1
|
Walker SE, Yu K, Burgess S, Echeverri K. Neuronal activation in the axolotl brain promotes tail regeneration. NPJ Regen Med 2025; 10:22. [PMID: 40341072 PMCID: PMC12062227 DOI: 10.1038/s41536-025-00413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The axolotl retains a remarkable capacity for regenerative repair and is one of the few vertebrate species capable of regenerating its brain and spinal cord after injury. To date, studies investigating axolotl spinal cord regeneration have placed particular emphasis on understanding how cells immediately adjacent to the injury site respond to damage to promote regenerative repair. How neurons outside of this immediate injury site respond to an injury remains unknown. Here, we identify a population of dpErk+/etv1+ glutamatergic neurons in the axolotl telencephalon that are activated in response to injury and are essential for tail regeneration. Furthermore, these neurons project to the hypothalamus where they upregulate the neuropeptide neurotensin in response to injury. Together, these findings identify a unique population of neurons in the axolotl brain whose activation is necessary for successful tail regeneration, and sheds light on how neurons outside of the immediate injury site respond to an injury.
Collapse
Affiliation(s)
- S E Walker
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA
| | - K Yu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA.
| |
Collapse
|
2
|
Chen D, Zhuang Z, Huang M, Huang Y, Yan Y, Zhang Y, Lin Y, Jin X, Wang Y, Huang J, Xu W, Pan J, Wang H, Huang F, Liao K, Cheng M, Zhu Z, Bai Y, Niu Z, Zhang Z, Xiang Y, Wei X, Yang T, Zeng T, Dong Y, Lei Y, Sun Y, Wang J, Yang H, Sun Y, Cao G, Poo M, Liu L, Naumann RK, Xu C, Wang Z, Xu X, Liu S. Genomic evolution reshapes cell-type diversification in the amniote brain. Dev Cell 2025:S1534-5807(25)00252-7. [PMID: 40367951 DOI: 10.1016/j.devcel.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Over 320 million years of evolution, amniotes have developed complex brains and cognition through largely unexplored genetic and gene expression mechanisms. We created a comprehensive single-cell atlas of over 1.3 million cells from the telencephalon and cerebellum of turtles, zebra finches, pigeons, mice, and macaques, employing single-cell resolution spatial transcriptomics to validate gene expression patterns across species. Our study identifies significant species-specific variations in cell types, highlighting their conservation and diversification in evolution. We found pronounced differences in telencephalon excitatory neurons (EXs) and cerebellar cell types between birds and mammals. Birds predominantly express SLC17A6 in EX, whereas mammals express SLC17A7 in the neocortex and SLC17A6 elsewhere, possibly due to loss of function of SLC17A7 in birds. Additionally, we identified a bird-specific Purkinje cell subtype (SVIL+), implicating the lysine-specific demethylase 11 (LSD1)/KDM1A pathway in learning and circadian rhythms and containing numerous positively selected genes, which suggests an evolutionary optimization of cerebellar functions for ecological and behavioral adaptation. Our findings elucidate the complex interplay between genetic evolution and environmental adaptation, underscoring the role of genetic diversification in the development of specialized cell types across amniotes.
Collapse
Affiliation(s)
- Duoyuan Chen
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yuting Yan
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanru Zhang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Xiaoying Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jinfeng Huang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Kuo Liao
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Zhiwei Niu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ze Zhang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Zeng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yuliang Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Wang
- BGI Research, Hangzhou 310030, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muming Poo
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Robert K Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China.
| | - Chun Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
3
|
Ansai S, Hiraki-Kajiyama T, Ueda R, Seki T, Yokoi S, Katsumura T, Takeuchi H. The Medaka approach to evolutionary social neuroscience. Neurosci Res 2025; 214:32-41. [PMID: 39481546 DOI: 10.1016/j.neures.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
Collapse
Affiliation(s)
- Satoshi Ansai
- Ushimado Marine Institute, Okayama University, 701-4303, Japan.
| | | | - Ryutaro Ueda
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Takahide Seki
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan
| | - Saori Yokoi
- School of Pharmaceutical Sciences, Hokkaido University, 060-0808, Japan
| | | | - Hideaki Takeuchi
- Graduate School of Life Sciences, Tohoku University, 980-8577, Japan.
