318061 PMCID: PMC11615421 DOI: 10.1111/pce.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
To avoid reaching lethal temperatures during periods of heat stress, plants may acclimate either their biochemical thermal tolerance or leaf morphological and physiological characteristics to reduce leaf temperature (Tleaf). While plants from warmer environments may have a greater capacity to regulate Tleaf, the extent of intraspecific variation and contribution of provenance is relatively unexplored. We tested whether upland and lowland provenances of four tropical tree species grown in a common garden differed in their thermal safety margins by measuring leaf thermal traits, midday leaf-to-air temperature differences (∆Tleaf) and critical leaf temperatures defined by chlorophyll fluorescence (Tcrit). Provenance variation was species- and trait-specific. Higher ∆Tleaf and Tcrit were observed in the lowland provenance for Terminalia microcarpa, and in the upland provenance for Castanospermum australe, with no provenance effects in the other two species. Within-species covariation of Tcrit and ∆Tleaf led to a convergence of thermal safety margins across provenances. While future studies should expand the number of provenances and species investigated, our findings suggest that lowland and upland provenances may not differ substantially in their vulnerability to heat stress, as determined by thermal safety margins, despite differences in operating temperatures and Tcrit.
Collapse
Affiliation(s)
- Kali B. Middleby
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| | | | | | - Leesa Baker
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| | | | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Lucas A. Cernusak
- College of Science and EngineeringJames Cook UniversityCairnsQueenslandAustralia
| |
Collapse
|
24
|
Meng Y, Ratkowsky DA, Yao W, Heng Y, Shi P. The Geometric Series Hypothesis of Leaf Area Distribution and Its Link to the Calculation of the Total Leaf Area per Shoot of Sasaella kongosanensis 'Aureostriatus'. PLANTS (BASEL, SWITZERLAND) 2024; 14:73. [PMID: 39795333 PMCID: PMC11723061 DOI: 10.3390/plants14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Total leaf area per shoot (AT) can reflect the photosynthetic capacity of a shoot. A prior study hypothesized that AT is proportional to the product of the sum of the individual leaf widths per shoot (LKS) and the maximum individual leaf length per shoot (WKS), referred to as the Montgomery-Koyama-Smith equation (MKSE). However, empirical evidence does not support such a proportional relationship hypothesis, as AT was found to allometrically scale with LKSWKS, i.e., AT∝LKSWKSα, where α≠1, referred to as the power law equation (PLE). Given that there is variation in the total number of leaves per shoot (n), little is known about whether the leaf area distribution has an explicit mathematical link with the sorted leaf area sequence per shoot, and it is unknown whether the mathematical link can affect the prediction accuracy of the MKSE and PLE. In the present study, the leaves of 500 shoots of a dwarf bamboo (Sasaella kongosanensis 'Aureostriatus') were scanned, and the leaf area, length, and width values were obtained by digitizing the leaf images. We selected the shoots with n ranging from 3 to 10, which accounted for 76.6% of the totally sampled shoots (388 out of 500 shoots). We used the formula for the sum of the first j terms (j ranging from 1 to n) of a geometric series (GS), with the mean of the quotients of any adjacent two terms (denoted as q¯A) per shoot as the common ratio of the GS, to fit the cumulative leaf area observations. Mean absolute percentage error (MAPE) was used to measure the goodness of fit of the GS. We found that there were 367 out of 388 shoots (94.6%) where 1 < q¯A < 1.618 and MAPE < 15%, and these 367 shoots were defined as valid samples. The GS hypothesis for leaf area distribution was supported by the result that the MAPE values for most valid samples (349 out of 367, i.e., 95.1%) were smaller than 5%. Here, we provide a theoretical basis using the GS hypothesis to demonstrate the validity of the MKSE and PLE. The MAPE values for the two equations to predict AT were smaller than 5%. This work demonstrates that the leaf area sequence per shoot follows a GS and provides a useful tool for the calculation of total leaf area per shoot, which is helpful to assess the photosynthetic capacity of plants.
Collapse
Affiliation(s)
- Yong Meng
- Hunan Academy of Forestry, #658 Shaoshan South Road, Changsha 410004, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (Y.H.)
| | - David A. Ratkowsky
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart 7001, Australia;
| | - Weihao Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (Y.H.)
| | - Yi Heng
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (Y.H.)
| | - Peijian Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (Y.H.)
| |
Collapse
|
25
|
Naseef A, Javad A, Kausal AK, Barua D, Ashtamoorthy SK. High heat tolerance and thermal safety margins in mangroves from the southwestern coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176366. [PMID: 39299327 DOI: 10.1016/j.scitotenv.2024.176366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Mangroves are key components of productive ecosystems that provide a multitude of ecosystem goods and services. How these species will respond to future climates with more frequent and severe extreme temperatures has not received much attention. To understand how vulnerable mangroves are to future warming, we quantified photosynthetic heat tolerance and estimated thermal safety margins for thirteen mangrove species from the southwestern Indian coast. We quantified heat tolerance as temperatures that resulted in a 5 % (T5) and 50 % (T50) decline in photosystem II function, and thermal safety margins (TSM) as the difference between T50 and maximum leaf temperatures. T50 ranged from 48.9 °C in Avicennia Marina to 55.3 °C in Bruguiera gymnorhiza, with a mean of 53.3 °C for the thirteen species. Heat tolerance was higher for species with bigger leaves which experience higher leaf temperatures, but was not related to the other leaf traits examined. Heat tolerance was exceptionally high in these mangroves compared to other woody species. With their high tolerance and large safety margins these mangroves may be relatively less vulnerable to future climates with higher temperatures.
