1
|
Omole TE, Nguyen HM, Marcinow A, Oo MM, Jahan N, Ssemaganda A, Severini G, Thomas KK, Celum C, Mugo N, Mujugira A, Kublin J, Corey L, Sivro A, Lingappa JR, Gray G, McKinnon LR. Pre-Human Immunodeficiency Virus (HIV) α4β7hi CD4+ T Cells and HIV Risk Among Heterosexual Individuals in Africa. J Infect Dis 2025; 231:e770-e780. [PMID: 39720913 PMCID: PMC11998548 DOI: 10.1093/infdis/jiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND CD4+ T cells expressing α4β7 are optimal targets for human immunodeficiency virus (HIV) infections, with higher pre-HIV α4β7hi expression linked to increased HIV acquisition and progression in South African women. However, similar associations were not observed in men who have sex with men or people who inject drugs in the Americas, indicating need for further research. METHODS This retrospective case-control study enrolled heterosexual men and women from South Africa (HIV Vaccine Trials Network [HVTN] 503) and East Africa (Partners Preexposure Prophylaxis/Couples' Observational Study [PP/COS]), quantifying α4β7 expression on CD4+ T cells as a predictor of subsequent HIV risk using flow cytometry analyses. RESULTS Associations between α4β7hi expression and HIV acquisition varied across cohorts. In HVTN 503, women had a higher risk estimate compared to men, but this was not significant. In PP/COS, α4β7hi expression was generally protective, particularly in Ugandans. Additionally, α4β7hi expression inversely correlated with peak viral load in PP/COS but not in HVTN 503; in the latter cohort, α4β7hi expression was inversely correlated with the CD4/CD8 ratio and predicted rapid CD4+ T-cell decline, similar to what was observed previously in South Africa. CONCLUSIONS These findings suggest that α4β7hi expression on CD4+ T cells may not predict HIV acquisition and progression in all contexts, which may be due to cohort effects, modes of transmission, viral clade, or other factors.
Collapse
Affiliation(s)
- Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Huong Mai Nguyen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Agata Marcinow
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Myo Minn Oo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Naima Jahan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Aloysious Ssemaganda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Giulia Severini
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Connie Celum
- Department of Global Health
- Departments of Medicine and Epidemiology, University of Washington, Seattle
| | - Nelly Mugo
- Department of Global Health
- Sexual Reproductive and Adolescent Child Health Research Program, Kenya Medical Research Institute, Nairobi
| | - Andrew Mujugira
- Department of Global Health
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - James Kublin
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lawrence Corey
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Aida Sivro
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jairam R Lingappa
- Department of Global Health
- Departments of Medicine and Pediatrics, University of Washington, Seattle
| | - Glenda Gray
- HIV Vaccine Trials Network
- Office of the President, South African Medical Research Council, Cape Town
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- Department of Medical Microbiology and Immunology, University of Nairobi, Kenya
| |
Collapse
|
2
|
Chan P, Li X, Li F, Emu B, Price RW, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Front Immunol 2025; 16:1531828. [PMID: 40070827 PMCID: PMC11893981 DOI: 10.3389/fimmu.2025.1531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Trafficking of immune cells to the central nervous system is hypothesized to facilitate HIV entry and immune-induced neuronal injury and is mediated by surface proteins such as chemokine receptors and α4 integrin. We longitudinally assessed immune cell activation and surface marker expression in cerebrospinal fluid (CSF) and blood and their relationship with CSF HIV RNA beginning during primary HIV infection (PHI) before and after antiretroviral therapy (ART). Methods Longitudinal paired blood and CSF were obtained in ART-naïve PHI (<12 month since infection) participants; some independently initiated ART during follow up. Multiparameter flow cytometry of fresh samples determined activation (% CD38+HLADR+) and chemokine receptor expression (% CCR5+ and CXCR3+) on CD4+ and CD8+ T cells, and subtype and α4 integrin expression (% and mean fluorescence intensity (mfi) of CD49d+) on monocytes. HIV RNA was quantified by PCR. Analyses employed Spearman correlation, within-subject correlation, and linear mixed models. Results 51 participants enrolled at a median 3.2 months post HIV transmission with 168 total visits (113 pre-ART, 55 post-ART) and a median of 6.5 months of longitudinal follow up (range 0-40). In pre-ART PHI, frequencies of activated CD4+ and CD8+ T cells were much higher in CSF than in blood, with levels similar to ART-naïve people with chronic HIV infection. Both CSF CD4+ and CD8+ T cell activation increased longitudinally prior to initiation of ART. In multivariate analysis, CSF CD4+ but not CD8+ T cell activation independently predicted CSF HIV RNA. Neither CSF monocyte subtypes or α4 expression correlated with CSF HIV RNA. Blood monocyte α4 MFI correlated with CD4+ and CD8+ T cell activation (p<0.05). Following ART initiation, blood but not CSF T cell activation declined with days on treatment (slope=-0.06, p=0.001). During ART, blood and CSF monocyte α4 MFI correlated with T cell activation (p<0.05). Conclusions In untreated early infection after PHI, immune activation increases over time, and CSF CD4+ T cell activation but not monocyte activation correlates with CSF HIV RNA. Intrathecal T cell activation does not decline during early follow up on ART. Immunomodulating therapies may be needed to prevent neuronal injury and HIV neuroinvasion during early HIV.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| | - Xiang Li
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
King HAD, Brammer D, Lewitus E, Fennessey CM, Manalang KM, Shrader HR, Andrew S, Kuri P, Lind M, Pham P, Sanders-Buell E, Bai H, Mason R, Song K, McCarthy E, Helmold Hait S, Todd JP, Pegu A, Foulds KE, Lifson JD, Keele BF, Rolland M, Roederer M, Bolton DL. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc Natl Acad Sci U S A 2025; 122:e2404767122. [PMID: 39883843 PMCID: PMC11804569 DOI: 10.1073/pnas.2404767122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination. Each mAb was administered at 15 mg/kg, and both mAb-treated groups received ITS103.01, a highly potent CD4-binding site targeting antibody. mAb treatment delayed viral rebound, lowered rebound viremia setpoint and viral diversity, and extended animal lifespan. Compared to controls, for which viremia rebounded 2 wk following ATI, mAb infusion delayed rebound for both groups (P = 0.0003). Animals that received the 4-mAb regimen rebounded 3 to 6 wk post-ATI while the 2-mAb regimen rebounded 5 to 22 wk post-ATI. Envelope escape mutations emerged in rebound virus of mAb-treated animals that abrogated neutralization by ITS103.01, the most potent in the cocktail. These data demonstrate in vivo antiviral activity of SIV mAbs in the context of ATI via immune pressure dominated by the most potent mAb and highlight their potential in adjunctive therapeutic studies.
