1
|
Chen H, Huang Z, Guan W, Huang K, Cui L, Zhang H, Lu S. Phosphorus rather than nitrogen driving biosynthesis of diarrhetic shellfish toxins in Prorocentrum caipirignum via ATP. HARMFUL ALGAE 2025; 145:102842. [PMID: 40324852 DOI: 10.1016/j.hal.2025.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 05/07/2025]
Abstract
Okadaic acid and its analogues such as dinophysisitoxins-1, -2 (DTX-1, -2) are potent inhibitors of protein phosphatase and causative toxins of diarrhetic shellfish poisoning (DSP). These toxins are produced by dinoflagellate genera Dinophysis and Prorocentrum. Numerous studies have reported that the cellular content of these toxins increased under macronutrient limitation or other stress conditions in genus Prorocentrum. However, our recent study demonstrated positive linear or exponential relationships between toxin production rate (Rtox) and phosphate consumption rate in five strains of P. lima complex/P. caipirignum. To further clarify macronutrients roles in OA production, P. caipirignum SE10 selected for its extremely low DTX-1 content due to potential competitive relationship with OA, was exposed to nitrogen (N) or phosphorus (P) limitation via batch or semi-batch cultures, after which the depleted nutrients were replenished to assess OA production dynamics. The Rtox of OA peaked initially before declining under both N and P-limited treatments. Notably, Rtox increased only upon P replenishment rather than N replenishment, confirming phosphorus's critical role in OA production. In P-addition experiments, Rtox stagnated in the P-deficient condition but rose proportionally with increasing P concentration. Meanwhile, ATP and NADPH levels surged 7.5-fold and 1.5-fold, respectively, within 1 h of P-addition compared to P-deficient treatment. To probe how P affects OA production, inhibitors targeting ATP and NADPH synthesis were applied. OA production was specifically suppressed by ATP inhibitors, such as N, N-dicyclohexylcarbodiimid (DCCD), rotenone (ROT), and 2,4-dintrophenol (DNP). The highest inhibition occurred with 20 μM DCCD, reducing OA cellular content by 90 % after 48 h. Moreover, increasing ATP inhibitor concentration shift Rtox from positive to negative values. These finding demonstrated that phosphorus drives OA production primarily by modulating ATP levels, which directly regulate toxin synthesis.
Collapse
Affiliation(s)
- Heng Chen
- College of life science and technology, Jinan University, Guangzhou 510632, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zehui Huang
- College of life science and technology, Jinan University, Guangzhou 510632, China
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaixuan Huang
- College of life science and technology, Jinan University, Guangzhou 510632, China
| | - Lei Cui
- College of life science and technology, Jinan University, Guangzhou 510632, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hua Zhang
- Shenzhen Academy of Environmental Science, Shenzhen 518000, China.
| | - Songhui Lu
- College of life science and technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Shen Y, Sun A, Guo Y, Chang WC. Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways. ACS BIO & MED CHEM AU 2025; 5:238-261. [PMID: 40255287 PMCID: PMC12006828 DOI: 10.1021/acsbiomedchemau.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes utilize an FeIV=O species to catalyze the functionalization of otherwise chemically inert C-H bonds. In addition to the more familiar canonical reactions of hydroxylation and chlorination, they also catalyze several other types of reactions that contribute to the diversity and complexity of natural products. In the past decade, several new Fe/2OG enzymes that catalyze C-C and C-N bond formation have been reported in the biosynthesis of structurally complex natural products. Compared with hydroxylation and chlorination, the catalytic cycles of these Fe/2OG enzymes involve distinct mechanistic features to enable noncanonical reaction outcomes. This Review summarizes recent discoveries of Fe/2OG enzymes involved in C-C and C-N bond formation with a focus on reaction mechanisms and their roles in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaoyao Shen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anyi Sun
- School
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yisong Guo
- Department
of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Pruckner F, Morelli L, Patwari P, Fabris M. Remodeling of the terpenoid metabolism during prolonged phosphate depletion in the marine diatom Phaeodactylum tricornutum. JOURNAL OF PHYCOLOGY 2025. [PMID: 40234016 DOI: 10.1111/jpy.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Terpenoids are a diverse class of naturally occurring organic compounds, which derive from five-carbon isoprene units and play crucial roles in physiology, ecological interactions such as defense mechanisms, or adaptation to environmental stresses. In Phaeodactylum tricornutum, some of the most important isoprenoids are sterols and pigments, derived from precursors of the cytosolic mevalonate and the plastidial methyl-erythritol 4-phosphate pathway, respectively. However, the regulation of isoprenoid metabolism in P. tricornutum has not yet been characterized, presenting a major gap in our understanding of its ecological functions and adaptations. By leveraging metabolic, photosynthetic, and transcriptomic analyses, we characterized the dynamic remodeling of the isoprenoid pathways during prolonged nutrient stress in wild-type diatoms. We observed the down-regulation of the methylerythritol 4-phosphate and pigment biosynthesis pathways and the upregulation of key genes in the mevalonate and sterol biosynthesis pathways. At the metabolite level, we observed an overall decrease in pigment and no changes in sterol levels. Using a genetically engineered diatom strain to produce a heterologous monoterpenoid to monitor the availability of one of the main terpenoid precursors, geranyl diphosphate (GPP), we suggest that cytosolic GPP pools increase during prolonged phosphate depletion. Our results have demonstrated how the biosynthesis of isoprenoid metabolites and the pools of prenyl phosphate are vastly remodeled during phosphate depletion. We anticipate that the knowledge generated in this study can serve as a foundation for understanding ecological responses and adaptations of diatoms to nutrient stress, contributing to our broader comprehension of marine ecosystem dynamics and design strategies for producing high-value compounds in diatoms.
Collapse
Affiliation(s)
- Florian Pruckner
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Luca Morelli
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Payal Patwari
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
| | - Michele Fabris
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Odense M, Denmark
- SDU Climate Cluster, Faculty of Science, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
4
|
Zhang W, Ushimaru R, Kanaida M, Abe I. Pyrroline Ring Assembly via N-Prenylation and Oxidative Carbocyclization during Biosynthesis of Aeruginosin Derivatives. J Am Chem Soc 2025; 147:10853-10858. [PMID: 40080531 DOI: 10.1021/jacs.5c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aeruginosins are linear peptide natural products isolated from cyanobacteria and contain various arginine derivatives at their termini. 1-Amino-2-(N-amidino-3-Δ3-pyrrolinyl)ethane (Aeap) is a structurally unique arginine derivative, as it has an unusual pyrroline ring with two additional carbon atoms of unknown biosynthetic origin. Here, we demonstrate that Aer3, a member of a newly identified subfamily of prenyltransferases, catalyzes selective isopentenylation of the internal N atom of agmatine. Rieske oxygenase AerC then catalyzes both carbocyclization and C-C bond cleavage to construct the pyrroline ring in Aeap. This pyrroline ring formation in Aeap biosynthesis, involving two novel enzymes, represents a unique route for heterocycle formation in nature.