Collapse
Affiliation(s)
- Abdulla Naseef
- Forest Ecology Department, Kerala Forest Research Institute-Peechi, Thrissur, 680653, Kerala, India; Department of Botany, University of Calicut, 673635, Kerala, India
| | - Akhil Javad
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, Maharashtra, India
| | - A K Kausal
- Forest Ecology Department, Kerala Forest Research Institute-Peechi, Thrissur, 680653, Kerala, India
| | - Deepak Barua
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, Maharashtra, India.
| | - Sreejith Kalpuzha Ashtamoorthy
- Forest Ecology Department, Kerala Forest Research Institute-Peechi, Thrissur, 680653, Kerala, India; Department of Botany, University of Calicut, 673635, Kerala, India.
| |
Collapse
|
26
|
Spitzer DB, Ocheltree TW, Gleason SM. Some unique anatomical scaling relationships among genera in the grass subfamily Pooideae. AOB PLANTS 2024; 16:plae059. [PMID: 39512791 PMCID: PMC11538577 DOI: 10.1093/aobpla/plae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
Members of the grass family Poaceae have adapted to a wide range of habitats and disturbance regimes globally. The cellular structure and arrangements of leaves can help explain how plants survive in different climates, but these traits are rarely measured in grasses. Most studies are focussed on individual species or distantly related species within Poaceae. While this focus can reveal broad adaptations, it is also likely to overlook subtle adaptations within more closely related groups (subfamilies, tribes). This study, therefore, investigated the scaling relationships between leaf size, vein length area (VLA) and vessel size in five genera within the subfamily Pooideae. The scaling exponent of the relationship between leaf area and VLA was -0.46 (±0.21), which is consistent with previous studies. In Poa and Elymus, however, minor vein number and leaf length were uncorrelated, whereas in Festuca these traits were positively correlated (slope = 0.82 ± 0.8). These findings suggest there are broad-scale and fine-scale variations in leaf hydraulic traits among grasses. Future studies should consider both narrow and broad phylogenetic gradients.
Collapse
Affiliation(s)
- Daniel B Spitzer
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
| | - Troy W Ocheltree
- Graduate Degree Program in Ecology, Colorado State University, 102 Johnson Hall, Fort Collins, CO 80523-1021, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus Delivery, Fort Collins, CO 80523-1472, USA
| | - Sean M Gleason
- Department of Biological Sciences, Macquarie University, Building E8B, Eastern Road, North Ryde, NSW 2109, Australia
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, 2150 Center Ave, Build D, Suite 320, Fort Collins, CO 80526, USA
| |
Collapse
|
27
|
He K, Ratkowsky DA, Fu P, Yao W, Lian M, Chen L, Shi P. Variation of leaf shape with tree size: a case study using Camptotheca acuminata Decne. FRONTIERS IN PLANT SCIENCE 2024; 15:1468483. [PMID: 39634068 PMCID: PMC11615641 DOI: 10.3389/fpls.2024.1468483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The Montgomery equation (ME) assumes that leaf area (A) is proportional to the product of leaf length (L) and width (W). Leaf shape is found to determine the ME's proportionality coefficient, i.e., the Montgomery parameter (MP). However, prior work seldom reported the influence of tree size (reflected by the diameter at breast height, DBH) on leaf shape and size. In the present study, we sampled 840 leaves from six trees of Camptotheca acuminata, with 140 leaves for each tree. Three leaf-shape indices were measured for each leaf, viz. the width to length ratio (W/L), a leaf roundness index which indicates the extent to which the leaf shape approaches a circular leaf, and the centroid ratio, defined as l/L, where l is the distance from the leaf base to the point on the leaf length axis where the leaf width is a maximum. For each tree, the ME was investigated in two ways, one being that A was assumed to be proportional to the product of L and W, and the second being a power-law equation which assumed an allometric relationship between A and LW, i.e., A ∝ (LW)α, where α is a constant to be estimated. The centroid ratio slightly decreased with increasing DBH, indicating that larger trees tend to have more ovate leaves than elliptical leaves. However, DBH did not significantly affect the ratio W/L nor the leaf roundness index. The estimated MP for the pooled data was 0.6466, and it was not statistically affected by DBH. The numerical value of α was found to approximate unity. The percent error between ME and the power-law equation was smaller than 5%, which means that there is no need to use the power-law equation to describe the relationship between A and LW. ME is valid for the calculation of A at the individual tree level and for the pooled data of all trees. The present study indicates that the influence of DBH on MP can be neglected when calculating A, and any easily accessible trees can be selected to examine the A versus LW isometric relationship.
Collapse
Affiliation(s)
- Ke He
- School of Architecture, Huaqiao University, Xiamen, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - David A. Ratkowsky
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Pengjiazi Fu
- Design and Research Institute, Shenzhen University, Shenzhen, China
| | - Weihao Yao
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Meng Lian
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Long Chen
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Peijian Shi
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Chiarenza GM, Slavich E, Moles AT. Guidelines for quantifying leaf chlorophyll content via non-destructive spectrometry. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11610. [PMID: 39628546 PMCID: PMC11610418 DOI: 10.1002/aps3.11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 12/06/2024]
Abstract
Premise Leaf chlorophyll is a fundamental bioindicator used in several fields; however, we lack clear guidelines for optimizing sampling efforts and producing comparable studies. Methods We estimated the leaf chlorophyll content of 10 plant species using nondestructive spectrometry methods. We stored half of the leaves at 4°C and half at room temperature under similar light levels to assess the role of storage in the chlorophyll degradation rate. Results The chilled mature leaves maintained a chlorophyll content within 5% of the original value for ~1.5 d, while the chlorophyll content of unrefrigerated mature leaves decreased rapidly, indicating that their chlorophyll content should be measured within 4 h. When refrigerated, the chlorophyll content of the expanding leaves remained within 5% of the original level for at least 5 d, but we suggest analyzing them within 3 d. In mature leaves, 73% of the variation in chlorophyll content is at the species level, 15% is between individuals, and the variation within leaves is negligible (<1%). Measuring one mature leaf from eight individuals was sufficient to provide a species chlorophyll estimate within 5% of the true value at least 80% of the time. Discussion We advise researchers to prioritize sampling more individuals rather than repeating measures within leaves or individuals. Our findings will help researchers to optimize their time and research efforts, and to obtain more robust ecological data.
Collapse
Affiliation(s)
- Giancarlo M. Chiarenza
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSWSydney2052New South WalesAustralia
- School of Molecular and Life SciencesCurtin UniversityBentley6102Western AustraliaAustralia
| | - Eve Slavich
- Mark Wainwright Analytical Centre, UNSWSydney2052New South WalesAustralia
| | - Angela T. Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSWSydney2052New South WalesAustralia
| |
Collapse
|
29
|
Zhang XJ, Huang XH, Landis JB, Fu QS, Chen JT, Luo PR, Li LJ, Lu HY, Sun H, Deng T. Shifts in reproductive strategies in the evolutionary trajectory of plant lineages. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2499-2510. [PMID: 39190128 DOI: 10.1007/s11427-024-2597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/16/2024] [Indexed: 08/28/2024]
Abstract
Understanding the maintenance and shift in reproductive strategies is a fundamental question in evolutionary research. Although many efforts have been made to compare different reproductive strategies, the association between reproductive strategies and lineage divergence is largely unknown. To explore the impact of different reproductive strategies on lineage divergence, we investigated the evolution of clonality in Saxifraga sect. Irregulares+Heterisia. By integrating several lines of evidence, we found that the loss of clonality in Irregulares+Heterisia was associated with a progressive increase in diversification rate and intraspecific morphological diversity but with a reduction in species distribution range. Our findings provide insights into the ecological and evolutionary effects of different reproductive strategies, suggesting the necessity of integrating clonality into ecological and evolutional research.