Collapse
Affiliation(s)
- Hannah A. D. King
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel Brammer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Lewitus
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kimberly M. Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hannah R. Shrader
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shayne Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Phillip Kuri
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Matthew Lind
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Phuc Pham
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Hongjun Bai
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| |
Collapse
|
4
|
Johnson SD, Pino M, Acharya A, Clain JA, Bose D, Nguyen K, Harper J, Villinger F, Paiardini M, Byrareddy SN. IL-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques. JCI Insight 2025; 10:e184491. [PMID: 39903521 PMCID: PMC11949015 DOI: 10.1172/jci.insight.184491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Furthermore, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized that combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points after ATI. Additionally, following ATI, dual-treated RMs showed immunological benefits, including T cell preservation and lower PD-1+ central memory T cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) after ATI. Finally, 16S rRNA-Seq revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Julien A. Clain
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, and
- Department of Biochemistry and Molecular Biology, UNMC, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Jimenez-Leon MR, Gasca-Capote C, Roca-Oporto C, Espinosa N, Sobrino S, Fontillon-Alberdi M, Gao C, Roseto I, Gladkov G, Rivas-Jeremias I, Neukam K, Sanchez-Hernandez JG, Rigo-Bonnin R, Cervera-Barajas AJ, Mesones R, García F, Alvarez-Rios AI, Bachiller S, Vitalle J, Perez-Gomez A, Camacho-Sojo MI, Gallego I, Brander C, McGowan I, Mothe B, Viciana P, Yu X, Lichterfeld M, Lopez-Cortes LF, Ruiz-Mateos E. Vedolizumab and ART in recent HIV-1 infection unveil the role of α4β7 in reservoir size. JCI Insight 2024; 9:e182312. [PMID: 38980725 PMCID: PMC11343594 DOI: 10.1172/jci.insight.182312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUNDWe evaluated the safety and viral rebound, after analytical treatment interruption (ATI), of vedolizumab and ART in recent HIV-1 infection. We used this model to analyze the effect of α4β7 on the HIV-1 reservoir size.METHODSParticipants started ART with monthly vedolizumab infusions, and ATI was performed at week 24. Biopsies were obtained from ileum and cecum at baseline and week 24. Vedolizumab levels, HIV-1 reservoir, flow cytometry, and cell-sorting and antibody competition experiments were assayed.RESULTSVedolizumab was safe and well tolerated. No participant achieved undetectable viremia off ART 24 weeks after ATI. Only a modest effect on the time to achieve more than 1,000 HIV-1 RNA copies/mL and the proportion of participants off ART was observed, being higher in the vedolizumab group compared with historical controls. Just before ATI, α4β7 expression was associated with HIV-1 DNA and RNA in peripheral blood and with PD1 and TIGIT levels. Importantly, a complete blocking of α4β7 was observed on peripheral CD4+ T cells but not in gut (ileum and cecum), where α4β7 blockade and vedolizumab levels were inversely associated with HIV-1 DNA.CONCLUSIONOur findings support α4β7 as an important determinant in HIV-1 reservoir size, suggesting the complete α4β7 blockade in tissue as a promising tool for HIV-cure combination strategies.TRIAL REGISTRATIONClinicalTrials.gov NCT03577782.FUNDINGThis work was supported by the Instituto de Salud Carlos III (Fondo Europeo de Desarrollo Regional, "a way to make Europe," research contracts FI17/00186 and FI19/00083 and research projects PI18/01532, PI19/01127, PI22/01796), Conserjería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (research projects P20/00906), the Red Temática de Investigación Cooperativa en SIDA (RD16/0025/0020), and the Spanish National Research Council.