Collapse
Affiliation(s)
- Wenhe Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe, Shenyang 110016, China
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
- Institute for Advanced Study and Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Kanaida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Mager S, Manfellotto F, Ruggiero A, Di Tuccio V, Cerino F, Accoroni S, Nishimura T, Mikhno M, Fattorini N, Turk Dermastia T, Arapov J, Skejic S, Rhodes L, Smith K, Longo A, Manzari C, Campbell L, Pesole G, Sanges R, Raffini F, Ruggiero MV, Russo MT, Montresor M, Ferrante MI. Genomic diversity in time and space in the toxic diatom Pseudo-nitzschia multistriata. HARMFUL ALGAE 2025; 142:102791. [PMID: 39947866 DOI: 10.1016/j.hal.2024.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 12/20/2024] [Indexed: 05/09/2025]
Abstract
Understanding the origin and maintenance of genetic diversity is crucial to elucidate population dynamics of unicellular microalgae, their microevolutionary history and their adaptive ability. The planktonic, domoic acid-producing diatom Pseudo-nitzschia multistriata has a ubiquitous distribution in the world oceans and past population genetics studies, based on few genomic loci, have shown a clear temporal structure over different years in the Gulf of Naples (Italy). Despite the ecological and toxicological importance of this organism, detailed information on its diversity across the whole genome and at the population level is still lacking. We collected P. multistriata strains in the Gulf of Naples in five different years, obtained strains from the Adriatic Sea, the Gulf of Mexico and New Zealand coasts, and resequenced the whole genomes of a total of 28 strains at high coverage. While strains from the first three geographical areas were capable of producing the toxin domoic acid, the New Zealand strains had been reported to be non-toxic. A comparison of the domoic acid biosynthetic (dab) genes sequences between toxic and non-toxic strains showed very little variation among the strains, and no disrupting mutation was found in the dab genes in the non-toxic strains. On the other hand, the dab genes showed higher levels of expression in toxic strains than in non-toxic strains, suggesting that, in this species, absence of toxicity is explained by gene regulation rather than dab sequence divergence. Variant analysis showed stronger spatial than temporal genetic structuring and a clear separation was observed between the New Zealand strains and the others, the former having a greater content of genes under selection. Overall, the genomes of the different groups, including strains from a clonal bloom, did not appear to contain major rearrangements. Our findings contribute to enlarging our understanding of diatom diversity, a key factor underlying diatom success, and provide novel data on the longstanding problem of Pseudo-nitzschia toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Federica Cerino
- Oceanography Section, National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy
| | - Stefano Accoroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Marche Polytechnic University, Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), Fano, Italy
| | | | | | | | | | - Jasna Arapov
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Sanda Skejic
- Institute of Oceanography and Fisheries, Split, Croatia
| | | | - Kirsty Smith
- Cawthron Institute, Nelson, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, TX, United States
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy; Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Remo Sanges
- Computational Genomics Laboratory, Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Naples, Italy; Oceanography Section, National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy.
| |
Collapse
|
6
|
Tan SN, Kotaki Y, Teng ST, Lim HC, Gao C, Lundholm N, Wolf M, Gu H, Lim PT, Leaw CP. Intraspecific genetic diversity with unrestricted gene flow in the domoic acid-producing diatom Nitzschia navis-varingica (Bacillariophyceae) from the Western Pacific. HARMFUL ALGAE 2025; 141:102769. [PMID: 39645396 DOI: 10.1016/j.hal.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2). Frustule morphology of each strain was examined by TEM. The LSU rDNA phylogeny revealed a monophyletic lineage encompassing all strains, with sequence divergences of <0.9 %. Phylogenetic and population genetic analyses of ITS2 identified eight distinct clades (designated as Groups A to H) with moderate to high genetic heterogeneity (0.5-19.7 %). The low genetic differentiations between the geographically separated populations (pairwise FST of <0.03) suggested high gene flow and lack of spatial genetic structuring. Molecular clock analysis of the ITS2 phylogeny traced the evolutionary history of N. navis-varingica to the Eocene Epoch, and the split between clades likely occurred from the mid-Miocene to Pleistocene Epochs (10.8-1.2 Ma). The population dispersal in the WP were likely influenced by historical events like the Quarternary glacial cycles during the period, contributing to its homogenous distributions in the region.
Collapse
Affiliation(s)
- Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia 43900 Sepang, Selangor, Malaysia.
| | - Yuichi Kotaki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Chunlei Gao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074 Würzburg, Germany
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia.
| |
Collapse
|
7
|
Prigent L, Quéré J, Plus M, Le Gac M. Sexual reproduction during diatom bloom. ISME COMMUNICATIONS 2025; 5:ycae169. [PMID: 39839889 PMCID: PMC11749564 DOI: 10.1093/ismeco/ycae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Phytoplankton supports food webs in all aquatic ecosystems. Ecological studies highlighted the links between environmental variables and species successions in situ. However, the role of life cycle characteristics on phytoplankton community dynamics remains poorly characterized. In diatoms, sexual reproduction creates new genetic combinations and prevents excessive cell size miniaturization. It has been extensively studied in vitro but seldom in the natural environment. Here, analyzing metatranscriptomic data in the light of the expression patterns previously characterized in vitro, we identified a synchronized and transient sexual reproduction event during a bloom of the toxic diatom species Pseudo-nitzschia australis. Despite the complexity of environmental conditions encountered in situ, sexual reproduction appeared to be the strongest differential gene expression signal that occurred during the bloom. The potential link between environmental conditions and the initiation of sexual reproduction remain to be determined, but sexual reproduction probably had a major impact on the bloom dynamic.
Collapse
|
8
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. J Proteome Res 2024; 23:5577-5585. [PMID: 39582169 PMCID: PMC11752080 DOI: 10.1021/acs.jproteome.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus Pseudo-nitzschia during toxic algal bloom events. California sea lions (Zalophus californianus) are exposed to domoic acid through the ingestion of fish that feed on toxic diatoms, resulting in domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure. Therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multiomics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and post-mortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed 31 statistically significant proteins in the DAT individuals compared to the non-DAT individuals (adjusted p < 0.05). Of these proteins, 19 were decreased in the DAT group of which three were apolipoproteins that are known to transport lipids in the blood, prompting lipidomic analyses. In the lipidomic analyses, 331 lipid species were detected with high confidence and multidimensional separations, and 29 were found to be statistically significant (adjusted p < 0.05 and log2(FC) < -1 or >1) in the DAT versus non-DAT comparison. Of these, 28 were lower in the DAT individuals, while only 1 was higher. Furthermore, 15 of the 28 lower concentration lipids were triglycerides, illustrating their putative connection with the perturbed apolipoproteins and potential use in rapid DAT diagnoses.
Collapse
Affiliation(s)
- Amie M Solosky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Iliana M Claudio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jessie R Chappel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Michael G Janech
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Alison M Bland
- Department of Biology, College of Charleston, Charleston, South Carolina 29412, United States
| | - Frances M D Gulland
- Wildlife Health Center, University of California, Davis, California 95616, United States
| | - Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
10
|
Xu J, Yu Z, Zhang W, Xie S, Liao B, Zhang L. Zwitterionic covalent organic nanosheets for selective analysis of domoic acid in marine environment. Anal Chim Acta 2024; 1331:343343. [PMID: 39532426 DOI: 10.1016/j.aca.2024.343343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Domoic acid (DA) is a neurotoxic compound causing amnesic shellfish poisoning, secreted by red algae and diatoms. As a glutamate analogue, DA accumulates in filter-feeding marine organisms, posing significant health risks to humans upon consumption. Detecting DA in marine environments remains challenging due to its low concentration and interference from complex matrices. Effective detection and removal require materials with high efficiency and selectivity, which traditional inorganic ionic materials lack due to their limited adsorption capacity and selectivity. Ionic covalent organic frameworks (iCOFs) expected to become highly efficient DA adsorbents due to tunable ionic sites. RESULTS Thus, a zwitterionic covalent organic nanosheet (TGDB-iCONs) was synthesized to selectively capture DA. TGDB-iCONs was prepared by one-step Schiff-base reaction of the charged monomer triaminoguanidine hydrochloride. It uniformly distributed positively charged guanidinium and negatively charged chloride ions on the surface, forming zwitterionic binding sites. The self-peeling of TGDB-iCONs facilitated the exposure of active sites and improved the adsorption efficiency. Several binding forces were generated between TGDB-iCONs and DA, including complementary electrostatic hydrophilic interactions, which were verified by density functional theory (DFT) calculation. TGDB-iCONs exhibited ultra-fast adsorption kinetics (7 min) and relatively high adsorption capacity (66.48 mg/g) for DA. Furthermore, TGDB-iCONs exhibit strong salt resistance, which is attributed to the charge "shielding" effect of the zwitterionic ions present in TGDB-iCONs. TGDB-iCONs could highly selectively enrich DA and detect trace DA from marine environment including seawater, algae and marine organisms and the limit of detection as low as 0.3 ng/kg. SIGNIFICANCE AND NOVELTY This comprehensive study not only sheds light on the vast potential of ionic covalent organic frameworks nanosheets (iCONs) in supporting early warning, control, and traceability of DA, but also lays a solid foundation for future research endeavors aimed at designing and harnessing the unique properties of iCONs.
