1
|
Zhang Y, Ru Y, Zhao L, Hao R, Yang Y, Shen C, Shi Z, Zheng H. Encapsulin nanoparticle-conjugated p54 protein boosts immune responses against African swine fever virus. Int J Biol Macromol 2025; 311:143912. [PMID: 40324494 DOI: 10.1016/j.ijbiomac.2025.143912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
African swine fever virus (ASFV) poses a severe threat to global swine production, with no commercially approved vaccine. The ASFV p54 protein is critical for viral entry and trafficking, interacting with the dynein light chain 8 (DLC8) to facilitate replication and spread within host cells. Despite advances in vaccine development, current strategies struggle to induce sustained immune responses. In this study, we utilized SpyTag/SpyCatcher technology to covalently conjugate the ASFV p54 protein to ferritin and encapsulin nanoparticles (F/E-p54), aiming to enhance immune recognition and optimize antigen presentation. The conjugated nanoparticles exhibited a 60-fold enhancement in receptor binding affinity over the soluble p54 monomer, improving targeted delivery to lymphoid tissues and stimulating T follicular helper (Tfh) cells and germinal center B (GCB) cells. The encapsulin-based nanoparticle approach elicited strong B- and T-cell responses, promoting prolonged immune activation and the production of neutralizing antibodies. Additionally, antibodies generated by the F/E-p54 conjugates effectively inhibited both genotype II and recombinant I/II ASFV strains. These findings highlight the potential of nanoparticle-based vaccines, particularly encapsulin-conjugated systems, as promising platforms for advancing ASFV vaccine development and guiding future immunization strategies.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Longhe Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
2
|
Pulfer A, Pizzagalli DU, Segura MP, Germic N, Virgilio T, Di Pilato M, Carrillo Barbera P, Palladino E, Antonello P, Thelen M, Simon HU, Krause R, Gonzalez SF. An in vivo microscopy dataset for the characterization of leukocyte death. Sci Data 2025; 12:593. [PMID: 40204757 PMCID: PMC11982338 DOI: 10.1038/s41597-025-04632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/12/2025] [Indexed: 04/11/2025] Open
Abstract
Recent advancements in intravital microscopy have enabled the study of cell death in vivo under various experimental conditions, such as infection and cancer. However, the limited throughput of this technology, together with a lack of openly accessible datasets, affects the development of algorithms for the automatic detection and characterization of cell death, which in turn require the integration of extensive and curated datasets. To address these needs, we present a curated dataset of microscopy videos depicting the death of neutrophils, eosinophils, and dendritic cells, acquired in the spleen and in the lymph node of mice under inflammatory conditions. The dataset provides time-lapse imaging data, along with coordinates in space and time of cell death events displaying apoptotic-like morphodynamics, and 3D reconstruction of the cell morphology at each time point. Altogether, these data will be pivotal for developing computer vision and bioimage analysis methods to advance cell death research.
Collapse
Affiliation(s)
- Alain Pulfer
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
- Euler Institute, Faculty of Informatics, USI, Lugano, Switzerland
| | - Miguel Palomino Segura
- Department of Physiology, Faculty of Sciences. Universidad de Extremadura, Badajoz, Spain
| | - Nina Germic
- Institute for Pharmacology, University of Bern, Bern, Switzerland
| | - Tommaso Virgilio
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Mauro Di Pilato
- Department of Immunology, University of Texas MD Anderson Cancer Center, Texas, USA
| | - Pau Carrillo Barbera
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Elisa Palladino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Paola Antonello
- Department of Immunology, Weizman Institute of Science, Rehovot, Israel
| | - Marcus Thelen
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Hans-Uwe Simon
- Institute for Pharmacology, University of Bern, Bern, Switzerland
| | - Rolf Krause
- Euler Institute, Faculty of Informatics, USI, Lugano, Switzerland
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, USI, Lugano, Switzerland.
| |
Collapse
|
3
|
Luo X, Hou X, Wang Y, Li Y, Yu S, Qi H. An interleukin-9-ZBTB18 axis promotes germinal center development of memory B cells. Immunity 2025; 58:861-874.e6. [PMID: 40107273 DOI: 10.1016/j.immuni.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Memory B cell (MBC) development from germinal centers (GCs) entails profound changes in cell cycling, localization, and survival. Here, we examined the mechanisms that induce the memory program, focusing on interleukin (IL)-9, given its importance for normal recall antibody responses. Using adoptive transfer and radiation chimera models, we found that T cell-derived IL-9 was required for MBC development and function. By contrast, B cells deficient in IL-9 generated functionally normal MBCs that support antibody recall normally. IL-9 induced expression of the transcriptional repressor ZBTB18 in GC memory precursor cells and MBCs. ZBTB18 was dispensable for naive B cell activation and GC formation but required for the development of GC-derived MBCs. ZBTB18 directly repressed the expression of a suite of genes encoding cyclin and cyclin-dependent kinases, pro-apoptotic genes Bid and Casp3, and the GC-retaining factor S1pr2. Lack of IL-9-mediated instruction or intrinsic programming by ZBTB18 impaired GC-derived MBC development and antibody recall. Thus, an IL-9-ZBTB18 axis instructs the development of functional B cell memory from GCs.
Collapse
Affiliation(s)
- Xiaocui Luo
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoxiao Hou
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yifeng Wang
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Ye Li
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Immunological Research of Allergy, Tsinghua University, Beijing, China
| | - Shangcheng Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai Qi
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; New Cornerstone Science Laboratory, Tsinghua Medicine, Tsinghua University, Beijing, China; Beijing Key Laboratory of Immunological Research of Allergy, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Guillaume SM, Foster WS, San Martín Molina I, Watson EM, Innocentin S, Kennedy GM, Denton AE, Linterman MA. Lung B cells in ectopic germinal centers undergo affinity maturation. Proc Natl Acad Sci U S A 2025; 122:e2416855122. [PMID: 40168127 PMCID: PMC12002176 DOI: 10.1073/pnas.2416855122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
The lungs are constantly exposed to the external environment and a myriad of antigenic challenges within the air. Chronic exposure to allergens and other airborne antigens can result in the formation of lymphocyte aggregates in the lung, which can harbor ectopic germinal centers (GCs). After allergen exposure, GCs that form in the lung are much smaller and less densely packed with B cells than lymph node GCs. Despite this, ectopic lung GCs support somatic hypermutation and affinity-based maturation as in lymph node GCs, and export memory B cells (MBCs) directly into the lung tissue. This demonstrates that the lung can locally diversify B cell responses and supports the generation of tissue MBC populations in situ.