Collapse
Affiliation(s)
- Maria Reyes Jimenez-Leon
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Carmen Gasca-Capote
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Cristina Roca-Oporto
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Nuria Espinosa
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Gregory Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Inmaculada Rivas-Jeremias
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Karin Neukam
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | - Raul Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, Instituto de Investigación Biomédica de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | | | - Rosario Mesones
- Clinical Trials Units, Virgen del Rocío University Hospital, Seville, Spain
| | - Federico García
- Departament of Microbiology, San Cecilio University Hospital, Instituto de Investigación Ibs, Granada, Ciber de Enfermedades Infecciosas, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Granada, Spain
| | | | - Sara Bachiller
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Joana Vitalle
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Alberto Perez-Gomez
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - María Inés Camacho-Sojo
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | | | | - Beatriz Mothe
- Infectious Diseases Department and IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Spain
| | - Pompeyo Viciana
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Xu Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Luis F. Lopez-Cortes
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
6
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Johnson SD, Knight LA, Kumar N, Olwenyi OA, Thurman M, Mehra S, Mohan M, Byrareddy SN. Early treatment with anti-α 4β 7 antibody facilitates increased gut macrophage maturity in SIV-infected rhesus macaques. Front Immunol 2022; 13:1001727. [PMID: 36389795 PMCID: PMC9664000 DOI: 10.3389/fimmu.2022.1001727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to experience gastrointestinal dysfunction. Infusions of anti-α4β7 monoclonal antibodies (mAbs) have been proposed to increase virologic control during simian immunodeficiency virus (SIV) infection in macaques with mixed results. Recent evidences suggested that therapeutic efficacy of vedolizumab (a humanized anti-α4β7 mAb), during inflammatory bowel diseases depends on microbiome composition, myeloid cell differentiation, and macrophage phenotype. We tested this hypothesis in SIV-infected, anti-α4β7 mAb-treated macaques and provide flow cytometric and microscopic evidence that anti-α4β7 administered to SIV-infected macaques increases the maturity of macrophage phenotypes typically lost in the small intestines during SIV disease progression. Further, this increase in mature macrophage phenotype was associated with tissue viral loads. These phenotypes were also associated with dysbiosis markers in the gut previously identified as predictors of HIV replication and immune activation in PLWH. These findings provide a novel model of anti-α4β7 efficacy offering new avenues for targeting pathogenic mucosal immune response during HIV/SIV infection.
Collapse
Affiliation(s)
- Samuel D. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lindsey A. Knight
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Omalla A. Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
9
|
Card CM, Abrenica B, McKinnon LR, Ball TB, Su RC. Endothelial Cells Promote Productive HIV Infection of Resting CD4 + T Cells by an Integrin-Mediated Cell Adhesion-Dependent Mechanism. AIDS Res Hum Retroviruses 2022; 38:111-126. [PMID: 34465136 PMCID: PMC8861939 DOI: 10.1089/aid.2021.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Resting CD4+ T cells are primary targets of early HIV infection events in vivo, but do not readily support HIV replication in vitro. This barrier to infection can be overcome by exposing resting CD4+ T cells to endothelial cells (ECs). ECs line blood vessels and direct T cell trafficking into inflamed tissues. Cell trafficking pathways have been shown to have overlapping roles in facilitating HIV replication, but their relevance to EC-mediated enhancement of HIV susceptibility in resting CD4+ T cells has not previously been examined. We characterized the phenotype of primary human resting CD4+ T cells that became productively infected with HIV when cocultured with primary human blood and lymphatic ECs. The infected CD4+ T cells were primarily central memory cells enriched for high expression of the integrins LFA-1 and VLA-4. ICAM-1 and VCAM-1, the cognate ligands for LFA-1 and VLA-4, respectively, were expressed by the ECs in the coculture. Blocking LFA-1 and VLA-4 on resting CD4+ T cells inhibited infection by 65.4%–96.9%, indicating that engagement of these integrins facilitates EC-mediated enhancement of productive HIV infection in resting CD4+ T cells. The demonstration that ECs influence cellular HIV susceptibility of resting memory CD4+ T cells through cell trafficking pathways engaged during the transmigration of T cells into tissues highlights the physiological relevance of these findings for HIV acquisition and opportunities for intervention.
Collapse
Affiliation(s)
- Catherine M. Card
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R. McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
11
|
Frank I, Cigoli M, Arif MS, Fahlberg MD, Maldonado S, Calenda G, Pegu A, Yang ES, Rawi R, Chuang GY, Geng H, Liu C, Zhou T, Kwong PD, Arthos J, Cicala C, Grasperge BF, Blanchard JL, Gettie A, Fennessey CM, Keele BF, Vaccari M, Hope TJ, Fauci AS, Mascola JR, Martinelli E. Blocking α 4β 7 integrin delays viral rebound in SHIV SF162P3-infected macaques treated with anti-HIV broadly neutralizing antibodies. Sci Transl Med 2021; 13:eabf7201. [PMID: 34408080 PMCID: PMC8977869 DOI: 10.1126/scitranslmed.abf7201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) may favor development of antiviral immunity by engaging the immune system during immunotherapy. Targeting integrin α4β7 with an anti-α4β7 monoclonal antibody (Rh-α4β7) affects immune responses in SIV/SHIV-infected macaques. To explore the therapeutic potential of combining bNAbs with α4β7 integrin blockade, SHIVSF162P3-infected, viremic rhesus macaques were treated with bNAbs only (VRC07-523LS and PGT128 anti-HIV antibodies) or a combination of bNAbs and Rh-α4β7 or were left untreated as a control. Treatment with bNAbs alone decreased viremia below 200 copies/ml in all macaques, but seven of eight macaques (87.5%) in the bNAbs-only group rebounded within a median of 3 weeks (95% CI: 2 to 9). In contrast, three of six macaques treated with a combination of Rh-α4β7 and bNAbs (50%) maintained a viremia below 200 copies/ml until the end of the follow-up period; viremia in the other three macaques rebounded within a median of 6 weeks (95% CI: 5 to 11). Thus, there was a modest delay in viral rebound in the macaques treated with the combination antibody therapy compared to bNAbs alone. Our study suggests that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Mariasole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Muhammad S Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marissa D Fahlberg
