1
|
Zheng Y, Jiang D, Lu Y, Zhang C, Huang SM, Lin H, Zhang D, Guo S, Han J, Chen J, He Y, Zhang M, Gao Y, Guo Y, Wei R, Xia M, Qin Y, Liu Z, Yang F, Ge S, Yi F, Yu X, Lin H, Xiao P, Sun JP, Feng S. Development of an allosteric adhesion GPCR nanobody with therapeutic potential. Nat Chem Biol 2025:10.1038/s41589-025-01896-2. [PMID: 40374856 DOI: 10.1038/s41589-025-01896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/02/2025] [Indexed: 05/18/2025]
Abstract
Allosteric modulation of receptor responses to endogenous agonists has therapeutic value, maintaining ligand profiles, reducing side effects and restoring mutant responses. Adhesion G-protein-coupled receptors (aGPCRs), with large N termini, are ideal for allosteric modulator development. We designed a nanobody strategy targeting ADGRG2 N-terminal fragments and got a specific nanobody Nb23-bi, which promoted dehydroepiandrosterone (DHEA)-induced ADGRG2 activation and reversed mutant-induced dysfunctions. By combining structural characterization, crosslinking mass spectrometry, mutational analysis and molecular dynamics simulations, we clarified the allosteric mechanism of how the Nb23-bi modulates conformational changes in the DHEA-binding pocket. Animal studies showed that Nb23-bi promoted the response of DHEA in alleviating testicular inflammation and reversing mutant defects. In summary, we developed an allosteric nanobody of ADGRG2 and gained insights into its functions in reversing disease-associated dysfunctions. Our study may serve as a template for developing allosteric modulators of other aGPCRs for biological and therapeutic purposes.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Dan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shen-Ming Huang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shengchao Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jifei Han
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxuan He
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yanhui Gao
- Center of Drug Analysis and Test, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yongyuan Guo
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital, NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Yang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Jinan, China
| | - Shaohua Ge
- Department of Periodontology and Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Hui Lin
- Department of Periodontology and Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Peng Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Center for Structural Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Zhu H, Ding Y. Nanobodies: From Discovery to AI-Driven Design. BIOLOGY 2025; 14:547. [PMID: 40427736 PMCID: PMC12109276 DOI: 10.3390/biology14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure-function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges.
Collapse
Affiliation(s)
- Haoran Zhu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| | - Yu Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| |
Collapse
|
3
|
Hou J, Du K, Li J, Li Z, Cao S, Zhang S, Huang W, Liu H, Yang X, Sun S, Mo S, Qin T, Zhang X, Yin S, Nie X, Lu X. Research trends in the use of nanobodies for cancer therapy. J Control Release 2025; 381:113454. [PMID: 39922288 DOI: 10.1016/j.jconrel.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although there are many challenges in using nanobodies for treating various complex tumor diseases, including rapid renal clearance and the complex blood-brain barrier environment, nanobodies have shown great potential due to their high antigen affinity, excellent tumor penetration ability, and favorable safety profile. Since the discovery of the variable domain (VHH) of camelid heavy-chain antibodies in 1993, nanobodies have been progressively applied to various cancer therapy platforms, such as antagonistic drugs and targeting agents for effector domains. In recent years, several nanobody-based drugs, including Caplacizumab, KN-035, and Ozoralizumab, have been approved for clinical use. Among them, KN-035 is used for treating advanced solid tumors, and these advancements have propelled nanobody development to new heights. Currently, nanobodies are being rapidly applied to the treatment of a wide range of diseases, from viral infections to cancer, demonstrating strong advantages in areas such as targeted protein degradation, bioimaging, nanobody-drug conjugation, bispecific T-cell engagers, and vaccine applications. Bibliometric tools, including CiteSpace, HisCite Pro, and Alluvial Generator, were employed to trace the historical development of nanobodies in cancer research. The contributions of authors, countries, and institutions in this field were analyzed, and research hotspots and emerging trends were identified through keyword analysis and influential articles. Future trends were also predicted. This study provides a unique, comprehensive, and objective perspective on the use of nanobodies in tumor research, laying a foundation for future research directions and offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jun Hou
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Kejiang Du
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Jinling Li
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shaorui Cao
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shilin Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Huang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Heng Liu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaomei Yang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shuyang Sun
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shanzhao Mo
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tianyu Qin
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xilei Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shihua Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xinyu Nie
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230002, China.
| | - Xiaoling Lu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
Wang XD, Ma BY, Lai SY, Cai XJ, Cong YG, Xu JF, Zhang PF. High-throughput strategies for monoclonal antibody screening: advances and challenges. J Biol Eng 2025; 19:41. [PMID: 40340930 PMCID: PMC12063422 DOI: 10.1186/s13036-025-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Antibodies characterized by high affinity and specificity, developed through high-throughput screening and rapid preparation, are crucial to contemporary biomedical industry. Traditional antibody preparation via the hybridoma strategy faces challenges like low efficiency, long manufacturing cycles, batch variability and labor intensity. Advances in molecular biology and gene editing technologies offer revolutionary improvements in antibody production. New high-throughput technologies like antibody library display, single B cell antibody technologies, and single-cell sequencing have significantly cut costs and boosted the efficiency of antibody development. These innovations accelerate commercial applications of antibodies, meeting the biopharmaceutical industry's evolving demands. This review explores recent advancements in high-throughput development of antibody, highlighting their potential advantages over traditional methods and their promising future.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China
| | - Bao-Ying Ma
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shi-Ying Lai
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xiang-Jing Cai
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yan-Guang Cong
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Jun-Fa Xu
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan, China.
| | - Peng-Fei Zhang
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Wang K, Cao D, Liu L, Fan X, Lin Y, He W, Zhai Y, Xu P, Yan X, Wang H, Zhang X, Yang P. Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2. Front Med 2025:10.1007/s11684-025-1128-4. [PMID: 40317451 DOI: 10.1007/s11684-025-1128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/16/2024] [Indexed: 05/07/2025]
Abstract
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lanlan Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihuan Lin
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenting He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunze Zhai
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Pingyong Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyun Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Wang
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pengyuan Yang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Jiang W, Huang C, Muyldermans S, Jia L. Small but Mighty: Nanobodies in the Fight Against Infectious Diseases. Biomolecules 2025; 15:610. [PMID: 40427503 PMCID: PMC12109223 DOI: 10.3390/biom15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms and capable of spreading, pose a significant threat to global public health. Developing efficient and cost-effective techniques for treating infectious diseases is crucial in curbing their progression and reducing patients' morbidity and mortality. Nanobodies (Nbs), a novel class of affinity reagents derived from unique heavy chain-only antibodies in camelids, represent the smallest intact and fully functional antigen-binding fragments. Compared with conventional antibodies and their antigen binding fragments, Nbs offer numerous advantages, including high affinity, exceptional target specificity, cost-effective production, easy accessibility, and robust stability, demonstrating immense potential in infectious disease treatment. This review introduces Nbs and focuses on discussing their mechanisms and intervention strategies in the treatment of viral and bacterial infections.