Collapse
Affiliation(s)
- Xin-Jian Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Han Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, New York, 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, New York, 14853, USA
| | - Quan-Sheng Fu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Peng-Rui Luo
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Juan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heng-Yi Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Tao Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
30
|
Liu Z, Zhao M, Tennakoon K, Liu C. Climate factors determine large-scale spatial patterns of stomatal index in Chinese herbaceous and woody dicotyledonous plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175112. [PMID: 39084391 DOI: 10.1016/j.scitotenv.2024.175112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The stomatal index (SI, %) and its response to climate factors (temperature and precipitation) can help our understanding of terrestrial carbon and water cycling and plant adaptation in the ecosystem, however, consensus has not yet been reached in this regard. In this study, we compiled an extensive dataset from the Chinese flora to investigate the response of SI to environmental change, including 891 herbaceous and woody species from 188 published papers. The results showed that mean values of the adaxial SI and abaxial SI for all species were 14.06 and 19.22, respectively, and the ratio of adaxial to abaxial SI was 0.84. For the adaxial SI, abaxial SI, and the ratio of adaxial to abaxial SI, the range of these values varied between 0.05-43.67, 0.01-48.17, and 0.03-4.31, respectively. Compared with woody plants, herbaceous plants showed higher values in both adaxial and abaxial SI. In terms of the impact of climate factors, the abaxial SI of herbaceous plants changed slower than the adaxial SI, while woody plants showed the opposite trend. Threshold effects of increased temperature and precipitation on SI were observed, indicating that SI responded differently to changes in climate factors at different levels. Climate factors play a crucial role in driving the adaxial SI than abaxial SI. Our findings highlight the significant challenges posed by divergent responses of SI in forecasting future water and carbon cycles associated with climatic and environmental change.
Collapse
Affiliation(s)
- Zhaogang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kushan Tennakoon
- Institute of Innovation, Science and Sustainability, Federation University Australia Berwick Campus, No.100 Clyde Road, Berwick, VIC 3806, Australia
| | - Congcong Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
31
|
Hendrickx A, Hatangi Y, Honnay O, Janssens SB, Stoffelen P, Vandelook F, Depecker J. Leaf functional trait evolution and its putative climatic drivers in African Coffea species. ANNALS OF BOTANY 2024; 134:683-698. [PMID: 39051731 PMCID: PMC11523614 DOI: 10.1093/aob/mcae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Leaf traits are known to be strong predictors of plant performance and can be expected to (co)vary along environmental gradients. We investigated the variation, integration, environmental relationships and evolutionary history of leaf functional traits in the genus Coffea, typically a rainforest understorey shrub, across Africa. A better understanding of the adaptive processes involved in leaf trait evolution can inform the use and conservation of coffee genetic resources in a changing climate. METHODS We used phylogenetic comparative methods to investigate the evolution of six leaf traits measured from herbarium specimens of 58 African Coffea species. We added environmental data and data on maximum plant height for each species to test trait-environment correlations in various (sub)clades, and we compared continuous trait evolution models to identify variables driving trait diversification. KEY RESULTS Substantial leaf trait variation was detected across the genus Coffea in Africa, which was mostly interspecific. Of these traits, stomatal size and stomatal density exhibited a clear trade-off. We observed low densities of large stomata in early-branching lineages and higher densities of smaller stomata in more recent taxa, which we hypothesize to be related to declining CO2 levels since the mid-Miocene. Brownian motion evolution was rejected in favor of white noise or Ornstein-Uhlenbeck models for all traits, implying these traits are adaptively significant rather than driven by pure drift. The evolution of leaf area was likely driven by precipitation, with smaller leaves in drier climates across the genus. CONCLUSIONS Generally, Coffea leaf traits appear to be evolutionarily labile and governed by stabilizing selection, though evolutionary patterns and correlations differ depending on the traits and clades considered. Our study highlights the importance of a phylogenetic perspective when studying trait relationships across related taxa, as well as the consideration of various taxonomic ranges.
Collapse
Affiliation(s)
- Aiden Hendrickx
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Yves Hatangi
- Meise Botanic Garden, 1860 Meise, Belgium
- Université de Kisangani, 2012 Kisangani, DR Congo
- Liège University, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Steven B Janssens
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001 Leuven, Belgium
| | | | - Filip Vandelook
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Jonas Depecker
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| |
Collapse
|
32
|
Zhong Z, Wang X, Yang C, Wang Y, Yang G, Xu Y, Li C. Contrasting carbon cycle responses of semiarid abandoned farmland to simulated warmer-drier and warmer-wetter climates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174693. [PMID: 38992364 DOI: 10.1016/j.scitotenv.2024.174693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Rewilding abandoned farmlands provides a nature-based climate solution via carbon (C) offsetting; however, the C-cycle-climate feedback in such restored ecosystems is poorly understood. Therefore, we conducted a 2-year field experiment in Loess Plateau, China, to determine the impacts of warming (∼1.4 °C) and altered precipitation (±25 %, ±50 %, and ambient), alone or in concert on soil C pools and associated C fluxes. Experimental warming significantly enhanced soil respiration without affecting the ecosystem net C uptake and soil C storage; these variables tended to increase along the manipulated precipitation gradient. Their interactions increased ecosystem net C uptake (synergism) but decreased soil respiration and soil C accumulation (antagonism) compared with a single warming or altered precipitation. Additionally, most variables related to the C cycle tended to be more responsive to increased precipitation, but the ecosystem net C uptake responded intensely to warming and decreased precipitation. Overall, ecosystem net C uptake and soil C storage increased by 94.4 % and 8.2 %, respectively, under the warmer-wetter scenario; however, phosphorus deficiency restricted soil C accumulation under these climatic conditions. By contrast, ecosystem net C uptake and soil C storage decreased by 56.6 % and 13.6 %, respectively, when exposed to the warmer-drier climate, intensifying its tendency toward a C source. Therefore, the C sink function of semiarid abandoned farmland was unsustainable. Our findings emphasize the need for management of post-abandonment regeneration to sustain ecosystem C sequestration in the context of climate change, aiding policymakers in the development of C-neutral routes in abandoned regions.
