1
|
Liu Z, Cheng T, Dong H, Sun D, Wang Y, Li J, Yu Z, Cao L. Roles of central nervous system resident and recruited macrophages in the brain barrier system. Neural Regen Res 2026; 21:855-868. [PMID: 39885670 DOI: 10.4103/nrr.nrr-d-24-00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Macrophages in the brain barrier system include microglia in the brain parenchyma, border-associated macrophages at the brain's borders, and recruited macrophages. They are responsible for neural development, maintenance of homeostasis, and orchestrating immune responses. With the rapid exploitation and development of new technologies, there is a deeper understanding of macrophages in the brain barrier system. Here we review the origin, development, important molecules, and functions of macrophages, mainly focusing on microglia and border-associated macrophages. We also highlight some advances in single-cell sequencing and significant cell markers. We anticipate that more advanced methods will emerge to study resident and recruited macrophages in the future, opening new horizons for neuroimmunology and related peripheral immune fields.
Collapse
Affiliation(s)
- Ze Liu
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| | - Teng Cheng
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| | - Hongtian Dong
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| | - Dingya Sun
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| | - Yan Wang
- Department of Pharmacy, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai, China
| | - Jiayan Li
- Neurovascular Center, Changhai Hospital SMMU, Shanghai, China
| | - Zhongwang Yu
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| | - Li Cao
- Institute of Neuroscience Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science SMMU, Shanghai, China
| |
Collapse
|
2
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
3
|
Brioschi S, Han CZ, Colonna M. Drivers and shapers of macrophages specification in the developing brain. Curr Opin Immunol 2025; 94:102558. [PMID: 40239283 PMCID: PMC12147917 DOI: 10.1016/j.coi.2025.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
The brain harbors two major macrophage populations: microglia reside within the brain parenchyma, while border-associated macrophages (BAMs) are situated at central nervous system (CNS) interfaces. BAMs can be further classified into distinct subsets based on their localization: perivascular macrophages surround blood vessels, meningeal macrophages reside in the leptomeninges, dura macrophages in the dura mater, and choroid plexus macrophages are confined to the choroid plexus. The environmental factors and molecular mechanisms driving the specification of these macrophage populations are still being elucidated. Deciphering the communication pathways between CNS macrophages and their tissue niches during development, homeostasis, and pathologic conditions offers significant potential for treating a wide range of brain disorders, from neurodevelopmental and neuroinflammatory diseases to neurovascular and neurodegenerative conditions. With this short review, we will address the current understanding and knowledge gaps in the field, as well as the future directions for the upcoming years.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA
| | - Claudia Z Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Yan ZJ, Ye M, Li J, Zhang DF, Yao YG. Early transcriptional and cellular abnormalities in choroid plexus of a mouse model of Alzheimer's disease. Mol Neurodegener 2025; 20:62. [PMID: 40450296 DOI: 10.1186/s13024-025-00853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/20/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, tau hyperphosphorylation, and neuroinflammation. The choroid plexus (ChP), serving as the blood-cerebrospinal fluid-brain barrier, plays essential roles in immune response to stress and brain homeostasis. However, the cellular and molecular contributions of the ChP to AD progression remain inadequately understood. METHODS To elucidate the molecular abnormalities during the early stages of AD, we acquired single-cell transcription profiling of ChP from APP/PS1 mice with early-stage of Aβ pathology and litter-mate controls. The transcriptional alterations that occurred in each cell type were identified by differentially expressed genes, cell-cell communications and pseudotemporal trajectory analysis. The findings were subsequently validated by a series of in situ and in vitro assays. RESULTS We constructed a comprehensive atlas of ChP at single-cell resolution and identified six major cell types and immune subclusters in male mice. The majority of dysregulated genes were found in the epithelial cells of APP/PS1 mice in comparison to wild-type (WT) mice, and most of these genes belonged to down-regulated module involved in mitochondrial respirasome assembly, cilium organization, and barrier integrity. The disruption of the epithelial barrier resulted in the downregulation of macrophage migration inhibitory factor (MIF) secretion in APP/PS1 mice, leading to macrophage activation and increased phagocytosis of Aβ. Concurrently, ligands (e.g., APOE) secreted by macrophages and other ChP cells facilitated the entry of lipids into ependymal cells, leading to lipid accumulation and the activation of microglia in the brain parenchyma in APP/PS1 mice compared to WT controls. CONCLUSIONS Taken together, these data profiled early transcriptional and cellular abnormalities of ChP within an AD mouse model, providing novel insights of cerebral vasculature into the pathobiology of AD.
Collapse
Affiliation(s)
- Zhong-Jiang Yan
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Maosen Ye
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiexi Li
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Deng-Feng Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Yunnan Engineering Center on Brain Disease Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Yunnan Engineering Center on Brain Disease Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
5
|
Sankowski R, Prinz M. A dynamic and multimodal framework to define microglial states. Nat Neurosci 2025:10.1038/s41593-025-01978-3. [PMID: 40394327 DOI: 10.1038/s41593-025-01978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
The widespread use of single-cell RNA sequencing has generated numerous purportedly distinct and novel subsets of microglia. Here, we challenge this fragmented paradigm by proposing that microglia exist along a continuum rather than as discrete entities. We identify a methodological over-reliance on computational clustering algorithms as the fundamental issue, with arbitrary cluster numbers being interpreted as biological reality. Evidence suggests that the observed transcriptional diversity stems from a combination of microglial plasticity and technical noise, resulting in terminology describing largely overlapping cellular states. We introduce a continuous model of microglial states, where cell positioning along the continuum is determined by biological aging and cell-specific molecular contexts. The model accommodates the dynamic nature of microglia. We advocate for a parsimonious approach toward classification and terminology that acknowledges the continuous spectrum of microglial states, toward a robust framework for understanding these essential immune cells of the CNS.
Collapse
Affiliation(s)
- Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Wang X, Sun Y, Yu H, Xue C, Pei X, Chen Y, Guan Y. The regulation of microglia by aging and autophagy in multiple sclerosis. Pharmacol Res 2025; 216:107786. [PMID: 40398690 DOI: 10.1016/j.phrs.2025.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/19/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory disease that is often characterized by the development of irreversible clinical disability. Age is a strong risk factor that is strongly associated with the clinical course and progression of MS. Several lines of evidence suggest that with aging, microglia have an aging-related gene expression signature and are close to disease-associated microglia (DAM), which exhibit decreased phagocytosis but increased production of inflammatory factors. The gene expression signatures of microglia in MS overlap with those in aging, inflammation and DAM. Moreover, the clearance of damaged myelin by microglia is impaired in the aged brain. Autophagy is a cellular process that decreases in activity with age. In this review, we provide an overview of the role of autophagy and aging in MS. We describe the impact of autophagy and aging on microglial activation in MS and the molecules involved in autophagy and aging, which are related to the phagocytosis and activation of microglia. We propose that a decrease in autophagy in microglia occurs with aging, leading to a decrease in phagocytosis. Decreases in phagocytosis and increases in the production of inflammatory factors by microglia contribute to chronic inflammation in the aged brain and disease progression in MS. Thus, the modulation of autophagy in microglia serves as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Sun
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunran Xue
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhong Pei
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Vara-Pérez M, Movahedi K. Border-associated macrophages as gatekeepers of brain homeostasis and immunity. Immunity 2025; 58:1085-1100. [PMID: 40324381 PMCID: PMC12094687 DOI: 10.1016/j.immuni.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The brain's border tissues serve as essential hubs for neuroimmune regulation and the trafficking of biomaterials to and from the brain. These complex tissues-including the meninges, perivascular spaces, choroid plexus, and circumventricular organs-balance the brain's need for immune privilege with immune surveillance and blood-brain communication. Macrophages are integral components of these tissues, taking up key strategic positions within the brain's circulatory system. These border-associated macrophages, or "BAMs," are therefore emerging as pivotal for brain homeostasis and disease. BAMs perform trophic functions that help to support border homeostasis but also act as immune sentinels essential for border defense. In this review, we integrate recent findings on BAM origins, cell states, and functions, aiming to provide global insights and perspectives on the complex relationship between these macrophages and their border niche.
