1
|
Thomas S, Smatti MK, Mohammad AlKhatib HA, Tayyar Y, Nizar M, Zedan HT, Ouhtit A, Althani AA, Nasrallah GK, Yassine HM. Antibody-dependent enhancement of SARS-CoV-2, the impact of variants and vaccination. Hum Vaccin Immunother 2025; 21:2505356. [PMID: 40411306 PMCID: PMC12118418 DOI: 10.1080/21645515.2025.2505356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/24/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025] Open
Abstract
This study characterized antibody-dependent enhancement (ADE) in serum samples from individuals exposed to SARS-CoV-2 via infection or vaccination and evaluated its association with SARS-CoV-2 variants (Wuhan and Omicron), MERS-CoV, and NL63. ADE assays were performed on sera from SARS-CoV-2-infected patients (n = 210) with varying disease severity and vaccinated individuals (n = 225) who received adenovirus vector, inactivated virus or mRNA vaccines. ADE was assessed using pseudoviruses (PVs) in BHK cells expressing FcgRIIa. Neutralizing antibody levels, total IgG, IgG subclasses, and complement activation were analyzed using ELISA and neutralization assays. ADE was observed in 6.2% of infection samples (primarily severe cases) and 5.3% of vaccinated samples (adenovirus-vector and inactivated virus groups). ADE-positive samples showed reduced neutralizing activity, while total IgG and IgG subclasses did not differ significantly between ADE-positive and negative samples. Complement activation was elevated in severe cases but did not correlate clearly with ADE. Notably, MERS-CoV PV induced ADE in a subset of infected samples, but no ADE was detected for NL63. ADE was observed in SARS-CoV-2-infected individuals, particularly in severe cases, and in those vaccinated with adenovirus-vector and inactivated virus vaccines, but not with mRNA vaccines. Cross-reactivity leading to ADE was detected for MERS-CoV but not for NL63. ADE was associated with reduced neutralizing antibody activity and elevated complement activation in severe infections, though the specific role of complement in ADE remains unclear. These findings highlight the need to investigate the mechanisms underlying ADE and its implications for vaccine design and post-infection immunity against respiratory viruses.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maria K. Smatti
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | | | - Yaman Tayyar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Institute of Biomedicine and Glycomics, Griffith University, Brisbane, Australia
| | - Muna Nizar
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
| | - Hadeel T. Zedan
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Asmaa A. Althani
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science
| | - Hadi M. Yassine
- Biomedical Research Center, QU Health, Qatar University, Doha, Qatar
- Department of Biomedical Science
| |
Collapse
|
2
|
Lay S, Bohaud C, Sorn S, Ken S, Rey FA, Ariën KK, Ly S, Duong V, Barba-Spaeth G, Auerswald H, Cantaert T. Toward a deeper understanding of dengue: novel method for quantification and isolation of envelope protein epitope-specific antibodies. mSphere 2025; 10:e0096124. [PMID: 40214258 DOI: 10.1128/msphere.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 05/28/2025] Open
Abstract
The dengue viruses (DENV) envelope (E) protein is the main target of the antibody (Ab) response. Abs target different epitopes on the E-protein, including sE-dimer, E domain III (EDIII), and fusion loop (FL). Anti-EDIII Abs are mainly serotype-specific, whereas anti-FL Abs can induce antibody-dependent enhancement (ADE) in vitro. Abs targeting sE-dimer epitopes can cross-neutralize different DENV serotypes. However, the involvement of each Ab subset in disease pathogenicity and/or protection remains unclear. We aimed to optimize the quantification and purification of DENV E-protein epitope-specific Abs from human samples. C-terminal biotinylated DENV2 E recombinant proteins (EDIII, soluble E [sE], and sE-dimer) were coupled to color-coded magnetic microspheres for a multiplex immunoassay (MIA), testing different antigen concentrations. Assay performance was evaluated using well-characterized anti-DENV monoclonal antibodies (mAbs) and total IgG from DENV seronegative and seropositive human plasma. Specific FL epitopes were blocked with mouse mAb clone 4G2 to quantify anti-FL- and sE-dimer-specific Abs, measuring antigen-antibody reactions as median fluorescence intensity (MFI). For isolation of E-protein epitope-specific antibodies, sE-proteins were conjugated to streptavidin resin beads. Total IgG from human plasma was incubated with immobilized EDIII to elute anti-EDIII Abs. The flow-through was incubated with sE-dimer resin beads to elute sE-dimer specific Ab enriched fraction, and the flow-through was applied to immobilized sE to elute anti-FL Abs. In conclusion, we have developed a serological assay to detect E-protein epitope-specific Abs in DENV-infected humans. Additionally, we successfully isolated anti-EDIII, anti-FL, and an enriched fraction of sE-dimer specific Abs from human samples.IMPORTANCEThe development of effective dengue virus (DENV) vaccines has been hampered by limited insights into the immunological mechanisms of protection. Our study addresses this gap by introducing a refined multiplex microsphere-based immunoassay (MIA) to quantify and isolate antibodies (Abs) targeting specific E-protein epitopes, such as E domain III (EDIII), the fusion loop (FL), and the sE-dimer specific Abs. This method provides detailed epitope-specific Ab profiling with high sensitivity and requires minimal sample volumes. The ability to isolate specific Ab subsets from human plasma also enables detailed investigations into their roles in protection or pathogenesis, paving the way for more effective dengue interventions.
Collapse
Affiliation(s)
- Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Candice Bohaud
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sreymom Ken
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Felix A Rey
- Unité de Virologie Structurale, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Giovanna Barba-Spaeth
- Unité de Virologie Structurale, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
3
|
Dias AG, Duarte EM, Zambrana JV, Cardona-Ospina JA, Bos S, Roy V, Huffaker J, Kuan G, Balmaseda A, Alter G, Harris E. Anti-dengue virus antibodies that elicit complement-mediated lysis of Zika virion correlate with protection from severe dengue disease. Cell Rep 2025; 44:115613. [PMID: 40333188 DOI: 10.1016/j.celrep.2025.115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antibodies from primary dengue (DENV1-4) or Zika (ZIKV) virus infections can influence subsequent heterotypic infections, but their protective characteristics are not well defined. We analyzed pre-infection plasma samples from children in our Nicaraguan cohort study who later developed either dengue fever (DF; n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS; n = 33) upon secondary heterotypic DENV infection. Various antibody properties, notably antibody-dependent complement deposition, correlated with protection against DHF/DSS. Interestingly, this association was strongest when using recombinant ZIKV antigens despite participants being ZIKV naive. Additionally, complement-mediated virion lysis (virolysis) with ZIKV virions was strongly associated with protection, a finding replicated in an independent sample set. ZIKV virolysis emerged as the only antibody property linked to reduced risk of DHF/DSS and severe symptoms such as thrombocytopenia and plasma leakage. These results suggest that ZIKV-cross-reactive anti-DENV antibodies that mediate complement-dependent virolysis may lower the risk of severe disease, informing the development of effective dengue vaccines and therapeutics.