Collapse
Affiliation(s)
- Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Eco-meteorology Joint Laboratory of Dingbian County, Yulin 719000, Shaanxi, PR China
| | - Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chenghui Yang
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yanbo Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Chao Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Eco-meteorology Joint Laboratory of Dingbian County, Yulin 719000, Shaanxi, PR China.
| |
Collapse
|
33
|
Augustine SP, McCulloh KA. Physiological trait coordination and variability across and within three Pinus species. THE NEW PHYTOLOGIST 2024; 244:451-463. [PMID: 39205436 DOI: 10.1111/nph.19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 09/04/2024]
Abstract
Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO2-response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.
Collapse
Affiliation(s)
- Steven P Augustine
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Katherine A McCulloh
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Paiva DC, Roddy AB. Flower longevity and size are coordinated with ecophysiological traits in a tropical montane ecosystem. THE NEW PHYTOLOGIST 2024; 244:344-350. [PMID: 39103979 DOI: 10.1111/nph.20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Dario C Paiva
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
35
|
He P, Ye Q, Yu K, Wang H, Xu H, Yin Q, Yue M, Liang X, Wang W, You Z, Zhong Y, Liu H. Growing-Season Precipitation Is a Key Driver of Plant Leaf Area to Sapwood Area Ratio at the Global Scale. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327871 DOI: 10.1111/pce.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Leaf area to sapwood area ratio (AL/AS) influences carbon sequestration, community composition, and ecosystem functioning in terrestrial vegetation and is closely related to leaf economics and hydraulics. However, critical predictors of AL/AS are not well understood. We compiled an AL/AS data set with 1612 species-site combinations (1137 species from 285 sites worldwide) from our field experiments and published literature. We found the global mean AL/AS to be 0.63 m2 cm-2, with its variation largely driven by growing-season precipitation (Pgs), which accounted for 18% of the variation in AL/AS. Species in tropical rainforests exhibited the highest AL/AS (0.82 m2 cm-2), whereas desert species showed the lowest AL/AS (0.16 m2 cm-2). Soil factors such as soil nitrogen and soil organic carbon exhibited positive effects on AL/AS, whereas soil pH was negatively correlated with AL/AS. Tree density accounted for 7% of the variation in AL/AS. All biotic and abiotic predictors collectively explained up to 45% of the variation in AL/AS. Additionally, AL/AS was positively correlated to the net primary productivity (NPP) of the ecosystem. Our study provides insights into the driving factors of AL/AS at the global scale and highlights the importance of AL/AS in ecosystem productivity. Given that Pgs is the most critical driver of AL/AS, alterations in global precipitation belts, particularly seasonal precipitation, may induce changes in plant leaf area on the branches.
Collapse
Affiliation(s)
- Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Kailiang Yu
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Huiying Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
- Department of Geography, University of Exeter, Exeter, UK
| | - Qiulong Yin
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Weiren Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhangtian You
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Zhong
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
36
|
Li J, Prentice IC. Global patterns of plant functional traits and their relationships to climate. Commun Biol 2024; 7:1136. [PMID: 39271947 PMCID: PMC11399309 DOI: 10.1038/s42003-024-06777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plant functional traits (FTs) determine growth, reproduction and survival strategies of plants adapted to their growth environment. Exploring global geographic patterns of FTs, their covariation and their relationships to climate are necessary steps towards better-founded predictions of how global environmental change will affect ecosystem composition. We compile an extensive global dataset for 16 FTs and characterise trait-trait and trait-climate relationships separately within non-woody, woody deciduous and woody evergreen plant groups, using multivariate analysis and generalised additive models (GAMs). Among the six major FTs considered, two dominant trait dimensions-representing plant size and the leaf economics spectrum (LES) respectively-are identified within all three groups. Size traits (plant height, diaspore mass) however are generally higher in warmer climates, while LES traits (leaf mass and nitrogen per area) are higher in drier climates. Larger leaves are associated principally with warmer winters in woody evergreens, but with wetter climates in non-woody plants. GAM-simulated global patterns for all 16 FTs explain up to three-quarters of global trait variation. Global maps obtained by upscaling GAMs are broadly in agreement with iNaturalist citizen-science FT data. This analysis contributes to the foundations for global trait-based ecosystem modelling by demonstrating universal relationships between FTs and climate.
Collapse
Affiliation(s)
- Jiaze Li
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Iain Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Chen Y, Ma J, Wang H, Xie T, Li Q, Shan L. Fine Root Traits across Different Root Orders and Their Associations with Leaf Traits in 15 Co-Occurring Plant Species from the Desert-Oasis Transition Zone in the Hexi Corridor, Gansu Province, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2472. [PMID: 39273955 PMCID: PMC11396981 DOI: 10.3390/plants13172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Fine root traits embody trade-offs between resource acquisition and conservation in plants. Yet, the differentiation of these traits across root orders, the existence of a root economics spectrum (RES) spanning these orders, and their linkage with leaf traits remain underexplored. In this study, we analyzed the first three root orders and leaf traits of 15 co-occurring plant species, including ten herbs and five shrubs, from the desert-oasis transition zone of the Hexi Corridor. We measured twelve morphological and chemical traits to investigate the relationships between root and leaf traits. Our results revealed significant variation in root traits both among species and within species across different root orders. We identified RES that spanned root orders, with higher-order roots exhibiting more conservative traits and lower-order roots displaying traits aligned with resource acquisition. Additionally, leaf and fine root traits showed partially decoupled adaptive strategies, yet evidence also supported the existence of a leaf economics spectrum (LES) and a potentially two-dimensional whole plant economics spectrum (WPES). Our findings suggest synergistic resource allocation strategies between fine roots and the entire plant, emphasizing the importance of root order in understanding fine root structure, function, and their interactions with other plant organs. These insights advance the understanding of fine root traits and their integration within the broader plant economics spectrum. Nevertheless, the differences in fine root traits across root orders, the presence of a root economics spectrum (RES) spanning these orders, and the relationships between fine root and leaf traits remain underexplored. We examined the first three root orders and leaves of 15 co-occurring plant species (ten herbs and five shrubs) from the desert-oasis transition zone in the Hexi Corridor, measured twelve key morphological and chemical traits. We observed substantial variation in root traits among species and root orders within species. The root economics spectrum (RES) spanned across root orders, with higher-order roots positioned at the conservative end and lower-order roots at the acquisitive end of the "investment-return" strategy axis. Leaf and fine root traits of the 15 co-occurring plant species exhibited partially decoupled adaptive strategies. However, there was also evidence for the presence of a leaf economics spectrum (LES) and a whole plant economics spectrum (WPES), with the WPES potentially being two-dimensional. Furthermore, our findings suggest synergistic resource strategies between fine roots and the whole plant. Concurrently, the significant interspecific and intraspecific differences in fine root traits, combined with the presence of a root economics spectrum across root orders, underscore the critical importance of root order in studying fine root structure, function, and their associations with other plant organs. Our findings offer valuable insights for future research on fine root traits, the RES, and their integration with the whole plant economics spectrum.
