1
|
Horn JA, Delgadillo DR, Mayer EA. Understanding Microbial Mediation of the Brain-Gut Axis. Gastroenterol Clin North Am 2025; 54:367-381. [PMID: 40348493 DOI: 10.1016/j.gtc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bidirectional communications between the gut and the brain play an important role in the regulation of food intake, pain perception, mood, and cognitive function. The involved communication pathways are modulated by signals generated by the gut microbiome. Alterations in these communications have been implicated in several chronic brain and gut disorders, including food addiction, mood disorders, neurodevelopmental and neurodegenerative disorders, and functional and inflammatory bowel disorders. The gut microbiome holds great promise for the development of novel therapies normalizing altered brain-gut interactions.
Collapse
Affiliation(s)
- Jill A Horn
- Department of Population and Public Health Sciences, Keck School of Medicine at USC, 1845 N Soto Street, Los Angeles, CA 90032, USA
| | - Desiree R Delgadillo
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS 42-210, MC737818, Los Angeles, CA 90095-73787, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress & Resilience; UCLA Vatche & Tamar Manoukian Division of Digestive Diseases, Goodman Luskin Microbiome Center, UCLA.
| |
Collapse
|
2
|
Yan ZJ, Ye M, Li J, Zhang DF, Yao YG. Early transcriptional and cellular abnormalities in choroid plexus of a mouse model of Alzheimer's disease. Mol Neurodegener 2025; 20:62. [PMID: 40450296 DOI: 10.1186/s13024-025-00853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/20/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, tau hyperphosphorylation, and neuroinflammation. The choroid plexus (ChP), serving as the blood-cerebrospinal fluid-brain barrier, plays essential roles in immune response to stress and brain homeostasis. However, the cellular and molecular contributions of the ChP to AD progression remain inadequately understood. METHODS To elucidate the molecular abnormalities during the early stages of AD, we acquired single-cell transcription profiling of ChP from APP/PS1 mice with early-stage of Aβ pathology and litter-mate controls. The transcriptional alterations that occurred in each cell type were identified by differentially expressed genes, cell-cell communications and pseudotemporal trajectory analysis. The findings were subsequently validated by a series of in situ and in vitro assays. RESULTS We constructed a comprehensive atlas of ChP at single-cell resolution and identified six major cell types and immune subclusters in male mice. The majority of dysregulated genes were found in the epithelial cells of APP/PS1 mice in comparison to wild-type (WT) mice, and most of these genes belonged to down-regulated module involved in mitochondrial respirasome assembly, cilium organization, and barrier integrity. The disruption of the epithelial barrier resulted in the downregulation of macrophage migration inhibitory factor (MIF) secretion in APP/PS1 mice, leading to macrophage activation and increased phagocytosis of Aβ. Concurrently, ligands (e.g., APOE) secreted by macrophages and other ChP cells facilitated the entry of lipids into ependymal cells, leading to lipid accumulation and the activation of microglia in the brain parenchyma in APP/PS1 mice compared to WT controls. CONCLUSIONS Taken together, these data profiled early transcriptional and cellular abnormalities of ChP within an AD mouse model, providing novel insights of cerebral vasculature into the pathobiology of AD.
Collapse
Affiliation(s)
- Zhong-Jiang Yan
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Maosen Ye
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiexi Li
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Deng-Feng Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Yunnan Engineering Center on Brain Disease Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Yunnan Engineering Center on Brain Disease Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
3
|
Fame RM. Harnessing the circadian nature of the choroid plexus and cerebrospinal fluid. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:19. [PMID: 40438730 PMCID: PMC12106090 DOI: 10.1038/s44323-025-00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 06/01/2025]
Abstract
Cerebrospinal fluid (CSF) exchanges with the central nervous system's immediate environment and interfaces with systemic circulation at the blood-CSF barrier. CSF composition reflects brain states, contributes to brain health and disease, is modulated by circadian rhythms and behaviors, and turns over multiple times per day, enabling rapid signal relay. Mechanisms of how CSF elements change over circadian time and influence function can be harnessed for diagnostic biomarkers and therapeutic intervention.
Collapse
Affiliation(s)
- Ryann M. Fame
- Department of Neurosurgery, Stanford University, Stanford, CA USA
| |
Collapse
|
4
|
Lind-Holm Mogensen F, Seibler P, Grünewald A, Michelucci A. Microglial dynamics and neuroinflammation in prodromal and early Parkinson's disease. J Neuroinflammation 2025; 22:136. [PMID: 40399949 PMCID: PMC12096518 DOI: 10.1186/s12974-025-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
Parkinson's disease (PD) is characterized by a drastic loss of dopaminergic neurons already at diagnosis. As this loss of neurons starts decades before diagnosis, understanding the prodromal stages of the disease might offer novel strategies to curb its progression. While the precise pathogenic mechanisms underlying PD remain incompletely understood, growing evidence suggests that neuroinflammation and immune dysregulation play a central role in the development and progression of the disease. Here, we delve into the emerging roles of microglia, the resident immune cells of the central nervous system, in the pathogenesis of prodromal and early-stage PD. We emphasize that microglia contribute to neuroinflammation, protein aggregation and neurodegeneration, although the underlying mechanisms are not yet known. Neuroimaging studies have provided valuable insights into the patterns of microglial activation detected in individuals with prodromal PD and at the time of clinical diagnosis. Furthermore, we highlight the complex interplay between immune dysregulation and neurodegeneration along PD development, including alterations in the peripheral immune system, brain-gut interactions and brain-immune interfaces. Lastly, we outline existing models for investigating microglial involvement in prodromal PD, along with the impact of anti-inflammatory therapies and strategies to modify risk factors. In conclusion, targeting microglial activation and immune dysfunctions in individuals at risk of PD could represent a promising preventive measure and may offer novel therapeutic strategies for early intervention and disease modification.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
| |
Collapse
|
5
|
Rettura F, Lambiase C, Tedeschi R, Grosso A, Cancelli L, Ricchiuti A, Bottari A, Giacomelli L, de Bortoli N, Bellini M. Mucoprotectants and gut barrier: mechanisms of action and clinical applications in IBS. Is there a possible role? Front Pharmacol 2025; 16:1538791. [PMID: 40421206 PMCID: PMC12104585 DOI: 10.3389/fphar.2025.1538791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/14/2025] [Indexed: 05/28/2025] Open
Abstract
Impaired gut barrier function plays a pivotal role in the pathophysiology of irritable bowel syndrome (IBS), particularly in IBS with diarrhea. Mucoprotectants, such as xyloglucan, gelatin tannate and pea protein tannins, offer a novel therapeutic approach by restoring intestinal permeability and reducing inflammation. This review assesses preclinical and clinical evidence supporting mucoprotectants in IBS with diarrhea management. Preclinical studies indicate their efficacy in reducing intestinal permeability and inflammation, while clinical trials demonstrate improvements in stool consistency, abdominal pain and bloating. Despite these promising results, comparative studies are needed to establish the superiority of specific mucoprotectants and their optimal use in clinical practice.