Collapse
Affiliation(s)
- Wenning Jiang
- Department of Public Security Administration, Liaoning Police College, Dalian 116036, China
| | - Chundong Huang
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
| | - Serge Muyldermans
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lingyun Jia
- The School of Bioengineering, Dalian University of Technology, Dalian 116036, China
| |
Collapse
|
7
|
Yu F, Deng Y, Nesvizhskii AI. MSFragger-DDA+ enhances peptide identification sensitivity with full isolation window search. Nat Commun 2025; 16:3329. [PMID: 40199897 PMCID: PMC11978857 DOI: 10.1038/s41467-025-58728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Liquid chromatography-mass spectrometry based proteomics, particularly in the bottom-up approach, relies on the digestion of proteins into peptides for subsequent separation and analysis. The most prevalent method for identifying peptides from data-dependent acquisition mass spectrometry data is database search. Traditional tools typically focus on identifying a single peptide per tandem mass spectrum, often neglecting the frequent occurrence of peptide co-fragmentations leading to chimeric spectra. Here, we introduce MSFragger-DDA+, a database search algorithm that enhances peptide identification by detecting co-fragmented peptides with high sensitivity and speed. Utilizing MSFragger's fragment ion indexing algorithm, MSFragger-DDA+ performs a comprehensive search within the full isolation window for each tandem mass spectrum, followed by robust feature detection, filtering, and rescoring procedures to refine search results. Evaluation against established tools across diverse datasets demonstrated that, integrated within the FragPipe computational platform, MSFragger-DDA+ significantly increases identification sensitivity while maintaining stringent false discovery rate control. It is also uniquely suited for wide-window acquisition data. MSFragger-DDA+ provides an efficient and accurate solution for peptide identification, enhancing the detection of low-abundance co-fragmented peptides. Coupled with the FragPipe platform, MSFragger-DDA+ enables more comprehensive and accurate analysis of proteomics data.
Collapse
Affiliation(s)
- Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Yamei Deng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Peng Y, Alqatari A, Kiessling F, Renn D, Grünberg R, Arold ST, Rueping M. Nanobody-Based Lateral Flow Assay for Rapid Zika Virus Detection. ACS Synth Biol 2025; 14:890-900. [PMID: 40053481 PMCID: PMC11934133 DOI: 10.1021/acssynbio.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Zika virus infections remain severely underdiagnosed due to their initial mild clinical symptoms. However, recent outbreaks have revealed neurological complications in adults and severe deformities in newborns, emphasizing the critical need for accurate diagnosis. Lateral flow assays (LFAs) provide a rapid, cost-effective, and user-friendly method for antigen testing at point-of-care, bedside, or in home settings. LFAs utilizing nanobodies have multiple benefits over traditional antibody-based techniques, as nanobodies are much smaller, more stable, and simpler to manufacture. We introduce a nanobody-based LFA for the rapid identification of Zika virus antigens. Starting from two previously reported nanobodies recognizing the Zika nonstructural protein 1 (NS1), we evaluate periplasmic and cytosolic nanobody expression and test different purification tags and immobilization strategies. We quantify nanobody binding kinetics and validate their mutually noncompetitive binding. Avidity effects boost the capture of the tetrameric target protein by 3 orders of magnitude and point to a general strategy for higher sensitivity LFA sensing. The nanobody LFA detects Zika NS1 with a limit of detection ranging from 25 ng/mL in buffer to 1 ng/mL in urine. This nanobody-LFA has the potential to facilitate on-site and self-diagnosis, improve our understanding of Zika infection prevalence, and support public health initiatives in regions affected by Zika virus outbreaks.
Collapse
Affiliation(s)
- Yuli Peng
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Atheer Alqatari
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging (ExMI), University Hospital, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| | - Dominik Renn
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Raik Grünberg
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T. Arold
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute
for Experimental Molecular Imaging (ExMI), University Hospital, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
9
|
Shapiro DM, Deshpande S, Eghtesadi SA, Zhong M, Fontes CM, Fiflis D, Rohm D, Min J, Kaur T, Peng J, Ney M, Su J, Dai Y, Asokan A, Gersbach CA, Chilkoti A. Synthetic biomolecular condensates enhance translation from a target mRNA in living cells. Nat Chem 2025; 17:448-456. [PMID: 39929988 DOI: 10.1038/s41557-024-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/27/2024] [Indexed: 02/21/2025]
Abstract
Biomolecular condensates composed of proteins and RNA are one approach by which cells regulate post-transcriptional gene expression. Their formation typically involves the phase separation of intrinsically disordered proteins with a target mRNA, sequestering the mRNA into a liquid condensate. This sequestration regulates gene expression by modulating translation or facilitating RNA processing. Here we engineer synthetic condensates using a fusion of an RNA-binding protein, the human Pumilio2 homology domain (Pum2), and a synthetic intrinsically disordered protein, an elastin-like polypeptide (ELP), that can bind and sequester a target mRNA transcript. In protocells, sequestration of a target mRNA largely limits its translation. Conversely, in Escherichia coli, sequestration of the same target mRNA increases its translation. We characterize the Pum2-ELP condensate system using microscopy, biophysical and biochemical assays, and RNA sequencing. This approach enables the modulation of cell function via the formation of synthetic biomolecular condensates that regulate the expression of a target protein.