Collapse
Affiliation(s)
- Antonio G Dias
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elias M Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Sustainable Sciences Institute, Managua, Nicaragua
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Julia Huffaker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Ghosh AG, Kim HL, Khor SS. HLA alleles and dengue susceptibility across populations in the era of climate change: a comprehensive review. Front Immunol 2025; 16:1473475. [PMID: 40303409 PMCID: PMC12037607 DOI: 10.3389/fimmu.2025.1473475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Dengue, a viral infection transmitted by Aedes mosquitoes, is an emerging global health threat exacerbated by climate change. Rising temperatures and altered precipitation patterns create favourable conditions for vector proliferation and extended transmission periods, increasing the risk of dengue in endemic regions and facilitating its spread to non-endemic areas. Understanding the interplay between critical genetic factors and dengue susceptibility is crucial for developing effective public health strategies. The Human Leukocyte Antigen (HLA) genes encode proteins essential for an effective immune response against pathogens, and their genetic variations influence susceptibility to severe dengue. In this study, we conducted a comprehensive meta-analysis of HLA alleles associated with dengue infection and dengue severity. We analysed 19 case-control studies on dengue infections in populations worldwide to infer HLA associations with various pathological forms of dengue and to examine differences across different populations. Our findings indicate that HLA-A*02 increases susceptibility to dengue fever (DF), while HLA-A*03 increases the risk of Dengue Haemorrhagic Fever (DHF), with these increased susceptibilities primarily observed in Southeast Asian populations. Additionally, HLA-A*24 is associated with DHF and all symptomatic dengue infections (DEN), contributing to dengue risk in both Southeast Asia and the Caribbean. Conversely, HLA-A*33 and HLA-B*44 show a protective effect against DHF but show significant regional heterogeneity, highlighting divergent, population-specific susceptibility profiles. This study underscores the importance of population-specific genetic risk assessments for dengue infection and emphasizes the need for targeted medical interventions and improved predictive models to mitigate dengue's impact, especially as climate change accelerates disease spread.
Collapse
Affiliation(s)
- Amit Gourav Ghosh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
| | - Hie Lim Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Seik-Soon Khor
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
| |
Collapse
|
5
|
Keith AD, Xu T, Chernova TA, Keen MM, Bogacz M, Nedeljković M, Flowers M, Brown T, Frank F, Ortlund EA, Sundberg EJ. Mapping affinity and allostery in human IgG antibody Fc region-Fc γ receptor interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645945. [PMID: 40236212 PMCID: PMC11996314 DOI: 10.1101/2025.03.28.645945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
IgG antibodies, required for a functional immune system, recognize antigens and neutralize pathogens using their Fab regions, while signaling to the immune system by binding to host Fc γ receptors (FcγRs) through their Fc regions. These FcγR interactions initiate and modulate antibody-mediated effector functions that are essential for host immunity, therapeutic monoclonal antibody effectiveness and IgG-mediated pathologies. FcγRs include both activating and inhibitory receptors and the relative binding affinities of the IgG Fc region to FcγRs that generate opposing signals is a key determinant of the immune response. Substantial research effort has been devoted to understanding and manipulating FcγR interactions to decipher their fundamental biological activities and to develop therapeutic monoclonal antibodies with tailored effector functions. However, a common Fc-FcγR binding interface, the high sequence identity of FcγRs, and the inherent conformational dynamics of the IgG Fc region, have prohibited a full understanding of these interactions, even when employing state-of-the-art biophysical and biological methods. Here, we used site-saturation libraries of the human IgG1 Fc region to determine the effective affinities of more than 98% of all possible single-site amino acid substitutions in the Fc to all human FcγRs, as well as the most common FcγR polymorphisms. We provide a comprehensive analysis of Fc amino acid variations that determine Fc stability, orthosteric control of FcγR binding, and short- and long-range allosteric control of FcγR binding. We also predict the relative activating versus inhibitory effector function capacity of nearly every possible single-site Fc mutation.
Collapse
|
6
|
Lu J, Guo S, Liu Q, Tursumamat N, Liu S, Wu S, Li H, Wei J. Recent advances in analytical methods and bioinformatic tools for quantitative glycomics. Anal Bioanal Chem 2025; 417:1947-1959. [PMID: 39948299 DOI: 10.1007/s00216-025-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/02/2025]
Abstract
The significance of glycans in various biological processes has been widely acknowledged. Quantitative glycomics is emerging as an important addition to clinical biomarker discovery, as it helps uncover disease-associated glycosylation patterns that are valuable for diagnosis, prognosis, and treatment evaluation. Compared to glycoproteomics and other established omics approaches, quantitative glycomics exhibits greater methodological diversity and it encounters various challenges in automation and standardization. Nonetheless, numerous advancements have been made in this field over the past 5 years. Here, we have reviewed recent progress in analytical methods and software to improve mass spectrometry-based quantitative glycomics primarily on N- and O-glycosylation. The discussion is organized into four sections: stable isotopic labeling, isobaric labeling, label-free, and fluorescence labeling strategies, with a particular emphasis on quantitative data interpretation. Novel derivatization methods and advanced techniques have been developed for high-throughput and highly sensitive glycan quantification with high accuracy. However, due to variations in glycan derivatization and difficulties in structural identification, most glycomic quantification methods are tailored to specific applications, and manual inspection is frequently necessary for precise data interpretation. Therefore, further advancements in glycan sample preparation, structural characterization, and automated data interpretation are essential to facilitate comprehensive and accurate quantification across a wide array of glycans.