Collapse
Affiliation(s)
- Mónica Vara-Pérez
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Kim MW, Kipnis J. Glymphatics and meningeal lymphatics unlock the brain-immune code. Immunity 2025; 58:1040-1051. [PMID: 40324376 DOI: 10.1016/j.immuni.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) was once perceived as entirely shielded from the immune system, protected behind the blood-brain barrier and thought to lack lymphatic drainage. However, recent evidence has challenged many dogmas in neuroimmunology. Indeed, by means of glymphatics, brain-derived "waste" from deep within the CNS mobilizes toward immunologically active brain borders, where meningeal lymphatic vessels are appropriately positioned to drain antigens from the brain to the periphery. Accordingly, the presentation of brain-derived self-peptides emerges at the brain's borders and drives T cell responses with suppressive properties, critical in allowing active immunosurveillance while limiting aberrant immune reactivity. Taking into consideration these concepts, we further discuss how inflammation, aging, and neurodegenerative diseases potentially reshape the repertoire of self-antigens and immune cells, disrupting the healthy dialogue between the CNS and immune system. Collectively, this evolving perspective unveils new therapeutic avenues for CNS pathologies.
Collapse
Affiliation(s)
- Min Woo Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Frosch M, Prinz M. Niche-specific therapeutic targeting of myeloid cells in the central nervous system. Immunity 2025; 58:1101-1119. [PMID: 40324377 DOI: 10.1016/j.immuni.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) can be subdivided into distinct anatomical and functional compartments, including the parenchyma, perivascular space, leptomeninges, and dura mater, etc. Each compartment hosts distinct immune cell populations, such as monocytes and diverse macrophages, which play critical roles in local tissue homeostasis and regional disease pathogenesis. Advances in single-cell technologies have revealed complex immune cell compositions and functions in these anatomical regions. This review summarizes the latest approaches for modulating myeloid cell subsets in a compartment-specific manner, including cellular strategies such as stem cell therapy, ex vivo gene treatment, bone marrow transplantation, as well as non-cellular strategies like antibodies, small molecules, and viral gene delivery to augment CNS immune responses and improve disease outcomes. We also discuss the challenges and requirements of translating targeting strategies from mice to humans.
Collapse
Affiliation(s)
- Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Van Hove H, Glück C, Mildenberger W, Petrova E, Maheshwari U, Häne P, Kreiner V, Bijnen M, Mussak C, Utz SG, Droux J, Ingelfinger F, Ashworth C, Stifter SA, Roussel E, Lelios I, Vermeer M, Huang SF, Zhou Q, Chen Z, Calvet C, Bourgeois S, Schaffenrath J, Razansky D, Juang JX, Asano K, Pelczar P, Mundt S, Weber B, Wegener S, Tugues S, Stockmann C, Becher B, Keller A, El Amki M, Greter M. Interleukin-34-dependent perivascular macrophages promote vascular function in the brain. Immunity 2025; 58:1289-1305.e8. [PMID: 40315842 DOI: 10.1016/j.immuni.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
Abstract
The development of most macrophages depends on the colony-stimulating factor 1 (CSF-1) receptor, which has two ligands: CSF-1 and interleukin-34 (IL-34). While IL-34 is required for the homeostasis of microglia, the parenchymal macrophages in the central nervous system (CNS), it is unclear whether brain border-associated macrophages (BAMs) also depend on this cytokine. Here, we demonstrated that the embryonic development of murine BAMs in the choroid plexus, leptomeninges, and perivascular spaces required CSF-1, while IL-34 was critical for their maintenance in adulthood. In the brain, Il34 was expressed by mural cells and perivascular fibroblasts, and its transgenic deletion in these cells interrupted BAM maintenance. Il34 deficiency coincided with transcriptional changes in vascular cells, leading to increased flow velocity and vasomotion in pial and penetrating arterioles. Similarly, Mrc1CreCsf1rfl/fl mice lacking CD206+ perivascular BAMs exhibited increased hemodynamics in arterial networks. These findings reveal a crosstalk between vascular cells and CNS macrophages regulating cerebrovascular function.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Häne
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Mussak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Ashworth
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Elsa Roussel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jean X Juang
- Department of Biochemistry and Structural Biology, University of Texas Science Center, San Antonio, TX 78229, USA
| | - Kenichi Asano
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Zeng J, Zhou H, Wan H, Yang J. Single-cell omics: moving towards a new era in ischemic stroke research. Eur J Pharmacol 2025; 1000:177725. [PMID: 40350018 DOI: 10.1016/j.ejphar.2025.177725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Ischemic stroke (IS) is a highly complex and heterogeneous disease involving multiple pathophysiological events. A better understanding of the pathophysiology of IS will enhance preventive, diagnostic and therapeutic strategies. Despite significant advances in modern medicine, the molecular mechanisms of IS are still largely unknown. The high-throughput omics approach opens new avenues for identifying IS biomarkers and elucidating disease pathogenesis mechanisms. Single-cell omics enables a more thorough and in-depth analysis of the cellular interactions and properties in IS. This will lead to a better understanding of the onset, treatment and prognosis of IS. In this paper, we first reviewed the disease signatures and mechanisms research of IS. Subsequently, the use of single-cell omics to comprehend the mechanisms of IS was discussed, along with some recent developments in the field. To further delineate the upstream pathogenic alterations and downstream molecular impacts of IS, we also discussed the current use of machine learning approaches to single-cell omics data analysis. Particularly, single-cell omics is being used to inform risk assessment, early patient diagnosis and treatment strategies, and their potential impact on precision medicine. Thus, we summarized the role of single-cell omics in precision medicine. Despite the relative youth of the field, the development of single-cell omics promises to provide a powerful tool for elucidating the pathogenesis of IS.