Collapse
Affiliation(s)
| | - William S. Foster
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Isabel San Martín Molina
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
- Babraham Imaging Core, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Emily M. Watson
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Silvia Innocentin
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
| | - Grant M. Kennedy
- Immunology Program, Babraham Institute, CambridgeCB22 3AT, United Kingdom
- Department of Physics, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Alice E. Denton
- Department of Immunology and Inflammation, Imperial College London, LondonW12 0NN, United Kingdom
| | | |
Collapse
|
5
|
Pérez-Pérez L, Laidlaw BJ. Polarization of the memory B-cell response. J Leukoc Biol 2025; 117:qiae228. [PMID: 39401326 PMCID: PMC11953070 DOI: 10.1093/jleuko/qiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
Memory B cells are long-lived cells that are induced following infection or vaccination. Upon antigen re-encounter, memory B cells rapidly differentiate into antibody-secreting or germinal center B cells. While memory B cells are an important component of long-term protective immunity following vaccination, they also contribute to the progression of diseases such as autoimmunity and allergy. Numerous subsets of memory B cells have been identified in mice and humans that possess important phenotypic and functional differences. Here, we review the transcriptional circuitry governing memory B-cell differentiation and function. We then summarize emerging evidence that the inflammatory environment in which memory B cells develop has an important role in shaping their phenotype and examine the pathways regulating the development of memory B cells during a type 1-skewed and type 2-skewed immune response.
Collapse
Affiliation(s)
- Lizzette Pérez-Pérez
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
6
|
Kannan D, Wang E, Deeks SG, Lewin SR, Chakraborty AK. Mechanism for evolution of diverse autologous antibodies upon broadly neutralizing antibody therapy of people with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641732. [PMID: 40161612 PMCID: PMC11952291 DOI: 10.1101/2025.03.05.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antiretroviral therapy (ART) inhibits Human Immunodeficiency Virus (HIV) replication to maintain undetectable viral loads in people living with HIV, but does not result in a cure. Due to the significant challenges of lifelong ART for many, there is strong interest in therapeutic strategies that result in cure. Recent clinical trials have shown that administration of broadly neutralizing antibodies (bnAbs) when there is some viremia can lead to ART-free viral control in some people; however, the underlying mechanisms are unclear. Our computational modeling shows that bnAbs administered in the presence of some viremia promote the evolution of autologous antibodies (aAbs) that target diverse epitopes of HIV spike proteins. This "net" of polyclonal aAbs could confer control since evasion of this response would require developing mutations in multiple epitopes. Our results provide a common mechanistic framework underlying recent clinical observations upon bnAb/ART therapy, and they should also motivate and inform new trials.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Arup K. Chakraborty
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae039. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
8
|
Liao F, Zhou D, Cano M, Liu Z, Scozzi D, Tague LK, Byers DE, Li W, Sivapackiam J, Sharma V, Krupnick AS, Frank DW, Kreisel D, Kulkarni HS, Hachem RR, Gelman AE. Pseudomonas aeruginosa infection induces intragraft lymphocytotoxicity that triggers lung transplant antibody-mediated rejection. Sci Transl Med 2025; 17:eadp1349. [PMID: 39908350 DOI: 10.1126/scitranslmed.adp1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
How pathogens inhibit transplant tolerance remains unclear. Here, we found that Pseudomonas aeruginosa infection, but not other common bacterial respiratory infections, increases antibody-mediated rejection (AMR) risk in recipients of lung transplants. To explore this relationship, we performed orthotopic lung transplants in mice, infected recipients with P. aeruginosa, and observed for the development of AMR. Intravital two-photon microscopy showed that P. aeruginosa rapidly invaded bronchial-associated lymphoid tissues, which resulted in acute lymphocytotoxicity, including the death of forkhead box P3 (Foxp3)+CD4+ T cells that are required to suppress AMR. P. aeruginosa-mediated AMR required expression of the type III secretion system (T3SS), which injects exotoxins into the cell cytoplasm. Through a combination of mutagenesis and epitope tagging experiments, we revealed that T3SS exotoxin T ADP ribosyl-transferase activity was sufficient for graft-resident Foxp3+CD4+ T cell apoptosis, leading to myeloid differentiation primary response 88 (Myd88)-dependent generation of T-box expressed in T cells (T-bet)- and C-X-C motif chemokine receptor 3 (CXCR3)-positive germinal center and memory B cells with high donor antigen avidity. We also found that T-bet+ and CXCR3+ B cells were elevated in biopsies from recipients of lung transplants who were diagnosed with AMR. In mice, CXCR3 deficiency restricted to B cells or CXCR3 blockade prevented AMR despite P. aeruginosa infection. Our work has identified a previously unrecognized role of bacterial virulence in lung allograft rejection and suggests potential strategies to prevent AMR for those at high risk of P. aeruginosa infection after transplant.