Collapse
Affiliation(s)
- Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenli Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Baodi Liao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
11
|
Zheng X, Li A, Qiu J, Yan G. Nitrogen starvation promotes production of the β-N-methylamino-L-alanine-containing proteins in marine diatoms. MARINE POLLUTION BULLETIN 2024; 209:117197. [PMID: 39486208 DOI: 10.1016/j.marpolbul.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated in some neurological disorders, and there is a need to elucidate the biological processes involved in the production of BMAA-containing proteins. In this study, growth of seven diatoms was suppressed under nitrogen limitation, however the production of BMAA-containing proteins was significantly increased in six of them, up to 5.22-fold increase in Thalassiosira andamanica. These variations were associated with reduced concentration of dissolved inorganic nitrogen (DIN) and changes in photosynthetic efficiency. Analytical results of non-targeted metabolomics showed that the obvious changes in amino acids, lipids and sugars may help diatoms to adjust growth and physiological parameters. Combined with previous transcriptomic data, a decrease in N-acetyl-D-glucosamine (GlcNAc) leads to an increase in N-glycan terminal modifications, which in turn increases protein misfolding. In addition, the reduced efficiency of vesicular transport in the COPII system may have exacerbated the accumulation of BMAA-containing proteins.
Collapse
Affiliation(s)
- Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
12
|
Gajski G, Gerić M, Baričević A, Smodlaka Tanković M. Domoic Acid: A Review of Its Cytogenotoxicity Within the One Health Approach. Antioxidants (Basel) 2024; 13:1366. [PMID: 39594508 PMCID: PMC11591549 DOI: 10.3390/antiox13111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human diet, and human health on the other. In a changing environment, algal blooms are more frequent. For domoic acid production, the growth of Pseudo-nitzschia diatoms is of particular interest. They produce this toxin, whose capability of accumulation and biomagnification through the food web impacts other organisms in the ecosystem. Domoic acid targets nervous system receptors inducing amnestic shellfish poisoning, among other less severe health-related problems. However, the impact of domoic acid on non-target cells is rather unknown, so we reviewed the currently available literature on cytogenetic effects on human and animal cells. The results of different studies indicate that domoic acid has the potential to induce early molecular events, such as oxidative imbalance and DNA damage, thus posing an additional threat which needs to be thoroughly addressed and monitored in the future.
Collapse
Affiliation(s)
- Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ana Baričević
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | | |
Collapse
|
13
|
He Z, Xu Q, Chen Y, Liu S, Song H, Wang H, Leaw CP, Chen N. Acquisition and evolution of the neurotoxin domoic acid biosynthesis gene cluster in Pseudo-nitzschia species. Commun Biol 2024; 7:1378. [PMID: 39443678 PMCID: PMC11499653 DOI: 10.1038/s42003-024-07068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Of the hitherto over 60 taxonomically identified species in the genus of Pseudo-nitzschia, 26 have been confirmed to be toxigenic. Nevertheless, the acquisition and evolution of the toxin biosynthesis (dab) genes by this extensive group of Pseudo-nitzschia species remains unclear. Through constructing chromosome-level genomes of three Pseudo-nitzschia species and draft genomes of ten additional Pseudo-nitzschia species, putative genomic integration sites for the dab genes in Pseudo-nitzschia species were explored. A putative breakpoint was observed in syntenic regions in the dab gene cluster-lacking Pseudo-nitzschia species, suggesting potential independent losses of dab genes. The breakpoints between this pair of conserved genes were also identified in some dab genes-possessing Pseudo-nitzschia species, suggesting that the dab gene clusters transposed to other loci after the initial integration. A "single acquisition, multiple independent losses (SAMIL)" model is proposed to explain the acquisition and evolution of the dab gene cluster in Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- College of Marine Science, University of Chinese Academy of Sciences, 10039, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
14
|
Alexander H. Molecular forecasting of toxic bloom events. Proc Natl Acad Sci U S A 2024; 121:e2417139121. [PMID: 39374401 PMCID: PMC11494339 DOI: 10.1073/pnas.2417139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
15
|
Tang YJ, Zou Y. Cyclo-farnesyl Diphosphate-Dependent Prenylation in Fungi. Org Lett 2024; 26:8366-8370. [PMID: 39310987 DOI: 10.1021/acs.orglett.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A conserved two-gene cassette in fungi was discovered by genome mining, which encodes a UbiA family intramembrane prenyltansferase (VviA) and a haloacid dehalogenase-like hydrolase family terpene cyclase (VviB), respectively. A series of in vivo and in vitro investigations revealed that VviA exclusively uses VviB-synthesized drim-8-ene diphosphate (cyclo-farnesyl diphosphate) as the native prenyl donor to catalyze prenylation on d-mannitol, showcasing a previously unidentified function of UbiA-type prenyltransferases and a new prenylation manner in fungi.
Collapse
Affiliation(s)
- Ying-Jie Tang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Brunson JK, Thukral M, Ryan JP, Anderson CR, Kolody BC, James CC, Chavez FP, Leaw CP, Rabines AJ, Venepally P, Fussy Z, Zheng H, Kudela RM, Smith GJ, Moore BS, Allen AE. Molecular forecasting of domoic acid during a pervasive toxic diatom bloom. Proc Natl Acad Sci U S A 2024; 121:e2319177121. [PMID: 39298472 PMCID: PMC11459128 DOI: 10.1073/pnas.2319177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/05/2024] [Indexed: 09/21/2024] Open
Abstract
In 2015, the largest recorded harmful algal bloom (HAB) occurred in the Northeast Pacific, causing nearly 100 million dollars in damages to fisheries and killing many protected marine mammals. Dominated by the toxic diatom Pseudo-nitzschia australis, this bloom produced high levels of the neurotoxin domoic acid (DA). Through molecular and transcriptional characterization of 52 near-weekly phytoplankton net-tow samples collected at a bloom hotspot in Monterey Bay, California, we identified active transcription of known DA biosynthesis (dab) genes from the three identified toxigenic species, including P. australis as the primary origin of toxicity. Elevated expression of silicon transporters (sit1) during the bloom supports the previously hypothesized role of dissolved silica (Si) exhaustion in contributing to bloom physiology and toxicity. We find that coexpression of the dabA and sit1 genes serves as a robust predictor of DA one week in advance, potentially enabling the forecasting of DA-producing HABs. We additionally present evidence that low levels of iron could have colimited the diatom population along with low Si. Iron limitation represents an overlooked driver of both toxin production and ecological success of the low-iron-adapted Pseudo-nitzschia genus during the 2015 bloom, and increasing pervasiveness of iron limitation may fuel the escalating magnitude and frequency of toxic Pseudo-nitzschia blooms globally. Our results advance understanding of bloom physiology underlying toxin production, bloom prediction, and the impact of global change on toxic blooms.