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Busman-Sahay K, Starke CE, Nekorchuk MD, Estes JD. Eliminating HIV reservoirs for a cure: the issue is in the tissue. Curr Opin HIV AIDS 2021; 16:200-208. [PMID: 34039843 PMCID: PMC8171814 DOI: 10.1097/coh.0000000000000688] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Advances in antiretroviral therapy have saved numerous lives, converting a diagnosis with human immunodeficiency virus 1 (HIV-1) from a death sentence into the possibility for a (nearly) normal life in many instances. However, the obligation for lifelong adherence, increased risk of accumulated co-morbidities, and continued lack of uniform availability around the globe underscores the need for an HIV cure. Safe and scalable HIV cure strategies remain elusive, in large part due to the presence of viral reservoirs in which caches of infected cells remain hidden from immune elimination, primarily within tissues. Herein, we summarize some of the most exciting recent advances focused on understanding, quantifying, and ultimately targeting HIV tissue viral reservoirs. RECENT FINDINGS Current studies have underscored the differences between viral reservoirs in tissue compartments as compared to peripheral blood, in particular, the gastrointestinal (GI) tract. Additionally, several novel or modified techniques are showing promise in targeting the latent viral reservoir, including modifications in drug delivery platforms and techniques such as CRISPR. SUMMARY Elimination of tissue viral reservoirs is likely the key to generation of an effective HIV cure. Exciting studies have come out recently that reveal crucial insights into topics ranging from the basic biology of reservoir seeding to effective drug targeting. However, there are still many outstanding questions in the field about the relative importance of specific reservoirs, such as the GI tract, that may alter the final strategy pursued.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Carly E. Starke
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Michael D. Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
13
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
14
|
Mechanistic basis of post-treatment control of SIV after anti-α4β7 antibody therapy. PLoS Comput Biol 2021; 17:e1009031. [PMID: 34106916 PMCID: PMC8189501 DOI: 10.1371/journal.pcbi.1009031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Treating macaques with an anti-α4β7 antibody under the umbrella of combination antiretroviral therapy (cART) during early SIV infection can lead to viral remission, with viral loads maintained at < 50 SIV RNA copies/ml after removal of all treatment in a subset of animals. Depletion of CD8+ lymphocytes in controllers resulted in transient recrudescence of viremia, suggesting that the combination of cART and anti-α4β7 antibody treatment led to a state where ongoing immune responses kept the virus undetectable in the absence of treatment. A previous mathematical model of HIV infection and cART incorporates immune effector cell responses and exhibits the property of two different viral load set-points. While the lower set-point could correspond to the attainment of long-term viral remission, attaining the higher set-point may be the result of viral rebound. Here we expand that model to include possible mechanisms of action of an anti-α4β7 antibody operating in these treated animals. We show that the model can fit the longitudinal viral load data from both IgG control and anti-α4β7 antibody treated macaques, suggesting explanations for the viral control associated with cART and an anti-α4β7 antibody treatment. This effective perturbation to the virus-host interaction can also explain observations in other nonhuman primate experiments in which cART and immunotherapy have led to post-treatment control or resetting of the viral load set-point. Interestingly, because the viral kinetics in the various treated animals differed—some animals exhibited large fluctuations in viral load after cART cessation—the model suggests that anti-α4β7 treatment could act by different primary mechanisms in different animals and still lead to post-treatment viral control. This outcome is nonetheless in accordance with a model with two stable viral load set-points, in which therapy can perturb the system from one set-point to a lower one through different biological mechanisms. Some macaques treated with an anti-α4β7 monoclonal antibody along with antiretroviral therapy during the early stages of simian immunodeficiency virus infection had their viral load become undetectable (below 50 SIV RNA copies/ml) after all treatment was stopped, whereas animals not given the antibody all had their viral loads rebound to high levels. Using a mathematical model, we examined four potential ways in which the antibody could have altered the balance between viral growth and immune control to maintain an undetectable viral load. We show that a shift to controlled infection can occur through multiple biologically reasonable mechanisms of action of the anti-α4β7 antibody.
Collapse
|
15
|
Tokarev A, McKinnon LR, Pagliuzza A, Sivro A, Omole TE, Kroon E, Chomchey N, Phanuphak N, Schuetz A, Robb ML, Eller MA, Ananworanich J, Chomont N, Bolton DL. Preferential Infection of α4β7+ Memory CD4+ T Cells During Early Acute Human Immunodeficiency Virus Type 1 Infection. Clin Infect Dis 2021; 71:e735-e743. [PMID: 32348459 PMCID: PMC7778353 DOI: 10.1093/cid/ciaa497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Establishment of persistent human immunodeficiency virus type 1 (HIV-1) reservoirs occurs early in infection, and biomarkers of infected CD4+ T cells during acute infection are poorly defined. CD4+ T cells expressing the gut homing integrin complex α4β7 are associated with HIV-1 acquisition, and are rapidly depleted from the periphery and gastrointestinal mucosa during acute HIV-1 infection. METHODS Integrated HIV-1 DNA was quantified in peripheral blood mononuclear cells obtained from acutely (Fiebig I-III) and chronically infected individuals by sorting memory CD4+ T-cell subsets lacking or expressing high levels of integrin β7 (β7negative and β7high, respectively). HIV-1 DNA was also assessed after 8 months of combination antiretroviral therapy (cART) initiated in Fiebig II/III individuals. Activation marker and chemokine receptor expression was determined for β7-defined subsets at acute infection and in uninfected controls. RESULTS In Fiebig I, memory CD4+ T cells harboring integrated HIV-1 DNA were rare in both β7high and β7negative subsets, with no significant difference in HIV-1 DNA copies. In Fiebig stages II/III and in chronically infected individuals, β7high cells were enriched in integrated and total HIV-1 DNA compared to β7negative cells. During suppressive cART, integrated HIV-1 DNA copies decreased in both β7negative and β7high subsets, which did not differ in DNA copies. In Fiebig II/III, integrated HIV-1 DNA in β7high cells was correlated with their activation. CONCLUSIONS β7high memory CD4+ T cells are preferential targets during early HIV-1 infection, which may be due to the increased activation of these cells.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Amélie Pagliuzza