Collapse
Affiliation(s)
- Fuyi Liao
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dequan Zhou
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marlene Cano
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyi Liu
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laneshia K Tague
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek E Byers
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel Kreisel
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramsey R Hachem
- Department of Internal Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Andrew E Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hägglöf T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. Science 2025; 387:413-420. [PMID: 39700316 PMCID: PMC11938350 DOI: 10.1126/science.adr6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, is selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. We found that PC precursors (prePCs) expressing high-affinity antibodies received higher levels of T follicular helper cell (TFH cell)-derived help and divided at higher rates compared with their lower-affinity counterparts once they left the germinal center. Our findings indicate that differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
Affiliation(s)
- Andrew J. MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Lachlan P. Deimel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Pengcheng Zhou
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Mohamed A. ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Julia Merkenschlager
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Gabriela S. Santos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brianna Hernandez
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
10
|
Kabrani E, Rahjouei A, Berruezo-Llacuna M, Ebeling S, Saha T, Altwasser R, Delgado-Benito V, Pavri R, Di Virgilio M. RIF1 integrates DNA repair and transcriptional requirements during the establishment of humoral immune responses. Nat Commun 2025; 16:777. [PMID: 39824820 PMCID: PMC11742068 DOI: 10.1038/s41467-025-56166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization. Mechanistically, this phenotype is independent from RIF1's role in DNA repair and class switch recombination, and reflects its ability to modulate the transcriptional status of a subset of BLIMP1 target genes. Therefore, here we show that, in addition to promoting antibody diversification, RIF1 fine-tunes the kinetics of late B cell differentiation, thus providing an additional layer of control in the establishment of humoral immunity.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, and Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Svenja Ebeling
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Tannishtha Saha
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Veronica Delgado-Benito
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Rushad Pavri
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michela Di Virgilio
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Ado S, Dong C, Attaf N, Moussa M, Carrier A, Milpied P, Navarro JM. FB5P-seq-mAbs: monoclonal antibody production from FB5P-seq libraries for integrative single-cell analysis of B cells. Front Immunol 2024; 15:1505971. [PMID: 39742275 PMCID: PMC11685048 DOI: 10.3389/fimmu.2024.1505971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Parallel analysis of phenotype, transcriptome and antigen receptor sequence in single B cells is a useful method for tracking B cell activation and maturation during immune responses. However, in most cases, the specificity and affinity of the B cell antigen receptor cannot be inferred from its sequence. Antibody cloning and expression from single B cells is then required for functional assays. Here we propose a method that integrates FACS-based 5'-end single-cell RNA sequencing (FB5P-seq) and monoclonal antibody cloning for integrative analysis of single B cells. Starting from a cell suspension, single B cells are FACS-sorted into 96-well plates for reverse transcription, cDNA barcoding and amplification. A fraction of the single-cell cDNA is used for preparing 5'-end RNA-seq libraries that are sequenced for retrieving transcriptome-wide gene expression and paired BCR sequences. The archived cDNA of selected cells of interest is used as input for cloning heavy and light chain variable regions into antibody expression plasmid vectors. The corresponding monoclonal antibodies are produced by transient transfection of a eukaryotic producing cell line and purified for functional assays. We provide detailed step-by-step instructions and describe results obtained on ovalbumin-specific murine germinal center B cells after immunization. Our method is robust, flexible, cost-effective, and applicable to different B cell types and species. We anticipate it will be useful for mapping antigen specificity and affinity of rare B cell subsets characterized by defined gene expression and/or antigen receptor sequence.
Collapse
Affiliation(s)
- Sakina Ado
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Noudjoud Attaf
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Myriam Moussa
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Agathe Carrier
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Paris-Saclay University, Inserm, Gustave Roussy, Tumour Immunology and Anti-Cancer Immunotherapy, Villejuif, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Jean-Marc Navarro
- Aix Marseille Université, CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
12
|
MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, Santos GS, Hagglof T, Mayer CT, Hernandez B, Gazumyan A, Nussenzweig MC. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625430. [PMID: 39651284 PMCID: PMC11623657 DOI: 10.1101/2024.11.26.625430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Increased antibody affinity over time after vaccination, known as affinity maturation, is a prototypical feature of immune responses. Recent studies have shown that a diverse collection of B cells, producing antibodies with a wide spectrum of different affinities, are selected into the plasma cell (PC) pathway. How affinity-permissive selection enables PC affinity maturation remains unknown. Here we report that PC precursors (prePC) expressing high affinity antibodies receive higher levels of T follicular helper (Tfh)-derived help and divide at higher rates than their lower affinity counterparts once they leave the GC. Thus, differential cell division by selected prePCs accounts for how diverse precursors develop into a PC compartment that mediates serological affinity maturation.
Collapse
|
13
|
Pruitt L, Abbott RK. Hypoxia-adenosinergic regulation of B cell responses. Front Immunol 2024; 15:1478506. [PMID: 39559353 PMCID: PMC11570280 DOI: 10.3389/fimmu.2024.1478506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Hypoxic microenvironments induce widespread metabolic changes that have been shown to be critical in regulating innate and adaptive immune responses. Hypoxia-induced changes include the generation of extracellular adenosine followed by subsequent signaling through adenosine receptors on immune cells. This evolutionarily conserved "hypoxia-adenosinergic" pathway of hypoxia → extracellular adenosine → adenosine receptor signaling has been shown to be critical in limiting and redirecting T cell responses including in tumor microenvironments and the gut mucosa. However, the question of whether hypoxic microenvironments are involved in the development of B cell responses has remained unexplored until recently. The discovery that germinal centers (GC), the anatomic site in which B cells undergo secondary diversification and affinity maturation, develop a hypoxic microenvironment has sparked new interest in how this evolutionarily conserved pathway affects antibody responses. In this review we will summarize what is known about hypoxia-adenosinergic microenvironments in lymphocyte development and ongoing immune responses. Specific focus will be placed on new developments regarding the role of the hypoxia-adenosinergic pathway in regulating GC development and humoral immunity.
Collapse
Affiliation(s)
| | - Robert K. Abbott
- Department of Pathology, University of Texas Medical Branch,
Galveston, TX, United States
| |
Collapse
|
14
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Cho SH, Jones MA, Meyer K, Anderson DM, Chetyrkin S, Calcutt MW, Caprioli RM, Semenkovich CF, Boothby MR. B cell expression of the enzyme PexRAP, an intermediary in ether lipid biosynthesis, promotes antibody responses and germinal center size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618760. [PMID: 39464149 PMCID: PMC11507954 DOI: 10.1101/2024.10.17.618760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The qualities of antibody (Ab) responses provided by B lymphocytes and their plasma cell (PC) descendants are crucial facets of responses to vaccines and microbes. Metabolic processes and products regulate aspects of B cell proliferation and differentiation into germinal center (GC) and PC states as well as Ab diversification. However, there is little information about lymphoid cell-intrinsic functions of enzymes that mediate ether lipid biosynthesis, including a major class of membrane phospholipids. Imaging mass spectrometry (IMS) results had indicated that concentrations of a number of these phospholipids were substantially enhanced in GC compared to the background average in spleens. However, it was not clear if biosynthesis in B cells was a basis for this finding, or whether such cell-intrinsic biosynthesis contributes to B cell physiology or Ab responses. Ether lipid biosynthesis can involve the enzyme PexRAP, the product of the Dhrs7b gene. Using combinations of IMS and immunization experiments in mouse models with inducible Dhrs7b loss-of-function, we now show that B lineage-intrinsic expression of PexRAP promotes the magnitude and affinity maturation of a serological response. Moreover, the data revealed a Dhrs7b -dependent increase in ether phospholipids in primary follicles with a more prominent increase in GC. Mechanistically, PexRAP impacted B cell proliferation via enhanced survival associated with controlling levels of ROS and membrane peroxidation. These findings reveal a vital role of this peroxisomal enzyme in B cell homeostasis and the physiology of humoral immunity.