Collapse
Affiliation(s)
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Miranda Zhong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - David Fiflis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Junseon Min
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taranpreet Kaur
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joanna Peng
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jonathan Su
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Yin Y, Liu C, Ji X, Wang Y, Mongkolsapaya J, Screaton GR, Cui Z, Huang WE. Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation. Microb Biotechnol 2025; 18:e70109. [PMID: 40042439 PMCID: PMC11881285 DOI: 10.1111/1751-7915.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100-200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free Escherichia coli strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein - a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 109 ± 1.40 × 108 mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 109 ± 9.94 × 108 mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.
Collapse
Affiliation(s)
- Yutong Yin
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Xianglin Ji
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced Research (OSCAR)University of Oxford, Suzhou Industrial ParkSuzhouJiangsuChina
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
- Mahidol‐Oxford Tropical Medicine Research UnitBangkokThailand
- Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI)University of OxfordOxfordUK
| | - Zhanfeng Cui
- Department of Engineering ScienceUniversity of OxfordOxfordUK
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
11
|
Gupta S, Russell B, Kristensen LG, Tyler J, Costello SM, Marqusee S, Rad B, Ralston CY. Enabling simultaneous photoluminescence spectroscopy and X-ray footprinting mass spectrometry to study protein conformation and interactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1214-1225. [PMID: 39749913 PMCID: PMC11802294 DOI: 10.1039/d4ay01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously. To facilitate general use, we designed a flexible and optimum system for producing high-quality spectroscopy-XFMS hybrid data, with rapid interchangeable liquid jet or capillary sample delivery for multimodal inline spectroscopy, and several choices for optofluidic environments. To validate the hybrid system, we used the covalently interacting SpyCatcher-SpyTag split protein system. We show that our hybrid system can be used to detect the interaction of SpyTag and SpyCatcher via fluorescence resonance energy transfer (FRET), while elucidating key structural features throughout the complex at the residue level via XFMS. Our results highlight the usefulness of hybrid method in providing binding and structural details to precisely engineer protein interactions.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brandon Russell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Tyler
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Shawn M Costello
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
12
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2025; 15:236-253. [PMID: 38898362 PMCID: PMC11788755 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S. El Salamouni
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Jordan H. Cater
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- ARC Centre of Excellence in Quantum BiotechnologyUniversity of WollongongAustralia
| |
Collapse
|
13
|
Singh V, Choudhary S, Bhutkar M, Nehul S, Ali S, Singla J, Kumar P, Tomar S. Designing and bioengineering of CDRs with higher affinity against receptor-binding domain (RBD) of SARS-CoV-2 Omicron variant. Int J Biol Macromol 2025; 290:138751. [PMID: 39675603 DOI: 10.1016/j.ijbiomac.2024.138751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
The emergence of the SARS-CoV-2 Omicron variant highlights the need for innovative strategies to address evolving viral threats. This study bioengineered three nanobodies H11-H4, C5, and H3 originally targeting the Wuhan RBD, to bind more effectively to the Omicron RBD. A structure-based in silico affinity maturation pipeline was developed to enhance their binding affinities. The pipeline consists of three key steps: high-throughput in silico mutagenesis of complementarity-determining regions (CDRs), protein-protein docking for screening, and molecular dynamics (MD) simulations for assessment of the complex stability. A total of 741, 551, and 684 mutations were introduced in H11-H4, C5, and H3 nanobodies, respectively. Protein-protein docking and MD simulations shortlisted high-affinity mutants for H11-H4(6), C5(5), and H3(6). Further, recombinant production of H11-H4 mutants and Omicron RBD enabled experimental validation through Isothermal Titration Calorimetry (ITC). The H11-H4 mutants R27E, S57D, S107K, D108W, and A110I exhibited improved binding affinities with dissociation constant (KD) values ranging from ~8.8 to ~27 μM, compared to the H11-H4 nanobody KD of ~32 μM, representing a three-fold enhancement. This study demonstrates the potential of the developed in silico affinity maturation pipeline as a rapid, cost-effective method for repurposing nanobodies, aiding the development of robust prophylactic strategies against evolving SARS-CoV-2 variants and other pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sabika Ali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
14
|
Jain R, Farquhar ER, Dhillon NS, Jeon N, Chance MR, Kiselar J. Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting. Anal Chem 2025; 97:482-491. [PMID: 39720871 PMCID: PMC11830425 DOI: 10.1021/acs.analchem.4c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>103) dynamic range of AA reactivity with •OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low •OH reactivities. To overcome this limitation, we developed a multiplex labeling chemistry that utilizes both CF3 radicals (•CF3) produced from a trifluoromethylation (TFM) reagent and OH radicals (•OH), under controlled and optimized radiolysis doses generated by X-rays. We optimized the dual •CF3/•OH chemistry using model peptides and proteins, thereby extending the existing •OH labeling platform to incorporate simultaneous •CF3 labeling. We labeled >50% of the protein sequence and >80% of protein solvent-accessible AAs via multiplex TFM labeling resulting in high-resolution footprinting, primarily by enhancing the labeling of AAs with low •OH reactivity via the •CF3 channel, while labeling moderate and highly •OH-reactive AAs in both •CF3 and •OH channels. Moreover, the low reactivity of methionine with •CF3 enabled the detection and quantification of additional AAs labeled by •CF3 within methionine-containing peptides. Finally, we found that the solvent accessibility of protein AAs directly correlated with •CF3 labeling, demonstrating that multiplex TFM labeling enables a high-resolution assessment of molecular interactions for enhanced HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nayeon Jeon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
15
|
Zhao S, Zeng W, Yu F, Xu P, Chen CY, Chen W, Dong Y, Wang F, Ma L. Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with Escherichia coli. Biomolecules 2025; 15:111. [PMID: 39858505 PMCID: PMC11762740 DOI: 10.3390/biom15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with Escherichia coli by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody. Several receptor-binding domain (RBD)-specific nanobodies of the SARS-CoV-2 spike protein (S) were secreted onto the surface of E. coli cells and even into the culture medium, including Fu2, ANTE, mNb6, MR3-MR3, and n3113.1. The nanobodies secreted by E. coli retained equal activity as prior research, regardless of whether sfGFP was removed. Since some of the nanobodies bound to different regions of the RBD, we combined two nanobodies to improve the affinity. Fu2-sfGFP-ANTE was constructed to be bispecific for the RBD, and the bispecific nanobody exhibited significantly higher affinity than Fu2 (35.0-fold), ANTE (7.3-fold), and the combination of the two nanobodies (3.3-fold). Notably, Fu2-sfGFP-ANTE can be normally secreted into the culture medium and outer membrane. The novel nanobody production system enhances the efficiency of nanobody expression and streamlines the downstream purification process, enabling large-scale, cost-effective nanobody production. In addition, E. coli cells secreting the nanobodies on their surface facilitates screening and characterization of antigen-binding clones.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (S.Z.); (W.Z.); (F.Y.); (P.X.); (C.-Y.C.); (W.C.); (F.W.)
| | | | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China; (S.Z.); (W.Z.); (F.Y.); (P.X.); (C.-Y.C.); (W.C.); (F.W.)
| |
Collapse
|
16
|
Kalogriopoulos NA, Tei R, Yan Y, Klein PM, Ravalin M, Cai B, Soltesz I, Li Y, Ting AY. Synthetic GPCRs for programmable sensing and control of cell behaviour. Nature 2025; 637:230-239. [PMID: 39633047 PMCID: PMC11666456 DOI: 10.1038/s41586-024-08282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research1,2. However, established technologies such as chimeric antigen receptors3 can only detect immobilized antigens, have limited output scope and lack built-in drug control3-7. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating programmable antigen-gated G-protein-coupled engineered receptors (PAGERs). We create PAGERs that are responsive to more than a dozen biologically and therapeutically important soluble and cell-surface antigens in a single step from corresponding nanobody binders. Different PAGER scaffolds allow antigen binding to drive transgene expression, real-time fluorescence or endogenous G-protein activation, enabling control of diverse cellular functions. We demonstrate multiple applications of PAGER, including induction of T cell migration along a soluble antigen gradient, control of macrophage differentiation, secretion of therapeutic antibodies and inhibition of neuronal activity in mouse brain slices. Owing to its modular design and generalizability, we expect PAGERs to have broad utility in discovery and translational science.
Collapse
Affiliation(s)
| | - Reika Tei
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yuqi Yan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Matthew Ravalin
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Bo Cai
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
De Jesús-González LA, León-Juárez M, Lira-Hernández FI, Rivas-Santiago B, Velázquez-Cervantes MA, Méndez-Delgado IM, Macías-Guerrero DI, Hernández-Castillo J, Hernández-Rodríguez X, Calderón-Sandate DN, Mata-Martínez WS, Reyes-Ruíz JM, Osuna-Ramos JF, García-Herrera AC. Advances and Challenges in Antiviral Development for Respiratory Viruses. Pathogens 2024; 14:20. [PMID: 39860981 PMCID: PMC11768830 DOI: 10.3390/pathogens14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
The development of antivirals for respiratory viruses has advanced markedly in response to the growing threat of pathogens such as Influenzavirus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2. This article reviews the advances and challenges in this field, highlighting therapeutic strategies that target critical stages of the viral replication cycle, including inhibitors of viral entry, replication, and assembly. In addition, innovative approaches such as inhibiting host cellular proteins to reduce viral resistance and repurposing existing drugs are explored, using advanced bioinformatics tools that optimize the identification of antiviral candidates. The analysis also covers emerging technologies such as nanomedicine and CRISPR gene editing, which promise to improve the stability and efficacy of treatments. While current antivirals offer valuable options, they face challenges such as viral evolution and the need for accessible treatments for vulnerable populations. This article underscores the importance of continued innovation in biotechnology to overcome these limitations and provide safe and effective treatments. Combining traditional and advanced approaches in developing antivirals is essential in order to address respiratory viral diseases that affect global health.
Collapse
Affiliation(s)
- Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Flor Itzel Lira-Hernández
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| | - Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Iridiana Monserrat Méndez-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Especialidad en Medicina Familiar, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar # 4, Servicio de Medicina Familiar, Guadalupe, Zacatecas 98618, Mexico
| | - Daniela Itzel Macías-Guerrero
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Jonathan Hernández-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Ximena Hernández-Rodríguez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Daniela Nahomi Calderón-Sandate
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Willy Salvador Mata-Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
- Especialidad en Medicina Familiar, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Instituto Mexicano del Seguro Social, Unidad de Medicina Familiar # 4, Servicio de Medicina Familiar, Guadalupe, Zacatecas 98618, Mexico
| | - José Manuel Reyes-Ruíz
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, Mexico
| | | | - Ana Cristina García-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (F.I.L.-H.); (B.R.-S.); (I.M.M.-D.); (D.I.M.-G.); (X.H.-R.); (D.N.C.-S.); (W.S.M.-M.); (A.C.G.-H.)
| |
Collapse
|
18
|
Xiang Y, Xu J, McGovern BL, Ranzenigo A, Huang W, Sang Z, Shen J, Diaz-Tapia R, Pham ND, Teunissen AJP, Rodriguez ML, Benjamin J, Taylor DJ, van Leent MMT, White KM, García-Sastre A, Zhang P, Shi Y. Adaptive multi-epitope targeting and avidity-enhanced nanobody platform for ultrapotent, durable antiviral therapy. Cell 2024; 187:6966-6980.e23. [PMID: 39447570 PMCID: PMC11748749 DOI: 10.1016/j.cell.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Pathogens constantly evolve and can develop mutations that evade host immunity and treatment. Addressing these escape mechanisms requires targeting evolutionarily conserved vulnerabilities, as mutations in these regions often impose fitness costs. We introduce adaptive multi-epitope targeting with enhanced avidity (AMETA), a modular and multivalent nanobody platform that conjugates potent bispecific nanobodies to a human immunoglobulin M (IgM) scaffold. AMETA can display 20+ nanobodies, enabling superior avidity binding to multiple conserved and neutralizing epitopes. By leveraging multi-epitope SARS-CoV-2 nanobodies and structure-guided design, AMETA constructs exponentially enhance antiviral potency, surpassing monomeric nanobodies by over a million-fold. These constructs demonstrate ultrapotent, broad, and durable efficacy against pathogenic sarbecoviruses, including Omicron sublineages, with robust preclinical results. Structural analysis through cryoelectron microscopy and modeling has uncovered multiple antiviral mechanisms within a single construct. At picomolar to nanomolar concentrations, AMETA efficiently induces inter-spike and inter-virus cross-linking, promoting spike post-fusion and striking viral disarmament. AMETA's modularity enables rapid, cost-effective production and adaptation to evolving pathogens.