Collapse
Affiliation(s)
- Francesco Rettura
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Gastroenterology Unit, Annunziata Hospital, Cosenza, Italy
| | - Christian Lambiase
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riccardo Tedeschi
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Grosso
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lorenzo Cancelli
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angelo Ricchiuti
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Bottari
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Nicola de Bortoli
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Regional Center for Functional and Motility Digestive Disorders, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Zhang T, Wang Y, Gu Y, Wu J, Zhan X, Gong P. Gellan gum-sialoglycan conjugates: a mucin mimic for alleviating inflammation in Caco-2 cells and modulating gut microbiota in the elderly. Int J Biol Macromol 2025; 310:143478. [PMID: 40286969 DOI: 10.1016/j.ijbiomac.2025.143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
The sialylation of intestinal mucins plays a crucial role in maintaining intestinal homeostasis and shaping the gut microbiota. This study aims to develop a mucin-like polymer to modulate the intestinal microbiota in the elderly individuals. We synthesized functionalized conjugates using sialic acid monomer, 3'-sialyllactose, and Gellan gum, resulting in a series of GG-sialoglycan conjugates with diverse glycan chain lengths and terminal structures. The sialic acid contents of GG-EDA-Sia, GG-EDA-SL, GG-HAD-Sia, and GG-HAD-SL were 28.48 %, 29.78 %, 23.45 and 41.58 %, respectively. These conjugates exhibited anti-digestion effects. In addition, they demonstrated favorable biocompatibility and exhibited notable anti-inflammatory properties. In vitro fermentation experiments using fecal bacteria from elderly individuals revealed that GG-sialoglycan conjugates enhanced the proliferation of beneficial bacteria such as Lactobacillus, Bifidobacterium, and Blautia, while simultaneously suppressing pathogens like Escherichia-Shigella. It is worth noting that GG-sialoglycan conjugates containing 3'-sialyllactose exhibited superior prebiotic activity compared to those with sialic acid monomer. In summary, our findings strongly support the promising potential of functional sialic acid-based macromolecular glycan conjugates as a novel strategy to improve aging-related intestinal health.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yiqun Gu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Gong
- Department of Obstetrical, Affiliated Hospital of Jiangnan University, Wuxi 214123, China
| |
Collapse
|
7
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
9
|
Scarpetta V, Ho KH, Trapp M, Patrizi A. Choroid plexus: Insights from distinct epithelial cellular components. Curr Opin Neurobiol 2025; 93:103028. [PMID: 40267629 DOI: 10.1016/j.conb.2025.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/25/2025]
Abstract
The choroid plexus (ChP) serves as a vital interface between blood and cerebrospinal fluid (CSF), playing a pivotal role in central nervous system (CNS) development and communication with the body. This review mainly summarizes how the ChP epithelial cells respond to physiological and pathological stimuli, emphasizing the role of distinct organelles and key molecular signaling pathways. Additionally, we discuss the roles of ChP cilia, an evolutionary conserved organelle whose function is still under investigation. Understanding these processes is essential for elucidating how ChP function modulates intrinsic and extrinsic stimuli, which are crucial for maintaining CNS and body homeostasis.
Collapse
Affiliation(s)
- Valentina Scarpetta
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin 10126, Italy
| | - Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
10
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
11
|
Baumgart DC, Cheng CH, Du TX, Parkes MD, Sadowski DC, Wine E, Hoentjen F, Halloran BP, Montano-Loza A, Zepeda-Gomez S, Wong K, Peerani F, Goebel R, Ross Mitchell J. Network analysis of extraintestinal manifestations and associated autoimmune disorders in Crohn's disease and ulcerative colitis. NPJ Digit Med 2025; 8:209. [PMID: 40234671 PMCID: PMC12000450 DOI: 10.1038/s41746-025-01504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/06/2025] [Indexed: 04/17/2025] Open
Abstract
We detect and interactively visualize occurrence, frequency, sequence, and clustering of extraintestinal manifestations (EIM) and associated immune disorders (AID) in 30,334 inflammatory bowel disease (IBD) patients (Crohn's disease (CD) n = 15924, ulcerative colitis (UC) n = 11718, IBD unclassified, IBD-U n = 2692, 52% female, median age 40 years (IQR: 25)) with artificial intelligence (AI). 57% (CD > UC 60% vs. 54%, p < 0.00001) had one or more EIM and/or AID. Mental, musculoskeletal and genitourinary disorders were most frequently associated with IBD: 18% (CD vs. UC 19% vs. 16%, p < 0.00001), 17% (CD vs. UC 20% vs. 15%, p < 0.00001) and 11% (CD vs. UC 13% vs. 9%, p < 0.00001), respectively. AI detected 4 vs. 5 vs. 5 distinct EIM/AID communities with 420 vs. 396 vs. 467 nodes and 11,492 vs. 9116 vs. 16,807 edges (links) in CD vs. UC vs. IBD, respectively. Our newly developed interactive free web app shows previously unknown communities, relationships, and temporal patterns-the diseasome and interactome.
Collapse
Affiliation(s)
- Daniel C Baumgart
- Department of Gastroenterology and Hepatology, Charité Medical School, Humboldt-University of Berlin, Berlin, Germany.
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada.
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada.
| | - C Hing Cheng
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tian X Du
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael D Parkes
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel C Sadowski
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank Hoentjen
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Aldo Montano-Loza
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Karen Wong
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Farhad Peerani
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Randolph Goebel
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada
| | - J Ross Mitchell
- College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Health Services, Edmonton, AB, Canada
| |
Collapse
|
12
|
Erreni M, Fumagalli MR, Marozzi M, Leone R, Parente R, D’Anna R, Doni A. From surfing to diving into the tumor microenvironment through multiparametric imaging mass cytometry. Front Immunol 2025; 16:1544844. [PMID: 40292277 PMCID: PMC12021836 DOI: 10.3389/fimmu.2025.1544844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem where malignant and non-malignant cells cooperate and interact determining cancer progression. Cell abundance, phenotype and localization within the TME vary over tumor development and in response to therapeutic interventions. Therefore, increasing our knowledge of the spatiotemporal changes in the tumor ecosystem architecture is of importance to better understand the etiologic development of the neoplastic diseases. Imaging Mass Cytometry (IMC) represents the elective multiplexed imaging technology enabling the in-situ analysis of up to 43 different protein markers for in-depth phenotypic and spatial investigation of cells in their preserved microenvironment. IMC is currently applied in cancer research to define the composition of the cellular landscape and to identify biomarkers of predictive and prognostic significance with relevance in mechanisms of drug resistance. Herein, we describe the general principles and experimental workflow of IMC raising the informative potential in preclinical and clinical cancer research.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matteo Marozzi
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Roberto Leone
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
13
|
Xu H, Hehnly C, Lehtinen MK. The choroid plexus: a command center for brain-body communication during inflammation. Curr Opin Immunol 2025; 93:102540. [PMID: 40020255 PMCID: PMC11919389 DOI: 10.1016/j.coi.2025.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/08/2025]
Abstract
During brain inflammation, rigorous regulation of brain-body communication is required for sufficient, but not excessive, immune activation. As a crucial neuroimmune interface, the choroid plexus (ChP) epithelium serves as both a physical barrier between blood and cerebrospinal fluid (CSF) and a gateway allowing peripheral immune cell entry into the central nervous system (CNS). Recent years have witnessed increasing investigations of ChP events during brain inflammation. Here, we contextualize new findings with established ChP core functions, including CSF secretion and blood-CSF barrier regulation. We reason that the ChP is an organ where immune and nonimmune cells collaborate to defend the CNS. We discuss the pertinent mechanisms and the implications for neurologic disease etiology and treatment. Finally, we discuss outstanding questions for this rapidly expanding field and suggest key technologies and experimental steps to elucidate the full range of ChP functions during neuroinflammatory conditions, such as infection, injury, and aging.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Santos J, Maran PL, Rodríguez-Urrutia A. Stress, microbiota, and the gut-brain axis in mental and digestive health. Med Clin (Barc) 2025; 164:295-304. [PMID: 39824687 DOI: 10.1016/j.medcli.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025]
Abstract
The prevailing mind-body dualism in contemporary medicine, rooted in reductionism and the fragmentation of knowledge, has impeded the development of a conceptual model that can adequately address the complexity of illnesses. Integrating biomedical data into a cohesive model that considers the mind-body-context interconnections is essential. This integration is not merely theoretical; rather, it has significant clinical implications. This is exemplified by chronic stress-related mental and digestive disorders. The onset and development of these disorders are intimately linked to chronic psychological stress via the brain-gut-microbiota axis. The present article examines the evidence and mechanisms indicating that stress is a primary factor and a potentiator of symptom severity in common mental health and digestive diseases, with a particular focus on human studies. However, due to space limitations, only a very general overview of preventive and therapeutic clinical strategies is provided. It is hoped that the recurring phrase, "Everything that happens to you is due to stress," will become more comprehensible to the physician after reading this manuscript.