Collapse
|
16
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Inoue T, Baba Y, Kurosaki T. BCR signaling in germinal center B cell selection. Trends Immunol 2024; 45:693-704. [PMID: 39168721 DOI: 10.1016/j.it.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
When mature B cells are activated by antigens, the selection of these activated B cells takes place particularly during T cell-dependent immune responses in which an improved antibody repertoire is generated through somatic hypermutation in germinal centers (GCs). In this process the importance of antigen presentation by GC B cells, and subsequent T follicular helper (Tfh) cell help in positive selection of GC B cells, has been well appreciated. By contrast, the role of B cell receptor (BCR) signaling per se remains unclear. Strong experimental support for the involvement of BCR signaling in GC B cell selection has now been provided. Interestingly, these studies suggest that several checkpoints operating through the BCR ensure affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Molecular Systems Immunology, University of Tokyo Pandemic Preparedness, Infection, and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
18
|
Zhu T, Wu BW. Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 2024; 178:117196. [PMID: 39053418 DOI: 10.1016/j.biopha.2024.117196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Necroptosis is a crucial modality of programmed cell death characterized by distinct morphological and biochemical hallmarks, including cell membrane rupture, organelle swelling, cytoplasmic and nuclear disintegration, cellular contents leakage, and release of damage-associated molecular patterns (DAMPs), accompanied by the inflammatory responses. Studies have shown that necroptosis is involved in the etiology and evolution of a variety of pathologies including organ damage, inflammation disorders, and cancer. Despite its significance, the field of necroptosis research grapples with the challenge of non-standardized detection methodologies. In this review, we introduce the fundamental concepts and molecular mechanisms of necroptosis and critically appraise the principles, merits, and inherent limitations of current detection technologies. This endeavor seeks to establish a methodological framework for necroptosis detection, thereby propelling deeper insights into the research of cell necroptosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Bo-Wen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
20
|
Deobagkar-Lele M, Crawford G, Crockford TL, Back J, Hodgson R, Bhandari A, Bull KR, Cornall RJ. B cells require DOCK8 to elicit and integrate T cell help when antigen is limiting. Sci Immunol 2024; 9:eadd4874. [PMID: 39121196 PMCID: PMC7616390 DOI: 10.1126/sciimmunol.add4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2023] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is characterized by a failure of the germinal center response, a process involving the proliferation and positive selection of antigen-specific B cells. Here, we describe how DOCK8-deficient B cells are blocked at a light-zone checkpoint in the germinal centers of immunized mice, where they are unable to respond to T cell-dependent survival and selection signals and consequently differentiate into plasma cells or memory B cells. Although DOCK8-deficient B cells can acquire and present antigen to initiate activation of cognate T cells, integrin up-regulation, B cell-T cell conjugate formation, and costimulation are insufficient for sustained B cell and T cell activation when antigen availability is limited. Our findings provide an explanation for the failure of the humoral response in DOCK8 immunodeficiency syndrome and insight into how the level of available antigen modulates B cell-T cell cross-talk to fine-tune humoral immune responses and immunological memory.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Greg Crawford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Jennifer Back
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Rose Hodgson
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Aneesha Bhandari
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Katherine R Bull
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
- Oxford Kidney Unit, Oxford University Hospitals Trust, Oxford
| | - Richard J. Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
| |
Collapse
|
21
|
Kamakura T, Kameda K, Manabe M, Torii K, Sugiura Y, Ito S, Nakayama S, Shimizu T, Nagashima E, Kamiya K, Oka M, Tanaka M, Otsuka M, Ohtsuka M, Kotani A. PTBP1 protects Y RNA from cleavage leading to its apoptosis-specific degradation. Cell Death Discov 2024; 10:322. [PMID: 38997262 PMCID: PMC11245482 DOI: 10.1038/s41420-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Some RNAs such as 28S rRNA, U1 small nuclear RNA (snRNA), and Y RNAs are known to be cleaved during apoptosis. The underlying mechanism, functions, and biological significance of RNA degradation in apoptosis remain elusive. Y RNAs are non-coding RNAs widely conserved from bacteria to mammals, and are major components of Ro ribonucleoprotein (RNP) complexes which contain the 60 kDa Ro protein (SS-A) and the 50 kDa La protein (SS-B). The autoantigenic Ro and La proteins were identified by autoantibodies present in the sera from patients with Systemic lupus erythematosus (SLE) and Sjögren's syndrome (SjS). We previously identified novel, functional small RNAs named AGO-taxis small RNAs (ASRs) that are specifically bound to Argonaute protein 1 (AGO1), which are processed from Y RNAs. Cell-free analysis combined with fractionation methods revealed that the apoptosis-specific biogenesis of ASRs or cleavage of Y RNA was induced by truncation of polypyrimidine tract-binding protein 1 (PTBP1), which is an endoribonuclease inhibitor of Y RNAs by caspase 3. Caspase 3-resistant PTBP1 mutant protected cleavage of Y RNAs in apoptosis induced by staurosporine. Furthermore, caspase 3-resistant PTBP1 mutant knock-in mice showed elevated cytokines, dysregulation of the germinal center formation compared to the wild-type mice at LPS stimulation, and high positivity of antinuclear antibody. Those results suggest that cleavage of Y RNAs or biogenesis of ASR during apoptosis has critical biological functions and their deregulation result in immune dysregulation and the formation of autoantibody, possibly leading to the development of autoimmune diseases.