Collapse
Affiliation(s)
- Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; School of Ecological and Environmental, Hubei Industrial Polytechnic, Shiyan, 442000, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Peng L, Renauer PA, Sferruzza G, Yang L, Zou Y, Fang Z, Park JJ, Chow RD, Zhang Y, Lin Q, Bai M, Sanchez A, Zhang Y, Lam SZ, Ye L, Chen S. In vivo AAV-SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat Biotechnol 2025; 43:752-761. [PMID: 38918616 PMCID: PMC11668911 DOI: 10.1038/s41587-024-02282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yongji Zou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhenghao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Yueqi Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Meizhu Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Angelica Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, Yale University, New Haven, CT, USA
| | - Yongzhan Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Nanjing University, Nanjing, China.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Lei S, Liu Y. Identifying microglia-derived NFKBIA as a potential contributor to the pathogenesis of Alzheimer's disease and age-related macular degeneration. J Alzheimers Dis 2025; 105:134-146. [PMID: 40105475 DOI: 10.1177/13872877251326267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundAlzheimer's disease (AD) and age-related macular degeneration (AMD) place considerable health burden on affected individuals and significant economic burden on society.ObjectiveThis study aims to explore the shared cellular and molecular mechanisms underlying the pathogenesis of AD and AMD.MethodsThe investigation in this study is conducted via single-cell and bulk tissue transcriptomic analysis. Transcriptomic datasets of AD and AMD were obtained from the GEO database. The shared differentially expressed genes (DEGs) in control and AD- and AMD-affected samples were identified. Functional enrichment analysis for DEGs was subsequently performed. Then, the protein-protein interaction (PPI) network of these DEGs was established via the STRING database and hub genes of this network were identified by Cytoscape software. Single-cell transcriptomic analysis was performed using Seurat R package to explore their expression in different cell types.ResultsDifferential analysis identified 127 shared DEGs of the two diseases, including 71 upregulated and 56 downregulated genes. Upregulated DEGs were enriched in inflammation, gliogenesis, cell apoptosis, and response to bacterial and viral infection and downregulated DEGs were enriched in mitochondrial function and energy production. PPI network and Cytoscape determined 10 hub genes, of which the NFKBIA gene was associated with the severity of both AD and AMD. Moreover, single-cell transcriptomic analysis showed that NFKBIA was highly expressed in microglia from disease-affected tissues.ConclusionsThe findings indicated that microglia with high NFKBIA expression were important contributors to the progression of both AD and AMD. Microglia-derived NFKBIA might serve as a potential therapeutic target for AD and AMD.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
15
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
16
|
Hattori Y. Microglial colonization routes and their impacts on cellular diversity. Neurosci Res 2025:S0168-0102(25)00078-1. [PMID: 40288616 DOI: 10.1016/j.neures.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Microglia are the resident immune cells of the central nervous system. Unlike other glial cells-such as astrocytes and oligodendrocytes-which originate from neural stem cells alongside neurons, microglia derive from erythromyeloid progenitors that emerge in the yolk sac during early embryonic development. Once they reach the brain, microglia expand their population through proliferation during development. A growing body of research has revealed that microglia play diverse roles throughout life, both in physiological and pathological contexts. With recent advancements in single-cell transcriptomics, it has become increasingly evident that microglia exhibit substantial heterogeneity in their gene expression patterns. While various functions and subtypes of microglia are being uncovered, the mechanisms underlying their diversity remain largely unknown. Two key hypotheses may explain how microglial diversity arises. One possibility is that their diversity is influenced by the different colonization routes they take before settling in the brain. Alternatively, microglia may acquire distinct properties in response to their local environment. This review explores both possibilities, with a particular focus on the first hypothesis, drawing on recent findings that highlight the multiple routes microglia utilize to colonize the brain. It discusses how these processes contribute to the establishment of microglial diversity during brain development.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
17
|
Kolz A, de la Rosa C, Syma IJ, McGrath S, Kavaka V, Schmitz R, Thomann AS, Kerschensteiner M, Beltran E, Kawakami N, Peters A. T-B cell cooperation in ectopic lymphoid follicles propagates CNS autoimmunity. Sci Immunol 2025; 10:eadn2784. [PMID: 40279405 DOI: 10.1126/sciimmunol.adn2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Meningeal ectopic lymphoid follicle (eLF)-like structures have been described in multiple sclerosis, but their role in central nervous system (CNS) autoimmunity is unclear. Here, we used a T helper 17 (TH17) adoptive transfer experimental autoimmune encephalomyelitis model featuring formation of eLFs. Single-cell RNA sequencing revealed that clusters of activated B cells and B1/marginal zone-like B cells were overrepresented in the CNS and identified B cells poised for undergoing germinal center reactions and clonal expansion in the CNS. Using intravital imaging to directly visualize TH17-B cell interactions, we demonstrated that T and B cells form long-lasting antigen-specific contacts in meningeal eLFs that result in reactivation of autoreactive T cells. CNS T cells depended on CNS B cells to maintain a proinflammatory cytokine profile. Our study reveals that extensive T-B cell cooperation occurs in meningeal eLFs, promoting both B cell differentiation and T cell reactivation, and may thereby propagate smoldering inflammation in the CNS.
Collapse
Affiliation(s)
- Anna Kolz
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Clara de la Rosa
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel J Syma
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sarah McGrath
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rosa Schmitz
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anna S Thomann
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltran
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
18
|
Xiao J, Meng Z, Lu Y, Nie Z, Liu Y, Yao Z, Zhang Y, Li L. Targeting microglia-Th17 feed-forward loop to suppress autoimmune neuroinflammation. J Neuroinflammation 2025; 22:118. [PMID: 40275354 PMCID: PMC12023695 DOI: 10.1186/s12974-025-03427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Microglia and Th17 cells are the major immunopathogenic cells in multiple sclerosis and its animal model of immune aspects, experimental autoimmune encephalomyelitis (EAE). While studies have highlighted the distinct roles of microglia and Th17 cells in EAE, it remains unclear whether microglia, as potential professional antigen-presenting cells, activate and stabilize the effector program of EAE-pathogenic Th17 cells in vivo; and if so, whether the Th17 could in turn reinforce the active state of the microglia. Our data demonstrate in an array of mouse models, including active/passive-EAE and transgenic mice, a microglia-Th17 feed-forward activation loop drives EAE disease progression through a mechanism dependent on both MHC-II, proinflammatory cytokines, inflammatory chemokines as well as STING→NF-κB pathway in the microglia and effector cytokines produced by the pathogenic Th17 cells. We also captured and identified the molecular properties of the feed-forward loop, which are two-cell entities of microglia-Th17, and proved them as the functional units of antigen presentation and bi-directional activation between the two cell types. Moreover, ACT001, an orphan drug to treat glioblastoma, disrupts this feed-forward activation loop by inhibiting the STING→NF-κB pathway in microglia, thereby alleviating EAE. These findings emphasize the importance of interactions and bi-directional activations between microglia and Th17 in the autoimmune neuroinflammation, and provide rationale for further investigation on ACT001 as therapeutic option for autoimmune inflammatory diseases driven by similar mechanisms.
Collapse
MESH Headings
- Animals
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Mice, Transgenic
- Mice, Inbred C57BL
- Neuroinflammatory Diseases/immunology
- Female
Collapse
Affiliation(s)
- Jun Xiao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zihan Meng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yao Lu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zongchang Nie
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Yujie Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
19
|
Binder N, Khavaran A, Sankowski R. Primer on machine learning applications in brain immunology. FRONTIERS IN BIOINFORMATICS 2025; 5:1554010. [PMID: 40313869 PMCID: PMC12043695 DOI: 10.3389/fbinf.2025.1554010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/24/2025] [Indexed: 05/03/2025] Open
Abstract
Single-cell and spatial technologies have transformed our understanding of brain immunology, providing unprecedented insights into immune cell heterogeneity and spatial organisation within the central nervous system. These methods have uncovered complex cellular interactions, rare cell populations, and the dynamic immune landscape in neurological disorders. This review highlights recent advances in single-cell "omics" data analysis and discusses their applicability for brain immunology. Traditional statistical techniques, adapted for single-cell omics, have been crucial in categorizing cell types and identifying gene signatures, overcoming challenges posed by increasingly complex datasets. We explore how machine learning, particularly deep learning methods like autoencoders and graph neural networks, is addressing these challenges by enhancing dimensionality reduction, data integration, and feature extraction. Newly developed foundation models present exciting opportunities for uncovering gene expression programs and predicting genetic perturbations. Focusing on brain development, we demonstrate how single-cell analyses have resolved immune cell heterogeneity, identified temporal maturation trajectories, and uncovered potential therapeutic links to various pathologies, including brain malignancies and neurodegeneration. The integration of single-cell and spatial omics has elucidated the intricate cellular interplay within the developing brain. This mini-review is intended for wet lab biologists at all career stages, offering a concise overview of the evolving landscape of single-cell omics in the age of widely available artificial intelligence.