Collapse
Affiliation(s)
- Jihong Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuhong Guo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiannan Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shengyang Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuye Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Heming Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Juan Wei
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Cardona-Ospina JA, Roy V, Marcano-Jiménez DE, Bos S, Duarte E, Zambrana JV, Bal A, Dias AG, Zhiteneva J, Huffaker J, Montenegro C, Kuan G, Ramos-Benitez MJ, Balmaseda A, Alter G, Harris E. IgA-driven neutrophil activation underlies post-Zika severe dengue disease in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25322002. [PMID: 40162272 PMCID: PMC11952487 DOI: 10.1101/2025.02.11.25322002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The four dengue virus serotypes (DENV1-4) and the related Zika flavivirus (ZIKV) are major public health concerns worldwide. Primary immunity against ZIKV increases the risk of a subsequent severe DENV2 infection, presenting a significant challenge for developing safe and effective ZIKV vaccines. However, the mechanisms driving this phenomenon remain unclear. Leveraging our long-standing Pediatric Dengue Cohort Study in Nicaragua, we show that serum anti-NS1 IgA antibodies elicited after a primary ZIKV infection drive neutrophil activation and correlate with increased risk of subsequent severe DENV2 disease. Depletion experiments combined with ex vivo functional NETosis assays confirmed that anti-NS1 IgA antibodies drive neutrophil activation in dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Moreover, increased neutrophil degranulation in paired serum samples obtained during the acute DENV2 infection from the same individuals correlated with IgA binding to DENV2 NS1 and preceded the development of vascular leakage. This finding was corroborated in an orthogonal hospital-based study. Thus, serum anti-NS1 IgA enhances neutrophil activation in severe dengue, with implications for prognostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jaime A. Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
- Grupo Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Colombia
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Dorca E. Marcano-Jiménez
- Department of Basic Sciences, Ponce Health Sciences University and Ponce Research Institute, Ponce, Puerto Rico
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Elias Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - José V. Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Agamjot Bal
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Antonio Gregorio Dias
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | | | - Julia Huffaker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | | | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Marcos J. Ramos-Benitez
- Department of Basic Sciences, Ponce Health Sciences University and Ponce Research Institute, Ponce, Puerto Rico
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
8
|
Chou CY, Cheng CY, Lee CH, Kuro-O M, Chen TH, Wang SY, Chuang YK, Yang YJ, Lin YH, Tsai IL. Unveiling unique effector function-related bulk antibody profiles in long-term hemodialysis patients following COVID-19 mRNA booster vaccination. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:27-37. [PMID: 39395903 DOI: 10.1016/j.jmii.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Hemodialysis patients exhibit a reduced response to vaccination and have different vaccine dose regimens. Vaccines induce antibodies and affect the inflammatory balance through antibody glycosylation and effector functions. Therefore, we aimed to analyze the antibody glycosylation profiles in hemodialysis patients who were vaccinated against severe acute respiratory syndrome coronavirus 2, infected with the virus, or both, and compare them with those of dialysis patients in a control group. METHODS Plasma samples from 112 hemodialysis patients were assigned to four groups: control, infected, vaccinated, and post-vaccine-infected. Paired plasma samples from 47 people with vaccination (vaccinees) were analyzed before and after the booster dose. The same analytical approach was applied to the four groups for a cross-sectional comparison. RESULTS Our study found that both vaccination and infection groups showed decreased fucosylation of IgG1, which is associated with a proinflammatory biosignature. However, vaccination also leads to increased galactosylation and bisection of IgG antibodies, which are associated with anti-inflammatory effects and the additional regulation of immune responses. In contrast, infection led to an additional decrease in the fucosylation of IgG2 and IgA, demonstrating a more intense proinflammatory biosignature than vaccination. CONCLUSIONS Our findings emphasize the proinflammatory biosignature of afucosylation in both vaccination and infection groups. Additionally, we uncovered further regulated profiles related to galactosylation in vaccinees. These findings suggest that antibody investigation for vaccination or infection should not solely focus on neutralization but should also consider effector function-related glycosylation profiling. This comprehensive information can be valuable for fine-tuning vaccine development in the future.
Collapse
Affiliation(s)
- Chia-Yi Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | - Chung-Yi Cheng
- Taipei Medical University Research Center of Urology and Kidney, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsin Lee
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Tso-Hsiao Chen
- Taipei Medical University Research Center of Urology and Kidney, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kun Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taiwan
| | - Yun-Jung Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | - Yun-Hsuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | - I-Lin Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 PMCID: PMC11686093 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
11
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
12
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
13
|
Sastre DE, Bournazos S, Du J, Boder EJ, Edgar JE, Azzam T, Sultana N, Huliciak M, Flowers M, Yoza L, Xu T, Chernova TA, Ravetch JV, Sundberg EJ. Potent efficacy of an IgG-specific endoglycosidase against IgG-mediated pathologies. Cell 2024; 187:6994-7007.e12. [PMID: 39437779 PMCID: PMC11606778 DOI: 10.1016/j.cell.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) that specifically hydrolyze the Asn297-linked glycan on immunoglobulin G (IgG) antibodies, the major molecular determinant of fragment crystallizable (Fc) γ receptor (FcγR) binding, are exceedingly rare. All previously characterized IgG-specific ENGases are multi-domain proteins secreted as an immune evasion strategy by Streptococcus pyogenes strains. Here, using in silico analysis and mass spectrometry techniques, we identified a family of single-domain ENGases secreted by pathogenic corynebacterial species that exhibit strict specificity for IgG antibodies. By X-ray crystallographic and surface plasmon resonance analyses, we found that the most catalytically efficient IgG-specific ENGase family member recognizes both protein and glycan components of IgG. Employing in vivo models, we demonstrated the remarkable efficacy of this IgG-specific ENGase in mitigating numerous pathologies that rely on FcγR-mediated effector functions, including T and B lymphocyte depletion, autoimmune hemolytic anemia, and antibody-dependent enhancement of dengue disease, revealing its potential for treating and/or preventing a wide range of IgG-mediated diseases in humans.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - E Josephine Boder
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lea Yoza
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ting Xu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024; 98:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
15
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered Spike Immunoglobulin G Fc N-Linked Glycans Are Associated With Hyperinflammatory State in Adult Coronavirus Disease 2019 and Multisystem Inflammatory Syndrome in Children. Open Forum Infect Dis 2024; 11:ofae626. [PMID: 39494457 PMCID: PMC11528514 DOI: 10.1093/ofid/ofae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
Background Severe coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) Fc afucosylation, which induces proinflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokines/chemokines. Methods We analyzed longitudinal (n = 146) and cross-sectional (n = 49) serum/plasma samples from adult and pediatric COVID-19 patients, MIS-C patients, adult vaccinees, and adult and pediatric controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis and measured levels of 10 inflammatory cytokines/chemokines by multiplexed enzyme-linked immunosorbent assay. Results Spike IgG was more afucosylated than bulk IgG during acute adult COVID-19 and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG was more galactosylated and sialylated and less bisected than bulk IgG during adult COVID-19, with similar trends observed during pediatric COVID-19/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID-19 or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with proinflammatory cytokines in adult COVID-19 and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID-19 and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Trevor W Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Caroline R Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Erin M Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
17
|
Krištić J, Lauc G. The importance of IgG glycosylation-What did we learn after analyzing over 100,000 individuals. Immunol Rev 2024; 328:143-170. [PMID: 39364834 PMCID: PMC11659926 DOI: 10.1111/imr.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
All four subclasses of immunoglobulin G (IgG) antibodies have glycan structures attached to the protein part of the IgG molecules. Glycans linked to the Fc portion of IgG are found in all IgG antibodies, while about one-fifth of IgG antibodies in plasma also have glycans attached to the Fab portion of IgG. The IgG3 subclass is characterized by more complex glycosylation compared to other IgG subclasses. In this review, we discuss the significant influence that glycans exert on the structural and functional properties of IgG. We provide a comprehensive overview of how the composition of these glycans can affect IgG's effector functions by modulating its interactions with Fcγ receptors and other molecules such as the C1q component of complement, which in turn influence various immune responses triggered by IgG, including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition, the importance of glycans for the efficacy of therapeutics like monoclonal antibodies and intravenous immunoglobulin (IVIg) therapy is discussed. Moreover, we offer insights into IgG glycosylation characteristics and roles derived from general population, disease-specific, and interventional studies. These studies indicate that IgG glycans are important biomarkers and functional effectors in health and disease.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research LaboratoryZagrebCroatia
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
| |
Collapse
|
18
|
Chua CLL, Morales RF, Chia PY, Yeo TW, Teo A. Neutrophils - an understudied bystander in dengue? Trends Microbiol 2024; 32:1132-1142. [PMID: 38749772 DOI: 10.1016/j.tim.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 11/08/2024]
Abstract
Dengue is a mosquito-borne viral disease which causes significant morbidity and mortality each year. Previous research has proposed several mechanisms of pathogenicity that mainly involve the dengue virus and host humoral immunity. However, innate immune cells, such as neutrophils, may also play an important role in dengue, albeit a much less defined role. In this review, we discuss the emerging roles of neutrophils in dengue and their involvement in pathologies associated with severe dengue. We also describe the potential use of several neutrophil proteins as biomarkers for severe dengue. These studies suggest that neutrophils are important players in dengue, and a better understanding of neutrophil-dengue biology is urgently needed.