Collapse
Affiliation(s)
- Javier Santos
- Gastroenterology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Hospital Campus, Barcelona, Spain; Digestive Physiology and Physiopathology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Patricia Laura Maran
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amanda Rodríguez-Urrutia
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Treatment-Resistant Depression Programme, The Brain-Inmune-Gut Unit, Mental Health Department, Vall d'Hebron Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Li Z, Chu T, Sun X, Zhuang S, Hou D, Zhang Z, Sun J, Liu Y, Li J, Bian Y. Polyphenols-rich Portulaca oleracea L. (purslane) alleviates ulcerative colitis through restiring the intestinal barrier, gut microbiota and metabolites. Food Chem 2025; 468:142391. [PMID: 39675274 DOI: 10.1016/j.foodchem.2024.142391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ulcerative colitis (UC) is a recurrent intestinal disease caused by a complex of factors, and there are serious adverse effects and tolerance problems associated with the current long-term use of therapeutic drugs. The development of natural food sources and multi-targeted drugs for the treatment of UC is imminent. Portulaca oleracea L. (PO), as a vegetable, has been shown in studies to have an anti-UC effects. However, the relationship between the abundant active ingredients contained in Portulaca oleracea L. and the improvement of intestinal barrier, gut microbiota and metabolites is unclear. In the present study, Portulaca oleracea L. which was found to be rich in phenolic acid-based active ingredients, were effective in alleviating dextran sulfate sodium (DSS)-induced body weight loss, disease activity index (DAI) score and colon length in mice. It also decreased C-reactive protein (CRP) and myeloperoxidase (MPO) responses, reduced the permeation of fluorescein isothiocyanate (FITC)-dextran, lipopolysaccharide (LPS) and evans blue (EB), and improved histopathological scores. Meanwhile, in vitro and in vivo validation revealed the protective effects of purslane on the intestinal barrier indicators ZO-1, Occludin and Claudin-1, and inhibited the expression of inflammation-associated iNOS and NLRP3 proteins through the NF-κB signaling pathway. In addition, purslane increased the diversity of the intestinal flora, enhancing the proportion of the genera Butyricoccus, Dorea and Bifidobacterium and decreasing the percentage of Bacteroides, Turicibacter and Parabacteroides. Serum metabolomics analysis showed that the imbalance of 39 metabolites was significantly reversed after PO deployment. Enrichment analysis showed that Pentose phosphate pathway and Pyruvate metabolism pathway were the key pathways of PO against UC. Overall, purslane effectively improved the intestinal barrier disruption and intestinal inflammation by inhibiting the NF-κB signaling pathway, and adjusted the disorder of gut microbiota and metabolites to exert anti-UC effects.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shen Zhuang
- College of Veterinary Medicine & Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dianbo Hou
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaohan Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jialu Sun
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yifei Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
16
|
Li SH, Huang QH, Yang QQ, Huang Q, Wang DX, Yang J, Huang SH, Zhang SY, Wang JM, Xie LS, Yu SG, Wu QF. The shared mechanism of barrier dysfunction in ulcerative colitis and Alzheimer's disease: DDIT4/IL1β neutrophil extracellular traps drive macrophages-mediated phagocytosis. Int Immunopharmacol 2025; 149:114188. [PMID: 39908802 DOI: 10.1016/j.intimp.2025.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Ulcerative colitis (UC) and Alzheimer's disease (AD) share a common etiology as inflammatory diseases characterized by barrier deterioration. The aim of this study is to elucidate how neutrophil extracellular traps (NETs), serving as a comorbid etiological factor, can trigger the dysfunction in both the intestinal barrier and blood-brain barrier (BBB). Integrated bioinformatics analysis revealed 14 overlapped NETs-related differential expressed genes in UC and AD, which strongly featured barrier dysfunction. The following verification experiments identified enriched NETs, as well as damaged intestinal epithelium and BBB permeability, in the colon and prefrontal cortex of colitis mice and APP/PS1 mice. By employing pharmacological interventions (Cl-amidine and Disulfiram), we disrupted the formation of NETs and discovered significantly restored barrier integrity and attenuated inflammation. Further enrichment and correlation analysis indicated, for the first time, DDIT4/IL-1β NETs might drive macrophage-mediated phagocytosis to induce barrier dysfunction in UC and AD. Our findings originally established the peripheral-central inflammation interactions of UC and AD from the perspective of NETs, highlighting the potential valuable roles in gut-brain interactions and future clinic translational therapeutics.
Collapse
Affiliation(s)
- Si-Hui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qian-Hui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qing-Qing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qin Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - De-Xian Wang
- College of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jiao Yang
- Suining Municipal Hospital of Traditional Chinese Medicine, Suining, Sichuan 629000, China
| | - Si-Han Huang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Si-Yu Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jun-Meng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lu-Shuang Xie
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu-Guang Yu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of Traditional Chinese Medicine), Ministry of Education, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
17
|
Chen D, Bi X, Feng Q, Sun Y. Supplementation with Lentil ( Lens culinaris) Hull Soluble Dietary Fiber Ameliorates Sodium Dextran Sulfate-Induced Colitis and Behavioral Deficits via the Gut-Brain Axis. Foods 2025; 14:870. [PMID: 40077572 PMCID: PMC11898428 DOI: 10.3390/foods14050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, the impact of lentil hull soluble dietary fibers (SDFs) on colitis and behavioral deficits in mice was assessed. Structural characterizations of SDFs confirmed that cellulase-modified soluble dietary fiber exhibited better physicochemical properties: more porous microstructure; similar polysaccharide structure; more stable particle size distribution; higher crystallinity; better adsorption capacity; and lower viscosity. Additionally, we explored its potential cognitive benefits via the gut-brain axis by behavioral tests, histopathology, 16S rRNA sequencing, gas chromatography and metabolomics analysis. The results showed that SDFs significantly improved inflammatory symptoms in colon and brain and cognitive behaviors. LSDF had better efficacy than HSDF. LSDF intervention decreased the harmful bacteria abundance (Bacteroides, Flexispira and Escherichia, etc.) and increased beneficial bacteria abundance (Aggregatibacter and Helicobacter, etc.). LSDF also affected brain metabolites through the sphingolipid metabolism. Spearman correlation analysis showed that there was a positive correlation between harmful bacteria with inflammatory factors (LPS, IL-1β, IL-6, and TNF-α, etc.) and sphingolipid metabolites, while beneficial bacteria were positively correlated with brain-derived neurotrophic factor (BDNF), IL-10, and cognitive behavior. This study highlights the value of SDFs in future diet-based therapeutic strategies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Dongying Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Qian Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
18
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
19
|
Di Napoli A, Pasquini L, Visconti E, Vaccaro M, Rossi-Espagnet MC, Napolitano A. Gut-brain axis and neuroplasticity in health and disease: a systematic review. LA RADIOLOGIA MEDICA 2025; 130:327-358. [PMID: 39718685 DOI: 10.1007/s11547-024-01938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024. Studies were selected based on employed techniques. We excluded reviews, studies without connectivity focus, studies on non-human subjects. Forty-nine papers were selected. Employed techniques in healthy subjects included 15 functional magnetic resonance imaging studies (fMRI), 5 diffusion tensor imaging, (DTI) 1 electroencephalography (EEG), 6 structural magnetic resonance imaging, 2 magnetoencephalography, 1 spectroscopy, 2 arterial spin labeling (ASL); in patients 17 fMRI, 6 DTI, 2 EEG, 9 structural MRI, 1 transcranial magnetic stimulation, 1 spectroscopy, 2 R2*MRI. In healthy subjects, the gut microbiota was associated with connectivity of areas implied in cognition, memory, attention and emotions. Among the tested areas, amygdala and temporal cortex showed functional and structural differences based on bacteria abundance, as well as frontal and somatosensory cortices, especially in patients with inflammatory bowel syndrome. Several studies confirmed the connection between microbiota and brain functions in healthy subjects and patients affected by gastrointestinal to renal and psychiatric diseases.