Collapse
Affiliation(s)
- John K. Brunson
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Monica Thukral
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - John P. Ryan
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Clarissa R. Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Bethany C. Kolody
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Chase C. James
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Francisco P. Chavez
- Research Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA95093
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Kelantan16310, Malaysia
| | - Ariel J. Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Pratap Venepally
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Zoltan Fussy
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
| | - Raphael M. Kudela
- Ocean Sciences Department, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA95064
| | - G. Jason Smith
- Environmental Biotechnology Department, Moss Landing Marine Laboratories, Moss Landing, CA95039
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Andrew E. Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
17
|
Solosky AM, Claudio IM, Chappel JR, Kirkwood-Donelson KI, Janech MG, Bland AM, Gulland FMD, Neely BA, Baker ES. Proteomic and Lipidomic Plasma Evaluations Reveal Biomarkers for Domoic Acid Toxicosis in California Sea Lions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592757. [PMID: 38766156 PMCID: PMC11100735 DOI: 10.1101/2024.05.06.592757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Domoic acid is a neurotoxin secreted by the marine diatom genus, Pseudo-nitzschia , during toxic algal bloom events. California sea lions ( Zalophus californianus ) are exposed to domoic acid through ingestion of fish that feed on toxic diatoms, resulting in a domoic acid toxicosis (DAT), which can vary from mild to fatal. Sea lions with mild disease can be treated if toxicosis is detected early after exposure, therefore, rapid diagnosis of DAT is essential but also challenging. In this work, we performed multi-omics analyses, specifically proteomic and lipidomic, on blood samples from 31 California sea lions. Fourteen sea lions were diagnosed with DAT based on clinical signs and postmortem histological examination of brain tissue, and 17 had no evidence of DAT. Proteomic analyses revealed three apolipoproteins with statistically significant lower abundance in the DAT individuals compared to the non-DAT individuals. These proteins are known to transport lipids in the blood. Lipidomic analyses highlighted 29 lipid levels that were statistically different in the DAT versus non-DAT comparison, 28 of which were downregulated while only one was upregulated. Furthermore, of the 28 downregulated lipids, 15 were triglycerides, illustrating their connection with the perturbed apolipoproteins and showing their potential for use in rapid DAT diagnoses. SYNOPSIS Multi-omics evaluations reveal blood apolipoproteins and triglycerides are altered in domoic acid toxicosis in California sea lions. GRAPHIC ABSTRACT
Collapse
|
18
|
Chen XW, Liu Z, Dai S, Zou Y. Discovery, Characterization and Engineering of the Free l-Histidine C4-Prenyltransferase. J Am Chem Soc 2024; 146:23686-23691. [PMID: 39140691 DOI: 10.1021/jacs.4c08388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.
Collapse
Affiliation(s)
- Xi-Wei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
19
|
Fallon TR, Shende VV, Wierzbicki IH, Pendleton AL, Watervoort NF, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins. Science 2024; 385:671-678. [PMID: 39116217 PMCID: PMC11416037 DOI: 10.1126/science.ado3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish kills. Their polyketide polyether toxins, the prymnesins, are among the largest nonpolymeric compounds in nature and have biosynthetic origins that have remained enigmatic for more than 40 years. In this work, we report the "PKZILLAs," massive P. parvum polyketide synthase (PKS) genes that have evaded previous detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 megadaltons that have 140 and 99 enzyme domains. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. We further characterize the variant PKZILLA-B1, which is responsible for the shorter B-type analog prymnesin-B1, from P. parvum RCC3426 and thus establish a general model of haptophyte polyether biosynthetic logic. This work expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F. Watervoort
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
21
|
Ambrosino L, Riccardi A, Welling MS, Lauritano C. Comparative Transcriptomics to Identify RNA Writers and Erasers in Microalgae. Int J Mol Sci 2024; 25:8005. [PMID: 39125576 PMCID: PMC11312118 DOI: 10.3390/ijms25158005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Epitranscriptomics is considered as a new regulatory step in eukaryotes for developmental processes and stress responses. The aim of this study was, for the first time, to identify RNA methyltransferase (writers) and demethylase (erasers) in four investigated species, i.e., the dinoflagellates Alexandrium tamutum and Amphidinium carterae, the diatom Cylindrotheca closterium, and the green alga Tetraselmis suecica. As query sequences for the enzymatic classes of interest, we selected those ones that were previously detected in marine plants, evaluating their expression upon nutrient starvation stress exposure. The hypothesis was that upon stress exposure, the activation/deactivation of specific writers and erasers may occur. In microalgae, we found almost all plant writers and erasers (ALKBH9B, ALKBH10B, MTB, and FIP37), except for three writers (MTA, VIRILIZER, and HAKAI). A sequence similarity search by scanning the corresponding genomes confirmed their presence. Thus, we concluded that the three writer sequences were lacking from the studied transcriptomes probably because they were not expressed in those experimental conditions, rather than a real lack of these genes from their genomes. This study showed that some of them were expressed only in specific culturing conditions. We also investigated their expression in other culturing conditions (i.e., nitrogen depletion, phosphate depletion, and Zinc addition at two different concentrations) in A. carterae, giving new insights into their possible roles in regulating gene expression upon stress.
Collapse
Affiliation(s)
- Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| | - Alessia Riccardi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Melina S. Welling
- Marine Biology Research Group, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium;
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
22
|
Fan Z, Li X, Jiang R, Li J, Cao F, Sun M, Wang L. Molecular Dynamics Simulation Reveal the Structure-Activity Relationships of Kainoid Synthases. Mar Drugs 2024; 22:326. [PMID: 39057435 PMCID: PMC11277886 DOI: 10.3390/md22070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Kainoid synthases are key enzymes in the biosynthesis of kainoids. Kainoids, as represented by DA and KA, are a class of naturally occurring non-protein amino acids with strong neurotransmitter activity in the mammalian central nervous system. Marine algae kainoid synthases include PnDabC from diatoms, which synthesizes domoic acid (DA), and DsKabC and GfKabC from red algae, which synthesize kainic acid (KA). Elucidation of the catalytic mechanism of kainoid synthases is of great significance for the rational design of better biocatalysts to promote the industrial production of kainoids for use in new drugs. Through modeling, molecular docking, and molecular dynamics simulations, we investigated the conformational dynamics of kainoid synthases. We found that the kainoid synthase complexes showed different stability in the simulation, and the binding and catalytic processes showed significant conformational transformations of kainoid synthase. The residues involved in specific interactions with the substrate contributed to the binding energy throughout the simulation process. Binding energy, the relaxed active pocket, electrostatic potential energy of the active pocket, the number and rotation of aromatic residues interacting with substrates during catalysis, and the number and frequency of hydrogen bonds between the individual functional groups revealed the structure-activity relationships and affected the degree of promiscuity of kainoid synthases. Our research enriches the understanding of the conformational dynamics of kainoid synthases and has potential guiding significance for their rational design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (Z.F.)
| |
Collapse
|
23
|
Maire Y, Schmitt FG, Kormas K, Vasileiadis S, Caruana A, Skouroliakou DI, Bampouris V, Courcot L, Hervé F, Crouvoisier M, Christaki U. Effects of turbulence on diatoms of the genus Pseudo-nitzschia spp. and associated bacteria. FEMS Microbiol Ecol 2024; 100:fiae094. [PMID: 38986513 PMCID: PMC11264304 DOI: 10.1093/femsec/fiae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Turbulence is one of the least investigated environmental factors impacting the ecophysiology of phytoplankton, both at the community and individual species level. Here, we investigated, for the first time, the effect of a turbulence gradient (Reynolds number, from Reλ = 0 to Reλ = 360) on two species of the marine diatom Pseudo-nitzschia and their associated bacterial communities under laboratory conditions. Cell abundance, domoic acid (DA) production, chain formation, and Chl a content of P. fraudulenta and P. multiseries were higher for intermediate turbulence (Reλ = 160 or 240). DA was detectable only in P. multiseries samples. These observations were supported by transcriptomic analyses results, which suggested the turbulence related induction of the expression of the DA production locus, with a linkage to an increased photosynthetic activity of the total metatranscriptome. This study also highlighted a higher richness of the bacterial community associated with the nontoxic strain of P. fraudulenta in comparison to the toxic strain of P. multiseries. Bacillus was an important genus in P. multiseries cultures (relative abundance 15.5%) and its highest abundances coincided with the highest DA levels. However, associated bacterial communities of both Pseudo-nitzschia species did not show clear patterns relative to turbulence intensity.