Collapse
Affiliation(s)
- Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
19
|
Edgar JE, Bournazos S. Fc-FcγR interactions during infections: From neutralizing antibodies to antibody-dependent enhancement. Immunol Rev 2024; 328:221-242. [PMID: 39268652 PMCID: PMC11659939 DOI: 10.1111/imr.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Advances in antibody technologies have resulted in the development of potent antibody-based therapeutics with proven clinical efficacy against infectious diseases. Several monoclonal antibodies (mAbs), mainly against viruses such as SARS-CoV-2, HIV-1, Ebola virus, influenza virus, and hepatitis B virus, are currently undergoing clinical testing or are already in use. Although these mAbs exhibit potent neutralizing activity that effectively blocks host cell infection, their antiviral activity results not only from Fab-mediated virus neutralization, but also from the protective effector functions mediated through the interaction of their Fc domains with Fcγ receptors (FcγRs) on effector leukocytes. Fc-FcγR interactions confer pleiotropic protective activities, including the clearance of opsonized virions and infected cells, as well as the induction of antiviral T-cell responses. However, excessive or inappropriate activation of specific FcγR pathways can lead to disease enhancement and exacerbated pathology, as seen in the context of dengue virus infections. A comprehensive understanding of the diversity of Fc effector functions during infection has guided the development of engineered antiviral antibodies optimized for maximal effector activity, as well as the design of targeted therapeutic approaches to prevent antibody-dependent enhancement of disease.
Collapse
Affiliation(s)
- Julia E. Edgar
- The London School of Hygiene and Tropical MedicineLondonUK
| | - Stylianos Bournazos
- The Laboratory of Molecular Genetics and ImmunologyThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
20
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Khazali AS, Hadrawi WH, Ibrahim F, Othman S, Nor Rashid N. Thrombocytopenia in dengue infection: mechanisms and a potential application. Expert Rev Mol Med 2024; 26:e26. [PMID: 39397710 PMCID: PMC11488332 DOI: 10.1017/erm.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 10/15/2024]
Abstract
Thrombocytopenia is a common symptom and one of the warning signs of dengue virus (DENV) infection. Platelet depletion is critical as it may lead to other severe dengue symptoms. Understanding the molecular events of this condition during dengue infection is challenging because of the multifaceted factors involved in DENV infection and the dynamics of the disease progression. Platelet levels depend on the balance between platelet production and platelet consumption or clearance. Megakaryopoiesis and thrombopoiesis, two interdependent processes in platelet production, are hampered during dengue infection. Conversely, platelet elimination via platelet activation, apoptosis and clearance processes are elevated. Together, these anomalies contribute to thrombocytopenia in dengue patients. Targeting the molecular events of dengue-mediated thrombocytopenia shows great potential but still requires further investigation. Nonetheless, the application of new knowledge in this field, such as immature platelet fraction analysis, may facilitate physicians in monitoring the progression of the disease.
Collapse
Affiliation(s)
- Ahmad Suhail Khazali
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau, Perlis, Malaysia
| | - Waqiyuddin Hilmi Hadrawi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Center for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Malavige GN, Ogg GS. Immune responses and severe dengue: what have we learned? Curr Opin Infect Dis 2024; 37:349-356. [PMID: 39079180 DOI: 10.1097/qco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW With the marked rise in dengue globally, developing well tolerated and effective vaccines and therapeutics is becoming more important. Here we discuss the recent developments in the understanding of immune mechanisms that lead to severe dengue and the learnings from the past, that can help us to find therapeutic targets, prognostic markers, and vaccines to prevent development of severe disease. RECENT FINDINGS The extent and duration of viraemia often appears to be associated with clinical disease severity but with some variability. However, there also appear to be significant differences in the kinetics of viraemia and nonstructural protein 1 (NS1) antigenemia and pathogenicity between different serotypes and genotypes of the DENV. These differences may have significant implications for development of treatments and in inducing robust immunity through dengue vaccines. Although generally higher levels of neutralizing antibodies are thought to protect against infection and severe disease, there have been exceptions and the specificity, breadth and functionality of the antibody responses are likely to be important. SUMMARY Although there have been many advances in our understanding of dengue pathogenesis, viral and host factors associated with occurrence of severe dengue, vascular leak and the immune correlates of protection remain poorly understood.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Bi M, Tian Z. Mass spectrometry-based structure-specific N-glycoproteomics and biomedical applications. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1172-1183. [PMID: 39118567 PMCID: PMC11464918 DOI: 10.3724/abbs.2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
N-linked glycosylation is a common posttranslational modification of proteins that results in macroheterogeneity of the modification site. However, unlike simpler modifications, N-glycosylation introduces an additional layer of complexity with tens of thousands of possible structures arising from various dimensions, including different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformations. This results in additional microheterogeneity of the modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio. N-glycosylation regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis. Numerous advanced methods ranging from sample preparation to mass spectrum analysis have been developed to distinguish N-glycan structures. Chemical derivatization of monosaccharides, online liquid chromatography separation and ion mobility spectrometry enable the physical differentiation of samples. Tandem mass spectrometry further analyzes the macro/microheterogeneity of intact N-glycopeptides through the analysis of fragment ions. Moreover, the development of search engines and AI-based software has enhanced our understanding of the dissociation patterns of intact N-glycopeptides and the clinical significance of differentially expressed intact N-glycopeptides. With the help of these modern methods, structure-specific N-glycoproteomics has become an important tool with extensive applications in the biomedical field.