Collapse
Affiliation(s)
- Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy
| | - Luca Pasquini
- Radiology Department, Memorial Sloan Kettering Cancer Center, New York City, 10065, USA.
- Radiology Department, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA.
| | | | - Maria Vaccaro
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | | | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| |
Collapse
|
20
|
Jin L, Hu R, Qing Y, Rang Z, Cui F. Exploring the Role of Gut Vascular Barrier Proteins in HIV-Induced Mucosal Damage: A Comparative Study. AIDS Res Hum Retroviruses 2025; 41:159-166. [PMID: 39501662 DOI: 10.1089/aid.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
This study aims to compare intestinal mucosal damage and the expression levels of occludin, zonula occludens-1 (ZO-1), vascular endothelial (VE)-cadherin, β-catenin, and plasmalemma vesicle-associated protein (PLVAP) in the gut vascular barrier (GVB) among people living with HIV (PLWH), asymptomatic PLWH, and healthy volunteers (non-PLWH). Three groups were selected for the study: PLWH, asymptomatic PLWH, and healthy volunteers. Colonic mucosal tissue samples were collected via colonoscopy from all participants. Histological examination of the colonic mucosa was conducted using hematoxylin and eosin staining. The expression levels of occludin, ZO-1, VE-cadherin, β-catenin, and PLVAP were assessed using RT-qPCR, immunohistochemistry, and western blot analyses. Pathological scores of colonic mucosa in PLWH and asymptomatic PLWH were significantly higher than those in non-PLWH (p < .001 and p = .0056, respectively). CD4+ T cell counts in asymptomatic PLWH and non-PLWH were significantly higher than in PLWH (p < 0.05). The CD4+/CD8+ T cell ratio in non-PLWH significantly exceeded those in PLWH and asymptomatic PLWH (p < .05). Analysis of protein and mRNA expression revealed: (1) no statistically significant differences in PLVAP-mRNA expression across all groups (p > .05); (2) higher PLVAP protein levels in PLWH compared with asymptomatic PLWH and non-PLWH (p < .05), with no significant differences between asymptomatic PLWH and non-PLWH (p = .632); (3) significantly higher PLVAP expression in the colonic mucosa of PLWH and asymptomatic PLWH compared with non-PLWH (p = .034 and p = .011, respectively), with no significant differences between PLWH and asymptomatic PLWH (p > .999). ZO-1 expression was significantly lower in PLWH than in non-PLWH (p = .012), with no notable differences between asymptomatic PLWH and other groups. PLWH, compared with healthy controls, exhibit significant inflammatory changes in the intestinal mucosa. PLVAP expression serves as a potential indicator to assess the extent of GVB damage and disease progression in PLWH.
Collapse
Affiliation(s)
- Li Jin
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Hu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Qing
- Department of Proctology and Dermatology, Chengdu Anorectal Hospital, Chengdu, China
| | - Zhen Rang
- Department of Dermatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Cui
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
22
|
Qiao M, Ni J, Qing H, Qiu Y, Quan Z. Role of Peripheral NLRP3 Inflammasome in Cognitive Impairments: Insights of Non-central Factors. Mol Neurobiol 2025:10.1007/s12035-025-04779-8. [PMID: 40000575 DOI: 10.1007/s12035-025-04779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cognitive impairments are common clinical manifestation of Alzheimer's disease, vascular dementia, type 2 diabetes mellitus, and autoimmune diseases. Emerging evidence has suggested a strong correlation between peripheral chronic inflammation and cognitive impairments. For example, nearly 40% of individuals with inflammatory bowel disease also suffer from cognitive impairments. In this condition, NLRP3 inflammasome (NLRP3-I) generating pro-inflammatory cytokines like IL-1β serves as a significant effector, and its persistence exerts adverse effects to both periphery and the brain. Moreover, investigations on serum biomarkers of mild cognitive impairments have shown NLRP3-I components' upregulation, suggesting the involvement of peripheral inflammasome pathway in this disorder. Here, we systematically reviewed the current knowledge of NLRP3-I in inflammatory disease to uncover its potential role in bridging peripheral chronic inflammation and cognitive impairments. This review summarizes the molecular features and ignition process of NLRP3-I in inflammatory response. Meanwhile, various effects of NLRP3-I involved in peripheral inflammation-associated disease are also reviewed, especially its chronic disturbances to brain homeostasis and cognitive function through routes including gut-brain, liver-brain, and kidney-brain axes. In addition, current promising compounds and their targets relative to NLRP3-I are discussed in the context of cognitive impairments. Through the detailed investigation, this review highlights the critical role of peripheral NLRP3-I in the pathogenesis of cognitive disorders, and offers novel perspectives for developing effective therapeutic interventions for diseases associated with cognitive impairments. The present review outlines the current knowledge on the ignition of NLRP3-I in inflammatory disease and more importantly, emphasizes the role of peripheral NLRP3-I as a causal pathway in the development of cognitive disorders. Although major efforts to restrain cognitive decline are mainly focused on the central nervous system, it has become clear that disturbances from peripheral immune are closely associated with the dysfunctional brain. Therefore, attenuation of these inflammatory changes through inhibiting the NLRP3-I pathway in early inflammatory disease may reduce future risk of cognitive impairments, and in the meantime, considerations on such pathogenesis for combined drug therapy will be required in the clinical evaluation of cognitive disorders.