Collapse
Affiliation(s)
- Takeshi Kamakura
- Department of Regulation of Infectious Cancer, Research Institute of Microbiological Disease, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuaki Kameda
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Masahiko Manabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kan Torii
- Department of Regulation of Infectious Cancer, Research Institute of Microbiological Disease, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Sugiura
- Multi-Omics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, 606-8501, Japan
| | - Seiko Ito
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Shunya Nakayama
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
- Laboratory of Veterinary Physiology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takanobu Shimizu
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Etsuko Nagashima
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kosuke Kamiya
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiro Oka
- Department of Regulation of Infectious Cancer, Research Institute of Microbiological Disease, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Academic Field of Medicine, Density and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Ai Kotani
- Department of Regulation of Infectious Cancer, Research Institute of Microbiological Disease, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Inoue T, Matsumoto Y, Kawai C, Ito M, Nada S, Okada M, Kurosaki T. Csk restrains BCR-mediated ROS production and contributes to germinal center selection and affinity maturation. J Exp Med 2024; 221:e20231996. [PMID: 38753246 PMCID: PMC11098938 DOI: 10.1084/jem.20231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Compared with naïve B cells, the B cell receptor (BCR) signal in germinal center (GC) B cells is attenuated; however, the significance of this signaling attenuation has not been well defined. Here, to investigate the role of attenuation of BCR signaling, we employed a Csk mutant mouse model in which Csk deficiency in GC B cells resulted in augmentation of net BCR signaling with no apparent effect on antigen presentation. We found that Csk is required for GC maintenance and efficient antibody affinity maturation. Mechanistically, ROS-induced apoptosis was exacerbated concomitantly with mitochondrial dysfunction in Csk-deficient GC B cells. Hence, our data suggest that attenuation of the BCR signal restrains hyper-ROS production, thereby protecting GC B cells from apoptosis and contributing to efficient affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Systems Immunology, The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yuma Matsumoto
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mao Ito
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
23
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
25
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A multiscale spatial modeling framework for the germinal center response. Front Immunol 2024; 15:1377303. [PMID: 38881901 PMCID: PMC11179717 DOI: 10.3389/fimmu.2024.1377303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymphoid organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events, including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanistic and applied research questions on the adaptive humoral immune response in the future.
Collapse
Affiliation(s)
- Derek P. Mu
- Montgomery Blair High School, Silver Spring, MD, United States
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Norbert E. Kaminski
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
27
|
Wright NE, Kennedy DE, Ai J, Veselits ML, Attaway M, Yoon YM, Durkee MS, Veselits J, Maienschein-Cline M, Mandal M, Clark MR. BRWD1 establishes epigenetic states for germinal center initiation, maintenance, and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591154. [PMID: 38712068 PMCID: PMC11071454 DOI: 10.1101/2024.04.25.591154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and Igk recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery. In Brwd1 -/- follicular B cells, GC initiation and class switch recombination following immunization were inhibited. In contrast, in Brwd1 -/- GC B cells there was admixing of chromatin accessibility across GC subsets and transcriptional dysregulation including induction of inflammatory pathways. This global molecular GC dysregulation was associated with specific defects in proliferation, affinity maturation, and tolerance. These data suggest that GC subset identity is required for some but not all GC-attributed functions. Furthermore, these data demonstrate a central role for BRWD1 in orchestrating epigenetic transitions at multiple steps along B cell developmental and activation pathways.
Collapse
|
28
|
Jing Z, Galbo P, Ovando L, Demouth M, Welte S, Park R, Chandran K, Wu Y, MacCarthy T, Zheng D, Fooksman D. Fine-tuning spatial-temporal dynamics and surface receptor expression support plasma cell-intrinsic longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.527913. [PMID: 36891288 PMCID: PMC9994177 DOI: 10.1101/2023.02.15.527913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intra-vital two-photon imaging, we find that in contrast to most plasma cells in the bone marrow, LLPCs are uniquely sessile and organized into clusters that are dependent on April, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and proteome compared to bulk PCs, fine tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44 and CD48, important for adhesion and homing, and phenotypically label LLPCs within mature PC pool. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naive mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PC into the LLPC niche and pool.
Collapse
|
29
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
30
|
Laurent C, Dietrich S, Tarte K. Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm. Blood 2024; 143:1080-1090. [PMID: 38096368 DOI: 10.1182/blood.2023021000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/30/2023] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalo-Universitaire Toulouse, Centre de Recherches en Cancérologie de Toulouse, Laboratoire d'Excellence TOUCAN, INSERM Unité Mixte de Recherche 1037, Toulouse, France
| | - Sascha Dietrich
- Department of Haematology and Oncology, University Hospital Düsseldorf and Center for Integrated Oncology Aachen Bonn Cologne, Düsseldorf, Germany
| | - Karin Tarte
- Unité Mixte de Recherche S1236, INSERM, Université de Rennes, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- Department of Biology, Centre Hospitalo-Universitaire de Rennes, Rennes, France
| |
Collapse
|
31
|
Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation to reactivation: a multipronged defense wall against pathogens. Cell Death Discov 2024; 10:117. [PMID: 38453885 PMCID: PMC10920759 DOI: 10.1038/s41420-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Development of B cell memory is a conundrum that scientists are still exploring. Studies have been conducted in vitro and using advanced animal models to elucidate the mechanism underlying the generation of memory B cells (MBCs), the precise roles of MBCs against pathogens, and their protective functions against repeated infections throughout life. Lifelong immunity against invading diseases is mainly the result of overcoming a single infection. This protection is largely mediated by the two main components of B cell memory-MBCs and long-lived plasma cells (PCs). The chemical and cellular mechanisms that encourage fat selection for MBCs or long-lived PCs are an area of active research. Despite the fact that nearly all available vaccinations rely on the capacity to elicit B-cell memory, we have yet to develop successful vaccines that can induce broad-scale protective MBCs against some of the deadliest diseases, including malaria and AIDS. A deeper understanding of the specific cellular and molecular pathways that govern the generation, function, and reactivation of MBCs is critical for overcoming the challenges associated with vaccine development. Here, we reviewed literature on the development of MBCs and their reactivation, interaction with other cell types, strategies against invading pathogens, and function throughout life and discussed the recent advances regarding the key signals and transcription factors which regulate B cell memory and their relevance to the quest for vaccine development.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tu Hong
- The First Affiliated Hospital, Zhejiang University, School of Medicine, 310058, Hangzhou, China
| | - Chunming Huang
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| | - Wenhua Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Guangdong Medical University, Maoming, 525200, China.
| |
Collapse
|
32
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A Multiscale Spatial Modeling Framework for the Germinal Center Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577491. [PMID: 38501122 PMCID: PMC10945589 DOI: 10.1101/2024.01.26.577491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymph organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanic and applied research questions in future.