Collapse
Affiliation(s)
- Yiming Chen
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Ma
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyong Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Xie
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Quangang Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Lishan Shan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
38
|
Manzi OJL, Wittemann M, Dusenge ME, Habimana J, Manishimwe A, Mujawamariya M, Ntirugulirwa B, Zibera E, Tarvainen L, Nsabimana D, Wallin G, Uddling J. Canopy temperatures strongly overestimate leaf thermal safety margins of tropical trees. THE NEW PHYTOLOGIST 2024; 243:2115-2129. [PMID: 39073111 DOI: 10.1111/nph.20013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (Tleaf). To address this, some studies have used canopy temperature (Tcan). However, Tcan fails to capture the fine-scale variation in Tleaf among leaves and species in diverse canopies. We used infrared radiometers to study Tleaf and Tcan and how they deviate from air temperature (ΔTleaf and ΔTcan) in multispecies tropical tree plantations at three sites along an elevation and temperature gradient in Rwanda. Our results showed high Tleaf (up to c. 50°C) and ΔTleaf (on average 8-10°C and up to c. 20°C) of sun-exposed leaves during 10:00 h-15:00 h, being close to or exceeding photosynthetic heat tolerance thresholds. These values greatly exceeded simultaneously measured values of Tcan and ΔTcan, respectively, leading to strongly overestimated leaf thermal safety margins if basing those on Tcan data. Stomatal conductance and leaf size affected Tleaf and Tcan in line with their expected influences on leaf energy balance. Our findings highlight the importance of leaf traits for leaf thermoregulation and show that monitoring Tcan is not enough to capture the peak temperatures and heat stress experienced by individual leaves of different species in tropical forest canopies.
Collapse
Affiliation(s)
- Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, PO Box 330, Huye, Rwanda
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
| | - Mirindi Eric Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- Department of Biology, Mount Allison University, Sackville, NB, E4L 1E4, Canada
| | - Jacques Habimana
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
| | - Aloysie Manishimwe
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, PO Box 3900, Kigali, Rwanda
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, PO Box 3900, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, PO Box 3900, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board, PO Box 5016, Kigali, Rwanda
- Rwanda Forestry Authority, PO Box 46, Muhanga, Rwanda
| | - Etienne Zibera
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
- School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, PO Box 210, Musanze, Rwanda
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
| | - Donat Nsabimana
- School of Forestry and Biodiversity Conservation, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, PO Box 210, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg, SE-405 30, Sweden
| |
Collapse
|
39
|
Xing Y, Deng S, Bai Y, Wu Z, Luo J. Leaf Functional Traits and Their Influencing Factors in Six Typical Vegetation Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2423. [PMID: 39273907 PMCID: PMC11397209 DOI: 10.3390/plants13172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Leaf functional traits (LFTs) have become a popular topic in ecological research in recent years. Here, we measured eight LFTs, namely leaf area (LA), specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf potassium content (LKC), in six typical vegetation communities (sclerophyllous evergreen broad-leaved forests, temperate evergreen coniferous forests, cold-temperate evergreen coniferous forests, alpine deciduous broad-leaved shrubs, alpine meadows, and alpine scree sparse vegetation) in the Chayu River Basin, southeastern Qinghai-Tibet Plateau. Our aim was to explore their relationships with evolutionary history and environmental factors by combining the RLQ and the fourth-corner method, and the method of testing phylogenetic signal. The results showed that (i) there were significant differences in the eight LFTs among the six vegetation communities; (ii) the K values of the eight LFTs were less than 1; and (iii) except for LCC, all other LFTs were more sensitive to environmental changes. Among these traits, LA was the most affected by the environmental factors, followed by LNC. It showed that the LFTs in the study were minimally influenced by phylogenetic development but significantly by environmental changes. This study further verified the ecological adaptability of plants to changes in environmental factors and provides a scientific basis for predicting the distribution and diffusion direction of plants under global change conditions.
Collapse
Affiliation(s)
- Yuting Xing
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Shiqin Deng
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Yuanyin Bai
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhengjie Wu
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Jian Luo
- Key Laboratory of Forest Ecology in Xizang Plateau of Ministry of Education, National Forest Ecosystem Observation & Research Station of Linzhi Xizang, Institute of Xizang Plateau Ecology, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China
| |
Collapse
|
40
|
Mozzi G, Crivellaro A, Blasini DE, Vásquez-Cruz M, Hernández-Hernández T, Hultine KR. Divergent structural leaf trait spectra in succulent versus non-succulent plant taxa. ANNALS OF BOTANY 2024; 134:491-500. [PMID: 38833416 PMCID: PMC11341667 DOI: 10.1093/aob/mcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND SCOPE Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow trait correlations similar to those of non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. METHODS We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment, referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. RESULTS Both SWC and WMA at a given SLA were ~10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis (PCA) revealed that succulent taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) or sclerophyllous (P < 0.0001) taxa along the first PCA axis, which explained 63 % of mean trait expression among species. However, aridity only explained 12 % of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. CONCLUSIONS Trait coordination in succulent leaf taxa may not follow patterns similar to those of widely studied non-succulent taxa.
Collapse
Affiliation(s)
- Giacomo Mozzi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro (PD), Italy
| | - Alan Crivellaro
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
- Forest Biometrics Laboratory, Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, 720229 Suceava, Romania
| | - Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Tania Hernández-Hernández
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| |
Collapse
|
41
|
Wyatt AL, Pardoe HS, Cleal CJ, Sánchez Vilas J. Rapid morphological change in UK populations of Impatiens glandulifera. Sci Rep 2024; 14:19275. [PMID: 39164340 PMCID: PMC11335755 DOI: 10.1038/s41598-024-69710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
The highly invasive Impatiens glandulifera (Himalayan balsam) is one of the most prolific and widespread invasive plants in the British Isles. Introduced in the early nineteenth century, it has now been reported in almost every vice county across the UK and is a fierce competitor that has adverse effects on the local community structure. Despite the negative impacts that invaders like I. glandulifera have on local communities, there have been very few studies which address the morphological changes that invasive plant populations have undergone since their initial introduction. This is the first study of its kind to investigate the morphological changes that have occurred in I. glandulifera. 315 herbarium specimens dating from 1865 to 2017 were used to measure changes in morphological traits such as leaf size, flower length and stomatal characteristics. We found that since 1865, there has been a significant reduction in overall leaf size, a significant reduction in stomatal density and a significant increase in the overall flower length. These results highlight the importance of monitoring the evolutionary change in prolific alien species over the course of their invasion, providing useful insights into changes in competitive ability which may prove useful in managing dispersal and providing options for potential management.