Collapse
Affiliation(s)
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Garton T, Smith MD, Kesharwani A, Gharagozloo M, Oh S, Na CH, Absinta M, Reich DS, Zack DJ, Calabresi PA. Myeloid lineage C3 induces reactive gliosis and neuronal stress during CNS inflammation. Nat Commun 2025; 16:3481. [PMID: 40216817 PMCID: PMC11992029 DOI: 10.1038/s41467-025-58708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Complement component C3 mediates pathology in CNS neurodegenerative diseases. Here we use scRNAseq of sorted C3-reporter positive cells from mouse brain and optic nerve to characterize C3 producing glia in experimental autoimmune encephalomyelitis (EAE), a model in which peripheral immune cells infiltrate the CNS, causing reactive gliosis and neuro-axonal pathology. We find that C3 expression in the early inflammatory stage of EAE defines disease-associated glial subtypes characterized by increased expression of genes associated with mTOR activation and cell metabolism. This pro-inflammatory subtype is abrogated with genetic C3 depletion, a finding confirmed with proteomic analyses. In addition, early optic nerve axonal injury and retinal ganglion cell oxidative stress, but not loss of post-synaptic density protein 95, are ameliorated by selective deletion of C3 in myeloid cells. These data suggest that in addition to C3b opsonization of post synaptic proteins leading to neuronal demise, C3 activation is a contributor to reactive glia in the optic nerve.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ajay Kesharwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sungtaek Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Reserach Hospital, Milan, Italy
| | - Daniel S Reich
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Manavi Z, Melchor GS, Bullard MR, Gross PS, Ray S, Gaur P, Baydyuk M, Huang JK. Senescent cell reduction does not improve recovery in mice under experimental autoimmune encephalomyelitis (EAE) induced demyelination. J Neuroinflammation 2025; 22:101. [PMID: 40197319 PMCID: PMC11974124 DOI: 10.1186/s12974-025-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by immune cell-driven demyelination and progressive neurodegeneration. Senescent cells (SCs) have recently been observed in chronic MS lesions indicating their possible involvement in disease progression. However, the role of SCs and the potential therapeutic benefit of their reduction through senolytic therapy remains to be determined in experimental autoimmune encephalomyelitis (EAE), a widely used preclinical model of MS. Here, we show that senescent-like myeloid cells accumulate in the spinal cord parenchyma and meninges in mice after myelin oligodendrocyte glycoprotein (MOG33-55) EAE induction. Treatment with the senolytic cocktail, Dasatinib and Quercetin (DQ), effectively reduces the senescent-like myeloid cells, but this does not translate into improved clinical outcomes in EAE mice. Increasing DQ dosage or using INK-ATTAC transgenic mice also failed to ameliorate EAE severity. Additionally, histopathological analysis shows no significant differences in demyelination or axonal degeneration between treated and control groups. Our findings indicate that senescent-like myeloid cells are present in an immune-mediated demyelinating model of MS and can be reduced through senolytic therapy with Dasatinib and Quercetin. However, their reduction through DQ does not significantly impact inflammation or recovery, suggesting that the therapeutic potential of senolytics as disease-modifying drugs in MS may be limited.
Collapse
Affiliation(s)
- Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Meghan R Bullard
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Phillip S Gross
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Shinjini Ray
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Pankaj Gaur
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
23
|
Fumagalli L, Nazlie Mohebiany A, Premereur J, Polanco Miquel P, Bijnens B, Van de Walle P, Fattorelli N, Mancuso R. Microglia heterogeneity, modeling and cell-state annotation in development and neurodegeneration. Nat Neurosci 2025:10.1038/s41593-025-01931-4. [PMID: 40195564 DOI: 10.1038/s41593-025-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Within the CNS, microglia execute various functions associated with brain development, maintenance of homeostasis and elimination of pathogens and protein aggregates. This wide range of activities is closely associated with a plethora of cellular states, which may reciprocally influence or be influenced by their functional dynamics. Advancements in single-cell RNA sequencing have enabled a nuanced exploration of the intricate diversity of microglia, both in health and disease. Here, we review our current understanding of microglial transcriptional heterogeneity. We provide an overview of mouse and human microglial diversity encompassing aspects of development, neurodegeneration, sex and CNS regions. We offer an insight into state-of-the-art technologies and model systems that are poised to improve our understanding of microglial cell states and functions. We also provide suggestions and a tool to annotate microglial cell states on the basis of gene expression.
Collapse
Affiliation(s)
- Laura Fumagalli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Alma Nazlie Mohebiany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jessie Premereur
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paula Polanco Miquel
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Baukje Bijnens
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Nicola Fattorelli
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Van Hove H, De Feo D, Greter M, Becher B. Central Nervous System Macrophages in Health and Disease. Annu Rev Immunol 2025; 43:589-613. [PMID: 40036702 DOI: 10.1146/annurev-immunol-082423-041334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The central nervous system (CNS) has a unique set of macrophages that seed the tissue early during embryonic development. Microglia reside in the parenchyma, and border-associated macrophages are present in border regions, including the meninges, perivascular spaces, and choroid plexus. CNS-resident macrophages support brain homeostasis during development and steady state. In the diseased brain, however, the immune landscape is altered, with phenotypic and transcriptional changes in resident macrophages and the invasion of blood-borne monocytes, which differentiate into monocyte-derived macrophages upon entering the CNS. In this review, we focus on the fate and function of the macrophage compartment in health, neurodegenerative conditions such as amyloidosis, and neuroinflammation as observed in multiple sclerosis and infection. We discuss our current understanding that monocyte-derived macrophages contribute to neuropathology whereas native macrophages play a neuroprotective role in disease.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
25
|
Golomb SM, Guldner IH, Aleksandrovic E, Fross SR, Liu X, Diao L, Liang K, Wu J, Wang Q, Lopez JA, Zhang S. Temporal dynamics of immune cell transcriptomics in brain metastasis progression influenced by gut microbiome dysbiosis. Cell Rep 2025; 44:115356. [PMID: 40023843 PMCID: PMC12028778 DOI: 10.1016/j.celrep.2025.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Interactions between metastatic cancer cells and the brain microenvironment regulate brain metastasis (BrMet) progression. Central nervous system (CNS)-native and peripheral immune cells influence the BrMet immune landscape, but the dynamics and factors modulating this microenvironment remain unclear. As the gut microbiome impacts CNS and peripheral immune activity, we investigated its role in regulating immune response dynamics throughout BrMet stages. Antibiotic-induced (ABX) gut dysbiosis significantly increased BrMet burden versus controls but was equalized with fecal matter transplantation, highlighting microbiome diversity as a regulator of BrMet. Single-cell sequencing revealed a highly dynamic immune landscape during BrMet progression in both conditions. However, the timing of the monocyte inflammatory response was altered. Microglia displayed an elevated activation signature in late-stage metastasis in ABX-treated mice. T cell and microglia perturbation revealed involvement of these cell types in modulating BrMet under gut dysbiosis. These data indicate profound effects on immune response dynamics imposed by gut dysbiosis across BrMet progression.
Collapse
Affiliation(s)
- Samantha M Golomb
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Emilija Aleksandrovic
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Shaneann R Fross
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Xiyu Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Lu Diao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Karena Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinxuan Wu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Jacqueline A Lopez
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
26
|
Zhang W, Zhang X, Wang K, Liu Z, Zhang L, Liu S, He K, Wang H, Wang J, Wang Y, Wang Y, Yang Y, Wu H. Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167655. [PMID: 39755217 DOI: 10.1016/j.bbadis.2024.167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA. From six arachnoid membrane samples, a total of 52,886 cells met the quality control standards for analysis. The main cell populations identified with specific gene markers were as follows: fibroblasts, glial cells, microglial cells, endothelial cells, mural cells, plasma cells, and T cells. Downstream analysis of fibroblasts, glial cells, and microglial cells was performed. Notably, fibroblast subsets 1 and 3 demonstrated a strong association with AA. Among them, subcluster 3 demonstrated elevated expression of genes COL1A1, COL3A1, and FN1, indicative of enhanced Wnt/β-catenin and extracellular matrix (ECM) synthesis pathways. Subcluster 3 was predicted to progressively transform into subcluster 1. In subcluster 1, there was a significant upregulation of genes such as BMP and ALPL, signaling enhanced activation of calcification-related pathways. This was highly relevant to end-stage arachnoid ossification formation. After being activated, microglial cells transformed into inflammatory disease-associated microglial cells and continued to express high levels of chemokines CCL2, CCL4, IL-1β, and other inflammatory factors NAMPT, INPP5D and NLRP3. This might be the main reason why AA recurrence is frequently observed in patients. These insights enhance our understanding of the pathological progression of AA and may contribute to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiangyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaocheng Liu
- Beijing Mentougou District Hospital, Beijing 102300, China
| | - Kun He
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junyi Wang
- Beijing Science and Technology Innovation Group, Beijing 100101, China
| | - Yaobin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yutian Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuhua Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
27
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
28
|
Ju H, Kim ID, Pavlova I, Mu S, Park KW, Minkler J, Madkoor A, Wang W, Wang X, Wu Z, Yang J, Febbraio M, Cave JW, Cho S. Ischemic Conditioning Promotes Transneuronal Survival and Stroke Recovery via CD36-Mediated Efferocytosis. Circ Res 2025; 136:e34-e51. [PMID: 39886760 PMCID: PMC11867857 DOI: 10.1161/circresaha.124.325428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia. METHODS Naive mice or mice subjected to transient ischemic stroke were randomly selected to receive sham conditioning or RIC in the hindlimb at 2 hours post-stroke. At 3 days post-stroke, monocyte composition in the blood was analyzed, and brain tissue was examined for monocyte-derived macrophage (Mφ), levels of efferocytosis, and CD36 expression. Mouse with a specific deletion of CD36 in monocytes/Mφs was used to establish the role of CD36 in RIC-mediated modulation of efferocytosis, transneuronal degeneration, and recovery following stroke. RESULTS RIC applied 2 hours after stroke increased the entry of monocytes into the injured brain. In the postischemic brain, Mφ had increased levels of CD36 expression and efferocytosis. These changes in brain Mφ were derived from RIC-induced changes in circulating monocytes. In the blood, RIC increased CD36 expression in circulating monocytes and shifted monocytes to a proinflammatory Lymphocyte antigen 6 complex (LY6C)High state. Conditional deletion of CD36 in Mφ abrogated the RIC-induced monocyte shift in the blood and efferocytosis in the brain. During the recovery phase of stroke, RIC rescued the loss of the volume and of tyrosine hydroxylase+ neurons in substantia nigra and behavioral deficits in wild-type mice but not in mice with a specific deletion of CD36 in monocytes/Mφs. CONCLUSIONS RIC induces a shift in monocytes to a proinflammatory state with elevated CD36 levels, and this is associated with CD36-dependent efferocytosis in Mφs that rescues delayed transneuronal degeneration in the postischemic brain and promotes stroke recovery. Together, these findings provide novel insight into our mechanistic understanding of how RIC improves poststroke recovery.