Collapse
Affiliation(s)
- Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialu Xu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ngoc Dung Pham
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jared Benjamin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Zhou L, Xiong Y, Dwivedy A, Zheng M, Cooper L, Shepherd S, Song T, Hong W, Le LTP, Chen X, Umrao S, Rong L, Wang T, Cunningham BT, Wang X. Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Sci Robot 2024; 9:eadi2084. [PMID: 39602515 PMCID: PMC11750070 DOI: 10.1126/scirobotics.adi2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and precise structural addressability at the nanometer scale, rendering it a material for constructing versatile nanorobots for biomedical applications. Here, we present the design principle, synthesis, and characterization of a DNA nanorobotic hand, called DNA NanoGripper, that contains a palm and four bendable fingers as inspired by naturally evolved human hands, bird claws, and bacteriophages. Each NanoGripper finger consists of three phalanges connected by three rotatable joints that are bendable in response to the binding of other entities. NanoGripper functions are enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We demonstrate that the NanoGripper can be engineered to effectively interact with and capture nanometer-scale objects, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. With multiple DNA aptamer nanoswitches programmed to generate a fluorescent signal that is enhanced on a photonic crystal platform, the NanoGripper functions as a highly sensitive biosensor that selectively detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~100 copies per milliliter, providing a sensitivity equal to that of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Quantified by flow cytometry assays, we demonstrated that the NanoGripper-aptamer complex can effectively block viral entry into the host cells, suggesting its potential for inhibiting virus infections. The design, synthesis, and characterization of a sophisticated nanomachine that can be tailored for specific applications highlight a promising pathway toward feasible and efficient solutions to the detection and potential inhibition of virus infections.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengxi Zheng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Hong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Linh T. P. Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
21
|
Hu Y, Huo L, Chen W, Shen J, Wang W. Resistance-based directed evolution of nanobodies for higher affinity in prokaryotes. Biochim Biophys Acta Gen Subj 2024; 1868:130710. [PMID: 39245149 DOI: 10.1016/j.bbagen.2024.130710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A prokaryotic resistance-based directed evolution system leveraging protein-fragment complementation assay (PCA) was devised, and its proficiency in detecting protein-protein interactions and discriminating varying degrees of binding affinity was demonstrated by two well-characterized protein pairs. Furthermore, we constructed a random mutant library based on the GBPR36K/E45K mutant, characterized by almost no affinity towards EGFP. This library was subjected to PCA-based prokaryotic directed evolution, resulting in the isolation of back-mutated variants. In summary, we have established an expedited, cost-effective, and structural information-independent PCA-based prokaryotic directed evolution platform for nanobody affinity maturation, featuring tunable screening stringency via modulation of antibiotic concentrations.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Li Huo
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China.
| | - Wenyi Wang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China & Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
22
|
Ayrton JP, Ho C, Zhang H, Chudasama V, Frank S, Thomas MR. Multivalent nanobody engineering for enhanced physisorption and functional display on gold nanoparticles. NANOSCALE 2024; 16:19881-19896. [PMID: 39382227 DOI: 10.1039/d4nr02762k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The ease of expression and engineering of single domain antibodies, known as nanobodies, make them attractive alternatives to conventional antibodies in point-of-care diagnostics such as lateral flow assays. In lateral flow assays, gold nanoparticle bioconjugates serve as labels which display affinity molecules on the gold surface. While examples of nanobody gold nanoparticle bioconjugates exist, few utilise the simple one-step approach of physisorption owing to undesirable nanoparticle aggregation and loss of functionality. Here we show that engineering nanobodies into multivalent structures can significantly enhance their functionality when physisorbed onto gold nanoparticles. This approach enables resulting bioconjugates to withstand multiple processing steps required for long-term nanoparticle storage within lateral flow assays. Specifically, we show that the trivalent version of VHHV nanobody (VHH3) against the S1 protein of SARS-CoV-2 can be immobilised onto gold nanoparticles through passive adsorption. Unlike its monovalent and bivalent nanobody counterparts, using VHHV3 preserves nanoparticle stability under salt stress, blocking, washing, and freeze-drying conditions while maintaining picomolar sensitivity to the S1 protein. We anticipate that this facile strategy is a significant advancement towards the integration of nanobodies in lateral flow assay development.
Collapse
Affiliation(s)
- John-Paul Ayrton
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Biochemical Engineering, University College London, London, UK.
| | - Chapman Ho
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Biochemical Engineering, University College London, London, UK.
| | - Haoran Zhang
- Department of Biochemical Engineering, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London, UK.
| | - Michael R Thomas
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
23
|
Fazekas Z, Nagy-Fazekas D, Shilling-Tóth B, Ecsédi P, Stráner P, Nyitray L, Perczel A. Evaluation of an Affinity-Enhanced Anti-SARS-CoV2 Nanobody Design Workflow Using Machine Learning and Molecular Dynamics. J Chem Inf Model 2024; 64:7626-7638. [PMID: 39356775 PMCID: PMC11481066 DOI: 10.1021/acs.jcim.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
In silico optimization of protein binding has received a great deal of attention in the recent years. Since in silico prefiltering of strong binders is fast and cheap compared to in vitro library screening methods, the advent of powerful hardware and advanced machine learning algorithms has made this strategy more accessible and preferred. These advances have already impacted the global response to pandemic threats. In this study, we proposed and tested a workflow for designing nanobodies targeting the SARS-CoV-2 spike protein receptor binding domain (S-RBD) using machine learning techniques complemented by molecular dynamics simulations. We evaluated the feasibility of this workflow using a test set of 3 different nanobodies and 2 different S-RBD variants, from in silico design and bacterial expression to binding assays of the designed nanobody mutants. We successfully designed nanobodies that were subsequently tested against both the wild-type (Wuhan type) and the delta variant S-RBD and found 2 of them to be stronger binders compared to the wild-type nanobody. We use this case study to describe both the strengths and weaknesses of this in silico assisted nanobody design strategy.