Collapse
|
33
|
Uderhardt S, Neag G, Germain RN. Dynamic Multiplex Tissue Imaging in Inflammation Research. ANNUAL REVIEW OF PATHOLOGY 2024; 19:43-67. [PMID: 37722698 DOI: 10.1146/annurev-pathmechdis-070323-124158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Inflammation is a highly dynamic process with immune cells that continuously interact with each other and parenchymal components as they migrate through tissue. The dynamic cellular responses and interaction patterns are a function of the complex tissue environment that cannot be fully reconstructed ex vivo, making it necessary to assess cell dynamics and changing spatial patterning in vivo. These dynamics often play out deep within tissues, requiring the optical focus to be placed far below the surface of an opaque organ. With the emergence of commercially available two-photon excitation lasers that can be combined with existing imaging systems, new avenues for imaging deep tissues over long periods of time have become available. We discuss a selected subset of studies illustrating how two-photon microscopy (2PM) has helped to relate the dynamics of immune cells to their in situ function and to understand the molecular patterns that govern their behavior in vivo. We also review some key practical aspects of 2PM methods and point out issues that can confound the results, so that readers can better evaluate the reliability of conclusions drawn using this technology.
Collapse
Affiliation(s)
- Stefan Uderhardt
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgiana Neag
- Department of Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Competence Centre, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Center for Advanced Tissue Imaging (CAT-I), National Institute of Allergy and Infectious Diseases and National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
34
|
Yuan H, Mao X, Yan Y, Huang R, Zhang Q, Zeng Y, Bao M, Dai Y, Fang B, Mi J, Xie Y, Wang X, Zhang H, Mo Z, Yang R. Single-cell sequencing reveals the heterogeneity of B cells and tertiary lymphoid structures in muscle-invasive bladder cancer. J Transl Med 2024; 22:48. [PMID: 38216927 PMCID: PMC10787393 DOI: 10.1186/s12967-024-04860-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC) is a highly aggressive disease with a poor prognosis. B cells are crucial factors in tumor suppression, and tertiary lymphoid structures (TLSs) facilitate immune cell recruitment to the tumor microenvironment (TME). However, the function and mechanisms of tumor-infiltrating B cells and TLSs in MIBC need to be explored further. METHODS We performed single-cell RNA sequencing analysis of 11,612 B cells and 55,392 T cells from 12 bladder cancer patients and found naïve B cells, proliferating B cells, plasma cells, interferon-stimulated B cells and germinal center-associated B cells, and described the phenotype, gene enrichment, cell-cell communication, biological processes. We utilized immunohistochemistry (IHC) and immunofluorescence (IF) to describe TLSs morphology in MIBC. RESULTS The interferon-stimulated B-cell subtype (B-ISG15) and germinal center-associated B-cell subtypes (B-LMO2, B-STMN1) were significantly enriched in MIBC. TLSs in MIBC exhibited a distinct follicular structure characterized by a central region of B cells resembling a germinal center surrounded by T cells. CellChat analysis showed that CXCL13 + T cells play a pivotal role in recruiting CXCR5 + B cells. Cell migration experiments demonstrated the chemoattraction of CXCL13 toward CXCR5 + B cells. Importantly, the infiltration of the interferon-stimulated B-cell subtype and the presence of TLSs correlated with a more favorable prognosis in MIBC. CONCLUSIONS The study revealed the heterogeneity of B-cell subtypes in MIBC and suggests a pivotal role of TLSs in MIBC outcomes. Our study provides novel insights that contribute to the precision treatment of MIBC.
Collapse
Affiliation(s)
- Hao Yuan
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yunkun Yan
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rong Huang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, the Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Dai
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bo Fang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junhao Mi
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuli Xie
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiang Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Institute of Urology and Nephrology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
35
|
ElTanbouly MA, Ramos V, MacLean AJ, Chen ST, Loewe M, Steinbach S, Ben Tanfous T, Johnson B, Cipolla M, Gazumyan A, Oliveira TY, Nussenzweig MC. Role of affinity in plasma cell development in the germinal center light zone. J Exp Med 2024; 221:e20231838. [PMID: 37938344 PMCID: PMC10631489 DOI: 10.1084/jem.20231838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC.
Collapse
Affiliation(s)
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Andrew J. MacLean
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Spencer T. Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximilian Loewe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Sandra Steinbach
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Tarek Ben Tanfous
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
36
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma Cell Differentiation, Antibody Quality, and Initial Germinal Center B Cell Population Depend on Glucose Influx Rate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:43-56. [PMID: 37955416 PMCID: PMC10841396 DOI: 10.4049/jimmunol.2200756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.
Collapse
Affiliation(s)
- Shawna K. Brookens
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104
| | - Sung Hoon Cho
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Yeeun Paik
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kaylor Meyer
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ariel L. Raybuck
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chloe Park
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dalton L. Greenwood
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| | - Mark R. Boothby
- Department of Pathology-Microbiology-Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Cancer Biology Program, Vanderbilt University
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Inflammation, & Immunology
| |
Collapse
|
37
|
Yada Y, Matsumoto M, Inoue T, Baba A, Higuchi R, Kawai C, Yanagisawa M, Kitamura D, Ohga S, Kurosaki T, Baba Y. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med 2024; 221:e20222178. [PMID: 37902601 PMCID: PMC10615893 DOI: 10.1084/jem.20222178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/02/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Positive selection of high-affinity germinal center (GC) B cells is driven by antigen internalization through their B cell receptor (BCR) and presentation to follicular helper T cells. However, the requirements of BCR signaling in GC B cells remain poorly understood. Store-operated Ca2+ entry, mediated by stromal interacting molecule 1 (STIM1) and STIM2, is the main Ca2+ influx pathway triggered by BCR engagement. Here, we showed that STIM-deficient B cells have reduced B cell competitiveness compared with wild-type B cells during GC responses. B cell-specific deletion of STIM proteins decreased the number of high-affinity B cells in the late phase of GC formation. STIM deficiency did not affect GC B cell proliferation and antigen presentation but led to the enhancement of apoptosis due to the impaired upregulation of anti-apoptotic Bcl2a1. STIM-mediated activation of NFAT was required for the expression of Bcl2a1 after BCR stimulation. These findings suggest that STIM-mediated survival signals after antigen capture regulate the optimal selection and maintenance of GC B cells.