Collapse
Affiliation(s)
- Ming Bi
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| | - Zhixin Tian
- />School of Chemical Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
24
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
25
|
Sherman JD, Karmali V, Kumar B, Simon TW, Bechnak S, Panjwani A, Ciric CR, Wang D, Huerta C, Johnson B, Anderson EJ, Rouphael N, Collins MH, Rostad CA, Azadi P, Scherer EM. Altered spike IgG Fc N-linked glycans are associated with hyperinflammatory state in adult COVID and Multisystem Inflammatory Syndrome in Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310381. [PMID: 39040211 PMCID: PMC11261911 DOI: 10.1101/2024.07.14.24310381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Background Severe COVID and multisystem inflammatory syndrome (MIS-C) are characterized by excessive inflammatory cytokines/chemokines. In adults, disease severity is associated with SARS-CoV-2-specific IgG Fc afucosylation, which induces pro-inflammatory cytokine secretion from innate immune cells. This study aimed to define spike IgG Fc glycosylation following SARS-CoV-2 infection in adults and children and following SARS-CoV-2 vaccination in adults and the relationships between glycan modifications and cytokine/chemokine levels. Methods We analyzed longitudinal (n=146) and cross-sectional (n=49) serum/plasma samples from adult and pediatric COVID patients, MIS-C patients, adult vaccinees, and adult and pediatric healthy controls. We developed methods for characterizing bulk and spike IgG Fc glycosylation by capillary electrophoresis (CE) and measured levels of ten inflammatory cytokines/chemokines by multiplexed ELISA. Results Spike IgG were more afucosylated than bulk IgG during acute adult COVID and MIS-C. We observed an opposite trend following vaccination, but it was not significant. Spike IgG were more galactosylated and sialylated and less bisected than bulk IgG during adult COVID, with similar trends observed during pediatric COVID/MIS-C and following SARS-CoV-2 vaccination. Spike IgG glycosylation changed with time following adult COVID or vaccination. Afucosylated spike IgG exhibited inverse and positive correlations with inflammatory markers in MIS-C and following vaccination, respectively; galactosylated and sialylated spike IgG inversely correlated with pro-inflammatory cytokines in adult COVID and MIS-C; and bisected spike IgG positively correlated with inflammatory cytokines/chemokines in multiple groups. Conclusions We identified previously undescribed relationships between spike IgG glycan modifications and inflammatory cytokines/chemokines that expand our understanding of IgG glycosylation changes that may impact COVID and MIS-C immunopathology.
Collapse
Affiliation(s)
- Jacob D. Sherman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Vinit Karmali
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Trevor W. Simon
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah Bechnak
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anusha Panjwani
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline R. Ciric
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongli Wang
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Chris Huerta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brandi Johnson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Christina A. Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Erin M. Scherer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
26
|
Guo X, Liu X, Zhao C, Fang Z, Sun D, Tang F, Ma T, Liu L, Zhu H, Wang Y, Wang Z, Li Y, Qin H, Huang W, Dong M, Ye M, Jia L. Quantitative Characterization of Protein N-Linked Core-Fucosylation by an Efficient Glycan Truncation Strategy. Anal Chem 2024; 96:10506-10514. [PMID: 38874382 DOI: 10.1021/acs.analchem.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.
Collapse
Affiliation(s)
- Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Changrui Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deguang Sun
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Taiheng Ma
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Lei Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| |
Collapse
|
27
|
Dias AG, Duarte E, Zambrana JV, Cardona-Ospina JA, Bos S, Roy V, Kuan G, Balmaseda A, Alter G, Harris E. Complement-dependent virion lysis mediated by dengue-Zika virus cross-reactive antibodies correlates with protection from severe dengue disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308395. [PMID: 38883768 PMCID: PMC11177908 DOI: 10.1101/2024.06.03.24308395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Primary infection with one of four dengue virus serotypes (DENV1-4) may generate antibodies that protect or enhance subsequent secondary heterotypic infections. However, the characteristics of heterotypic cross-reactive antibodies associated with protection from symptomatic infection and severe disease are not well-defined. We selected plasma samples collected before a secondary DENV heterotypic infection that was classified either as dengue fever (DF, n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, n = 33) from our longstanding pediatric cohort in Nicaragua. We screened various antibody properties to determine the features correlated with protection from DHF/DSS. Protection was associated with high levels of binding of various antibody isotypes, IgG subclasses and effector functions, including antibody-dependent complement deposition, ADCD. Although the samples were derived from DENV-exposed, Zika virus (ZIKV)-naïve individuals, the protective ADCD association was stronger when assays were conducted with recombinant ZIKV antigens. Further, we showed that a complement-mediated virion lysis (virolysis) assay conducted with ZIKV virions was strongly associated with protection, a finding reproduced in an independent sample set collected prior to secondary heterotypic inapparent versus symptomatic DENV infection. Virolysis was the main antibody feature correlated with protection from DHF/DSS and severe symptoms, such as thrombocytopenia, hemorrhagic manifestations, and plasma leakage. Hence, anti-DENV antibodies that cross-react with ZIKV, target virion-associated epitopes, and mediate complement-dependent virolysis are correlated with protection from secondary symptomatic DENV infection and DHF/DSS. These findings may support the rational design and evaluation of dengue vaccines and development of therapeutics.
Collapse
Affiliation(s)
- Antonio G Dias
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elias Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Harbor, MI, USA
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
29
|
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet 2024; 403:667-682. [PMID: 38280388 DOI: 10.1016/s0140-6736(23)02576-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Dengue, caused by four closely related viruses, is a growing global public health concern, with outbreaks capable of overwhelming health-care systems and disrupting economies. Dengue is endemic in more than 100 countries across tropical and subtropical regions worldwide, and the expanding range of the mosquito vector, affected in part by climate change, increases risk in new areas such as Spain, Portugal, and the southern USA, while emerging evidence points to silent epidemics in Africa. Substantial advances in our understanding of the virus, immune responses, and disease progression have been made within the past decade. Novel interventions have emerged, including partially effective vaccines and innovative mosquito control strategies, although a reliable immune correlate of protection remains a challenge for the assessment of vaccines. These developments mark the beginning of a new era in dengue prevention and control, offering promise in addressing this pressing global health issue.
Collapse
Affiliation(s)
| | - Laura E Adams
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Haslund-Gourley BS, Hou J, Woloszczuk K, Horn EJ, Dempsey G, Haddad EK, Wigdahl B, Comunale MA. Host glycosylation of immunoglobulins impairs the immune response to acute Lyme disease. EBioMedicine 2024; 100:104979. [PMID: 38266555 PMCID: PMC10818078 DOI: 10.1016/j.ebiom.2024.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Lyme disease is caused by the bacteria Borreliella burgdorferi sensu lato (Bb) transmitted to humans from the bite of an infected Ixodes tick. Current diagnostics for Lyme disease are insensitive at the early disease stage and they cannot differentiate between active infections and people with a recent history of antibiotic-treated Lyme disease. METHODS Machine learning technology was utilized to improve the prediction of acute Lyme disease and identify sialic acid and galactose sugar structures (N-glycans) on immunoglobulins associated specifically at time points during acute Lyme disease time. A plate-based approach was developed to analyze sialylated N-glycans associated with anti-Bb immunoglobulins. This multiplexed approach quantitates the abundance of Bb-specific IgG and the associated sialic acid, yielding an accuracy of 90% in a powered study. FINDINGS It was demonstrated that immunoglobulin sialic acid levels increase during acute Lyme disease and following antibiotic therapy and a 3-month convalescence, the sialic acid level returned to that found in healthy control subjects (p < 0.001). Furthermore, the abundance of sialic acid on Bb-specific IgG during acute Lyme disease impaired the host's ability to combat Lyme disease via lymphocytic receptor FcγRIIIa signaling. After enzymatically removing the sialic acid present on Bb-specific antibodies, the induction of cytotoxicity from acute Lyme disease patient antigen-specific IgG was significantly improved. INTERPRETATION Taken together, Bb-specific immunoglobulins contain increased sialylation which impairs the host immune response during acute Lyme disease. Furthermore, this Bb-specific immunoglobulin sialyation found in acute Lyme disease begins to resolve following antibiotic therapy and convalescence. FUNDING Funding for this study was provided by the Coulter-Drexel Translational Research Partnership Program as well as from a Faculty Development Award from the Drexel University College of Medicine Institute for Molecular Medicine and Infectious Disease and the Department of Microbiology and Immunology.