Collapse
Affiliation(s)
- Hyunwoo Ju
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Il-doo Kim
- Department of Anatomy, Inha University School of Medicine, 1018, 60 Anniversary Hall, 100 Inharo, Incheon, South Korea
| | - Ina Pavlova
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Shang Mu
- Helen & Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, 413 E 69th St, New York, NY 10021, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Keun Woo Park
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Joseph Minkler
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Ahmed Madkoor
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Wei Wang
- Helen & Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, 413 E 69th St, New York, NY 10021, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Xiaoman Wang
- Helen & Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, 413 E 69th St, New York, NY 10021, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Zhuhao Wu
- Helen & Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, 413 E 69th St, New York, NY 10021, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| | - Jiwon Yang
- Innovation & Product Development, The Jackson Laboratory, Sacramento, CA, USA
| | - Maria Febbraio
- Department of Dentistry and Dental Hygiene, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sunghee Cho
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, 1600 York Avenue, New York, NY, USA
| |
Collapse
|
29
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
30
|
Zhang B, Wu Y, Wang Z, Gao S, Liu H, Lin Y, Yu P. Unveiling macrophage dynamics and efferocytosis-related targets in diabetic kidney disease: insights from single-cell and bulk RNA-sequencing. Front Immunol 2025; 16:1521554. [PMID: 40046045 PMCID: PMC11879818 DOI: 10.3389/fimmu.2025.1521554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Background Chronic inflammation and immune imbalance mediated by macrophages are considered pivotal in diabetic kidney disease (DKD). The study aims to clarify the macrophage heterogeneity and phenotype dynamics, and pinpoint critical targets within efferocytosis in DKD. Methods Utilizing early human DKD sequencing data, we computed the potential communication between leukocytes and renal intrinsic cells. Subsequently, we scrutinized the single-cell RNA sequencing (scRNA-seq) data from CD45-enriched immune cells, concentrating on the macrophage subsets in DKD. Pseudotime trajectory analysis was conducted to explore cell development. Differential expression genes (DEGs) from macrophage subgroups and bulk RNA-sequencing were used to identify shared hub genes. The NephroseqV5 platform was employed to evaluate the clinical significance, and the expression of key molecules was validated in DKD tissues. Results Macrophage infiltration rose in DKD, causing inflammation through the release of chemokines. As time progressed, the number of resident macrophages substantially dropped, with diminishing M1-like and increasing M2-like phenotypes relative to early stages. Further analysis pointed to the most enrichment of macrophage function is the phagosome. We overlapped the DEGs with efferocytosis-related genes and identified key genes, including CD36, ITGAM, and CX3CR1, which exhibited significant correlations with macrophages and T cells. The Nephroseq database revealed that they are associated with proteinuria and renal function. Consistent with the validation set, in vivo experiments verified elevated expression levels of key molecules. Conclusions In essence, our research elucidated the dynamics in macrophage subtype transitions. It emphasized three pivotal genes as critical modulators of macrophage efferocytosis in DKD, indicating their potential as innovative biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Binshan Zhang
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Yunqi Wu
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zhongli Wang
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Suhua Gao
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Hongyan Liu
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Yao Lin
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- National Health Commission (NHC) Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
- Department of Nephrology & Blood Purification Center, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Prado C, Herrada AA, Hevia D, Goiry LG, Escobedo N. Role of innate immune cells in multiple sclerosis. Front Immunol 2025; 16:1540263. [PMID: 40034690 PMCID: PMC11872933 DOI: 10.3389/fimmu.2025.1540263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune, inflammatory and neurodegenerative disease affecting the central nervous system (CNS). MS is associated with a complex interplay between neurodegenerative and inflammatory processes, mostly attributed to pathogenic T and B cells. However, a growing body of preclinical and clinical evidence indicates that innate immunity plays a crucial role in MS promotion and progression. Accordingly, preclinical and clinical studies targeting different innate immune cells to control MS are currently under study, highlighting the importance of innate immunity in this pathology. Here, we reviewed recent findings regarding the role played by innate immune cells in the pathogenesis of MS. Additionally, we discuss potential new treatments for MS based on targets against innate immune components.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Daniel Hevia
- Center for Studies and Innovation in Dentistry, Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Lorna Galleguillos Goiry
- Neurology and Psychiatry Department, Clínica Alemana, Neurology and Neurosurgery Department, Clínica Dávila, Santiago, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
32
|
Patel PU, Regmi A, Dass AI, Rojas OL. Immune conversations at the border: meningeal immunity in health and disease. Front Immunol 2025; 16:1531068. [PMID: 39944687 PMCID: PMC11813769 DOI: 10.3389/fimmu.2025.1531068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 05/09/2025] Open
Abstract
The brain and spinal cord, collectively known as the central nervous system, are encapsulated by an overlapping series of membranes known as the meninges. Once considered primarily a physical barrier for central nervous system protection, the bordering meninges are now recognized as highly immunologically active. The meninges host diverse resident immune cells and serve as a critical interface with peripheral immunity, playing multifaceted roles in maintaining central nervous system homeostasis, responding to pathogenic threats, and neurological disorders. This review summarizes recent advancements in our understanding of meningeal immunity including its structural composition, physiological functions, and role in health and disease.