Collapse
Affiliation(s)
- Yanis Maire
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - François G Schmitt
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
| | - Sotirios Vasileiadis
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221, Greece
- Department of Biochemistry and Biotechnology, Viopolis 41500, University of Thessaly, Larissa, Greece
| | - Amandine Caruana
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Dimitra-Ioli Skouroliakou
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Vasileios Bampouris
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Fitoko st. 1, 38446 Volos, Greece
| | - Lucie Courcot
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Fabienne Hervé
- IFREMER, PHYTOX, Laboratoire PHYSALG, BP21105, Rue de l'Ile d'Yeu, F-44300 Nantes, France
| | - Muriel Crouvoisier
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| | - Urania Christaki
- Université du Littoral Côte d'Opale, CNRS, Université de Lille, UMR 8187 LOG, 32 Ave. Foch, F-62930 Wimereux, France
| |
Collapse
|
24
|
Pan J, Wenger ES, Lin CY, Zhang B, Sil D, Schaperdoth I, Saryazdi S, Grossman RB, Krebs C, Bollinger JM. An Unusual Ferryl Intermediate and Its Implications for the Mechanism of Oxacyclization by the Loline-Producing Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, LolO. Biochemistry 2024; 63:1674-1683. [PMID: 38898603 PMCID: PMC11219260 DOI: 10.1021/acs.biochem.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.
Collapse
Affiliation(s)
- Juan Pan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Eliott S. Wenger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Irene Schaperdoth
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Setareh Saryazdi
- Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506, United States
- Present address: College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Robert B. Grossman
- Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Hopiavuori AR, Huffman RT, McKinnie SMK. Expression, purification, and biochemical characterization of micro- and macroalgal kainoid synthases. Methods Enzymol 2024; 704:233-258. [PMID: 39300649 DOI: 10.1016/bs.mie.2024.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Kainoid natural products are a series of potent ionotropic glutamate receptor agonists produced by a variety of divergent marine micro- and macro-algae. The key biosynthetic step in the construction of the pyrrolidine ring pharmacophore involves a unique branch of non-heme iron α-ketoglutarate dependent dioxygenases (Fe/αKGs) termed the kainoid synthases. These Fe/αKG homologs catalyze a stereoselective C-H abstraction followed by a radical carbon-carbon bond reaction to form the bioactive core on N-prenylated L-glutamic acid substrates. In this article, we describe the expression, purification, and biochemical characterization of four divergent kainoid synthases (DabC, RadC1, DsKabC, GfKabC). Furthermore, we compare and contrast their substrate preferences and product distributions, and provide some preliminary insight into how to repurpose these enzymes for whole cell biocatalysis.
Collapse
Affiliation(s)
- Austin R Hopiavuori
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States
| | - Radcliff T Huffman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States
| | - Shaun M K McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States.
| |
Collapse
|
26
|
Scesa PD, Schmidt EW. Brewing coral terpenes-A yeast based approach to soft coral terpene cyclases. Methods Enzymol 2024; 699:373-394. [PMID: 38942511 PMCID: PMC11705981 DOI: 10.1016/bs.mie.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Coral terpenes are important molecules with numerous applications. Here, we describe a robust and simple method to produce coral terpene scaffolds at scale. As an example of the approach, here we discover, express, and characterize further klysimplexin R synthases, expanding the known enzymology of soft coral terpene cyclases. We hope that the underlying method described will enable widespread basic research into the functions of coral terpenes and their biosynthetic genes, as well as the commercial development of biomedically and technologically important molecules.
Collapse
Affiliation(s)
- Paul D Scesa
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
27
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Fallon TR, Shende VV, Wierzbicki IH, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes biosynthesize a giant marine polyether biotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577497. [PMID: 38352448 PMCID: PMC10862718 DOI: 10.1101/2024.01.29.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish-kills. Their polyketide polyether toxins, the prymnesins, are amongst the largest nonpolymeric compounds in nature, alongside structurally-related health-impacting "red-tide" polyether toxins whose biosynthetic origins have been an enigma for over 40 years. Here we report the 'PKZILLAs', massive P. parvum polyketide synthase (PKS) genes, whose existence and challenging genomic structure evaded prior detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 MDa with 140 and 99 enzyme domains, exceeding the largest known protein titin and all other known PKS systems. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. This discovery establishes a model system for microalgal polyether biosynthesis and expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Hu C. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:12. [PMID: 38282092 PMCID: PMC10822835 DOI: 10.1007/s13659-024-00432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Marine natural products (MNPs) and marine organisms include sea urchin, sea squirts or ascidians, sea cucumbers, sea snake, sponge, soft coral, marine algae, and microalgae. As vital biomedical resources for the discovery of marine drugs, bioactive molecules, and agents, these MNPs have bioactive potentials of antioxidant, anti-infection, anti-inflammatory, anticoagulant, anti-diabetic effects, cancer treatment, and improvement of human immunity. This article reviews the role of MNPs on anti-infection of coronavirus, SARS-CoV-2 and its major variants (such as Delta and Omicron) as well as tuberculosis, H. Pylori, and HIV infection, and as promising biomedical resources for infection related cardiovascular disease (irCVD), diabetes, and cancer. The anti-inflammatory mechanisms of current MNPs against SARS-CoV-2 infection are also discussed. Since the use of other chemical agents for COVID-19 treatment are associated with some adverse effects in cardiovascular system, MNPs have more therapeutic advantages. Herein, it's time to protect this ecosystem for better sustainable development in the new era of ocean economy. As huge, novel and promising biomedical resources for anti-infection of SARS-CoV-2 and irCVD, the novel potential mechanisms of MNPs may be through multiple targets and pathways regulating human immunity and inhibiting inflammation. In conclusion, MNPs are worthy of translational research for further clinical application.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Jiangxi Academy of Medical Science, Nanchang University, Hospital of Nanchang University, No. 461 Bayi Ave, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
30
|
Wu SW, Cheng CQ, Huang YT, Tan JZ, Li SL, Yang JX, Huang XL, Huang D, Zou LG, Yang WD, Li HY, Li DW. A study on the mechanism of the impact of phenthoate exposure on Prorocentrum lima. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132624. [PMID: 37801972 DOI: 10.1016/j.jhazmat.2023.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP). Our results showed that P. lima effectively absorbed phenthoate in seawater, with a reduction efficiency of 90.31% after 48 h. Surprisingly, the provision of phenthoate (100 and 1000 µg/L) substantially reduced the OA content of P. lima by 35.08% and 60.28% after 48 h, respectively. Meanwhile, phenthoate treatment significantly reduced the oxidative stress in P. lima. Proteomic analysis revealed that the expression level of seven crucial proteins involved in endocytosis was upregulated, suggesting that P. lima could absorb phenthoate via the endocytic signaling pathway. Importantly, phenthoate treatment resulted in the downregulation of proteins such as polyketide synthase (PKS)- 2, Cytochrome P450 (CYP450)- 1, and CYP450-2, involved in OA synthesis, thereby decreasing the OA biosynthesis by P. lima. Our results demonstrated the potential role of P. lima in the removal of phenthoate in water and exemplified the crucial proteins and their possible molecular mechanisms underpinning the phenthoate remediation by P. lima and also the regulatory role of phenthoate in restricting the OA metabolism. Collectively, these findings uncovered the synergistic mechanisms of phenthoate and P. lima in remediating phenthoate and reducing the toxic impact of P. lima.