Collapse
Affiliation(s)
- Yutaro Yada
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Higuchi
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Inoue T. Memory B cell differentiation from germinal centers. Int Immunol 2023; 35:565-570. [PMID: 37232558 DOI: 10.1093/intimm/dxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Establishment of humoral immune memory depends on two layers of defense: pre-existing antibodies secreted by long-lived plasma cells; and the antibodies produced by antigen-reactivated memory B cells. Memory B cells can now be considered as a second layer of defense upon re-infection by variant pathogens that have not been cleared by the long-lived plasma cell-mediated defense. Affinity-matured memory B cells are derived from the germinal center (GC) reaction, but the selection mechanism of GC B cells into the memory compartment is still incompletely understood. Recent studies have revealed the critical determinants of cellular and molecular factors for memory B cell differentiation from the GC reaction. In addition, the contribution of antibody-mediated feedback regulation to B cell selection, as exemplified by the B cell response upon COVID-19 mRNA vaccination, has now garnered considerable attention, which may provide valuable implications for future vaccine design.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
40
|
Sprumont A, Rodrigues A, McGowan SJ, Bannard C, Bannard O. Germinal centers output clonally diverse plasma cell populations expressing high- and low-affinity antibodies. Cell 2023; 186:5486-5499.e13. [PMID: 37951212 PMCID: PMC7617393 DOI: 10.1016/j.cell.2023.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.
Collapse
Affiliation(s)
- Adrien Sprumont
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ana Rodrigues
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Colin Bannard
- Department of Linguistics and English Language, University of Manchester, Manchester M13 9PL, UK
| | - Oliver Bannard
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
41
|
Shibasaki Y, Afanasyev S, Fernández-Montero A, Ding Y, Watanabe S, Takizawa F, Lamas J, Fontenla-Iglesias F, Leiro JM, Krasnov A, Boudinot P, Sunyer JO. Cold-blooded vertebrates evolved organized germinal center-like structures. Sci Immunol 2023; 8:eadf1627. [PMID: 37910630 PMCID: PMC11152321 DOI: 10.1126/sciimmunol.adf1627] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)-specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non-M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA-associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igμ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.
Collapse
Affiliation(s)
- Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Sergei Afanasyev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Laboratory of Neurophysiology and Behavioral Pathology, Torez 44, Saint-Petersburg 194223, Russia
| | - Alvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shota Watanabe
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Jesús Lamas
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Francisco Fontenla-Iglesias
- Department of Functional Biology, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - José Manuel Leiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | | | - Pierre Boudinot
- Universite Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Pelissier A, Stratigopoulou M, Donner N, Dimitriadis E, Bende RJ, Guikema JE, Rodriguez Martinez M, van Noesel CJ. Convergent evolution and B-cell recirculation in germinal centers in a human lymph node. Life Sci Alliance 2023; 6:e202301959. [PMID: 37640448 PMCID: PMC10462906 DOI: 10.26508/lsa.202301959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Germinal centers (GCs) play a central role in generating an effective immune response against infectious pathogens, and failures in their regulating mechanisms can lead to the development of autoimmune diseases and cancer. Although previous works study experimental systems of the immune response with mouse models that are immunized with specific antigens, our study focused on a real-life situation, with an ongoing GC response in a human lymph node (LN) involving multiple asynchronized GCs reacting simultaneously to unknown antigens. We combined laser capture microdissection of individual GCs from human LN with next-generation repertoire sequencing to characterize individual GCs as distinct evolutionary spaces. In line with well-characterized GC responses in mice, elicited by immunization with model antigens, we observe a heterogeneous clonal diversity across individual GCs from the same human LN. Still, we identify shared clones in several individual GCs, and phylogenetic tree analysis combined with paratope modeling suggest the re-engagement and rediversification of B-cell clones across GCs and expanded clones exhibiting shared antigen responses across distinct GCs, indicating convergent evolution of the GCs.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Maria Stratigopoulou
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Naomi Donner
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Jeroen E Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Carel Jm van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Nakagawa R, Llorian M, Varsani-Brown S, Chakravarty P, Camarillo JM, Barry D, George R, Blackledge NP, Duddy G, Kelleher NL, Klose RJ, Turner M, Calado DP. Epi-microRNA mediated metabolic reprogramming ensures affinity maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551250. [PMID: 37609190 PMCID: PMC10441342 DOI: 10.1101/2023.07.31.551250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.
Collapse
|
44
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
45
|
Petersone L, Wang CJ, Edner NM, Fabri A, Nikou SA, Hinze C, Ross EM, Ntavli E, Elfaki Y, Heuts F, Ovcinnikovs V, Rueda Gonzalez A, Houghton LP, Li HM, Zhang Y, Toellner KM, Walker LSK. IL-21 shapes germinal center polarization via light zone B cell selection and cyclin D3 upregulation. J Exp Med 2023; 220:e20221653. [PMID: 37466652 PMCID: PMC10355162 DOI: 10.1084/jem.20221653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Germinal center (GC) dysregulation has been widely reported in the context of autoimmunity. Here, we show that interleukin 21 (IL-21), the archetypal follicular helper T cell (Tfh) cytokine, shapes the scale and polarization of spontaneous chronic autoimmune as well as transient immunization-induced GC. We find that IL-21 receptor deficiency results in smaller GC that are profoundly skewed toward a light zone GC B cell phenotype and that IL-21 plays a key role in selection of light zone GC B cells for entry to the dark zone. Light zone skewing has been previously reported in mice lacking the cell cycle regulator cyclin D3. We demonstrate that IL-21 triggers cyclin D3 upregulation in GC B cells, thereby tuning dark zone inertial cell cycling. Lastly, we identify Foxo1 regulation as a link between IL-21 signaling and GC dark zone formation. These findings reveal new biological roles for IL-21 within GC and have implications for autoimmune settings where IL-21 is overproduced.