Collapse
Affiliation(s)
- Benjamin S Haslund-Gourley
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jintong Hou
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - George Dempsey
- East Hampton Family Medicine, East Hampton North, New York, USA
| | - Elias K Haddad
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Zhou B, Zhou R, Chan JFW, Zeng J, Zhang Q, Yuan S, Liu L, Robinot R, Shan S, Liu N, Ge J, Kwong HYH, Zhou D, Xu H, Chan CCS, Poon VKM, Chu H, Yue M, Kwan KY, Chan CY, Chan CCY, Chik KKH, Du Z, Au KK, Huang H, Man HO, Cao J, Li C, Wang Z, Zhou J, Song Y, Yeung ML, To KKW, Ho DD, Chakrabarti LA, Wang X, Zhang L, Yuen KY, Chen Z. SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters 1. Emerg Microbes Infect 2023; 12:2245921. [PMID: 37542391 PMCID: PMC10444022 DOI: 10.1080/22221751.2023.2245921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.
Collapse
Affiliation(s)
- Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Rémy Robinot
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Hugo Yat-Hei Kwong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Dongyan Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chung-Sing Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Yi Kwan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chun-Yin Chan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chun-Yiu Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Kenn Ka-Heng Chik
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Kit Au
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianli Cao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Youqiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Man-Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
33
|
van Pul L, Maurer I, Boeser-Nunnink BD, Harskamp AM, van Dort KA, Kootstra NA. A genetic variation in fucosyltransferase 8 accelerates HIV-1 disease progression indicating a role for N-glycan fucosylation. AIDS 2023; 37:1959-1969. [PMID: 37598360 PMCID: PMC10552802 DOI: 10.1097/qad.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Core fucosylation by fucosyltransferase 8 (FUT8) is an important posttranslational modification that impacts components of the immune system. Genetic variations in FUT8 can alter its function and could, therefore, play a role in the antiviral immune response and pathogenesis of HIV-1. This study analysed the effect of a single nucleotide polymorphism (SNP) in FUT8 on the clinical course of HIV-1 infection. DESIGN/METHODS The effect of SNPs in FUT8 on untreated HIV-1 disease outcome were analysed in a cohort of 304 people with HIV-1 (PWH) using survival analysis. Flow-cytometry was used to determine the effect of SNP on T-cell activation, differentiation and exhaustion/senescence. T-cell function was determined by proliferation assay and by measuring intracellular cytokine production. The effect of the SNP on HIV-1 replication was determined by in-vitro HIV-1 infections. Sensitivity of HIV-1 produced in PBMC with or without the SNP to broadly neutralizing antibodies was determined using a TZM-bl based neutralization assay. RESULTS Presence of the minor allele of SNP rs4131564 was associated with accelerated disease progression. The SNP had no effect on T-cell activation and T-cell differentiation in PWH. Additionally, no differences in T-cell functionality as determined by proliferation and cytokine production was observed. HIV-1 replication and neutralization sensitivity was also unaffected by the SNP in FUT8. CONCLUSION SNP rs4131564 in FUT8 showed a major impact on HIV-1 disease course underscoring a role for N-glycan fucosylation even though no clear effect on the immune system or HIV-1 could be determined in vitro .
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M. Harskamp
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A. van Dort
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Singh RK, Tiwari A, Satone PD, Priya T, Meshram RJ. Updates in the Management of Dengue Shock Syndrome: A Comprehensive Review. Cureus 2023; 15:e46713. [PMID: 38021722 PMCID: PMC10631559 DOI: 10.7759/cureus.46713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Dengue is a very serious public health problem that can manifest a wide range of symptoms from asymptomatic to fatal conditions, such as dengue shock syndrome (DSS). It is a life-threatening mosquito-borne viral infection widely spread in tropical areas. Dengue virus transmission occurs from an infected Aedes mosquito to humans. Various factors are responsible for the occurrence of the disease, such as viral load, age of the host, immune status of the host, and genetic variability. Dengue infection occurs in three phases: febrile, critical, and recovery. The febrile phase lasts for seven days and manifests symptoms such as high-grade fever, headache, arthralgia, and backache, and in some cases, the upper respiratory tract and gastrointestinal tract are also involved. Severe dengue is characterized by endothelial dysfunction that causes vascular permeability and plasma leakage. The fundamental mechanisms of these immune pathologies are not yet known. Dengue manifests various complications such as dengue encephalopathy, encephalitis, stroke, ocular involvement, acute transverse myelitis, myalgia, and cerebellar syndrome, but the most commonly seen is liver involvement. Dengue is managed supportively because there are no proven curative treatments. The cornerstone of care during the critical period of dengue is prudent fluid resuscitation. The first fluid of preference is a crystalloid. Prophylactic transfusion of platelets is not advised. The occurrence of four antigenically different dengue virus serotypes, each able to elicit a cross-reactive and disease-enhancing antibody response against the other three serotypes, has made the creation of the dengue vaccine a difficult undertaking. The development of a dengue vaccine has faced significant challenges due to a lack of the best animal models and a variety of immunological conditions in people, particularly in endemic locations. Dengvaxia is a live attenuated vaccine, which was developed by Sanofi. It is made up of four chimeric vaccine viruses produced by Vero cells.