Collapse
Affiliation(s)
- Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cai-Qin Cheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-Zhou Tan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Song-Liang Li
- The First People's Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, China
| | - Jia-Xin Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
31
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
32
|
Hopiavuori A, McKinnie SMK. Algal Kainoid Synthases Exhibit Substrate-Dependent Hydroxylation and Cyclization Activities. ACS Chem Biol 2023; 18:2457-2463. [PMID: 38047879 PMCID: PMC10728896 DOI: 10.1021/acschembio.3c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
FeII/α-ketoglutarate-dependent dioxygenases (Fe/αKG) make up a large enzyme family that functionalize C-H bonds on diverse organic substrates. Although Fe/αKG homologues catalyze an array of chemically useful reactions, hydroxylation typically predominates. Microalgal DabC uniquely forms a novel C-C bond to construct the bioactive pyrrolidine ring in domoic acid biosynthesis; however, we have identified that this kainoid synthase exclusively performs a stereospecific hydroxylation reaction on its cis substrate regioisomer. Mechanistic and kinetic analyses with native and alternative substrates identified a 20-fold rate increase in DabC radical cyclization over β-hydroxylation with no observable 1,5-hydrogen atom transfer. Moreover, this dual activity was conserved among macroalgal RadC1 and KabC homologues and provided insight into substrate recognition and reactivity trends. Investigation of this substrate-dependent chemistry improves our understanding of kainoid synthases and their biocatalytic application.
Collapse
Affiliation(s)
- Austin
R. Hopiavuori
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Shaun M. K. McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
33
|
Thukral M, Allen AE, Petras D. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. THE ISME JOURNAL 2023; 17:2147-2159. [PMID: 37857709 PMCID: PMC10689791 DOI: 10.1038/s41396-023-01532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental systems.
Collapse
Affiliation(s)
- Monica Thukral
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Andrew E Allen
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Tuebingen, Germany.
- University of California Riverside, Department of Biochemistry, Riverside, CA, USA.
| |
Collapse
|
34
|
McAtamney A, Heaney C, Lizama-Chamu I, Sanchez LM. Reducing Mass Confusion over the Microbiome. Anal Chem 2023; 95:16775-16785. [PMID: 37934885 PMCID: PMC10841885 DOI: 10.1021/acs.analchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As genetic tools continue to emerge and mature, more information is revealed about the identity and diversity of microbial community members. Genetic tools can also be used to make predictions about the chemistry that bacteria and fungi produce to function and communicate with one another and the host. Ongoing efforts to identify these products and link genetic information to microbiome chemistry rely on analytical tools. This tutorial highlights recent advancements in microbiome studies driven by techniques in mass spectrometry.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Casey Heaney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Itzel Lizama-Chamu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
35
|
Cembella A, Klemm K, John U, Karlson B, Arneborg L, Clarke D, Yamanaka T, Cusack C, Naustvoll L, Bresnan E, Šupraha L, Lundholm N. Emerging phylogeographic perspective on the toxigenic diatom genus Pseudo-nitzschia in coastal northern European waters and gateways to eastern Arctic seas: Causes, ecological consequences and socio-economic impacts. HARMFUL ALGAE 2023; 129:102496. [PMID: 37951606 DOI: 10.1016/j.hal.2023.102496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/14/2023]
Abstract
The diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species. This has led to enhanced monitoring and mitigation strategies for toxigenic Pseudo-nitzschia blooms and their toxins in recent years. Nevertheless, human adaptive actions based on future scenarios of bloom dynamics and proposed shifts in biogeographical distribution under climate-change regimes have not been implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) program these issues were addressed with respect to past, current and anticipated future status of key HAB genera such as Pseudo-nitzschia and expected benefits of enhanced monitoring. Data on the distribution and frequency of Pseudo-nitzschia blooms in relation to DA occurrence and associated amnesic shellfish toxin (AST) events were evaluated in a contemporary and historical context over the past several decades from key northern CoCliME Case Study areas. The regional studies comprised the greater North Sea and adjacent Kattegat-Skagerrak and Norwegian Sea, eastern North Atlantic marginal seas and Arctic gateways, and the Baltic Sea. The first evidence of possible biogeographical expansion of Pseudo-nitzschia taxa into frontier eastern Arctic gateways was provided from DNA barcoding signatures. Key climate change indicators, such as salinity, temperature, and water-column stratification were identified as drivers of upwelling and advection related to the distribution of regional Pseudo-nitzschia blooms. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change indicators may play key roles in selecting for the occurrence and diversity of Pseudo-nitzschia species within the broader microeukaryote communities. Shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for high-magnitude Pseudo-nitzschia blooms, currently absent from this area. Ecological and socioeconomic impacts of Pseudo-nitzschia blooms are evaluated with reference to effects on fisheries and mariculture resources and coastal ecosystem function. Where feasible, effective adaptation strategies are proposed herein as emerging climate services for the northern CoCLiME region.
Collapse
Affiliation(s)
- Allan Cembella
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Departamento de Biotecnología Marina, Centro de Investigación Científica y Educación Superior de Ensenada, Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada, Baja California 22860, Mexico
| | - Kerstin Klemm
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany
| | - Uwe John
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, Bremerhaven 27570, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, Oldenburg 26129, Germany.
| | - Bengt Karlson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, Västra SE-426 71, Frölunda, Sweden
| | - Lars Arneborg
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, Västra SE-426 71, Frölunda, Sweden
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Tsuyuko Yamanaka
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Caroline Cusack
- Marine Institute, Rinville, Oranmore, Co. Galway H91 R673, Ireland
| | - Lars Naustvoll
- Institute of Marine Research, PO Box 1870 Nordnes, Bergen NO-5817, Norway
| | - Eileen Bresnan
- Marine Directorate of the Scottish Government, Science, Evidence, Digital and Data, 375 Victoria Rd, Aberdeen AB11 9DB, UK
| | - Luka Šupraha
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo 0316, Norway
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K 1353, Denmark
| |
Collapse
|
36
|
McQuillan JS, Alrefaey A, Turner AD, Morrell N, Stoner O, Brown R, Kay S, Cooke S, Bage T. Quantitative Polymerase Chain Reaction for the estimation of toxigenic microalgae abundance in shellfish production waters. HARMFUL ALGAE 2023; 128:102497. [PMID: 37714581 DOI: 10.1016/j.hal.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Certain species of marine microalgae produce potent biotoxins that pose a risk to human health if contaminated seafood is consumed, particularly filter feeding bivalve shellfish. In regions where this is likely to occur water and seafood produce are regularly monitored for the presence of harmful algal cells and their associated toxins, but the current approach is flawed by a lengthy delay before results are available to local authorities. Quantitative Polymerase Chain Reaction (qPCR) can be used to measure phytoplankton DNA sequences in a shorter timeframe, however it is not currently used in official testing practices. In this study, samples were collected almost weekly over six months from three sites within a known HAB hotspot, St Austell Bay in Cornwall, England. The abundance of algal cells in water was measured using microscopy and qPCR, and lipophilic toxins were quantified in mussel flesh using LC-MS/MS, focusing on the okadaic acid group. An increase in algal cell abundance occurred alongside an increase in the concentration of okadaic acid group toxins in mussel tissue at all three study sites, during September and October 2021. This event corresponded to an increase in the measured levels of Dinophysis accuminata DNA, measured using qPCR. In the following spring, the qPCR detected an increase in D. accuminata DNA levels in water samples, which was not detected by microscopy. Harmful algal species belonging to Alexandrium spp. and Pseudo-nitzschia spp. were also measured using qPCR, finding a similar increase in abundance in Autumn and Spring. The results are discussed with consideration of the potential merits and limitations of the qPCR technique versus conventional microscopy analysis, and its potential future role in phytoplankton surveillance under the Official Controls Regulations pertaining to shellfish.