Collapse
Affiliation(s)
- Preya U. Patel
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aryan Regmi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angelina I. Dass
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol 2025; 16:1539988. [PMID: 39925814 PMCID: PMC11802581 DOI: 10.3389/fimmu.2025.1539988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Brain macrophages encompass two major populations: microglia in the parenchyma and border-associated macrophages (BAMs) in the extra-parenchymal compartments. These cells play crucial roles in maintaining brain homeostasis and immune surveillance. Microglia and BAMs are phenotypically and epigenetically distinct and exhibit highly specialized functions tailored to their environmental niches. Intriguingly, recent studies have shown that both microglia and BAMs originate from the same myeloid progenitor during yolk sac hematopoiesis, but their developmental fates diverge within the brain. Several works have partially unveiled the mechanisms orchestrating the development of microglia and BAMs in both mice and humans; however, many questions remain unanswered. Defining the molecular underpinnings controlling the transcriptional and epigenetic programs of microglia and BAMs is one of the upcoming challenges for the field. In this review, we outline current knowledge on ontogeny, phenotypic diversity, and the factors shaping the ecosystem of brain macrophages. We discuss insights garnered from human studies, highlighting similarities and differences compared to mice. Lastly, we address current research gaps and potential future directions in the field. Understanding how brain macrophages communicate with their local environment and how the tissue instructs their developmental trajectories and functional features is essential to fully comprehend brain physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Claudia Z. Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
34
|
Yi MH, Lee J, Moon S, So E, Bang G, Moon KS, Lee KH. Divergent Crosstalk Between Microglia and T Cells in Brain Cancers: Implications for Novel Therapeutic Strategies. Biomedicines 2025; 13:216. [PMID: 39857798 PMCID: PMC11763300 DOI: 10.3390/biomedicines13010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Brain cancers represent a formidable oncological challenge characterized by their aggressive nature and resistance to conventional therapeutic interventions. The tumor microenvironment has emerged as a critical determinant of tumor progression and treatment efficacy. Within this complex ecosystem, microglia and macrophages play fundamental roles, forming intricate networks with peripheral immune cell populations, particularly T cells. The precise mechanisms underlying microglial interactions with T cells and their contributions to immunosuppression remain incompletely understood. Methods: This review comprehensively examines the complex cellular dialogue between microglia and T cells in two prominent brain malignancies: primary glioblastoma and secondary brain metastases. Results: Through a comprehensive review of the current scientific literature, we explore the nuanced mechanisms through which microglial-T cell interactions modulate tumor growth and immune responses. Conclusions: Our analysis seeks to unravel the cellular communication pathways that potentially underpin tumor progression, with the ultimate goal of illuminating novel therapeutic strategies for brain cancer intervention.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Jinkyung Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Subin Moon
- Department of Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - EunA So
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Geonhyeok Bang
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea; (M.-H.Y.)
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea;
| | - Kyung-Hwa Lee
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanam-do, Republic of Korea
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
35
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2025; 113:71-81. [PMID: 39395409 PMCID: PMC11717645 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Rodriguez S, Couloume L, Ferrant J, Vince N, Mandon M, Jean R, Monvoisin C, Leonard S, Le Gallou S, Silva NSB, Bourguiba-Hachemi S, Laplaud D, Garcia A, Casey R, Zephir H, Kerbrat A, Edan G, Lepage E, Thouvenot E, Ruet A, Mathey G, Gourraud PA, Tarte K, Delaloy C, Amé P, Roussel M, Michel L. Blood immunophenotyping of multiple sclerosis patients at diagnosis identifies a classical monocyte subset associated to disease evolution. Front Immunol 2025; 15:1494842. [PMID: 39845960 PMCID: PMC11751469 DOI: 10.3389/fimmu.2024.1494842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Myeloid cells trafficking from the periphery to the central nervous system are key players in multiple sclerosis (MS) through antigen presentation, cytokine secretion and repair processes. Methods Combination of mass cytometry on blood cells from 60 MS patients at diagnosis and 29 healthy controls, along with single cell RNA sequencing on paired blood and cerebrospinal fluid (CSF) samples from 5 MS patients were used for myeloid cells detailing. Results Myeloid compartment study demonstrated an enrichment of a peculiar classical monocyte population in 22% of MS patients at the time of diagnosis. Notably, this patients' subgroup exhibited a more aggressive disease phenotype two years post-diagnosis. This monocytic population, detected in both the CSF and blood, was characterized by CD206, CD209, CCR5 and CCR2 expression, and was found to be more frequent in MS patients carrying the HLA-DRB1*15:01 allele. Furthermore, pathways analysis predicted that these cells had antigen presentation capabilities coupled with pro-inflammatory phenotype. Discussion Altogether, these results point toward the amplification of a specific and pathogenic myeloid cell subset in MS patients with genetic susceptibilities.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laura Couloume
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Juliette Ferrant
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nicolas Vince
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Marion Mandon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Rachel Jean
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Monvoisin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Leonard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Le Gallou
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nayane S. B. Silva
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Laplaud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Alexandra Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Romain Casey
- Lyon University, University Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Bron, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
- EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, Bron, France
| | - Helene Zephir
- Lille University, Inserm U1172, Lille University Hospital, Lille, France
| | - Anne Kerbrat
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Gilles Edan
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Emmanuelle Lepage
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, Nimes, France
- Institut de Génomique Fonctionnelle, UMR5203, Inserm 1191, Université de Montpellier, Montpellier, France
| | - Aurelie Ruet
- Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale (INSERM) U1215, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, Bordeaux, France
| | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, France
| | - Pierre-Antoine Gourraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Delaloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Patricia Amé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Mikael Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laure Michel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
| |
Collapse
|
37
|
Masuda T. Common and distinct features of diverse macrophage populations in the central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:216-223. [PMID: 40222898 DOI: 10.2183/pjab.101.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Tissue-resident macrophages perform indispensable functions in the development, maintenance, and repair of tissues. Microglia are the primary resident immune cells in the central nervous system (CNS), functioning as intracerebral macrophages distributed throughout the brain parenchyma. In addition to microglia, there is another, less well-characterized type of macrophage known as CNS border-associated macrophages (CAMs), and the existence of these cells has been recognized for several decades. With recent advances in research technologies, an increasing number of studies have focused on CAMs, and our understanding of them has begun to improve. In this article, we review the cellular characteristics and functions of CAMs that have been elucidated thus far, with a particular focus on the similarities and differences between CAMs and microglia.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
38
|
Kim MW, Gao W, Lichti CF, Gu X, Dykstra T, Cao J, Smirnov I, Boskovic P, Kleverov D, Salvador AFM, Drieu A, Kim K, Blackburn S, Crewe C, Artyomov MN, Unanue ER, Kipnis J. Endogenous self-peptides guard immune privilege of the central nervous system. Nature 2025; 637:176-183. [PMID: 39476864 PMCID: PMC11666455 DOI: 10.1038/s41586-024-08279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2024] [Indexed: 12/06/2024]
Abstract
Despite the presence of strategically positioned anatomical barriers designed to protect the central nervous system (CNS), it is not entirely isolated from the immune system1,2. In fact, it remains physically connected to, and can be influenced by, the peripheral immune system1. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding question. Here, in searching for molecular cues that derive from the CNS and enable its direct communication with the immune system, we identified an endogenous repertoire of CNS-derived regulatory self-peptides presented on major histocompatibility complex class II (MHC-II) molecules in the CNS and at its borders. During homeostasis, these regulatory self-peptides were found to be bound to MHC-II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. However, in neuroinflammatory disease, the presentation of regulatory self-peptides diminished. After boosting the presentation of these regulatory self-peptides, a population of suppressor CD4+ T cells was expanded, controlling CNS autoimmunity in a CTLA-4- and TGFβ-dependent manner. CNS-derived regulatory self-peptides may be the molecular key to ensuring a continuous dialogue between the CNS and the immune system while balancing overt autoreactivity. This sheds light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Woo Kim
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Medical Scientist Training Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Cheryl F Lichti
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Xingxing Gu
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jay Cao
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Pavle Boskovic
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Denis Kleverov
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Andrea F M Salvador
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Antoine Drieu
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kyungdeok Kim
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Susan Blackburn
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Clair Crewe
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Emil R Unanue
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
39
|
Jackson LR, Erickson A, Camphausen K, Krauze AV. Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery. Curr Oncol 2024; 32:16. [PMID: 39851932 PMCID: PMC11763554 DOI: 10.3390/curroncol32010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma (GBM) is a primary central nervous system malignancy with a median survival of 15-20 months. The presence of both intra- and intertumoral heterogeneity limits understanding of biological mechanisms leading to tumor resistance, including immune escape. An attractive field of research to examine treatment resistance are immune signatures composed of cluster of differentiation (CD) markers and cytokines. CD markers are surface markers expressed on various cells throughout the body, often associated with immune cells. Cytokines are the effector molecules of the immune system. Together, CD markers and cytokines can serve as useful biomarkers to reflect immune status in patients with GBM. However, there are gaps in the understanding of the intricate interactions between GBM and the peripheral immune system and how these interactions change with standard and immune-modulating treatments. The key to understanding the true nature of these interactions is through multi-omic analysis of tumor progression and treatment response. This review aims to identify potential non-invasive blood-based biomarkers that can contribute to an immune signature through multi-omic approaches, leading to a better understanding of immune involvement in GBM.