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Eugene Kroon
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nitiya Chomchey
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nittaya Phanuphak
- South East Asia Research Collaboration in HIV, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Alexandra Schuetz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.,Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Diane L Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Kasarpalkar NJ, Bhowmick S, Patel V, Savardekar L, Agrawal S, Shastri J, Bhor VM. Frequency of Effector Memory Cells Expressing Integrin α 4β 7 Is Associated With TGF-β1 Levels in Therapy Naïve HIV Infected Women With Low CD4 + T Cell Count. Front Immunol 2021; 12:651122. [PMID: 33828560 PMCID: PMC8019712 DOI: 10.3389/fimmu.2021.651122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Integrin α4β7 expressing CD4+ T cells are preferred targets for HIV infection and are thought to be predictors of disease progression. Concurrent analysis of integrin α4β7 expressing innate and adaptive immune cells was carried out in antiretroviral (ART) therapy naïve HIV infected women in order to determine its contribution to HIV induced immune dysfunction. Our results demonstrate a HIV infection associated decrease in the frequency of integrin α4β7 expressing endocervical T cells along with an increase in the frequency of integrin α4β7 expressing peripheral monocytes and central memory CD4+ T cells, which are considered to be viral reservoirs. We report for the first time an increase in levels of soluble MAdCAM-1 (sMAdCAM-1) in HIV infected individuals as well as an increased frequency and count of integrin β7Hi CD8+ memory T cells. Correlation analysis indicates that the frequency of effector memory CD8+ T cells expressing integrin α4β7 is associated with levels of both sMAdCAM-1 and TGF-β1. The results of this study also suggest HIV induced alterations in T cell homeostasis to be on account of disparate actions of sMAdCAM-1 and TGF-β1 on integrin α4β7 expressing T cells. The immune correlates identified in this study warrant further investigation to determine their utility in monitoring disease progression.
Collapse
Affiliation(s)
- Nandini J Kasarpalkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Bhowmick
- Department of Biochemistry and Virology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Lalita Savardekar
- Woman's Health Clinic and Bone Health Clinic, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sachee Agrawal
- Department of Microbiology, Topiwala National Medical College and Bai Yamunabai Laxman Nair Hospital, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, Topiwala National Medical College and Bai Yamunabai Laxman Nair Hospital, Mumbai, India
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
17
|
Hessell AJ, Li L, Malherbe DC, Barnette P, Pandey S, Sutton W, Spencer D, Wang XH, Gach JS, Hunegnaw R, Tuen M, Jiang X, Luo CC, LaBranche CC, Shao Y, Montefiori DC, Forthal DN, Duerr R, Robert-Guroff M, Haigwood NL, Gorny MK. Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine-Induced Anti-V2 Antibodies Alone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1266-1283. [PMID: 33536254 PMCID: PMC7946713 DOI: 10.4049/jimmunol.2001010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - William Sutton
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ruth Hunegnaw
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, NC 27710; and
| | - Yongzhao Shao
- Department of Population Health, New York University School of Medicine, New York, NY 10016
| | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
18
|
Martin AR, Patel EU, Kirby C, Astemborski J, Kirk GD, Mehta SH, Marshall K, Janes H, Clayton A, Corey L, Hammer SM, Sobieszczyk ME, Arthos J, Cicala C, Redd AD, Quinn TC. The association of α4β7 expression with HIV acquisition and disease progression in people who inject drugs and men who have sex with men: Case control studies. EBioMedicine 2020; 62:103102. [PMID: 33166790 PMCID: PMC7658649 DOI: 10.1016/j.ebiom.2020.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND α4β7 is a gut-homing integrin heterodimer that can act as a non-essential binding molecule for HIV. A previous study in heterosexual African women found that individuals with higher proportions of α4β7 expressing CD4+ T cells were more likely to become infected with HIV, as well as present with faster disease progression. It is unknown if this phenomenon is also observed in men who have sex with men (MSM) or people who inject drugs (PWID). METHODS MSM and transgender women who seroconverted as part of the HVTN 505 HIV vaccine trial and PWID who seroconverted during the ALIVE cohort study were selected as cases and matched to HIV-uninfected controls from the same studies (1:1 and 1:3, respectively). Pre-seroconversion PBMC samples from cases and controls in both studies were examined by flow cytometry to measure levels of α4β7 expression on CD4+ T cells. Multivariable conditional logistic regression was used to compare α4β7 expression levels between cases and controls. A Kaplan-Meier curve was used to examine the association of α4β7 expression pre-seroconversion with HIV disease progression. FINDINGS In MSM and transgender women (n = 103 cases, 103 controls), there was no statistically significant difference in the levels of α4β7 expression on CD4+ T cells between cases and controls (adjusted odds ratio [adjOR] =1.10, 95% confidence interval [CI]=0.94,1.29; p = 0.246). Interestingly, in PWID (n = 49 cases, 143 controls), cases had significantly lower levels of α4β7 expression compared to their matched controls (adjOR = 0.80, 95% CI = 0.68, 0.93; p = 0.004). Among HIV-positive PWID (n = 47), there was no significant association in HIV disease progression in individuals above or below the median level of α4β7 expression (log-rank p = 0.84). INTERPRETATION In contrast to findings in heterosexual women, higher α4β7 expression does not predict HIV acquisition or disease progression in PWID or MSM. FUNDING This study was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health. The study was also supported by extramural grants from NIAID T32AI102623 (E.U.P.), and UM1AI069470.