Collapse
Affiliation(s)
- Jonathan S McQuillan
- Ocean Technology and Engineering, National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom.
| | - Ahmed Alrefaey
- Ocean Technology and Engineering, National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, United Kingdom
| | - Oliver Stoner
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Ross Brown
- Faculty of Health and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Suzanne Kay
- Faculty of Health and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Simon Cooke
- Cornwall Port Health Authority (Cornwall Council), The Docks, Falmouth, TR11 4NR, United Kingdom
| | - Timothy Bage
- Cornwall Port Health Authority (Cornwall Council), The Docks, Falmouth, TR11 4NR, United Kingdom
| |
Collapse
|
37
|
Manochkumar J, Cherukuri AK, Kumar RS, Almansour AI, Ramamoorthy S, Efferth T. A critical review of machine-learning for "multi-omics" marine metabolite datasets. Comput Biol Med 2023; 165:107425. [PMID: 37696182 DOI: 10.1016/j.compbiomed.2023.107425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
During the last decade, genomic, transcriptomic, proteomic, metabolomic, and other omics datasets have been generated for a wide range of marine organisms, and even more are still on the way. Marine organisms possess unique and diverse biosynthetic pathways contributing to the synthesis of novel secondary metabolites with significant bioactivities. As marine organisms have a greater tendency to adapt to stressed environmental conditions, the chance to identify novel bioactive metabolites with potential biotechnological application is very high. This review presents a comprehensive overview of the available "-omics" and "multi-omics" approaches employed for characterizing marine metabolites along with novel data integration tools. The need for the development of machine-learning algorithms for "multi-omics" approaches is briefly discussed. In addition, the challenges involved in the analysis of "multi-omics" data and recommendations for conducting "multi-omics" study were discussed.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Aswani Kumar Cherukuri
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
38
|
Zheng B, Lucas AJ, Franks PJS, Schlosser TL, Anderson CR, Send U, Davis K, Barton AD, Sosik HM. Dinoflagellate vertical migration fuels an intense red tide. Proc Natl Acad Sci U S A 2023; 120:e2304590120. [PMID: 37639597 PMCID: PMC10483641 DOI: 10.1073/pnas.2304590120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
Harmful algal blooms (HABs) are increasing globally, causing economic, human health, and ecosystem harm. In spite of the frequent occurrence of HABs, the mechanisms responsible for their exceptionally high biomass remain imperfectly understood. A 50-y-old hypothesis posits that some dense blooms derive from dinoflagellate motility: organisms swim upward during the day to photosynthesize and downward at night to access deep nutrients. This allows dinoflagellates to outgrow their nonmotile competitors. We tested this hypothesis with in situ data from an autonomous, ocean-wave-powered vertical profiling system. We showed that the dinoflagellate Lingulodinium polyedra's vertical migration led to depletion of deep nitrate during a 2020 red tide HAB event. Downward migration began at dusk, with the maximum migration depth determined by local nitrate concentrations. Losses of nitrate at depth were balanced by proportional increases in phytoplankton chlorophyll concentrations and suspended particle load, conclusively linking vertical migration to the access and assimilation of deep nitrate in the ocean environment. Vertical migration during the red tide created anomalous biogeochemical conditions compared to 70 y of climatological data, demonstrating the capacity of these events to temporarily reshape the coastal ocean's ecosystem and biogeochemistry. Advances in the understanding of the physiological, behavioral, and metabolic dynamics of HAB-forming organisms from cutting-edge observational techniques will improve our ability to forecast HABs and mitigate their consequences in the future.
Collapse
Affiliation(s)
- Bofu Zheng
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Andrew J. Lucas
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Peter J. S. Franks
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Tamara L. Schlosser
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Clarissa R. Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Uwe Send
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Kristen Davis
- Department of Earth System Science, University of California, Irvine, CA92697
- Department of Civil and Environmental Engineering, University of California, Irvine, CA92697
| | - Andrew D. Barton
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA92093
| | - Heidi M. Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
39
|
Oller-Ruiz A, Alcaraz-Oliver N, Férez G, Gilabert J. Measuring Marine Biotoxins in a Hypersaline Coastal Lagoon. Toxins (Basel) 2023; 15:526. [PMID: 37755952 PMCID: PMC10534363 DOI: 10.3390/toxins15090526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Abstract
Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.
Collapse
Affiliation(s)
| | | | | | - Javier Gilabert
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), E-30203 Cartagena, Spain
| |
Collapse
|
40
|
Ferrante MI, Broccoli A, Montresor M. The pennate diatom Pseudo-nitzschia multistriata as a model for diatom life cycles, from the laboratory to the sea. JOURNAL OF PHYCOLOGY 2023; 59:637-643. [PMID: 37256710 DOI: 10.1111/jpy.13342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Phytoplankton dynamics are regulated by external cues, such as light and nutrients, as well as by biotic interactions and endogenous controls linked to life cycle characteristics. The planktonic pennate diatom Pseudo-nitzschia multistriata, with a heterothallic mating system with two opposite mating types (MTs), represents a model for the study of diatom life cycles. P. multistriata is a toxic species, able to produce the neurotoxin domoic acid. First described in Japan in 1993, it was detected at the long-term monitoring station MareChiara (Gulf of Naples, Italy) in 1995. Since then, P. multistriata has been reported from several worldwide coastal sites. A large body of knowledge has been produced on its ecology, genetic diversity, and life cycle characteristics. The availability of these data, the ecological relevance of the Pseudo-nitzschia genus, and its controllable life cycle with a short generation time made it an ideal species to develop a genetic model system for diatoms. To enable functional studies, a 59 Mb genome sequence and several transcriptomic data were produced, and genetic transformation was optimized. These tools allowed the discovery of the first mating-type determining gene for diatoms. Gene expression studies and metabolomics analyses defined genes and molecules underpinning different phases of the process of sexual reproduction. This model system, developed to explore the genetics of diatom life cycles, offers the opportunity to parallel experimental observations in the laboratory using in situ meta-omics analyses along space and time, empowering knowledge on the biology and ecology of the genus.
Collapse
Affiliation(s)
- Maria Immacolata Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Andrea Broccoli
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Montresor
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
41
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
42
|
Xu D, Zheng G, Brennan G, Wang Z, Jiang T, Sun K, Fan X, Bowler C, Zhang X, Zhang Y, Wang W, Wang Y, Li Y, Wu H, Li Y, Fu FX, Hutchins DA, Tan Z, Ye N. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. THE ISME JOURNAL 2023; 17:525-536. [PMID: 36658395 PMCID: PMC10030627 DOI: 10.1038/s41396-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.
Collapse
Affiliation(s)
- Dong Xu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guanchao Zheng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Zhuonan Wang
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
| | - Tao Jiang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ke Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Xiaowen Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haiyan Wu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Youxun Li
- Marine Science Research Institute of Shandong Province (National Oceanographic Center), Qingdao, China
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhijun Tan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
43
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
44
|
Nishizawa S, Ouchi H, Suzuki H, Ohnishi T, Sasaki S, Oyagi Y, Kanakogi M, Matsumura Y, Nakagawa S, Asakawa T, Egi M, Inai M, Yoshimura F, Takita R, Kan T. Total synthesis of (-)-domoic acid, a potent ionotropic glutamate receptor agonist and the key compound in oceanic harmful algal blooms. Org Biomol Chem 2023; 21:1653-1656. [PMID: 36723220 DOI: 10.1039/d2ob02325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The stereo-controlled total synthesis of (-)-domoic acid is described. The critical construction of the C1'-C2' Z-configuration was accomplished by taking advantage of an unsaturated lactam structure. The side chain fragment was introduced in the final stages of synthesis through a modified Julia-Kocieński reaction, aiming for its efficient derivatization.