Collapse
Affiliation(s)
- A L Wyatt
- Geobiology and Geochemistry Division, Cardiff School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - H S Pardoe
- Department of Natural Sciences, Amgueddfa Cymru - Museum Wales, Cathays Park, Cardiff, CF10 3NP, UK
| | - C J Cleal
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782, Santiago de Compostela, Spain
| | - J Sánchez Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Meherali S, Nisa S, Aynalem YA, Kennedy M, Salami B, Adjorlolo S, Ali P, Silva KL, Aziato L, Richter S, Lassi ZS. Impact of climate change on maternal health outcomes: An evidence gap map review. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003540. [PMID: 39159145 PMCID: PMC11332935 DOI: 10.1371/journal.pgph.0003540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024]
Abstract
Climate change poses unique challenges to maternal well-being and increases complications during pregnancy and childbirth globally. This evidence gap map (EGM) aims to identify gaps in existing knowledge and areas where further research related to climate change and its impact on maternal health is required. The following databases were searched individually from inception to present: Medline, EMBASE, and Global Health via OVID; Cumulative Index to Nursing and Allied Health Literature (CINAHL) via EBSCOhost; Scopus; and organizational websites. In this EGM, we integrated 133 studies published in English, including qualitative, quantitative, reviews and grey literature that examined the impact of climate change on maternal health (women aged 15-45). We used Covidence to screen studies and Evidence for Policy and Practice Information (Eppi reviewer)/Eppi Mapper software to generate the EGM. Data extraction and qualitative appraisal of the studies was done using critical appraisal tools. The study protocol was registered in International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY) # INPLASY202370085. Out of 133 included studies, forty seven studies were of high quality, seventy nine moderate equality and seven low quality. This EGM found notable gaps in the literature regarding the distribution of research across regions. We found significant research in North America (51) and Asia (40 studies). However, Africa and the Caribbean had fewer studies, highlighting potential disparities in research attention and resources. Moreover, while the impact of extreme heat emerged as a prominent factor impacting maternal well-being, there is a need for further investigation into other climate-related factors such as drought. Additionally, while preterm stillbirth and maternal mortality have gained attention, there is an overlook of malnutrition and food insecurity indicators that require attention in future research. The EGM identifies existing research gaps in climate change and maternal health. It emphasizes the need for global collaboration and targeted interventions to address disparities and inform climate-responsive policies.
Collapse
Affiliation(s)
- Salima Meherali
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Saba Nisa
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Yared Asmare Aynalem
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Canada
| | - Megan Kennedy
- John W. Scott Health Sciences Librarian, Walter C. Mackenzie Health Sciences Centre, University of Alberta Library, Edmonton, Canada
| | - Bukola Salami
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Adjorlolo
- Department of Mental Health, School of Nursing and Midwifery, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Parveen Ali
- School of Allied Health Professions, Nursing and Midwifery, University of Sheffield and Doncaster and Bassetlaw Teaching Hospital Trust, Sheffield, United Kingdom
| | - Kênia Lara Silva
- Department de Enfermagem Aplicada, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lydia Aziato
- Department of Mental Health, School of Nursing and Midwifery, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Solina Richter
- College of Nursing, University of Saskatchewan, Saskatoon, Canada
| | - Zohra S. Lassi
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
43
|
Veresoglou SD, Xi J, Peñuelas J. Mechanisms of coexistence: Exploring species sorting and character displacement in woody plants to alleviate belowground competition. Ecol Lett 2024; 27:e14489. [PMID: 39075934 DOI: 10.1111/ele.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Rarely do we observe competitive exclusion within plant communities, even though plants compete for a limited pool of resources. Thus, our understanding of the mechanisms sustaining plant biodiversity might be limited. In this study, we explore two common ecological strategies, species sorting and character displacement, that promote coexistence by reducing competition. We assess the degree to which woody plants may implement these two strategies to lower belowground competition for nutrients which occurs via nutritional (mostly mycorrhizal) mutualisms. First, we compile data on plant traits and the mycorrhizal association state of woody angiosperms using a global inventory of indigenous flora. Our analysis reveals that species in locations with high mycorrhizal diversity exhibit distinct mean values in leaf area and wood density based on their mycorrhizal type, indicating species sorting. Second, we reanalyse a large dataset on leaf area to demonstrate that in areas with high mycorrhizal diversity, trees maintain divergent leaf area values, showcasing character displacement. Character displacement among plants is considered rare, making our observation significant. In summary, our study uncovers a rare occurrence of character displacement and identifies a common mechanism employed by plants to alleviate competition, shedding light on the complexities of plant coexistence in diverse ecosystems.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Jingjing Xi
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitán JJ, García-Gómez M, Martínez P, Martínez-Valderrama J, Mendoza BJ, Moreno-Jiménez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Donoso DA, Durán J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstädter A, Louw MA, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramírez-Iglesias E, Reed SC, Rey PJ, Reyes Gómez VM, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, et alGross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitán JJ, García-Gómez M, Martínez P, Martínez-Valderrama J, Mendoza BJ, Moreno-Jiménez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Donoso DA, Durán J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstädter A, Louw MA, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramírez-Iglesias E, Reed SC, Rey PJ, Reyes Gómez VM, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Undrakhbold S, Val J, Valkó O, Velbert F, Wamiti W, Wang L, Wang D, Wardle GM, Wolff P, Yahdjian L, Yari R, Zaady E, Zeberio JM, Zhang Y, Zhou X, Le Bagousse-Pinguet Y. Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 2024; 632:808-814. [PMID: 39112697 DOI: 10.1038/s41586-024-07731-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Collapse
Affiliation(s)
- Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France.