Collapse
Affiliation(s)
- Alyssa R Martin
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eshan U Patel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Charles Kirby
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacquie Astemborski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kyle Marshall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ashley Clayton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Scott M Hammer
- Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | | | - James Arthos
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Cicala
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
McGuinty M, Angel JB, Cooper CL, Cowan J, MacPherson PA, Kumar A, Murthy S, Sy R, Dennehy M, Tremblay N, Byrareddy SN, Cameron DW. Vedolizumab treatment across antiretroviral treatment interruption in chronic HIV infection: the HAVARTI protocol for a pilot dose-ranging clinical trial to assess safety, tolerance, immunological and virological activity. BMJ Open 2020; 10:e041359. [PMID: 33033101 PMCID: PMC7545629 DOI: 10.1136/bmjopen-2020-041359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Continuous antiretroviral therapy (ART) suppresses HIV plasma viral load (pVL) to very low levels, which allows for some immune recovery. Discontinuation of ART leads to pVL rebound from reservoirs of persistence and latency, and progressive immunodeficiency. One promising but controversial strategy targeting CD4+ T lymphocytes with a monoclonal antibody (mAb) against α4β7 integrin has shown promise through sustained virological remission of pVL (SVR) in SIV239-infected rhesus macaques. We propose to assess the safety and tolerability of vedolizumab, a licensed humanised mAb against human α4β7 integrin, in healthy HIV-infected adults on ART. This study will also assess, by analytical treatment interruption (ATI), whether vedolizumab treatment can induce SVR beyond ART and vedolizumab treatment. METHODS AND ANALYSIS The HIV-ART-vedolizumab-ATI (HAVARTI) trial is a single-arm, dose-ranging pilot trial in healthy HIV-positive adult volunteers receiving ART. Twelve consenting persons will be enrolled in sequential groups of 4 to each serial dosing vedolizumab regimen (300 mg, 150 mg, 75 mg). The primary outcomes are: (1) to assess the safety and tolerability of seven serial infusions of vedolizumab at each of three doses; (2) to identify the immunovirological measures, including pVL and T-cell kinetics, that characterise HIV/ART cases before, during, after vedolizumab treatment and ATI; and (3) to seek SVR of pVL after ATI. Secondary outcomes will include immune reconstitution and pVL suppression as well as immune reconstitution and long-term safety following re-initiation of ART in the absence of SVR. ETHICS AND DISSEMINATION The study protocol was approved by the Ottawa Health Science Network-REB and by the Health Canada Therapeutic Products Directorate. A Data Safety Monitor will review safety information at regular intervals. The final manuscript will be submitted to an open access journal within a year of study completion. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT03147859; https://clinicaltrials.gov/ct2/show/NCT03147859.
Collapse
Affiliation(s)
- Michaeline McGuinty
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Curtis L Cooper
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Juthaporn Cowan
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Hospital, Ottawa, Ontario, Canada
| | - Paul A MacPherson
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Pathology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Sanjay Murthy
- Medicine, Division of Gastroenterology, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Richmond Sy
- Medicine, Division of Gastroenterology, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | | | - Nancy Tremblay
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - D William Cameron
- Medicine, Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Gorny MK. Search for antiviral functions of potentially protective antibodies against V2 region of HIV-1. Hum Vaccin Immunother 2020; 16:2033-2041. [PMID: 32701369 PMCID: PMC7553674 DOI: 10.1080/21645515.2020.1787070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the only successful RV144 vaccine trial to date, high levels of antibodies (Abs) against the V2 region of the virus envelope protein gp120 correlated with reduced HIV-1 infection. The protective role of V2 Abs has not yet been determined, and the antiviral function of V2 Abs that mediate protection against HIV-1 in humans or SHIV infection in rhesus macaques remains unclear. V2 Abs do not neutralize resistant tier 2 viruses; their Fc-mediated activities are modest and similar to those of another anti-envelope Abs, and inhibition of the gp120–α4β7 integrin interaction is ineffective in both animals and clinical trials. Moreover, in protection experiments in monkeys, levels of V1V2 vaccine-induced V2 Abs do not correlate with plasma viral load. Together, these observations suggest that V2 Abs may not control SHIV infection in rhesus macaques and that V2 Abs may instead be a surrogate marker of other protective immune responses.