Collapse
Affiliation(s)
- Mengfan Qiao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
23
|
Denzer L, Muranyi W, Herold R, Stump-Guthier C, Ishikawa H, Sticht C, Schroten H, Schwerk C, Weichert S. Transcriptome and Functional Comparison of Primary and Immortalized Endothelial Cells of the Human Choroid Plexus at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2025; 26:1779. [PMID: 40004242 PMCID: PMC11856769 DOI: 10.3390/ijms26041779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human choroid plexus (CP) is the location of the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the epithelial cells of the CP mainly contribute to the formation of the BCSFB, the vessels of the CP are built by fenestrated endothelial cells. Still, the CP endothelium can contribute to barrier function. By ectopic expression of human telomerase reverse transcriptase (hTERT) in primary human CP endothelial cells (HCPEnCs), we recently generated and characterized immortalized HCPEnCs (iHCPEnCs). Here, we compared primary cells of the sixth passage (HCPEnCs p6) with a lower (p20) and a higher passage (p50) of iHCPEnCs by transcriptome analysis. A high concordance of HCPEnCs and both passages of iHCPEnCs was observed, as only small proportions of the transcripts examined were significantly altered. Differentially expressed genes (DEGs) were identified and assigned to potentially affected biological processes by gene set enrichment analysis (GSEA). Various components of the endothelial barrier-relevant Wnt signaling were detected in HCPEnCs and iHCPEnCs. Functional analysis of HCPEnCs and iHCPEnCs showed equal marginal activation of Wnt signaling, supporting the downregulation of β-catenin (CTNNB) signaling in CP endothelial cells, and a contribution to the barrier function by the CP endothelium was retained until passage 100 (p100) of iHCPEnCs. Overall, our data support the suitability of iHCPEnCs as an in vitro model of the CP endothelium over extended passages.
Collapse
Affiliation(s)
- Lea Denzer
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Weichert
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.D.); (W.M.); (R.H.); (C.S.-G.); (H.S.); (C.S.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
24
|
Liao X, Liu H, Li Y, Zhang W, Dai Q, Wei H, Zhou J, Xie X, Zhou H. Dual Role of α-MSH in Colitis Progression: Mediating Neutrophil Differentiation via Bone Marrow. J Inflamm Res 2025; 18:2011-2029. [PMID: 39959638 PMCID: PMC11827500 DOI: 10.2147/jir.s503621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) comprises a group of autoimmune disorders characterized by chronicity and resistance to cure, with an unknown etiology. Recent studies on the brain-gut axis suggest that the central nervous system (CNS), particularly the hypothalamic-pituitary axis (HPA), may play a crucial role in modulating the immune system and influencing disease progression. However, the specific role and mechanism of the HPA in IBD pathogenesis remain unclear. This study aims to investigate the alterations in the HPA and its potential roles during IBD development. Methods We utilized a dextran sodium sulfate (DSS)-induced colitis model in mice and employed immunofluorescence, real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), among other techniques, to evaluate the impact of colitis on the HPA. Additionally, we used flow cytometry, adeno-associated virus-mediated gene silence, parabiosis and single-cell RNA sequencing to uncover the specific roles and mechanisms of the HPA in colitis. Results Our results indicate that colitis activates HPA secretion and increases α-MSH. α-MSH acts on the MC5R present on the surface of hematopoietic stem cells (HSCs) in the bone marrow, altering the bone marrow microenvironment and promoting HSCs proliferation and differentiation into neutrophils. This process enhances the clearance of pathogenic microorganisms during the acute phase of colitis, while inducing sustained inflammatory responses during the remission phase. Conclusion In summary, our study demonstrates the dual role of HPA activation and α-MSH secretion induced by colitis in the pathogenesis of IBD. These findings offer vital guidance for optimizing personalized treatment of IBD, emphasizing the importance of carefully managing the timing and dosage of α-MSH for its effective clinical application.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hengqian Liu
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Yuanyuan Li
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People’s Republic of China, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qian Dai
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Haoqi Wei
- Department of General Surgery, The PLA 77th Group Army Hospital, Leshan City, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
25
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
26
|
Kovacs M, Dominguez-Belloso A, Ali-Moussa S, Deczkowska A. Immune control of brain physiology. Nat Rev Immunol 2025:10.1038/s41577-025-01129-6. [PMID: 39890999 DOI: 10.1038/s41577-025-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
The peripheral immune system communicates with the brain through complex anatomical routes involving the skull, the brain borders, circumventricular organs and peripheral nerves. These immune-brain communication pathways were classically considered to be dormant under physiological conditions and active only in cases of infection or damage. Yet, peripheral immune cells and signals are key in brain development, function and maintenance. In this Perspective, we propose an alternative framework for understanding the mechanisms of immune-brain communication. During brain development and in homeostasis, these anatomical structures allow selected elements of the peripheral immune system to affect the brain directly or indirectly, within physiological limits. By contrast, in ageing and pathological settings, detrimental peripheral immune signals hijack the existing communication routes or alter their structure. We discuss why a diversity of communication channels is needed and how they work in relation to one another to maintain homeostasis of the brain.
Collapse
Affiliation(s)
- Mariángeles Kovacs
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Amaia Dominguez-Belloso
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Samir Ali-Moussa
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Aleksandra Deczkowska
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France.
| |
Collapse
|
27
|
Qiu M, Geng H, Zou C, Zhao X, Zhao C, Xie J, Wang J, Zhang N, Hu Y, Fu Y, Wang J, Hu X. Intestinal inflammation exacerbates endometritis through succinate production by gut microbiota and SUCNR1-mediated proinflammatory response. Int Immunopharmacol 2025; 146:113919. [PMID: 39736240 DOI: 10.1016/j.intimp.2024.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Endometritis poses higher health risks to women. Clinical practice has found that gastrointestinal dysfunction is more likely to lead to the occurrence of endometritis. However, the mechanism is unclear. This study explored the influence and mechanism of DSS-induced intestinal inflammation on endometritis. Our findings demonstrate that DSS-induced intestinal inflammation can worsen LPS-induced endometritis in mice, and this effect is dependent on the gut microbiota, as depleting the gut microbiota eliminates this protective effect. Similarly, FMT from DSS-treated mice to recipient mice exacerbates LPS-induced endometritis. In addition, treatment of DSS disrupted an imbalance of succinate-producing and succinate-consuming bacteria and increased the levels of succinate in the gut and uterine tissues. Furthermore, treatment with succinate aggravates LPS-induced endometritis by activating the succinate receptor 1 (SUCNR1), evidenced by inhibition of the activation of SUCNR1 reversed the inflammatory response in uterine tissues induced by succinate during endometritis induced by LPS. Collectively, the results suggested that dysbiosis of the gut microbiota exacerbates LPS-induced endometritis by production and migration of succinate from gut to uterine tissues via the gut-uterus axis, then activates the SUCNR1. This identifies gut-derived succinate as a novel target for treating endometritis, and it indicates that targeting the gut microbiota and its metabolism could be a potential strategy for intervention in endometritis.
Collapse
Affiliation(s)
- Min Qiu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Huafeng Geng
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Chenyu Zou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaotong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jiaxin Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jinnan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Junrong Wang
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
28
|
Fan X, Li J, Gao Y, Li L, Zhang H, Bi Z. The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway. Mol Med 2025; 31:19. [PMID: 39844078 PMCID: PMC11756144 DOI: 10.1186/s10020-025-01067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway. METHODS The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca2+/P3+, and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured. RESULTS Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway. CONCLUSIONS Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.
Collapse
Affiliation(s)
- Xing Fan
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Jing Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Yan Gao
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Lin Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Haisong Zhang
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Zhaoyu Bi
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| |
Collapse
|
29
|
Xia M, Lu J, Lan J, Teng T, Shiao R, Sun H, Jin Z, Liu X, Wang J, Wu H, Wang C, Yi H, Qi Q, Li J, Schneeberger M, Shen W, Lu B, Chen L, Ilanges A, Zhou X, Yu X. Elevated IL-22 as a result of stress-induced gut leakage suppresses septal neuron activation to ameliorate anxiety-like behavior. Immunity 2025; 58:218-231.e12. [PMID: 39644894 DOI: 10.1016/j.immuni.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Psychological stress and its sequelae pose a major challenge to public health. Immune activation is conventionally thought to aggravate stress-related mental diseases such as anxiety disorders and depression. Here, we sought to identify potentially beneficial consequences of immune activation in response to stress. We showed that stress led to increased interleukin (IL)-22 production in the intestine as a result of stress-induced gut leakage. IL-22 was both necessary and sufficient to attenuate stress-induced anxiety behaviors in mice. More specifically, IL-22 gained access to the septal area of the brain and directly suppressed neuron activation. Furthermore, human patients with clinical depression displayed reduced IL-22 levels, and exogenous IL-22 treatment ameliorated depressive-like behavior elicited by chronic stress in mice. Our study thus identifies a gut-brain axis in response to stress, whereby IL-22 reduces neuronal activation and concomitant anxiety behavior, suggesting that early immune activation can provide protection against psychological stress.