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Miguel Berdugo
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Raphaël Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Vincent Maire
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
| | - Hugo Saiz
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
| | - Santiago Soliveres
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Enrique Valencia
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Franck Jabot
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Juan J Gaitán
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Suelos-CNIA, Buenos Aires, Argentina
- Departamento de Tecnología, Universidad Nacional de Luján, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| | - Miguel García-Gómez
- Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paloma Martínez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jaime Martínez-Valderrama
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Betty J Mendoza
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - David S Pescador
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ivan Santaolaria Pijuan
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Alicante, Spain
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Rodrigo J Ahumada
- Estación Experimental Agropecuaria Catamarca, Instituto Nacional de Tecnología Agropecuaria, Catamarca, Argentina
| | - Fateh Amghar
- Laboratoire de Recherche: Biodiversité, Biotechnologie, Environnement et Développement Durable (BioDev), Faculté des Sciences, Université M'hamed Bougara de Boumerdès, Boumerdès, Algérie
| | | | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Lydia Bailey
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Farah Ben Salem
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institut des Régions Arides (IRA) Médenine, University of Gabes, Zrig Eddakhlania, Tunisia
| | - Niels Blaum
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Bazartseren Boldgiv
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Matthew A Bowker
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Cristina Branquinho
- cE3c - Centre for Ecology, Evolution and Environmental Changes and CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Liesbeth van den Brink
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- ECOBIOSIS, Departmento of Botánica, Universidad de Concepción, Concepción, Chile
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Rafaella Canessa
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Helena Castro
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | - Patricio Castro
- Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del Paisaje, Universidad de Cuenca, Cuenca, Ecuador
| | - Roukaya Chibani
- Laboratory of Eremology and Combating Desertification, Institut des Régions Arides (IRA) Médenine, University of Gabes, Zrig Eddakhlania, Tunisia
| | - Abel Augusto Conceição
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brasil
| | | | - Yvonne C Davila
- Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Balázs Deák
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
| | - Jorge Durán
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
| | - Carlos Espinosa
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
- Limits of Life (LiLi), Instituto Milenio, Valdivia, Chile
| | - Mohammad Farzam
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Daniela Ferrante
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina
| | - Jorgelina Franzese
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Neuquen, Argentina
| | - Lauchlan Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Sofía Gonzalez
- Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Neuquen, Argentina
| | - Elizabeth Gusman-Montalvan
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Rosa Mary Hernández-Hernández
- Instituto de Estudios Científicos y Tecnológicos (IDECYT); Centro de Estudios de Agroecología Tropical (CEDAT), Universidad Nacional Experimental Simón Rodríguez (UNESR), Miranda, Venezuela
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | | | - Oswaldo Jadan
- Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del Paisaje, Universidad de Cuenca, Cuenca, Ecuador
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Mengchen Ju
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Kudzai F Kaseke
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Liana Kindermann
- Biodiversity Research, Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Anja Linstädter
- Biodiversity Research, Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michelle A Louw
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Mancha Mabaso
- Department of Biochemistry, Genetics and Microbiology, DSI/NRF SARChI in Marine Microbiomics, University of Pretoria, Pretoria, South Africa
| | | | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Oumarou Malam Issa
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, IRD, CNRS, INRAE, Université Paris Est Creteil, Université de Paris, Centre IRD de France Nord, Bondy, France
| | - Antonio J Manzaneda
- Departamento Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Eugene Marais
- Gobabeb, Namib Research Institute, Walvis Bay, Namibia
| | - Pierre Margerie
- Normandie Universite, UNIROUEN, INRAE, ECODIV, Rouen, France
| | - Frederic Mendes Hughes
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brasil
- Programa de Pós-Graduação em Zoologia and Conselho de Curadores das Coleções Científicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Pampulha, Brazil
| | - João Vitor S Messeder
- Biology Department and Ecology Program, The Pennsylvania State University, University Park, PA, USA
| | - Juan P Mora
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
| | - Gerardo Moreno
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Seth M Munson
- Southwest Biological Science Center, US Geological Survey, Flagstaff, AZ, USA
| | - Alice Nunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes and CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel Oliva
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina
| | - Gaston R Oñatibia
- Cátedra de Ecología, Facultad de Agronomía Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Peter
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- CEANPa, Universidad Nacional de Río Negro, Sede Atlántica, Río Negro, Argentina
| | - Yolanda Pueyo
- Instituto Pirenaico de Ecología (IPE CSIC), Zaragoza, Spain
| | - R Emiliano Quiroga
- Estación Experimental Agropecuaria Catamarca, Instituto Nacional de Tecnología Agropecuaria, Catamarca, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, Argentina
| | | | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Pedro J Rey
- Instituto Interuniversitario de Investigación del Sistema Tierra de Andalucía, Universidad de Jaén, Jaén, Spain
| | | | | | - Victor Rolo
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Juan G Rubalcaba
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jan C Ruppert
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | - Osvaldo Sala
- Global Drylands Center,School of Life Sciences and School of Sustainability, Arizona State University, Tempe, AZ, USA
| | | | - Phokgedi Julius Sebei
- Mara Research Station, Limpopo Department of Agriculture and Rural Development, Polokwane, South Africa
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel
| | - Colton Stephens
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Alberto L Teixido
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrew D Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Heather L Throop
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Samantha Travers
- Department of Planning and Environment, Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sainbileg Undrakhbold
- Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - James Val
- Department of Planning and Environment, Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Orsolya Valkó
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Frederike Velbert
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Wanyoike Wamiti
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis (IUI), Indianapolis, IN, USA
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Glenda M Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Wolff
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Laura Yahdjian
- Cátedra de Ecología, Facultad de Agronomía Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Reza Yari
- Forest and Rangeland Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
| | - Eli Zaady
- Gilat Research Center, Department of Natural Resources, Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - Juan Manuel Zeberio
- CEANPa, Universidad Nacional de Río Negro, Sede Atlántica, Río Negro, Argentina
| | - Yuanling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
45
|
Griffani DS, Rognon P, Farquhar GD. The role of thermodiffusion in transpiration. THE NEW PHYTOLOGIST 2024; 243:1301-1311. [PMID: 38453691 DOI: 10.1111/nph.19642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Plant leaf temperatures can differ from ambient air temperatures. A temperature gradient in a gas mixture gives rise to a phenomenon known as thermodiffusion, which operates in addition to ordinary diffusion. Whilst transpiration is generally understood to be driven solely by the ordinary diffusion of water vapour along a concentration gradient, we consider the implications of thermodiffusion for transpiration. We develop a new modelling framework that introduces the effects of thermodiffusion on the transpiration rate, E. By applying this framework, we quantify the proportion of E attributable to thermodiffusion for a set of physiological and environmental conditions, varied over a wide range. Thermodiffusion is found to be most significant (in some cases > 30% of E) when a leaf-to-air temperature difference coincides with a relatively small water vapour concentration difference across the boundary layer; a boundary layer conductance that is large as compared to the stomatal conductance; or a relatively low transpiration rate. Thermodiffusion also alters the conditions required for the onset of reverse transpiration, and the rate at which this water vapour uptake occurs.