Collapse
Affiliation(s)
- Miroslaw K Gorny
- Department of Pathology, New York University Grossman School of Medicine , New York, NY, USA
| |
Collapse
|
21
|
Pino M, Uppada SB, Pandey K, King C, Nguyen K, Shim I, Rogers K, Villinger F, Paiardini M, Byrareddy SN. Safety and Immunological Evaluation of Interleukin-21 Plus Anti-α4β7 mAb Combination Therapy in Rhesus Macaques. Front Immunol 2020; 11:1275. [PMID: 32765488 PMCID: PMC7379916 DOI: 10.3389/fimmu.2020.01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections compromise gut immunological barriers, inducing high levels of inflammation and a severe depletion of intestinal CD4+ T cells. Expression of α4β7 integrin promotes homing of activated T cells to intestinal sites where they become preferentially infected; blockade of α4β7 with an anti-α4β7 monoclonal antibody (mAb) prior to infection has been reported to reduce gut SIV viremia in rhesus macaques (RMs). Interleukin-21 (IL-21) administration in antiretroviral therapy-treated, SIV-infected RMs reduces gut inflammation and improves gut integrity. We therefore hypothesized that the combination of IL-21 and anti-α4β7 mAb therapies could synergize to reduce inflammation and HIV persistence. We co-administered two intravenous doses of rhesus anti-α4β7 mAb (50 mg/kg) combined with seven weekly subcutaneous infusions of IL-21-IgFc (100 μg/kg) in four healthy, SIV-uninfected RMs to evaluate the safety and immunological profiles of this intervention in blood and gut. Co-administration of IL-21 and anti-α4β7 mAb showed no toxicity at the given dosages as assessed by multiple hematological and chemical parameters and did not alter the bioavailability of the therapeutics or result in the generation of antibodies against the anti-α4β7 mAb or IL-21-IgFc. Upon treatment, the frequency of CD4 memory T cells expressing β7 increased in blood and decreased in gut, consistent with an inhibition of activated CD4 T-cell homing to the gut. Furthermore, the frequency of T cells expressing proliferation and immune activation markers decreased in blood and, more profoundly, in gut. The combined IL-21 plus anti-α4β7 mAb therapy is well-tolerated in SIV-uninfected RMs and reduces the gut homing of α4β7+ CD4 T cells as well as the levels of gut immune activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Biological Availability
- Biomarkers
- Drug Therapy, Combination
- Humans
- Immunity/drug effects
- Immunoglobulin Fc Fragments/immunology
- Integrins/antagonists & inhibitors
- Interleukins/administration & dosage
- Interleukins/adverse effects
- Interleukins/pharmacokinetics
- Interleukins/pharmacology
- Isoantibodies/blood
- Isoantibodies/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Macaca mulatta
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Srijayaprakash Babu Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Colin King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Inbo Shim
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
22
|
Liu Q, Lusso P. Integrin α4β7 in HIV-1 infection: A critical review. J Leukoc Biol 2020; 108:627-632. [PMID: 32272507 DOI: 10.1002/jlb.4mr0120-208r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, a series of observations linking α4β7, the principal gut-homing integrin, with various aspects of HIV-1 infection have generated considerable interest in the field of HIV-1 research. After the initial report that the major HIV-1 envelope glycoprotein, gp120, can bind to α4β7, intensive research efforts have been focused on the role of α4β7 as a key factor in HIV-1 pathogenesis and as a potential target for prevention and treatment. The interaction between α4β7 and its natural ligand, MAdCAM-1, directs infected CD4+ T cells and HIV-1 virions carrying incorporated α4β7 to the gut mucosa, which may facilitate HIV-1 seeding and replication in the intestinal compartment during the early stages of infection. In addition, cells that express high levels of α4β7, such as Th17 cells, represent preferential targets for infection, and their frequency in the circulation was shown to correlate with susceptibility to HIV-1 infection and disease progression. A number of in vivo studies in nonhuman primates have investigated whether blockage of α4β7 may affect SIV transmission and pathogenesis. Administration of a primatized anti-α4β7 antibody that blocks MAdCAM-1 binding to α4β7 was reported to reduce SIV mucosal transmission in rhesus macaques. However, the mechanism responsible for such a protective effect is still undefined, and conflicting results have been reported on the effects of the same antibody, in combination with ART, during the early chronic phase of SIV infection. Thus, despite a series of tantalizing results accrued over the past decade, the jury is still out on the role of α4β7 in HIV-1 infection.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Easterhoff D, Pollara J, Luo K, Janus B, Gohain N, Williams LD, Tay MZ, Monroe A, Peachman K, Choe M, Min S, Lusso P, Zhang P, Go EP, Desaire H, Bonsignori M, Hwang KK, Beck C, Kakalis M, O’Connell RJ, Vasan S, Kim JH, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Arthos J, Rao M, Joyce MG, Ofek G, Ferrari G, Haynes BF. HIV vaccine delayed boosting increases Env variable region 2-specific antibody effector functions. JCI Insight 2020; 5:131437. [PMID: 31996483 PMCID: PMC7098725 DOI: 10.1172/jci.insight.131437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
In the RV144 HIV-1 phase III trial, vaccine efficacy directly correlated with the magnitude of the variable region 2-specific (V2-specific) IgG antibody response, and in the presence of low plasma IgA levels, with the magnitude of plasma antibody-dependent cellular cytotoxicity. Reenrollment of RV144 vaccinees in the RV305 trial offered the opportunity to define the function, maturation, and persistence of vaccine-induced V2-specific and other mAb responses after boosting. We show that the RV144 vaccine regimen induced persistent V2 and other HIV-1 envelope-specific memory B cell clonal lineages that could be identified throughout the approximately 11-year vaccination period. Subsequent boosts increased somatic hypermutation, a critical requirement for antibody affinity maturation. Characterization of 22 vaccine-induced V2-specific mAbs with epitope specificities distinct from previously characterized RV144 V2-specific mAbs CH58 and CH59 found increased in vitro antibody-mediated effector functions. Thus, when inducing non-neutralizing antibodies, one method by which to improve HIV-1 vaccine efficacy may be through late boosting to diversify the V2-specific response to increase the breadth of antibody-mediated anti-HIV-1 effector functions.