Collapse
Affiliation(s)
- Shigeru Nishizawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hitoshi Ouchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hiroto Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Takuma Ohnishi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shingo Sasaki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yu Oyagi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masaki Kanakogi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yoshitaka Matsumura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shunsuke Nakagawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Tomohiro Asakawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masahiro Egi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Makoto Inai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Fumihiko Yoshimura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ryo Takita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
45
|
Progresses of the Influencing Factors and Detection Methods of Domoic Acid. Processes (Basel) 2023. [DOI: 10.3390/pr11020592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Domoic acid (DA) is a neurotoxin mainly produced by Pseudo-nitzschia diatom, which belongs to the genera Rhomboida. It can combine with the receptors of glutamate of neurotransmitters, then affecting the normal nerve signal transmission of the organism and causing nervous system disorders. However, as a natural marine drug, DA can also be used for pest prevention and control. Although the distribution of DA in the world has already been reported in the previous reviews, the time and location of its first discovery and the specific information are not complete. Therefore, the review systematically summarizes the first reported situation of DA in various countries (including species, discovery time, and collection location). Furthermore, we update and analyze the factors affecting DA production, including phytoplankton species, growth stages, bacteria, nutrient availability, trace metals, and so on. These factors may indirectly affect the growth environment or directly affect the physiological activities of the cells, then affect the production of DA. Given that DA is widely distributed in the environment, we summarize the main technical methods for the determination of DA, such as bioassay, high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay (ELISA), biosensor, and so on, as well as the advantages and disadvantages of each method used so far, which adds more new knowledge in the literature about DA until now. Finally, the DA research forecast and its industrial applications were prospected to prevent its harm and fully explore its potential value.
Collapse
|
46
|
Li A, Yan Y, Qiu J, Yan G, Zhao P, Li M, Ji Y, Wang G, Meng F, Li Y, Metcalf JS, Banack SA. Putative biosynthesis mechanism of the neurotoxin β-N-methylamino-L-alanine in marine diatoms based on a transcriptomics approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129953. [PMID: 36116313 DOI: 10.1016/j.jhazmat.2022.129953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been presumed as an environmental cause of human neurodegenerative disorders, such as Alzheimer's disease. Marine diatoms Thalassiosira minima are demonstrated here to produce BMAA-containing proteins in axenic culture while the isomer diaminobutyric acid was bacterially produced. In the co-culture with Cyanobacterium aponinum, diatom growth was inhibited but the biosynthesis of BMAA-containing proteins was stimulated up to seven times higher than that of the control group by cell-cell interactions. The stimulation effect was not caused by the cyanobacterial filtrate. Nitrogen deprivation also doubled the BMAA content of T. minima cells. Transcriptome analysis of the diatom in mixed culture revealed that pathways involved in T. minima metabolism and cellular functions were mainly influenced, including KEGG pathways valine and leucine/isoleucine degradation, endocytosis, pantothenate and CoA biosynthesis, and SNARE interactions in vesicular transport. Based on the expression changes of genes related to protein biosynthesis, it was hypothesized that ubiquitination and autophagy suppression, and limited COPII vesicles transport accuracy and efficiency were responsible for biosynthesis of BMAA-containing proteins in T. minima. This study represents a first application of transcriptomics to investigate the biological processes associated with BMAA biosynthesis in diatoms.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - James S Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Sandra A Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| |
Collapse
|
47
|
Du M, Jin Y, Fan J, Zan S, Gu C, Wang J. A new pathway for anaerobic biotransformation of marine toxin domoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5150-5160. [PMID: 35974277 DOI: 10.1007/s11356-022-22368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Domoic acid (DA) is a harmful algal toxin produced by marine diatom Pseudo-nitzschia and seriously threatens ecosystem and human health. However, the current knowledge on its biotransformation behavior in coastal anaerobic environment is lacking. This study investigated the anaerobic biotransformation of DA by a new marine consortium GH1. The results demonstrated that 90% of DA (1 mg L-1) was cometabolically biotransformed under sulfate-reducing condition. A new anaerobic biotransformation pathway involving DA hydration, dehydrogenation, and C-C bond cleavage was proposed, where the conjugated double-bond of DA was interrupted, resulting in the corresponding alcohols and ketones, subsequently cleaved hydrolytically, and yielding the lower molecular weight products. Desulfovibrio and Clostridiales were markedly enriched in the anaerobic biotransformation of DA, which might jointly contribute to the elevated bacterial consortium resistance and degradation to DA. This study could deepen understanding of behavior and fate for DA in marine environments.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
48
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Koester I, Quinlan ZA, Nothias LF, White ME, Rabines A, Petras D, Brunson JK, Dührkop K, Ludwig M, Böcker S, Azam F, Allen AE, Dorrestein PC, Aluwihare LI. Illuminating the dark metabolome of Pseudo-nitzschia-microbiome associations. Environ Microbiol 2022; 24:5408-5424. [PMID: 36222155 PMCID: PMC9707391 DOI: 10.1111/1462-2920.16242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022]
Abstract
The exchange of metabolites mediates algal and bacterial interactions that maintain ecosystem function. Yet, while thousands of metabolites are produced, only a few molecules have been identified in these associations. Using the ubiquitous microalgae Pseudo-nitzschia sp., as a model, we employed an untargeted metabolomics strategy to assign structural characteristics to the metabolites that distinguished specific diatom-microbiome associations. We cultured five species of Pseudo-nitzschia, including two species that produced the toxin domoic acid, and examined their microbiomes and metabolomes. A total of 4826 molecular features were detected by tandem mass spectrometry. Only 229 of these could be annotated using available mass spectral libraries, but by applying new in silico annotation tools, characterization was expanded to 2710 features. The metabolomes of the Pseudo-nitzschia-microbiome associations were distinct and distinguished by structurally diverse nitrogen compounds, ranging from simple amines and amides to cyclic compounds such as imidazoles, pyrrolidines and lactams. By illuminating the dark metabolomes, this study expands our capacity to discover new chemical targets that facilitate microbial partnerships and uncovers the chemical diversity that underpins algae-bacteria interactions.
Collapse
Affiliation(s)
- Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Zachary A. Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - Margot E. White
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - John K. Brunson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Kai Dührkop
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Marcus Ludwig
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - Lihini I. Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| |
Collapse
|
50
|
Smodlaka Tanković M, Baričević A, Gerić M, Domijan AM, Pfannkuchen DM, Kužat N, Ujević I, Kuralić M, Rožman M, Matković K, Novak M, Žegura B, Pfannkuchen M, Gajski G. Characterisation and toxicological activity of three different Pseudo-nitzschia species from the northern Adriatic Sea (Croatia). ENVIRONMENTAL RESEARCH 2022; 214:114108. [PMID: 35985485 DOI: 10.1016/j.envres.2022.114108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Diatoms of the genus Pseudo-nitzschia are cosmopolitans spread in seas and oceans worldwide, with more than 50 described species, dozens of which have been confirmed to produce domoic acid (DA). Here, we characterized and investigated the toxicological activity of secondary metabolites excreted into the growth media of different Pseudo-nitzschia species sampled at various locations in the northern Adriatic Sea (Croatia) using human blood cells under in vitro conditions. The results revealed that three investigated species of the genus Pseudo-nitzschia were capable of producing DA indicating their toxic potential. Moreover, toxicological data suggested all three Pseudo-nitzschia species can excrete toxic secondary metabolites into the surrounding media in addition to the intracellular pools of DA, raising concerns regarding their toxicity and environmental impact. In addition, all three Pseudo-nitzchia species triggered oxidative stress, one of the mechanisms of action likely responsible for the DNA damage observed in human blood cells. In line with the above stated, our results are of great interest to environmental toxicologists, the public and policy makers, especially in light of today's climate change, which favours harmful algal blooms and the growth of DA producers with a presumed negative impact on the public health of coastal residents.
Collapse
Affiliation(s)
| | - Ana Baričević
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Kužat
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Melissa Kuralić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Rožman
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Katarina Matković
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Matjaž Novak
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Martin Pfannkuchen
- Center for Marine Research, Ruđer Bošković Institute, 52210 Rovinj, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia.
| |
Collapse
|