Collapse
Affiliation(s)
- Zsolt Fazekas
- Hevesy
György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Pázmány
Péter sétány. 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest H-1117, Hungary
| | - Dóra Nagy-Fazekas
- Hevesy
György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Pázmány
Péter sétány. 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest H-1117, Hungary
| | | | - Péter Ecsédi
- Department
of Biochemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/C, Budapest H-1117, Hungary
| | - Pál Stráner
- HUN-REN-ELTE
Protein Modeling Research Group, Hungarian Research Network (HUN-REN),
Institute of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest H-1117, Hungary
| | - László Nyitray
- Department
of Biochemistry, Eötvös Loránd
University, Pázmány
Péter sétány 1/C, Budapest H-1117, Hungary
| | - András Perczel
- Medicinal
Chemistry Research Group, HUN-REN Research
Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- HUN-REN-ELTE
Protein Modeling Research Group, Hungarian Research Network (HUN-REN),
Institute of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest H-1117, Hungary
| |
Collapse
|
24
|
Deichmann M, Hansson FG, Jensen ED. Yeast-based screening platforms to understand and improve human health. Trends Biotechnol 2024; 42:1258-1272. [PMID: 38677901 DOI: 10.1016/j.tibtech.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Detailed molecular understanding of the human organism is essential to develop effective therapies. Saccharomyces cerevisiae has been used extensively for acquiring insights into important aspects of human health, such as studying genetics and cell-cell communication, elucidating protein-protein interaction (PPI) networks, and investigating human G protein-coupled receptor (hGPCR) signaling. We highlight recent advances and opportunities of yeast-based technologies for cost-efficient chemical library screening on hGPCRs, accelerated deciphering of PPI networks with mating-based screening and selection, and accurate cell-cell communication with human immune cells. Overall, yeast-based technologies constitute an important platform to support basic understanding and innovative applications towards improving human health.
Collapse
Affiliation(s)
- Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Ye G, Bu F, Pan R, Mendoza A, Yang G, Spiller B, Wadzinski BE, Du L, Perlman S, Liu B, Li F. Structure-guided in vitro evolution of nanobodies targeting new viral variants. PLoS Pathog 2024; 20:e1012600. [PMID: 39325826 PMCID: PMC11460708 DOI: 10.1371/journal.ppat.1012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
26
|
Wang X, Sheng Y, Ji P, Deng Y, Sun Y, Chen Y, Nan Y, Hiscox JA, Zhou EM, Liu B, Zhao Q. A Broad-specificity Neutralizing Nanobody against Hepatitis E Virus Capsid Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:442-455. [PMID: 38905108 PMCID: PMC11299488 DOI: 10.4049/jimmunol.2300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
28
|
Kamoshida G, Yamaguchi D, Kaya Y, Yamakado T, Yamashita K, Aoyagi M, Nagai S, Yamada N, Kawagishi Y, Sugano M, Sakairi Y, Ueno M, Takemoto N, Morita Y, Ishizaka Y, Yahiro K. Development of a novel bacterial production system for recombinant bioactive proteins completely free from endotoxin contamination. PNAS NEXUS 2024; 3:pgae328. [PMID: 39161731 PMCID: PMC11331542 DOI: 10.1093/pnasnexus/pgae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Kaya
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiki Yamakado
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kenta Yamashita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Moe Aoyagi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Saaya Nagai
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yu Kawagishi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mizuki Sugano
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiaki Sakairi
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
29
|
Qin HR, Cao Z, Lu FZ, Wang W, Zhao W, Li G, Zhang H, Wang S, Qin Z. Monovalent, bivalent and biparatopic nanobodies targeting S1 protein of porcine epidemic diarrhea virus efficiently neutralized the virus infectivity. BMC Vet Res 2024; 20:336. [PMID: 39080763 PMCID: PMC11290301 DOI: 10.1186/s12917-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.
Collapse
Affiliation(s)
- Huai-Rui Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Feng-Zhe Lu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenhui Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guimei Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shubai Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
31
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
32
|
Hwang J, Jang IY, Bae E, Choi J, Kim JH, Lee SB, Kim JH, Lee JP, Jang HY, Kim HT, Lim JW, Yeom M, Jang E, Kim SE, Jeong HH, Kim JW, Seong SY, Song D, Na W. H1N1 nanobody development and therapeutic efficacy verification in H1N1-challenged mice. Biomed Pharmacother 2024; 176:116781. [PMID: 38805966 DOI: 10.1016/j.biopha.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.
Collapse
Affiliation(s)
- Jaehyun Hwang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Hwan Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Sang Beum Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong Hyun Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jae Pil Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Ho Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Hyoung Tae Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhee Jang
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seong-Eun Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Hyoung Hwa Jeong
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Jung Woo Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seung-Yong Seong
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea.
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
33
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
34
|
Cao L, Yu B, Li S, Zhang P, Li Q, Wang L. Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins. Chem 2024; 10:1868-1884. [PMID: 38975291 PMCID: PMC11225796 DOI: 10.1016/j.chempr.2024.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx), recently debuted in small molecules, represents the forefront of click chemistry. To explore PFEx's potential in biological settings, we developed amino acids PFY and PFK featuring phosphoramidofluoridates and incorporated them into proteins through genetic code expansion. PFY/PFK selectively reacted with nearby His, Tyr, Lys, or Cys in proteins, both in vitro and in living cells, demonstrating that proximity enabled PFEx reactivity without external reagents. The reaction with His showed unique pH-dependent properties and created thermally sensitive linkages. Additionally, Na2SiO3 enhanced PFEx reactions with Tyr and Cys. PFEx, by generating defined covalent P-N/O linkages, extends the utility of phosphorus linkages in proteins, aligning with nature's use of phosphate connectors in other biomolecules. More versatile and durable than SuFEx, PFEx in proteins expands the latent bioreactive arsenal for covalent protein engineering and will facilitate the broad application of this potent click chemistry in biological and biomedical fields.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qingke Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
35
|
Adair A, Tan LL, Feng J, Girkin J, Bryant N, Wang M, Mordant F, Chan LJ, Bartlett NW, Subbarao K, Pymm P, Tham WH. Human coronavirus OC43 nanobody neutralizes virus and protects mice from infection. J Virol 2024; 98:e0053124. [PMID: 38709106 PMCID: PMC11237593 DOI: 10.1128/jvi.00531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.