Collapse
Affiliation(s)
| | | | | | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (L.R.J.); (A.E.); (K.C.)
| |
Collapse
|
40
|
Amann L, Fell A, Monaco G, Sankowski R, Wu HZQ, Jordão MJC, Borst K, Fliegauf M, Masuda T, Ardura-Fabregat A, Paterson N, Nent E, Cook J, Staszewski O, Mossad O, Falk T, Louveau A, Smirnov I, Kipnis J, Lämmermann T, Prinz M. Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages. Sci Immunol 2024; 9:eadh1129. [PMID: 39705337 DOI: 10.1126/sciimmunol.adh1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/26/2024] [Indexed: 12/22/2024]
Abstract
Although macrophages in the meningeal compartments of the central nervous system (CNS) have been comprehensively characterized under steady state, studying their contribution to physiological and pathological processes has been hindered by the lack of specific targeting tools in vivo. Recent findings have shown that the dural sinus and its adjacent lymphatic vessels act as a neuroimmune interface. However, the cellular and functional heterogeneity of extrasinusoidal dural macrophages outside this immune hub is not fully understood. Therefore, we comprehensively characterized these cells using single-cell transcriptomics, fate mapping, confocal imaging, clonal analysis, and transgenic mouse lines. Extrasinusoidal dural macrophages were distinct from leptomeningeal and CNS parenchymal macrophages in terms of their origin, expansion kinetics, and transcriptional profiles. During autoimmune neuroinflammation, extrasinusoidal dural macrophages performed efferocytosis of apoptotic granulocytes. Our results highlight a previously unappreciated myeloid cell diversity and provide insights into the brain's innate immune system.
Collapse
Affiliation(s)
- Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Fell
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Huang Zie Quann Wu
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Katharina Borst
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Alberto Ardura-Fabregat
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Neil Paterson
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Elisa Nent
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James Cook
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Falk
- Department of Computer Sciences, University of Freiburg, Freiburg, Germany
| | - Antoine Louveau
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Huart C, Gupta MS, Van Ginderachter JA. The role of RNA modifications in disease-associated macrophages. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102315. [PMID: 39296330 PMCID: PMC11408368 DOI: 10.1016/j.omtn.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In recent years, the field of epitranscriptomics has witnessed significant breakthroughs with the identification of more than 150 different chemical modifications in different RNA species. It has become increasingly clear that these chemical modifications play an important role in the regulation of fundamental processes linked to cell fate and development. Further interest was sparked by the ability of the epitranscriptome to regulate pathogenesis. However, despite the involvement of macrophages in a multitude of diseases, a clear knowledge gap exists in the understanding of how RNA modifications regulate the phenotype of these cells. Here, we provide a comprehensive overview of the known roles of macrophage RNA modifications in the context of different diseases.
Collapse
Affiliation(s)
- Camille Huart
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mayuk Saibal Gupta
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
42
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024; 24:896-911. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Zhao J, Zeng R, Li X, Lu Y, Wang Z, Peng H, Chen H, Fu M, Zhang Y, Huang Y, Chen W, Wang X, Guan Y, Han W, Huang R, Yao C, Qin Z, Chen L, Chen L, Feng X, Yang H, Pereira PMR, Tong X, Li B, Zhang Q, Chi Y. Dura immunity configures leptomeningeal metastasis immunosuppression for cerebrospinal fluid barrier invasion. NATURE CANCER 2024; 5:1940-1961. [PMID: 39710801 DOI: 10.1038/s43018-024-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
The cerebrospinal fluid (CSF) border accommodates diverse immune cells that permit peripheral cell immunosurveillance. However, the intricate interactions between CSF immune cells and infiltrating cancer cells remain poorly understood. Here we use fate mapping, longitudinal time-lapse imaging and multiomics technologies to investigate the precise origin, cellular crosstalk and molecular landscape of macrophages that contribute to leptomeningeal metastasis (LM) progression. Mechanically, we find that dura-derived LM-associated macrophages (dLAMs) migrate into the CSF in a matrix metalloproteinase 14 (MMP14)-dependent manner. Furthermore, we identify that dLAMs critically require the presence of secreted phosphoprotein 1 (SPP1) in cancer cells for their recruitment, fostering an immunosuppressed microenvironment characterized by T cell exhaustion and inactivation. Conversely, inhibition of the SPP1-MMP14 axis can impede macrophages from bypassing the border barrier, prevent cancer cell growth and improve survival in LM mouse models. Our findings reveal an unexpectedly private source of innate immunity within the meningeal space, shed light on CSF barrier dysfunction dynamics and supply potential targets of clinical immunotherapy.
Collapse
Affiliation(s)
- Jiaxu Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Rui Zeng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Xiaohui Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gastroenterology, Shanghai Xuhui Center Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haibao Peng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Hao Chen
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Yang Huang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Wenhan Chen
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Shanghai, China
- MOE Frontiers Center for Brain Science, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China
| | - Xin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Yun Guan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Wei Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengjun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue Feng
- Laboratory Animal Center, Fudan University, Shanghai, China
| | - Hanting Yang
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- Department of Neurology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Patrícia M R Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiangqiang Zhang
- Advanced Model Animal Research Center, Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China.
- Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, China.
| | - Yudan Chi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Shanghai, China.
- MOE Frontiers Center for Brain Science, Shanghai, China.
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Shanghai, China.
| |
Collapse
|
44
|
Bhatt M, Sharma M, Das B. The Role of Inflammatory Cascade and Reactive Astrogliosis in Glial Scar Formation Post-spinal Cord Injury. Cell Mol Neurobiol 2024; 44:78. [PMID: 39579235 PMCID: PMC11585509 DOI: 10.1007/s10571-024-01519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Reactive astrogliosis and inflammation are pathologic hallmarks of spinal cord injury. After injury, dysfunction of glial cells (astrocytes) results in glial scar formation, which limits neuronal regeneration. The blood-spinal cord barrier maintains the structural and functional integrity of the spinal cord and does not allow blood vessel components to leak into the spinal cord microenvironment. After the injury, disruption in the spinal cord barrier causes an imbalance of the immunological microenvironment. This triggers the process of neuroinflammation, facilitated by the actions of microglia, neutrophils, glial cells, and cytokines production. Recent work has revealed two phenotypes of astrocytes, A1 and A2, where A2 has a protective type, and A1 releases neurotoxins, further promoting glial scar formation. Here, we first describe the current understanding of the spinal cord microenvironment, both pre-, and post-injury, and the role of different glial cells in the context of spinal cord injury, which forms the essential update on the cellular and molecular events following injury. We aim to explore in-depth signaling pathways and molecular mediators that trigger astrocyte activation and glial scar formation. This review will discuss the activated signaling pathways in astrocytes and other glial cells and their collaborative role in the development of gliosis through inflammatory responses.
Collapse
Affiliation(s)
- Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Muskan Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India.
| |
Collapse
|
45
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
46
|
Zhan T, Tian S, Chen S. Border-Associated Macrophages: From Embryogenesis to Immune Regulation. CNS Neurosci Ther 2024; 30:e70105. [PMID: 39496482 PMCID: PMC11534460 DOI: 10.1111/cns.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Border-associated macrophages (BAMs) play a pivotal role in maintaining brain homeostasis and responding to pathological conditions. Understanding their origins, characteristics, and roles in both healthy and diseased brains is crucial for advancing our knowledge of neuroinflammatory and neurodegenerative diseases. This review addresses the ontogeny, replenishment, microenvironmental regulation, and transcriptomic heterogeneity of BAMs, highlighting recent advancements in lineage tracing and fate-mapping studies. Furthermore, we examine the roles of BAMs in maintaining brain homeostasis, immune surveillance, and responses to injury and neurodegenerative diseases. Further research is crucial to clarify the dynamic interplay between BAMs and the brain's microenvironment in health and disease. This effort will not only resolve existing controversies but also reveal new therapeutic targets for neuroinflammatory and neurodegenerative disorders, pushing the boundaries of neuroscience.