| |
Collapse
|
4
|
Zeppilli S, Gurrola AO, Demetci P, Brann DH, Pham TM, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Single-cell genomics of the mouse olfactory cortex reveals contrasts with neocortex and ancestral signatures of cell type evolution. Nat Neurosci 2025; 28:937-948. [PMID: 40200010 DOI: 10.1038/s41593-025-01924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/19/2025] [Indexed: 04/10/2025]
Abstract
Understanding the molecular logic of cortical cell-type diversity can illuminate cortical circuit function and evolution. Here, we performed single-nucleus transcriptome and chromatin accessibility analyses to compare neurons across three- to six-layered cortical areas of adult mice and across tetrapod species. We found that, in contrast to the six-layered neocortex, glutamatergic neurons of the three-layered mouse olfactory (piriform) cortex displayed continuous rather than discrete variation in transcriptomic profiles. Subsets of piriform and neocortical glutamatergic cells with conserved transcriptomic profiles were distinguished by distinct, area-specific epigenetic states. Furthermore, we identified a prominent population of immature neurons in piriform cortex and observed that, in contrast to the neocortex, piriform cortex exhibited divergence between glutamatergic cells in laboratory versus wild-derived mice. Finally, we showed that piriform neurons displayed greater transcriptomic similarity to cortical neurons of turtles, lizards and salamanders than to those of the neocortex. In summary, despite over 200 million years of coevolution alongside the neocortex, olfactory cortex neurons retain molecular signatures of ancestral cortical identity.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Alonso O Gurrola
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Pinar Demetci
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tuan M Pham
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Robin Attey
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sandeep R Datta
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ritambhara Singh
- Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Maria A Tosches
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Anton Crombach
- Inria Centre de Lyon, Villeurbanne, France.
- INSA-Lyon, CNRS, UCBL, LIRIS, UMR5205, Villeurbanne, France.
- INSA-Lyon, CITI, UR3720, Villeurbanne, France.
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Lee D, Shahandeh MP, Abuin L, Benton R. Comparative single-cell transcriptomic atlases of drosophilid brains suggest glial evolution during ecological adaptation. PLoS Biol 2025; 23:e3003120. [PMID: 40299832 PMCID: PMC12040179 DOI: 10.1371/journal.pbio.3003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
To explore how brains change upon species evolution, we generated single-cell transcriptomic atlases of the central brains of three closely related but ecologically distinct drosophilids: the generalists Drosophila melanogaster and Drosophila simulans, and the noni fruit specialist Drosophila sechellia. The global cellular composition of these species' brains is well-conserved, but we predicted a few cell types with different frequencies, notably perineurial glia of the blood-brain barrier, which we validate in vivo. Gene expression analysis revealed that distinct cell types evolve at different rates and patterns, with glial populations exhibiting the greatest divergence between species. Compared to the D. melanogaster brain, cellular composition and gene expression patterns are more divergent in D. sechellia than in D. simulans-despite their similar phylogenetic distance from D. melanogaster-indicating that the specialization of D. sechellia is reflected in the structure and function of its brain. Expression changes in D. sechellia include several metabolic signaling genes, suggestive of adaptations to its novel source of nutrition. Additional single-cell transcriptomic analysis on D. sechellia revealed genes and cell types responsive to dietary supplement with noni, pointing to glia as sites for both physiological and genetic adaptation to this fruit. Our atlases represent the first comparative datasets for "whole" central brains and provide a comprehensive foundation for studying the evolvability of nervous systems in a well-defined phylogenetic and ecological framework.
Collapse
Affiliation(s)
- Daehan Lee
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Michael P. Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Lust K, Tanaka EM. Adeno-associated viruses for efficient gene expression in the axolotl nervous system. Proc Natl Acad Sci U S A 2025; 122:e2421373122. [PMID: 40042904 PMCID: PMC11912378 DOI: 10.1073/pnas.2421373122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Axolotls are amphibian models for studying nervous system evolution, development, and regeneration. Tools to visualize and manipulate cells of the axolotl nervous system with high-efficiency, spatial and temporal precision are therefore greatly required. Recombinant adeno-associated viruses (AAVs) are frequently used for in vivo gene transfer of the nervous system but virus-mediated gene delivery to the axolotl nervous system has not yet been described. Here, we demonstrate the use of AAVs for efficient gene transfer within the axolotl brain, the spinal cord, and the retina. We show that serotypes AAV8, AAV9, and AAVPHP.eB are suitable viral vectors to infect both excitatory and inhibitory neuronal populations of the axolotl brain. We further use AAV9 to trace retrograde and anterograde projections between the retina and the brain and identify a cell population projecting from the brain to the retina. Together, our work establishes AAVs as a powerful tool to interrogate neuronal organization in the axolotl.
Collapse
Affiliation(s)
- Katharina Lust
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| | - Elly M. Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| |
Collapse
|
7
|
Jaeger ECB, Vijatovic D, Deryckere A, Zorin N, Nguyen AL, Ivanian G, Woych J, Arnold RC, Gurrola AO, Shvartsman A, Barbieri F, Toma FA, Cline HT, Shay TF, Kelley DB, Yamaguchi A, Shein-Idelson M, Tosches MA, Sweeney LB. Adeno-associated viral tools to trace neural development and connectivity across amphibians. Dev Cell 2025; 60:794-812.e6. [PMID: 39603234 PMCID: PMC12068381 DOI: 10.1016/j.devcel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Amphibians, by virtue of their phylogenetic position, provide invaluable insights on nervous system evolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals, AAVs have never been shown to transduce amphibian cells efficiently. We screened AAVs in three amphibian species-the frogs Xenopus laevis and Pelophylax bedriagae and the salamander Pleurodeles waltl-and identified at least two AAV serotypes per species that transduce neurons. In developing amphibians, AAVs labeled groups of neurons generated at the same time during development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution.