Collapse
Affiliation(s)
- Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jackson Feng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Girkin
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan Bryant
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mingyang Wang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Liu X, Wang Y, Sun L, Xiao G, Hou N, Chen J, Wang W, Xu X, Gu Y. Screening and optimization of shark nanobodies against SARS-CoV-2 spike RBD. Antiviral Res 2024; 226:105898. [PMID: 38692413 DOI: 10.1016/j.antiviral.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Yanqing Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ning Hou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
37
|
Cornish K, Huo J, Jones L, Sharma P, Thrush JW, Abdelkarim S, Kipar A, Ramadurai S, Weckener M, Mikolajek H, Liu S, Buckle I, Bentley E, Kirby A, Han X, Laidlaw SM, Hill M, Eyssen L, Norman C, Le Bas A, Clarke J, James W, Stewart JP, Carroll M, Naismith JH, Owens RJ. Structural and functional characterization of nanobodies that neutralize Omicron variants of SARS-CoV-2. Open Biol 2024; 14:230252. [PMID: 38835241 PMCID: PMC11285730 DOI: 10.1098/rsob.230252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
The Omicron strains of SARS-CoV-2 pose a significant challenge to the development of effective antibody-based treatments as immune evasion has compromised most available immune therapeutics. Therefore, in the 'arms race' with the virus, there is a continuing need to identify new biologics for the prevention or treatment of SARS-CoV-2 infections. Here, we report the isolation of nanobodies that bind to the Omicron BA.1 spike protein by screening nanobody phage display libraries previously generated from llamas immunized with either the Wuhan or Beta spike proteins. The structure and binding properties of three of these nanobodies (A8, H6 and B5-5) have been characterized in detail providing insight into their binding epitopes on the Omicron spike protein. Trimeric versions of H6 and B5-5 neutralized the SARS-CoV-2 variant of concern BA.5 both in vitro and in the hamster model of COVID-19 following nasal administration. Thus, either alone or in combination could serve as starting points for the development of new anti-viral immunotherapeutics.
Collapse
Affiliation(s)
- Katy Cornish
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luke Jones
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joseph W. Thrush
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Sahar Abdelkarim
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vetsuisse Faculty, Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Siva Ramadurai
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Miriam Weckener
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | | | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Imogen Buckle
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ximeng Han
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stephen M. Laidlaw
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michelle Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lauren Eyssen
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Chelsea Norman
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Audrey Le Bas
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - John Clarke
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Carroll
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Raymond J. Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
39
|
Kalogriopoulos NA, Tei R, Yan Y, Ravalin M, Li Y, Ting A. Synthetic G protein-coupled receptors for programmable sensing and control of cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589622. [PMID: 38659921 PMCID: PMC11042292 DOI: 10.1101/2024.04.15.589622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.
Collapse
|
40
|
Hannula L, Kuivanen S, Lasham J, Kant R, Kareinen L, Bogacheva M, Strandin T, Sironen T, Hepojoki J, Sharma V, Saviranta P, Kipar A, Vapalahti O, Huiskonen JT, Rissanen I. Nanobody engineering for SARS-CoV-2 neutralization and detection. Microbiol Spectr 2024; 12:e0419922. [PMID: 38363137 PMCID: PMC10986514 DOI: 10.1128/spectrum.04199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Liina Hannula
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mariia Bogacheva
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Saviranta
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juha T. Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Yang ML, Yuan TZ, Chan KY, Ding L, Han Z, Franco H, Holliday C, Kannan S, Davidson E, Doranz BJ, Chandran K, Miller EH, Plante JA, Weaver SC, Cho E, Kailasan S, Marsalek L, Giang H, Abdiche Y, Sato AK. A VHH single-domain platform enabling discovery and development of monospecific antibodies and modular neutralizing bispecifics against SARS-CoV-2 variants. Antib Ther 2024; 7:164-176. [PMID: 38933534 PMCID: PMC11200683 DOI: 10.1093/abt/tbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.
Collapse
Affiliation(s)
- Marisa L Yang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Tom Z Yuan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Kara Y Chan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Lin Ding
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Zhen Han
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Hector Franco
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Carson Holliday
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Shruthi Kannan
- Integral Molecular, Philadelphia, PA 19104, United States
| | - Edgar Davidson
- Integral Molecular, Philadelphia, PA 19104, United States
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Emily Happy Miller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Jessica A Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Eunice Cho
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | - Shweta Kailasan
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | | | - Hoa Giang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Yasmina Abdiche
- Revelar Biotherapeutics, Inc., Bethesda, MD 20817, United States
| | - Aaron K Sato
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| |
Collapse
|
42
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
43
|
Yao C, Hu Y, Liu Q, Liu JM, Ji X, Lv H, Wang S. Nanobody mediated dual-mode immunoassay for detection of peanut allergen Ara h 3. Food Chem 2024; 436:137679. [PMID: 37826894 DOI: 10.1016/j.foodchem.2023.137679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
To improve the performance of peanut allergen Ara h 3 detection, depending on boron and nitrogen carbon dots (B/N-CDs), a nanobody (Nb) mediated dual-mode immunoassay was established, which combines the dominance of colorimetry with ratiometric fluorescence techniques. With the catalysis of Horseradish peroxidase (HRP), the oxidization of o-phenylenediamine (o-PD) in the presence of H2O2, leading to the production of yellow 2,3-diaminophenolazine (DAP) with an absorption peak at 431 nm. Owing to inner filter effect (IFE), DAP quenched the fluorescence of B/N-CDs at 426 nm, and it emerged a new emission peak at 549 nm. The fluorescence intensity ratio and absorption intensity can be utilized for quantitative analysis of Ara h 3 concentration. Under optimal conditions, the detection limits were 6.61 and 9.79 ng·mL-1, respectively. The dual-mode immunoassay was assessed containing specificity, stability, reproducibility, and practicability. This method paved the way for sensitive detection of Ara h 3 without background Interference.