Collapse
Affiliation(s)
- Rakshit K Singh
- Department of Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aakriti Tiwari
- Department of Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prasiddhi D Satone
- Department of Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tannu Priya
- Department of Paediatrics, Pravara Institute of Medical Sciences, Shirdi, IND
| | - Revat J Meshram
- Department of Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
36
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
37
|
Van Coillie J, Pongracz T, Šuštić T, Wang W, Nouta J, Le Gars M, Keijzer S, Linty F, Cristianawati O, Keijser JB, Visser R, van Vught LA, Slim MA, van Mourik N, Smit MJ, Sander A, Schmidt DE, Steenhuis M, Rispens T, Nielsen MA, Mordmüller BG, Vlaar AP, Ellen van der Schoot C, Roozendaal R, Wuhrer M, Vidarsson G. Comparative analysis of spike-specific IgG Fc glycoprofiles elicited by adenoviral, mRNA, and protein-based SARS-CoV-2 vaccines. iScience 2023; 26:107619. [PMID: 37670790 PMCID: PMC10475480 DOI: 10.1016/j.isci.2023.107619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Olvi Cristianawati
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Jim B.D. Keijser
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marleen A. Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Merel J. Smit
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Adam Sander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- AdaptVac Aps, Copenhagen, Denmark
| | - David E. Schmidt
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin G. Mordmüller
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, L.E.I.C.A., Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
38
|
Dunagan MM, Fox JM. Splenic macrophages escalate dengue disease. Nat Microbiol 2023; 8:1378-1379. [PMID: 37488257 DOI: 10.1038/s41564-023-01437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Megan M Dunagan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Yamin R, Kao KS, MacDonald MR, Cantaert T, Rice CM, Ravetch JV, Bournazos S. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat Microbiol 2023; 8:1468-1479. [PMID: 37429907 PMCID: PMC10753935 DOI: 10.1038/s41564-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/12/2023]
Abstract
Although dengue virus (DENV) infection typically causes asymptomatic disease, DENV-infected patients can experience severe complications. A risk factor for symptomatic disease is pre-existing anti-DENV IgG antibodies. Cellular assays suggested that these antibodies can enhance viral infection of Fcγ receptor (FcγR)-expressing myeloid cells. Recent studies, however, revealed more complex interactions between anti-DENV antibodies and specific FcγRs by demonstrating that modulation of the IgG Fc glycan correlates with disease severity. To investigate the in vivo mechanisms of antibody-mediated dengue pathogenesis, we developed a mouse model for dengue disease that recapitulates the unique complexity of human FcγRs. In in vivo mouse models of dengue disease, we discovered that the pathogenic activity of anti-DENV antibodies is exclusively mediated through engagement of FcγRIIIa on splenic macrophages, resulting in inflammatory sequelae and mortality. These findings highlight the importance of IgG-FcγRIIIa interactions in dengue, with important implications for the design of safer vaccination approaches and effective therapeutic strategies.
Collapse
Affiliation(s)
- Rachel Yamin
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
40
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Upasani V, ter Ellen BM, Sann S, Lay S, Heng S, Laurent D, Ly S, Duong V, Dussart P, Smit JM, Cantaert T, Rodenhuis-Zybert IA. Characterization of soluble TLR2 and CD14 levels during acute dengue virus infection. Heliyon 2023; 9:e17265. [PMID: 37416678 PMCID: PMC10320027 DOI: 10.1016/j.heliyon.2023.e17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Dengue virus infection results in a broad spectrum of diseases ranging from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Hitherto, there is no consensus biomarker for the prediction of severe dengue disease in patients. Yet, early identification of patients who progress to severe dengue is pivotal for better clinical management. We have recently reported that an increased frequency of classical (CD14 ++CD16-) monocytes with sustained high TLR2 expression in acutely infected dengue patients correlates with severe dengue development. Here, we hypothesized that the relatively lower TLR2 and CD14 expression in mild dengue patients is due to the shedding of their soluble forms (sTLR2 and sCD14) and that these could be used as indicators of disease progression. Therefore, using commercial sandwich ELISAs, we evaluated the release of sTLR2 and sCD14 by peripheral blood mononuclear cells (PBMCs) in response to in vitro dengue virus (DENV) infection and assessed their levels in acute-phase plasma of 109 dengue patients. We show that while both sTLR2 and sCD14 are released by PBMCs in response to DENV infection in vitro, their co-circulation in an acute phase of the disease is not always apparent. In fact, sTLR2 was found only in 20% of patients irrespective of disease status. In contrast, sCD14 levels were detected in all patients and were significantly elevated in DF patients when compared to DHF patients and age-matched healthy donors. Altogether, our results suggest that sCD14 may help in identifying patients at risk of severe dengue at hospital admittance.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Sotheary Sann
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
42
|
Gupta A, Kao KS, Yamin R, Oren DA, Goldgur Y, Du J, Lollar P, Sundberg EJ, Ravetch JV. Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody. Nat Commun 2023; 14:2853. [PMID: 37202422 PMCID: PMC10195009 DOI: 10.1038/s41467-023-38453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies contain a complex N-glycan embedded in the hydrophobic pocket between its heavy chain protomers. This glycan contributes to the structural organization of the Fc domain and determines its specificity for Fcγ receptors, thereby dictating distinct cellular responses. The variable construction of this glycan structure leads to highly-related, but non-equivalent glycoproteins known as glycoforms. We previously reported synthetic nanobodies that distinguish IgG glycoforms. Here, we present the structure of one such nanobody, X0, in complex with the Fc fragment of afucosylated IgG1. Upon binding, the elongated CDR3 loop of X0 undergoes a conformational shift to access the buried N-glycan and acts as a 'glycan sensor', forming hydrogen bonds with the afucosylated IgG N-glycan that would otherwise be sterically hindered by the presence of a core fucose residue. Based on this structure, we designed X0 fusion constructs that disrupt pathogenic afucosylated IgG1-FcγRIIIa interactions and rescue mice in a model of dengue virus infection.
Collapse
Affiliation(s)
- Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Rachel Yamin
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
43
|
Srisawat N, Gubler DJ, Pangestu T, Thisyakorn U, Ismail Z, Goh D, Capeding MR, Bravo L, Yoksan S, Tantawichien T, Hadinegoro SR, Rafiq K, Picot VS, Ooi EE. Proceedings of the 5th Asia Dengue Summit. Trop Med Infect Dis 2023; 8:tropicalmed8040231. [PMID: 37104356 PMCID: PMC10142460 DOI: 10.3390/tropicalmed8040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The 5th Asia Dengue Summit, themed "Roll Back Dengue", was held in Singapore from 13 to 15 June 2022. The summit was co-convened by Asia Dengue Voice and Action (ADVA), Global Dengue and Aedes transmitted Diseases Consortium (GDAC), Southeast Asian Ministers of Education Tropical Medicine and Public Health Network (SEAMEO TROPMED), and the Fondation Mérieux (FMx). Dengue experts from academia and research and representatives from the Ministries of Health, Regional and Global World Health Organization (WHO), and International Vaccine Institute (IVI) participated in the three-day summit. With more than 270 speakers and delegates from over 14 countries, 12 symposiums, and 3 full days, the 5th ADS highlighted the growing threat of dengue, shared innovations and strategies for successful dengue control, and emphasized the need for multi-sectoral collaboration to control dengue.