Collapse
Affiliation(s)
- Danielle S Griffani
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, 2480, Australia
| | - Pierre Rognon
- School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
46
|
Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret JY, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4128-4147. [PMID: 38613495 DOI: 10.1093/jxb/erae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration tolerance and avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and maintenance, or even increases in soluble sugar concentrations, potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, indicating that dehydration avoidance is an effective drought-survival strategy linked to the 'fast-slow' continuum of plant performance at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.
Collapse
Affiliation(s)
- Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Louis Foltzer
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Bastien Gérard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Jean-Yves Goret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
47
|
Xing H, Chen J, Gong S, Liu S, Xu G, Chen M, Li F, Shi Z. Variation in photosynthetic capacity of Salvia przewalskii along elevational gradients on the eastern Qinghai-Tibetan Plateau, China. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108801. [PMID: 38850729 DOI: 10.1016/j.plaphy.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Elevational variation in plant growing environment drives diversification of photosynthetic capacity, however, the mechanism behind this reaction is poorly understood. We measured leaf gas exchange, chlorophyll fluorescence, anatomical characteristics, and biochemical traits of Salvia przewalskii at elevations ranging from 2400 m to 3400 m above sea level (a.s.l) on the eastern Qinghai-Tibetan Plateau, China. We found that photosynthetic capacity showed an initial increase and then a decrease with rising elevation, and the best state observed at 2800 m a.s.l. Environmental factors indirectly regulated photosynthetic capacity by affecting stomatal conductance (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc max), and maximum capacity for photosynthetic electron transport (Jmax). The average temperature (T) and total precipitation (P) during the growing season had the highest contribution to the variation of photosynthetic capacity of S. przewalskii in subalpine areas, which were 25% and 24%, respectively. Photosynthetic capacity was mainly affected by diffusional limitations (71%-89%), and mesophyll limitation (lm) played a leading role. The variation of gm was attributed to the effects of environmental factors on the volume fraction of intercellular air space (fias), the thickness of cell wall (Tcw), the surface of mesophyll cells and chloroplasts exposed to intercellular airspace (Sm, Sc), and plasma membrane intrinsic protein (PIPs, PIP1, PIP2), independent of carbonic anhydrase (CA). Optimization of leaf tissue structure and adaptive physiological responses enabled plants to efficiently cope with variable climate conditions of high-elevation areas, and the while maintaining high levels of carbon assimilation.
Collapse
Affiliation(s)
- Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shanshan Gong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China; Sichuan Miyaluo Forest Ecosystem National Observation and Research Station, Lixian, 623100, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China.
| |
Collapse
|
48
|
Huang J, Wang Q, Sanchez-Martinez P, El-Kassaby YA, Jia Q, Xie Y, Guan W, Zang R. Phylogenetic conservatism and coordination in traits of Chinese woody endemic flora. iScience 2024; 27:109885. [PMID: 38799551 PMCID: PMC11126960 DOI: 10.1016/j.isci.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Range-limited endemic species, often labeled as endangered due to their low adaptability to climate change, exhibit unclear evolutionary mechanisms influencing their distribution. This study explores the relationship between leaf length, maximum height, and seed diameter and their linkage to phylogeny and climate in the macroecology of 1,370 woody endemics. Using Bayesian analytical method that allows partitioning phylogenetic and environmental variances and covariance, we revealed moderate to high phylogenetic signals in these traits, indicating evolutionary constraints potentially impacting climate change adaptability. The study uncovered a phylogenetically conserved coordination between height and leaf length which showed to be independent of macroecological patterns of temperature and precipitation. These findings emphasize the role of phylogenetic ancestry in shaping the distribution of woody endemics, highlighting the need for prioritized in-situ conservation and providing insights for ex situ conservation strategies.
Collapse
Affiliation(s)
- Jihong Huang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qing Wang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Ecological Technical Research Institute (Beijing) CO., Ltd., CIECC, Beijing 100037, China
| | - Pablo Sanchez-Martinez
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Universitat Autòonoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Qiang Jia
- Ecological Technical Research Institute (Beijing) CO., Ltd., CIECC, Beijing 100037, China
| | - Yifei Xie
- Ganzhou Key Laboratory of Nanling Plant Resources Protection and Utilization, School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Wenbin Guan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Runguo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
49
|
Bastias CC, Estarague A, Vile D, Gaignon E, Lee CR, Exposito-Alonso M, Violle C, Vasseur F. Ecological trade-offs drive phenotypic and genetic differentiation of Arabidopsis thaliana in Europe. Nat Commun 2024; 15:5185. [PMID: 38890286 PMCID: PMC11189578 DOI: 10.1038/s41467-024-49267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.
Collapse
Affiliation(s)
- Cristina C Bastias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain.
| | - Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Elza Gaignon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
50
|
Geilfus CM, Zörb C, Jones JJ, Wimmer MA, Schmöckel SM. Water for agriculture: more crop per drop. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:499-507. [PMID: 38773740 DOI: 10.1111/plb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024]
Abstract
Global crop production in agriculture depends on water availability. Future scenarios predict increasing occurrence of flash floods and rapidly developing droughts accompanied by heatwaves in humid regions that rely on rain-fed agriculture. It is challenging to maintain high crop yields, even in arid and drought-prone regions that depend on irrigation. The average water demand of crops varies significantly, depending on plant species, development stage, and climate. Most crops, such as maize and wheat, require relatively more water during the vegetative phase compared to the ripening phase. In this review, we explain WUE and options to improve water use and thus crop yield. Nutrient management might represent another possibility to manipulate water uptake and use by plants. An emerging topic involves agroforest co-cultivation, where trees in the system facilitate water transfer through hydraulic lift, benefiting neighbouring crops. Other options to enhance crop yield per water use are discussed.
Collapse
Affiliation(s)
- C-M Geilfus
- Department of Plant Nutrition and Soil Science, Hochschule Geisenheim University, Geisenheim, Germany
| | - C Zörb
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - J J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - M A Wimmer
- Department Quality of Plant Products, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - S M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|