Collapse
Affiliation(s)
- Mengyu Xia
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junmei Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiabin Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rani Shiao
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hongbin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zheyu Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Changchun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Han Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingqing Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Boxun Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Chen
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Anoj Ilanges
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
30
|
Wang Z, Wang ZX, Xu KF, An Y, Cui M, Zhang X, Tian L, Li C, Wu FG. A Metal-Polyphenol-Based Antidepressant for Alleviating Colitis-Associated Mental Disorders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410993. [PMID: 39623787 DOI: 10.1002/adma.202410993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/26/2024] [Indexed: 01/24/2025]
Abstract
Emerging evidence suggests that patients with inflammatory bowel diseases (IBDs) are predisposed to psychosocial disturbances, such as depression and anxiety. Regrettably, clinical antidepressants exhibit unsatisfactory therapeutic efficacy in IBD-associated psychosocial disturbances, primarily attributed to the inherent intestinal disorders and intricate bidirectional relationship between the gut and the brain. Herein, we report a metal-polyphenol-based antidepressant to alleviate mental disorders in dextran sulfate sodium-induced experimental acute colitis mice via modulating the microbiota-gut-brain axis. The antidepressant, termed CSMTC, comprises a core of melittin-encapsulated natural antioxidant enzymes (i.e., catalase and superoxide dismutase) and a protective shell composed of tannic acid-cerium ion network. Upon oral administration to colitis mice, CSMTC can effectively restore colonic redox balance, reinforce the intestinal barrier, modulate gut microbiota composition, maintain the blood-brain barrier integrity, and regulate systemic immune responses. Notably, behavioral test results reveal that CSMTC significantly alleviates the colitis-associated mental disorder (e.g., depression-like behavior) via the microbiota-gut-brain axis by reducing neuroinflammation, enhancing hippocampal neural plasticity, modulating hippocampal immune responses, and restoring neurotransmitter homeostasis. This work may have implications for the development of new nanodrugs for treating inflammation-associated complications.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yaolong An
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Macheng Cui
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Linan Tian
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Department of Obstetrics and Gynaecology, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
31
|
Gong X, Cai W, Yang D, Wang W, Che H, Li H. Effect of the arabinogalactan from Ixeris chinensis (Thunb.) Nakai. attenuates DSS-induced colitis and accompanying depression-like behavior. Int J Biol Macromol 2025; 286:138525. [PMID: 39647733 DOI: 10.1016/j.ijbiomac.2024.138525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
An arabinogalactan (ICPA) was extracted from the medicinal and edible plant Ixeris chinensis (Thunb.) Nakai., and ICPA exhibited excellent immunomodulatory activity. In this research, the impact of ICPA on DSS-induced ulcerative colitis was investigated. The results indicated that ICPA ameliorated the symptoms of colitis mice including loss of body weight, decrease of disease activity index, shortness of colon length and reduction of spleen index that caused by DSS. After treatment with ICPA, inflammatory cell infiltration and crypt loss were alleviated, and the number of goblet epithelial cells was enriched. ICPA inhibited the overproduction of TNF-α, IL-1β, and NLRP3, and promoted the secretion of IL-10 in colon tissues. Meanwhile, the intestinal barrier integrity was restored through increasing the expression of ZO-1 and occludin. ICPA could also regulate the structure of gut microbiota through elevating the abundance of Turicibacter and Bifidobacterium, and decreasing the ratio of Bacteroidetes/Firmicutes. In addition, ICPA improved the depression-like behavior of UC mice, and reduced the expression of proteins NLRP3, GFAP, and Iba-1 in brain tissues. These results suggested ICPA had an alleviative effect on UC and accompanied depression-like behavior, and could be developed as a dietary supplement for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Xinwei Gong
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanshuang Cai
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dezhao Yang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Wang
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
32
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
33
|
Nian F, Chen Y, Xia Q, Zhu C, Wu L, Lu X. Gut microbiota metabolite trimethylamine N-oxide promoted NAFLD progression by exacerbating intestinal barrier disruption and intrahepatic cellular imbalance. Int Immunopharmacol 2024; 142:113173. [PMID: 39298816 DOI: 10.1016/j.intimp.2024.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, with the gut microbiota and its metabolites are important regulators of its progression. Trimethylamine N-oxide (TMAO), a metabolite of the gut microbiota, has been closely associated with various metabolic diseases, but its relationship with NAFLD remains to be elucidated. In this study, we found that fecal TMAO levels correlated with NAFLD severity. Moreover, TMAO promoted lipid deposition in HepG2 fatty liver cells and exacerbated hepatic steatosis in NAFLD rats. In the colon, TMAO undermined the structure and function of the intestinal barrier at various levels, further activated the TLR4/MyD88/NF-κB pathway, and inhibited the WNT/β-catenin pathway. In the liver, TMAO induced endothelial dysfunction with capillarization of liver sinusoidal endothelial cells, while modulating macrophage polarization. In conclusion, our study suggests that gut microbiota metabolite TMAO promotes NAFLD progression by impairing the gut and liver and that targeting TMAO could be an alternative therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Fulin Nian
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueying Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chen Zhu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Longyun Wu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
34
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
35
|
Hasegawa T, Lee CYC, Hotchen AJ, Fleming A, Singh R, Suzuki K, Yuzaki M, Watanabe M, Birch MA, McCaskie AW, Lénárt N, Tóth K, Dénes Á, Liu Z, Ginhoux F, Richoz N, Clatworthy MR. Macrophages and nociceptor neurons form a sentinel unit around fenestrated capillaries to defend the synovium from circulating immune challenge. Nat Immunol 2024; 25:2270-2283. [PMID: 39587345 PMCID: PMC11588661 DOI: 10.1038/s41590-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
A wide variety of systemic pathologies, including infectious and autoimmune diseases, are accompanied by joint pain or inflammation, often mediated by circulating immune complexes (ICs). How such stimuli access joints and trigger inflammation is unclear. Whole-mount synovial imaging revealed PV1+ fenestrated capillaries at the periphery of the synovium in the lining-sublining interface. Circulating ICs extravasated from these PV1+ capillaries, and nociceptor neurons and three distinct macrophage subsets formed a sentinel unit around them. Macrophages showed subset-specific responses to systemic IC challenge; LYVE1+CX3CR1+ macrophages orchestrated neutrophil recruitment and activated calcitonin gene-related peptide+ (CGRP+) nociceptor neurons via interleukin-1β. In contrast, major histocompatibility complex class II+CD11c+ (MHCII+CD11c+) and MHCII+CD11c- interstitial macrophages formed tight clusters around PV1+ capillaries in response to systemic immune stimuli, a feature enhanced by nociceptor-derived CGRP. Altogether, we identify the anatomical location of synovial PV1+ capillaries and subset-specific macrophage-nociceptor cross-talk that forms a blood-joint barrier protecting the synovium from circulating immune challenges.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
| | - Colin Y C Lee
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew J Hotchen
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Rahul Singh
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kunimichi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Andrew W McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
36
|
Cheng X, Meng X, Chen R, Song Z, Li S, Wei S, Lv H, Zhang S, Tang H, Jiang Y, Zhang R. The molecular subtypes of autoimmune diseases. Comput Struct Biotechnol J 2024; 23:1348-1363. [PMID: 38596313 PMCID: PMC11001648 DOI: 10.1016/j.csbj.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
37
|
Santos J, Rescigno M. Gut Barrier Leakiness: Time to Take It Seriously? Gastroenterology 2024; 167:1080-1082. [PMID: 39154775 DOI: 10.1053/j.gastro.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Javier Santos
- Gastroenterology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Hospital Campus, Barcelona, Spain; Digestive Physiology and Physiopathology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERhed), Instituto de Salud Carlos III, Madrid, Spain.