Collapse
Affiliation(s)
- Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Chun Jing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Natalie M Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Spyridoula-Angeliki Nikou
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Claudia Hinze
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Ellen M Ross
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Frank Heuts
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Vitalijs Ovcinnikovs
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Luke P Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Hannah M Li
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham , Birmingham, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London , London, UK
| |
Collapse
|
46
|
Schips M, Mitra T, Bandyopadhyay A, Meyer-Hermann M. Suppressive might of a few: T follicular regulatory cells impede auto-reactivity despite being outnumbered in the germinal centres. Front Immunol 2023; 14:1253704. [PMID: 37818361 PMCID: PMC10561256 DOI: 10.3389/fimmu.2023.1253704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
The selection of high-affinity B cells and the production of high-affinity antibodies are mediated by T follicular helper cells (Tfhs) within germinal centres (GCs). Therein, somatic hypermutation and selection enhance B cell affinity but risk the emergence of self-reactive B cell clones. Despite being outnumbered compared to their helper counterpart, the ablation of T follicular regulatory cells (Tfrs) results in enhanced dissemination of self-reactive antibody-secreting cells (ASCs). The specific mechanisms by which Tfrs exert their regulatory action on self-reactive B cells are largely unknown. We developed computer simulations to investigate how Tfrs regulate either selection or differentiation of B cells to prevent auto-reactivity. We observed that Tfr-induced apoptosis of self-reactive B cells during the selection phase impedes self-reactivity with physiological Tfr numbers, especially when Tfrs can access centrocyte-enriched GC areas. While this aided in selecting non-self-reactive B cells by restraining competition, higher Tfr numbers distracted non-self-reactive B cells from receiving survival signals from Tfhs. Thus, the location and number of Tfrs must be regulated to circumvent such Tfr distraction and avoid disrupting GC evolution. In contrast, when Tfrs regulate differentiation of selected centrocytes by promoting recycling to the dark zone phenotype of self-reactive GC resident pre-plasma cells (GCPCs), higher Tfr numbers were required to impede the circulation of self-reactive ASCs (s-ASCs). On the other hand, Tfr-engagement with GCPCs and subsequent apoptosis of s-ASCs can control self-reactivity with low Tfr numbers, but does not confer selection advantage to non-self-reactive B cells. The simulations predict that to restrict auto-reactivity, natural redemption of self-reactive B cells is insufficient and that Tfrs should increase the mutation probability of self-reactive B cells.
Collapse
Affiliation(s)
- Marta Schips
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Tanmay Mitra
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZI), Braunschweig, Germany
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universitat Braunschweig, Braunschweig, Germany
| |
Collapse
|
47
|
Brookens SK, Cho SH, Paik Y, Meyer K, Raybuck AL, Park C, Greenwood DL, Rathmell JC, Boothby MR. Plasma cell differentiation, antibody quality, and initial germinal center B cell population depend on glucose influx rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557599. [PMID: 37745429 PMCID: PMC10515901 DOI: 10.1101/2023.09.13.557599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antibody secretion into sera, selection for higher affinity BCR, and the generation of higher Ab affinities are important elements of immune response optimization, and a core function of germinal center reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether or not glucose uptake or glycolysis increases in GC B cells compared to their naïve precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that elimination of the glucose transporter GLUT1 after establishment of a pre-immune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and PC outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway (PPP), whose activity was important in controlling reactive oxygen (ROS) and ASC production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose - an efficient precursor to glycosylation - supported robust production of and normal Ab secretion by ASC under glucose-free conditions. Collectively, the findings indicate that GC depend on normal glucose influx, especially in PC production, but reveal an unexpected metabolic flexibility in hexose requirements. KEY POINTS Glucose influx is critical for GC homeostasis, affinity maturation and the generation of Ab-secreting cells.Plasma cell development uses the Pentose Phosphate Pathway, and hexose sugars maintain redox homeostasis.PCs can develop and achieve robust Ab secretion in the absence of glucose using a combination of hexose alternatives.
Collapse
|
48
|
Osma-Garcia IC, Mouysset M, Capitan-Sobrino D, Aubert Y, Turner M, Diaz-Muñoz MD. The RNA binding proteins TIA1 and TIAL1 promote Mcl1 mRNA translation to protect germinal center responses from apoptosis. Cell Mol Immunol 2023; 20:1063-1076. [PMID: 37474714 PMCID: PMC10469172 DOI: 10.1038/s41423-023-01063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Germinal centers (GCs) are essential for the establishment of long-lasting antibody responses. GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into functional changes in the cell proteome. However, the critical proteins driving these key mechanisms are still unknown. Here, we show that the RNA binding proteins TIA1 and TIAL1 are required for the generation of long-lasting GC responses. TIA1- and TIAL1-deficient GC B cells fail to undergo antigen-mediated positive selection, expansion and differentiation into B-cell clones producing high-affinity antibodies. Mechanistically, TIA1 and TIAL1 control the transcriptional identity of dark- and light-zone GC B cells and enable timely expression of the prosurvival molecule MCL1. Thus, we demonstrate here that TIA1 and TIAL1 are key players in the post-transcriptional program that selects high-affinity antigen-specific GC B cells.
Collapse
Affiliation(s)
- Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, 31024, France
| | - Mailys Mouysset
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, 31024, France
| | - Dunja Capitan-Sobrino
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, 31024, France
| | - Yann Aubert
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, 31024, France
| | - Martin Turner
- Immunology Program, The Babraham Institute, Cambridge, UK
| | - Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse, 31024, France.
| |
Collapse
|
49
|
Wright NE, Mandal M, Clark MR. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol 2023; 44:668-677. [PMID: 37573227 PMCID: PMC10530527 DOI: 10.1016/j.it.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.
Collapse
Affiliation(s)
- Nathaniel E Wright
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|