Collapse
Affiliation(s)
- Chixuan Yao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
44
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
45
|
Winiger RR, Perez L. Therapeutic antibodies and alternative formats against SARS-CoV-2. Antiviral Res 2024; 223:105820. [PMID: 38307147 DOI: 10.1016/j.antiviral.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world. Despite a prompt generation of vaccines and therapeutics to confront infection, the virus remains a threat. The ancestor viral strain has evolved into several variants of concern, with the Omicron variant now having many distinct sublineages. Consequently, most available antibodies targeting the spike went obsolete and thus new therapies or therapeutic formats are needed. In this review we focus on antibody targets, provide an overview of the therapeutic progress made so far, describe novel formats being explored, and lessons learned from therapeutic antibodies that can enhance pandemic preparedness.
Collapse
Affiliation(s)
- Rahel R Winiger
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| |
Collapse
|
46
|
Wang J, Kang G, Lu H, de Marco A, Yuan H, Feng Z, Gao M, Wang X, Wang H, Zhang X, Wang Y, Zhang M, Wang P, Feng Y, Liu Z, Cao X, Huang H. Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities. Clin Transl Med 2024; 14:e1636. [PMID: 38533646 PMCID: PMC10966562 DOI: 10.1002/ctm2.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc. Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.
Collapse
Affiliation(s)
- Jiewen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Ario de Marco
- Laboratory for Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
| | - Haibin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Xiaolan Zhang
- Department of GastroenterologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuli Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research InstituteTianjin Key Laboratory of Quality Control in Chinese MedicineTianjinChina
- State Key Laboratory of Drug Delivery Technology and PharmacokineticsTianjin Institute of Pharmaceutical ResearchTianjinChina
| | - Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
- China Resources Biopharmaceutical Company LimitedBeijingChina
| | - Ping Wang
- New Technology R&D DepartmentTianjin Modern Innovative TCM Technology Company LimitedTianjinChina
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General HospitalTianjin Medical UniversityTianjinChina
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
| |
Collapse
|
47
|
Qin Q, Jiang X, Huo L, Qian J, Yu H, Zhu H, Du W, Cao Y, Zhang X, Huang Q. Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2. J Nanobiotechnology 2024; 22:58. [PMID: 38341574 PMCID: PMC10858482 DOI: 10.1186/s12951-024-02329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the "3-RBD-up" conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.
Collapse
Affiliation(s)
- Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liyun Huo
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhui Cao
- ACROBiosystems Inc, Beijing, 100176, China
| | - Xing Zhang
- ACROBiosystems Inc, Beijing, 100176, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
48
|
Li T, Zhou B, Dong H, Lavillette D, Li D. A human antibody derived from original SARS-CoV-2 infection effectively neutralizes omicron. ADVANCED BIOTECHNOLOGY 2024; 2:2. [PMID: 39883245 PMCID: PMC11740836 DOI: 10.1007/s44307-024-00011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2025]
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) Variants of Concern (VOCs), such as the Omicron sub-variants, present significant challenges in pandemic control due to their capacity to escape antibodies and breach vaccine protections. Discovering antibodies that can tolerate mutations in VOCs and understanding their underlying mechanisms is crucial for developing therapeutics for COVID-19 patients, particularly those for whom other therapies may be unsuitable. Here, we report the neutralization of the Omicron variant by FD20, a broadly active human monoclonal antibody. In contrast to a clinically approved control antibody, FD20 neutralizes Omicron with comparable IC50 values to those observed for previously circulating VOCs and the original strain reported in Wuhan. Leveraging structural information, we provide insights into its resilience against mutations in Omicron. The results encourage the prospective development of FD20 as a therapeutic option for COVID-19 caused by current and potentially future VOCs.
Collapse
Affiliation(s)
- Tingting Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Bingjie Zhou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Haoyu Dong
- Pasteurien College, Soochow University, Jiangsu, China
| | - Dimitri Lavillette
- Pasteurien College, Soochow University, Jiangsu, China.
- Applied Molecular Virology Laboratory, Discovery Biology Department, Institut Pasteur Korea, Gyeonggi-Do, South Korea.
| | - Dianfan Li
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| |
Collapse
|
49
|
Solodkov PP, Najakshin AM, Chikaev NA, Kulemzin SV, Mechetina LV, Baranov KO, Guselnikov SV, Gorchakov AA, Belovezhets TN, Chikaev AN, Volkova OY, Markhaev AG, Kononova YV, Alekseev AY, Gulyaeva MA, Shestopalov AM, Taranin AV. Serial Llama Immunization with Various SARS-CoV-2 RBD Variants Induces Broad Spectrum Virus-Neutralizing Nanobodies. Vaccines (Basel) 2024; 12:129. [PMID: 38400113 PMCID: PMC10891761 DOI: 10.3390/vaccines12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.
Collapse
Affiliation(s)
- Pavel P. Solodkov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Nikolai A. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Kulemzin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Sergey V. Guselnikov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Andrey A. Gorchakov
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Tatyana N. Belovezhets
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Olga Y. Volkova
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| | - Alexander G. Markhaev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Yulia V. Kononova
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
| | - Alexander Y. Alekseev
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander M. Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (A.G.M.); (Y.V.K.); (A.Y.A.); (M.A.G.); (A.M.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.P.S.); (A.M.N.); (N.A.C.); (L.V.M.); (K.O.B.); (S.V.G.); (T.N.B.); (A.N.C.); (O.Y.V.)
| |
Collapse
|
50
|
Pavan MF, Bok M, Betanzos San Juan R, Malito JP, Marcoppido GA, Franco DR, Militelo DA, Schammas JM, Bari SE, Stone W, López K, Porier DL, Muller JA, Auguste AJ, Yuan L, Wigdorovitz A, Parreño VG, Ibañez LI. SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses 2024; 16:185. [PMID: 38399961 PMCID: PMC10892724 DOI: 10.3390/v16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
Collapse
Affiliation(s)
- María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Rafael Betanzos San Juan
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina;
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Gisela Ariana Marcoppido
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Daniela Ayelen Militelo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Sara Elizabeth Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - William Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Danielle LaBrie Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - John Anthony Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Albert Jonathan Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Viviana Gladys Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lorena Itat Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| |
Collapse
|