| | - Maria Rescigno
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
38
|
Barbaro MR, Cremon C, Marasco G, Savarino E, Guglielmetti S, Bonomini F, Palombo M, Fuschi D, Rotondo L, Mantegazza G, Duncan R, di Sabatino A, Valente S, Pasquinelli G, Vergnolle N, Stanghellini V, Collins SM, Barbara G. Molecular Mechanisms Underlying Loss of Vascular and Epithelial Integrity in Irritable Bowel Syndrome. Gastroenterology 2024; 167:1152-1166. [PMID: 39004156 DOI: 10.1053/j.gastro.2024.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND & AIMS The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and includes epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS Seventy-eight healthy subjects (controls) and 223 patients with IBS were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot, and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin. Caco-2 or human umbilical vein endothelial cell monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS The intestinal epithelial barrier was compromised in patients with IBS throughout the gastrointestinal tract. IBS-soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in human umbilical vein endothelial cell monolayers through the activation of protease-activated receptor-2 and histone deacetylase 11, resulting in vascular endothelial cadherin downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of patients with IBS. CONCLUSIONS Epithelial and vascular barriers are compromised in patients with IBS and contribute to clinical manifestations.
Collapse
Affiliation(s)
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology of the University of Padova, Padova, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Rotondo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Robin Duncan
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Antonio di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Department of Internal Medicine 1, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stephen M Collins
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
39
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
40
|
Sotelo‐Parrilla G, Ruiz‐Calero A, García‐Miranda P, Calonge ML, Vázquez‐Carretero MD, Peral MJ. Motor, mood, and memory impairments persist during remission periods in chronic colitis and are influenced by neuroinflammation and sex. FASEB J 2024; 38:e70133. [PMID: 39460563 PMCID: PMC11580723 DOI: 10.1096/fj.202400837r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Ulcerative colitis is a chronic pathology characterized by relapsing-remitting phases of intestinal inflammation. Additionally, some patients develop neuropsychiatric disorders, such as depression and anxiety, or cognitive deficits. We aimed to investigate whether the development of chronic colitis elicits memory, locomotion, and mood impairments. It further examined whether these impairments are influenced by the relapsing-remitting phases of the colitis or by sex. Here, we used a chronic colitis model in male and female rats, induced with sodium dextran sulfate, mirroring the phases of human ulcerative colitis. Our results revealed that the severity of colitis was slightly higher in males than females. Chronic colitis triggered motor and short-term memory deficits and induced anxiety- and depression-like behaviors that remained throughout the development of the disease. There are also sex differences under control or inflammatory conditions. Therefore, in both situations, females compared to males displayed: (i) slightly lower locomotion, (ii) increased anxiety-like behaviors, (iii) similar depression-like behaviors, and (iv) similar short-term memory deficit. Additionally, under control conditions, the mRNA levels of IL-1β, IL-6, and TNF-α were higher in the female hippocampus. In both sexes, when chronic colitis was established, the neuroinflammation was evidenced by increased mRNA levels of these three cytokines in the hippocampus and in the motor and prefrontal cortices. Interestingly, this neuroinflammation was slightly greater in males. In summary, we show that the development of chronic colitis caused persistent behavioral abnormalities, highlighting sex differences, and that could be a consequence, at least in part, of the increase in IL-1β, IL-6, and TNF-α in the brain.
Collapse
Affiliation(s)
- Gema Sotelo‐Parrilla
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - Pablo García‐Miranda
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | - María L. Calonge
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - María J. Peral
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| |
Collapse
|
41
|
Sun S, Chen Y, Yun Y, Zhao B, Ren Q, Sun X, Meng X, Yan C, Lin P, Liu S. Elevated peripheral inflammation is associated with choroid plexus enlargement in independent sporadic amyotrophic lateral sclerosis cohorts. Fluids Barriers CNS 2024; 21:83. [PMID: 39434103 PMCID: PMC11492712 DOI: 10.1186/s12987-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Using neuroimaging techniques, growing evidence has suggested that the choroid plexus (CP) volume is enlarged in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Notably, the CP has been suggested to play an important role in inflammation-induced CNS damage under disease conditions. However, to our knowledge, no study has investigated the relationships between peripheral inflammation and CP volume in sporadic ALS patients. Thus, in this study, we aimed to verify CP enlargement and explore its association with peripheral inflammation in vivo in independent ALS cohorts. METHODS Based on structural MRI data, CP volume was measured using Gaussian mixture models and further manually corrected in two independent cohorts of sporadic ALS patients and healthy controls (HCs). Serum inflammatory protein levels were measured using a novel high-sensitivity Olink proximity extension assay (PEA) technique. Xtreme gradient boosting (XGBoost) was used to explore the contribution of peripheral inflammatory factors to CP enlargement. Then, partial correlation analyses were performed. RESULTS CP volumes were significantly higher in ALS patients than in HCs in the independent cohorts. Compared with HCs, serum levels of CRP, IL-6, CXCL10, and 35 other inflammatory factors were significantly increased in ALS patients. Using the XGBoost approach, we established a model-based importance of features, and the top three predictors of CP volume in ALS patients were CRP, IL-6, and CXCL10 (with gains of 0.24, 0.18, and 0.15, respectively). Correlation analyses revealed that CRP, IL-6, and CXCL10 were significantly associated with CP volume in ALS patients (r = 0.462 ∼ 0.636, p < 0.001). CONCLUSION Our study is the first to reveal a consistent and replicable contribution of peripheral inflammation to CP enlargement in vivo in sporadic ALS patients. Given that CP enlargement has been recently detected in other brain diseases, these findings should consider extending to other disease conditions with a peripheral inflammatory component.