Collapse
Affiliation(s)
- Nattachai Srisawat
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Critical Care Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Critical Care Nephrology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10330, Thailand
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| | - Tikki Pangestu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 169547, Singapore
| | - Usa Thisyakorn
- Tropical Medicine Cluster, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok 10330, Thailand
| | - Zulkifli Ismail
- Department of Pediatrics, KPJ Selangor Specialist Hospital, Malaysia
| | - Daniel Goh
- Division of Pediatric Pulmonary Medicine and Sleep, Khoo Teck Puat National University Children's Medical Institute, National University Hospital, Singapore 169547, Singapore
| | | | - Lulu Bravo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Terapong Tantawichien
- Division of Infectious Diseases, Department of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sri Rezeki Hadinegoro
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Kamran Rafiq
- International Society of Neglected Tropical Diseases, London WC2H 9JQ, UK
| | | | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169547, Singapore
| |
Collapse
|
44
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
45
|
Robinson ML, Glass DR, Duran V, Agudelo Rojas OL, Sanz AM, Consuegra M, Sahoo MK, Hartmann FJ, Bosse M, Gelvez RM, Bueno N, Pinsky BA, Montoya JG, Maecker H, Estupiñan Cardenas MI, Villar Centeno LA, Garrido EMR, Rosso F, Bendall SC, Einav S. Magnitude and kinetics of the human immune cell response associated with severe dengue progression by single-cell proteomics. SCIENCE ADVANCES 2023; 9:eade7702. [PMID: 36961888 PMCID: PMC10038348 DOI: 10.1126/sciadv.ade7702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023]
Abstract
Approximately 5 million dengue virus-infected patients progress to a potentially life-threatening severe dengue (SD) infection annually. To identify the immune features and temporal dynamics underlying SD progression, we performed deep immune profiling by mass cytometry of PBMCs collected longitudinally from SD progressors (SDp) and uncomplicated dengue (D) patients. While D is characterized by early activation of innate immune responses, in SDp there is rapid expansion and activation of IgG-secreting plasma cells and memory and regulatory T cells. Concurrently, SDp, particularly children, demonstrate increased proinflammatory NK cells, inadequate expansion of CD16+ monocytes, and high expression of the FcγR CD64 on myeloid cells, yet a signature of diminished antigen presentation. Syndrome-specific determinants include suppressed dendritic cell abundance in shock/hemorrhage versus enriched plasma cell expansion in organ impairment. This study reveals uncoordinated immune responses in SDp and provides insights into SD pathogenesis in humans with potential implications for prediction and treatment.
Collapse
Affiliation(s)
- Makeda L. Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David R. Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
| | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Monika Consuegra
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Felix J. Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Margarita Gelvez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Benjamin A. Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Dr. Jack S. Remington Laboratory for Specialty Diagnostics, Palo Alto, CA, USA
| | - Holden Maecker
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Luis Angel Villar Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, 499 Illinois St., 4th Floor, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Zhai Y, Chen L, Zhao Q, Zheng ZH, Chen ZN, Bian H, Yang X, Lu HY, Lin P, Chen X, Chen R, Sun HY, Fan LN, Zhang K, Wang B, Sun XX, Feng Z, Zhu YM, Zhou JS, Chen SR, Zhang T, Chen SY, Chen JJ, Zhang K, Wang Y, Chang Y, Zhang R, Zhang B, Wang LJ, Li XM, He Q, Yang XM, Nan G, Xie RH, Yang L, Yang JH, Zhu P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023; 379:eabg2482. [PMID: 36927018 DOI: 10.1126/science.abg2482] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qian Zhao
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Nan Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huijie Bian
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huan-Yu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Lin
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xi Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hao-Yang Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiu-Xuan Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Meng Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Sheng Zhou
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Rui Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yu Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Jie Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Chang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bei Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Li-Juan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Min Li
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian He
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Min Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Nan
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rong-Hua Xie
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Hua Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
47
|
Antonarelli G, Pieri V, Porta FM, Fusco N, Finocchiaro G, Curigliano G, Criscitiello C. Targeting Post-Translational Modifications to Improve Combinatorial Therapies in Breast Cancer: The Role of Fucosylation. Cells 2023; 12:cells12060840. [PMID: 36980181 PMCID: PMC10047715 DOI: 10.3390/cells12060840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Various tumors rely on post-translational modifications (PTMs) to promote invasiveness and angiogenesis and to reprogram cellular energetics to abate anti-cancer immunity. Among PTMs, fucosylation is a particular type of glycosylation that has been linked to different aspects of immune and hormonal physiological functions as well as hijacked by many types of tumors. Multiple tumors, including breast cancer, have been linked to dismal prognoses and increased metastatic potential due to fucosylation of the glycan core, namely core-fucosylation. Pre-clinical studies have examined the molecular mechanisms regulating core-fucosylation in breast cancer models, its negative prognostic value across multiple disease stages, and the activity of in vivo pharmacological inhibition, instructing combinatorial therapies and translation into clinical practice. Throughout this review, we describe the role of fucosylation in solid tumors, with a particular focus on breast cancer, as well as physiologic conditions on the immune system and hormones, providing a view into its potential as a biomarker for predicating or predicting cancer outcomes, as well as a potential clinical actionability as a biomarker.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
| | | | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, 20122 Milan, Italy
| |
Collapse
|
48
|
Haslund-Gourley BS, Wigdahl B, Comunale MA. IgG N-glycan Signatures as Potential Diagnostic and Prognostic Biomarkers. Diagnostics (Basel) 2023; 13:1016. [PMID: 36980324 PMCID: PMC10047871 DOI: 10.3390/diagnostics13061016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
IgG N-glycans are an emerging source of disease-specific biomarkers. Over the last decade, the continued development of glycomic databases and the evolution of glyco-analytic methods have resulted in increased throughput, resolution, and sensitivity. IgG N-glycans promote adaptive immune responses through antibody-dependent cellular cytotoxicity (ADCC) and complement activation to combat infection or cancer and promote autoimmunity. In addition to the functional assays, researchers are examining the ability of protein-specific glycosylation to serve as biomarkers of disease. This literature review demonstrates that IgG N-glycans can discriminate between healthy controls, autoimmune disease, infectious disease, and cancer with high sensitivity. The literature also indicates that the IgG glycosylation patterns vary across disease state, thereby supporting their role as specific biomarkers. In addition, IgG N-glycans can be collected longitudinally from patients to track treatment responses or predict disease reoccurrence. This review focuses on IgG N-glycan profiles applied as diagnostics, cohort discriminators, and prognostics. Recent successes, remaining challenges, and upcoming approaches are critically discussed.
Collapse
Affiliation(s)
- Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
49
|
Teo A, Tan HD, Loy T, Chia PY, Chua CLL. Understanding antibody-dependent enhancement in dengue: Are afucosylated IgG1s a concern? PLoS Pathog 2023; 19:e1011223. [PMID: 36996026 PMCID: PMC10062565 DOI: 10.1371/journal.ppat.1011223] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Hao Dong Tan
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Thomas Loy
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
50
|
Kazieva LS, Farafonova TE, Zgoda VG. [Antibody proteomics]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:5-18. [PMID: 36857423 DOI: 10.18097/pbmc20236901005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Antibodies represent an essential component of humoral immunity; therefore their study is important for molecular biology and medicine. The unique property of antibodies to specifically recognize and bind a certain molecular target (an antigen) determines their widespread application in treatment and diagnostics of diseases, as well as in laboratory and biotechnological practices. High specificity and affinity of antibodies is determined by the presence of primary structure variable regions, which are not encoded in the human genome and are unique for each antibody-producing B cell clone. Hence, there is little or no information about amino acid sequences of the variable regions in the databases. This differs identification of antibody primary structure from most of the proteomic studies because it requires either B cell genome sequencing or de novo amino acid sequencing of the antibody. The present review demonstrates some examples of proteomic and proteogenomic approaches and the methodological arsenal that proteomics can offer for studying antibodies, in particular, for identification of primary structure, evaluation of posttranslational modifications and application of bioinformatics tools for their decoding.
Collapse
Affiliation(s)
- L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|