Collapse
Affiliation(s)
- Tiantong Zhan
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sixuan Tian
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| |
Collapse
|
47
|
Ganz T, Fainstein N, Theotokis P, Elgavish S, Vardi-Yaakov O, Lachish M, Sofer L, Zveik O, Grigoriadis N, Ben-Hur T. Targeting CNS myeloid infiltrates provides neuroprotection in a progressive multiple sclerosis model. Brain Behav Immun 2024; 122:497-509. [PMID: 39179123 DOI: 10.1016/j.bbi.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
Demyelination and axonal injury in chronic-progressive Multiple Sclerosis (MS) are presumed to be driven by a neurotoxic bystander effect of meningeal-based myeloid infiltrates. There is an unmet clinical need to attenuate disease progression in such forms of CNS-compartmentalized MS. The failure of systemic immune suppressive treatments has highlighted the need for neuroprotective and repair-inducing strategies. Here, we examined whether direct targeting of CNS myeloid cells and modulating their toxicity may prevent irreversible tissue injury in chronic immune-mediated demyelinating disease. To that end, we utilized the experimental autoimmune encephalomyelitis (EAE) model in Biozzi mice, a clinically relevant MS model. We continuously delivered intracerebroventricularly (ICV) a retinoic acid receptor alpha agonist (RARα), as a potent regulator of myeloid cells, in the chronic phase of EAE. We assessed disease severity and performed pathological evaluations, functional analyses of immune cells, and single-cell RNA sequencing on isolated spinal CD11b+ cells. Although initiating treatment in the chronic phase of the disease, the RARα agonist successfully improved clinical outcomes and prevented axonal loss. ICV RARα agonist treatment inhibited pro-inflammatory pathways and shifted CNS myeloid cells toward neuroprotective phenotypes without affecting peripheral infiltrating myeloid cell phenotypes, or peripheral immunity. The treatment regulated cell-death pathways across multiple myeloid cell populations and suppressed apoptosis, resulting in paradoxically marked increased neuroinflammatory infiltrates, consisting mainly of microglia and CNS / border-associated macrophages. This work establishes the notion of bystander neurotoxicity by CNS immune infiltrates in chronic demyelinating disease. Furthermore, it shows that targeting compartmentalized neuroinflammation by selective regulation of CNS myeloid cell toxicity and survival reduces irreversible tissue injury, and may serve as a novel disease-modifying approach.
Collapse
Affiliation(s)
- Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the 1-CORE, Hebrew University of Jerusalem, Israel
| | - Oriya Vardi-Yaakov
- Info-CORE, Bioinformatics Unit of the 1-CORE, Hebrew University of Jerusalem, Israel; Department of Bioinformatics, Jerusalem College of Technology, Israel
| | - Marva Lachish
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Lihi Sofer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
48
|
Zhu J, Jin P, Zhou T, Zhang D, Wang Z, Tang Z, Liu Z, Ren G. SIRT1 modulates microglia phenotypes via inhibiting drp1 phosphorylation reduces neuroinflammation in heatstroke. Brain Res Bull 2024; 218:111101. [PMID: 39396713 DOI: 10.1016/j.brainresbull.2024.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Brain injury often results in high mortality rates and significant sequelae following severe heatstroke (HS). Neuroinflammation aggravates HS-induced brain injury, yet the involvement of microglia in heat-induced neuroinflammation deserves further investigation. METHODS Our study investigated activation status, phenotype markers, production of pro-inflammatory cytokine and reactive oxygen species (ROS) of microglia both in vitro and in vivo under HS. Utilizing high-throughput sequencing, we identified SIRT1 as a potential modulator of microglia phenotype, and observed that SIRT1 alleviated severe heatstroke-induced brain injury following intraperitoneal administration of the SIRT1 agonist SRT-1720 and the inhibitor selisistat. Additionally, the effects of SRT-1720 and selisistat on mitochondrial dynamics and microglial phenotype transition were examined in BV2 cells in vitro. RESULTS Heatstroke promotes microglia activation, as evidenced by the increased production of pro-inflammatory cytokine and reactive oxygen species. High-throughput sequencing revealed elevated expression of SIRT1 in BV2 cells under HS. Upon inhibition of SIRT1 expression, there was a corresponding increase in pro-inflammatory cytokine, iNOS, and ROS expression in BV2 cells. In vivo experiments with the SIRT1 agonist SRT-1720 showed a mitigation of neuron injury under HS, as assessed by Nissl and HE staining. Activation of SIRT1 was associated with a reduction in mitochondrial injury and a decrease in the phosphorylation of mitochondrial fission protein Drp1ser616. Furthermore, the heat-induced activation of microglia was reversed by the Drp1 inhibitor, Mdivi. CONCLUSIONS Our findings provided evidence that SIRT1 played a crucial role in inhibiting heat stress-induced microglial activation. By suppressing the phosphorylation of mitochondrial fission protein Drp1, SIRT1 contributed to the reduction of neuroinflammation and severity of heatstroke-induced brain injury.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric, Daping Hospital, Army Medical University, China; Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China.
| | - Panshi Jin
- Department of Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Tingting Zhou
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Dingshun Zhang
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510010, China
| | - Zhen Tang
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Southern Medical University, Guangzhou 510010, China.
| | - Guangli Ren
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
49
|
Li L, Sun B, Harris OA, Luo J. TGF-β Signaling in Microglia: A Key Regulator of Development, Homeostasis and Reactivity. Biomedicines 2024; 12:2468. [PMID: 39595034 PMCID: PMC11592028 DOI: 10.3390/biomedicines12112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are crucial for normal brain development and function. They become reactive in response to brain injury and disease, a process known as microglial reactivity. This reactivity, along with microglial homeostasis, is tightly regulated by the local microenvironment and interactions with surrounding cells. The TGF-β signaling pathway plays an essential role in this regulation. Recent genetic studies employing microglia-specific manipulation of the TGF-β signaling pathway have shed light on its significance in microglial development, homeostasis and reactivity. This review provides an updated overview of how TGF-β signaling modulates microglial function and reactivity, contributing to our understanding of microglial biology in health and disease.
Collapse
Affiliation(s)
- Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Odette A. Harris
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Campbell GP, Amin D, Hsieh K, Hussey GS, St Leger AJ, Gross JM, Badylak SF, Kuwajima T. Immunomodulation by the combination of statin and matrix-bound nanovesicle enhances optic nerve regeneration. NPJ Regen Med 2024; 9:31. [PMID: 39461953 PMCID: PMC11513974 DOI: 10.1038/s41536-024-00374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Modulating inflammation is critical to enhance nerve regeneration after injury. However, clinically applicable regenerative therapies that modulate inflammation have not yet been established. Here, we demonstrate synergistic effects of the combination of an HMG-CoA reductase inhibitor, statin/fluvastatin and critical components of the extracellular matrix, Matrix-Bound Nanovesicles (MBV) to enhance axon regeneration and neuroprotection after mouse optic nerve injury. Mechanistically, co-intravitreal injections of fluvastatin and MBV robustly promote infiltration of monocytes and neutrophils, which lead to RGC protection and axon regeneration. Furthermore, monocyte infiltration is triggered by elevated expression of CCL2, a chemokine, in the superficial layer of the retina after treatment with a combination of fluvastatin and MBV or IL-33, a cytokine contained within MBV. Finally, this therapy can be further combined with AAV-based gene therapy blocking anti-regenerative pathways in RGCs to extend regenerated axons. These data highlight novel molecular insights into the development of immunomodulatory regenerative therapy.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Dwarkesh Amin
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kristin Hsieh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George S Hussey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- The Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|