Collapse
Affiliation(s)
- Sujuan Sun
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Yujing Chen
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Yan Yun
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Zhao
- Department of Neurology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Qingguo Ren
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Xiaohan Sun
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Xiangshui Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
| | - Shuangwu Liu
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China.
| |
Collapse
|
42
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
43
|
Chen L, Cao H, Zhang X, Du X, Guan Y, Li M, Chang AK, He X, Li X, Bi X. Antidepressant effects of sulforaphane (SFN) and its derivatives SLL-III-9 and SLL-III-120 and their potential underlying mechanisms based on the microbiota-gut-brain axis. Food Funct 2024; 15:10539-10552. [PMID: 39370907 DOI: 10.1039/d3fo05278h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Broccoli (Brassica oleracea L.) is a vegetable with numerous nutritional properties, with sulforaphane (SFN) being the most abundant and unique bioactive ingredient. SFN has anti-inflammatory, antioxidant, and anti-cancer activities. In this study, a series of SFN derivatives were synthesized and screened for improved antidepressant effects. Among these, the SFN derivatives SLL-III-9 and SLL-III-120 were the best candidates, and the potential antidepressant mechanism of SFN, SLL-III-9, and SLL-III-120 associated with their effects in a chronic unpredictable mild stress (CUMS) mouse model was explored based on the microbiota-gut-brain axis. All three compounds were able to relieve depression-like behaviors in CUMS mice and regulate the composition of the gut bacteria Firmicutes, Actinobacteria, Parabasalia, and Tenericutes at the phylum level and Bacteroidales bacterium, Lachnospiraceae bacterium A4, Muribaculum intestinale, Muribaculaceae bacterium, and Prevotella sp. MGM1 at the species level, possibly altering their function associated with the anti-inflammatory effect. Additionally, SFN and its derivatives upregulated the expression of the tight junction proteins ZO-1, occludin, and claudin and increased the concentration of IL-10, dopamine (DA), 5-hydroxytryptamine (5-HT) and the brain-derived neurotrophic factor (BDNF), while downregulating the expressions of proteins related to the NF-κB/NLRP3 pathway and reducing the concentration of TNF-α. Further in vitro studies revealed significant inhibition of the production of inflammatory factors IL-1β, IL-18, IL-6, and TNF-α in LPS-activated BV2 cells via the NF-κB/NLRP3 pathway when these cells were treated with SFN or its two derivatives. Taken together, the results suggested that SFN and its two derivatives, SLL-III-9 and SLL-III-120, could be considered potential compounds for the development of a promising and safe agent for combating depression.
Collapse
Affiliation(s)
- Lili Chen
- College of Life Science, Liaoning University, Shenyang, 110036, China.
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, 110036, China
- College of Mathematics and Statistics, Liaoning University, Shenyang, 110036, China
| | - Huihui Cao
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Xin Zhang
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Xintong Du
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Yang Guan
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Mei Li
- College of Life Science, Liaoning University, Shenyang, 110036, China.
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co., Ltd, Kexing Science Park A1 1005, Nanshan Zone, Shenzhen 518057, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang, 110036, China.
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
44
|
Vidal PM, Brockie S, Farkas C, Hong J, Zhou C, Fehlings MG. Neuromotor decline is associated with gut dysbiosis following surgical decompression for Degenerative Cervical Myelopathy. Neurobiol Dis 2024; 200:106640. [PMID: 39159895 DOI: 10.1016/j.nbd.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) describes a spectrum of disorders that cause progressive and chronic cervical spinal cord compression. The clinical presentation can be complex and can include locomotor impairment, hand and upper extremity dysfunction, pain, loss of bladder and bowel function, as well as gastrointestinal dysfunction. Once diagnosed, surgical decompression is the recommended treatment for DCM patients with moderate to severe impairment. Our body is composed of a large community of microorganisms, known as the microbiota. Traumatic and non-traumatic spinal cord injuries (SCIs) can induce changes in the gut microbiota and gut microbiota derived metabolites. These changes have been reported as important disease-modifying factors after injury. However, whether gut dysbiosis is associated with functional neurological recovery after surgical decompression has not been examined to date. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of gut dysbiosis was assessed by gas chromatography and 16S rRNA sequencing from fecal samples before and after decompression. Neuromotor activity was assessed using the Catwalk test. Our results show that DCM pre- and post- surgical decompression is associated with gut dysbiosis, without altering short chain fatty acids (SCFAs) levels. Significant differences in Clostridia, Verrumicrobiae, Lachnospiracea, Firmicutes, Bacteroidales, and Clostridiaceae were observed between the DCM group (before decompression) and after surgical decompression (2 and 5 weeks). The changes in gut microbiota composition correlated with locomotor features of the Catwalk. For example, a longer duration of ground contact and dysfunctional swing in the forelimbs, were positively correlated with gut dysbiosis. These results show for the first time an association between gut dysbiosis and locomotor deterioration after delayed surgical decompression. Thus, providing a better understanding of the extent of changes in microbiota composition in the setting of DCM pre- and post- surgical decompression.
Collapse
Affiliation(s)
- Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Sydney Brockie
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Carlos Farkas
- Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Cindy Zhou
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
45
|
Iacucci M, Santacroce G, Majumder S, Morael J, Zammarchi I, Maeda Y, Ryan D, Di Sabatino A, Rescigno M, Aburto MR, Cryan JF, Ghosh S. Opening the doors of precision medicine: novel tools to assess intestinal barrier in inflammatory bowel disease and colitis-associated neoplasia. Gut 2024; 73:1749-1762. [PMID: 38851294 PMCID: PMC11422792 DOI: 10.1136/gutjnl-2023-331579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024]
Abstract
Mounting evidence underscores the pivotal role of the intestinal barrier and its convoluted network with diet and intestinal microbiome in the pathogenesis of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CRC). Moreover, the bidirectional association of the intestinal barrier with the liver and brain, known as the gut-brain axis, plays a crucial role in developing complications, including extraintestinal manifestations of IBD and CRC metastasis. Consequently, barrier healing represents a crucial therapeutic target in these inflammatory-dependent disorders, with barrier assessment predicting disease outcomes, response to therapy and extraintestinal manifestations.New advanced technologies are revolutionising our understanding of the barrier paradigm, enabling the accurate assessment of the intestinal barrier and aiding in unravelling the complexity of the gut-brain axis. Cutting-edge endoscopic imaging techniques, such as ultra-high magnification endocytoscopy and probe-based confocal laser endomicroscopy, are new technologies allowing real-time exploration of the 'cellular' intestinal barrier. Additionally, novel advanced spatial imaging technology platforms, including multispectral imaging, upconversion nanoparticles, digital spatial profiling, optical spectroscopy and mass cytometry, enable a deep and comprehensive assessment of the 'molecular' and 'ultrastructural' barrier. In this promising landscape, artificial intelligence plays a pivotal role in standardising and integrating these novel tools, thereby contributing to barrier assessment and prediction of outcomes.Looking ahead, this integrated and comprehensive approach holds the promise of uncovering new therapeutic targets, breaking the therapeutic ceiling in IBD. Novel molecules, dietary interventions and microbiome modulation strategies aim to restore, reinforce, or modulate the gut-brain axis. These advancements have the potential for transformative and personalised approaches to managing IBD.
Collapse
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Snehali Majumder
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jennifer Morael
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - Irene Zammarchi
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - David Ryan
- Department of Radiology, School of Medicine, University College Cork, Cork, Ireland
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Maria Rescigno
- IRCSS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria R Aburto
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, Byer LIJ, Shipley FB, Zawadzki ME, Cui J, Deng L, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas-Montanes J, Lehtinen MK. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 2024; 187:4946-4963.e17. [PMID: 39089253 PMCID: PMC11458255 DOI: 10.1016/j.cell.2024.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Lotfy
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sivan Gelb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lillian I J Byer
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Mya Webb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark L Andermann
- Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Peter B, Rebeaud J, Vigne S, Bressoud V, Phillips N, Ruiz F, Petrova TV, Bernier-Latmani J, Pot C. Perivascular B cells link intestinal angiogenesis to immunity and to the gut-brain axis during neuroinflammation. J Autoimmun 2024; 148:103292. [PMID: 39067313 DOI: 10.1016/j.jaut.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.
Collapse
Affiliation(s)
- Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Nicholas Phillips
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland.
| |
Collapse
|
48
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
49
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
50
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|