Collapse
Affiliation(s)
- David Easterhoff
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | - Kan Luo
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Benjamin Janus
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Neelakshi Gohain
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Matthew Zirui Tay
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Anthony Monroe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kristina Peachman
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Misook Choe
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Susie Min
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Paolo Lusso
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Peng Zhang
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Eden P. Go
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Heather Desaire
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Charles Beck
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Matina Kakalis
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Jerome H. Kim
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - Nelson L. Michael
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jean-Louis Excler
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L. Robb
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supachai Rerks-Ngarm
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Punnee Pitisuttithum
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Mahidol Bangkok School of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - James Tartaglia
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Sanjay Phogat
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| | | | | | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - James Arthos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mangala Rao
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
| | - M. Gordon Joyce
- Department of Cell Biology and Molecular Genetics, College of Computational, Biological, and Natural Sciences, and Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gilad Ofek
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Medicine and
| |
Collapse
|
25
|
|
26
|
Abbink P, Mercado NB, Nkolola JP, Peterson RL, Tuyishime H, McMahan K, Moseley ET, Borducchi EN, Chandrashekar A, Bondzie EA, Agarwal A, Belli AJ, Reimann KA, Keele BF, Geleziunas R, Lewis MG, Barouch DH. Lack of therapeutic efficacy of an antibody to α 4β 7 in SIVmac251-infected rhesus macaques. Science 2019; 365:1029-1033. [PMID: 31488689 PMCID: PMC6768629 DOI: 10.1126/science.aaw8562] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Sustained virologic control of human immunodeficiency virus type 1 (HIV-1) infection after discontinuation of antiretroviral therapy (ART) is a major goal of the HIV-1 cure field. A recent study reported that administration of an antibody against α4β7 induced durable virologic control after ART discontinuation in 100% of rhesus macaques infected with an attenuated strain of simian immunodeficiency virus (SIV) containing a stop codon in nef We performed similar studies in 50 rhesus macaques infected with wild-type, pathogenic SIVmac251. In animals that initiated ART during either acute or chronic infection, anti-α4β7 antibody infusion had no detectable effect on the viral reservoir or viral rebound after ART discontinuation. These data demonstrate that anti-α4β7 antibody administration did not provide therapeutic efficacy in the model of pathogenic SIVmac251 infection of rhesus macaques.
Collapse
Affiliation(s)
- Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca L Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hubert Tuyishime
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Edward T Moseley
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arshi Agarwal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron J Belli
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Keith A Reimann
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | | | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Di Mascio M, Lifson JD, Srinivasula S, Kim I, DeGrange P, Keele BF, Belli AJ, Reimann KA, Wang Y, Proschan M, Lane HC, Fauci AS. Evaluation of an antibody to α 4β 7 in the control of SIVmac239- nef-stop infection. Science 2019; 365:1025-1029. [PMID: 31488688 PMCID: PMC11931412 DOI: 10.1126/science.aav6695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2025]
Abstract
Treatment of SIV-infected rhesus macaques with short-term antiretroviral therapy (ART) and partially overlapping infusions of antibody to integrin α4β7 was reported to induce durable posttreatment viral suppression. In an attempt to replicate those observations, we treated macaques infected with the same virus and with the same ART and monoclonal antibody (mAb) regimens (anti-α4β7 versus control mAb). Sequencing demonstrated that the virus used was actually SIVmac239-nef-stop, not wild-type SIVmac239. A positive correlation was found at 2 weeks after infection between the frequency of repair of attenuated Nef-STOP virus to pathogenic Nef-OPEN and plasma SIV RNA levels. Levels of plasma viremia before the first antibody infusion and preinfection levels of α4β7 hi CD4+ T cells, but not treatment with antibody to α4β7 , correlated with levels of viral replication upon discontinuation of all treatments. Follow-up plasma viremia, peripheral blood CD4+ T cell counts, and lymph node and rectal tissue viral load were not significantly different between anti-α4β7 and control mAb groups.
Collapse
Affiliation(s)
- M Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA.
| | - J D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - S Srinivasula
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - I Kim
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - P DeGrange
- Battelle/Charles River-Integrated Research Facility, NIAID Frederick, Frederick, MD 21702, USA
| | - B F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - A J Belli
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - K A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Y Wang
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - M Proschan
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Bethesda, MD 20852, USA
| | - H C Lane
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - A S Fauci
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Sneller MC, Clarridge KE, Seamon C, Shi V, Zorawski MD, Justement JS, Blazkova J, Huiting ED, Proschan MA, Mora JR, Shetzline M, Moir S, Lane HC, Chun TW, Fauci AS. An open-label phase 1 clinical trial of the anti-α 4β 7 monoclonal antibody vedolizumab in HIV-infected individuals. Sci Transl Med 2019; 11:scitranslmed.aax3447. [PMID: 31488581 DOI: 10.1126/scitranslmed.aax3447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022]
Abstract
Despite the substantial clinical benefits of antiretroviral therapy (ART), complete eradication of HIV has not been possible. The gastrointestinal tract and associated lymphoid tissues may play an important role in the pathogenesis of HIV infection. The integrin α4β7 facilitates homing of T lymphocytes to the gut by binding to the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) expressed on venules in gut-associated lymphoid tissue. CD4+ T cells with increased expression of α4β7 are susceptible to HIV infection and may be key players in subsequent virus dissemination. Data from nonhuman primate models infected with simian immunodeficiency virus (SIV) have suggested that blockade of the α4β7/MAdCAM-1 interaction may be effective at preventing SIV infection and may have beneficial effects in animals with established viral infection. To explore whether these findings could be reproduced in HIV-infected individuals after interruption of ART, we conducted an open-label phase 1 clinical trial of vedolizumab, a monoclonal antibody against α4β7 integrin. Vedolizumab infusions in 20 HIV-infected individuals were well tolerated with no serious adverse events related to the study drug. After interruption of ART, the median time to meeting protocol criteria to restart therapy was 13 weeks. The median duration of plasma viremia of <400 copies/ml was 5.4 weeks. Only a single subject in the trial experienced prolonged suppression of plasma viremia after interruption of ART. These results suggest that blockade of α4β7 may not be an effective strategy for inducing virological remission in HIV-infected individuals after ART interruption.
Collapse
Affiliation(s)
- Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Katherine E Clarridge
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine Seamon
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Marek D Zorawski
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jesse Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Erin D Huiting
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Henry Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|