Collapse
Affiliation(s)
- Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David Vijatovic
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nikol Zorin
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Akemi L Nguyen
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Georgiy Ivanian
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rebecca C Arnold
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Arik Shvartsman
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | | | - Florina A Toma
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hollis T Cline
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Mark Shein-Idelson
- Department of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Lora B Sweeney
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
8
|
Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, Suzuki KIT, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. CELL GENOMICS 2025; 5:100761. [PMID: 39874962 PMCID: PMC11872487 DOI: 10.1016/j.xgen.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.3 Gb genome of the Iberian ribbed newt, Pleurodeles waltl, with a hitherto unprecedented contiguity and completeness among giant genomes. Utilizing this assembly, we demonstrate conserved synteny as well as genetic rearrangements, such as in the major histocompatibility complex locus. We provide evidence suggesting that intronic repeat elements drive newt-specific circular RNA (circRNA) biogenesis and show their regeneration-specific expression. We also present a comprehensive in-depth annotation and chromosomal mapping of microRNAs, highlighting genomic expansion profiles as well as a distinct regulatory pattern in the regenerating limb. These data reveal links between repeat elements, non-coding RNAs, and adult regeneration and provide key resources for addressing developmental, regenerative, and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Brown
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ketan Mishra
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ahmed Elewa
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Svetlana Iarovenko
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elaiyaraja Subramanian
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Andreas Petzold
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| | - Lennart Rikk
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken-Ichi T Suzuki
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Toshinori Hayashi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan; Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-0801, Japan
| | - Catarina R Oliveira
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ekaterina Osipova
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Maximina H Yun
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Physics of Life Excellence Cluster Dresden, 01307 Dresden, Germany.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden.
| |
Collapse
|
9
|
Antesberger S, Stiening B, Forsthofer M, Joven Araus A, Eroglu E, Huber J, Heß M, Straka H, Sanchez-Gonzalez R. Species-specific blood-brain barrier permeability in amphibians. BMC Biol 2025; 23:43. [PMID: 39934799 PMCID: PMC11817546 DOI: 10.1186/s12915-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) is a semipermeable interface that prevents the non-selective transport into the central nervous system. It controls the delivery of macromolecules fueling the brain metabolism and the immunological surveillance. The BBB permeability is locally regulated depending on the physiological requirements, maintaining the tissue homeostasis and influencing pathological conditions. Given its relevance in vertebrate CNS, it is surprising that little is known about the BBB in Amphibians, some of which are capable of adult CNS regeneration. RESULTS The BBB size threshold of the anuran Xenopus laevis (African clawed toad), as well as two urodele species, Ambystoma mexicanum (axolotl) and Pleurodeles waltl (Iberian ribbed newt), was evaluated under physiological conditions through the use of synthetic tracers. We detected important differences between the analyzed species. Xenopus exhibited a BBB with characteristics more similar to those observed in mammals, whereas the BBB of axolotl was found to be permeable to the 1 kDa tracer. The permeability of the 1 kDa tracer measured in Pleurodeles showed values in between axolotl and Xenopus vesseks. We confirmed that these differences are species-specific and not related to metamorphosis. In line with these results, the tight junction protein Claudin-5 was absent in axolotl, intermediate in Pleurodeles and showed full-coverage in Xenopus vessels. Interestingly, electron microscopy analysis and the retention pattern of the larger tracers (3 and 70 kDa) demonstrated that axolotl endothelial cells exhibit higher rates of macropinocytosis, a non-regulated type of transcellular transport. CONCLUSIONS Our study demonstrated that, under physiological conditions, the blood-brain barrier exhibited species-specific variations, including permeability threshold, blood vessel coverage, and macropinocytosis rate. Future studies are needed to test whether the higher permeability observed in salamanders could have metabolic and immunological consequences contributing to their remarkable regenerative capacity.
Collapse
Affiliation(s)
- Sophie Antesberger
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Beate Stiening
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | | | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Huber
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Martin Heß
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Rosario Sanchez-Gonzalez
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany.
| |
Collapse
|
10
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
11
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O'Connell LA. Neural and sensory basis of homing behaviour in the invasive cane toad, Rhinella marina. Proc Biol Sci 2025; 292:20250045. [PMID: 39999889 PMCID: PMC11858788 DOI: 10.1098/rspb.2025.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
The behavioural, sensory and neural bases of vertebrate navigation are primarily described in mammals and birds. While many studies have explored amphibian navigation, none have characterized brain activity associated with navigation in the wild. To address this knowledge gap, we conducted a study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive cane toads in Hawaii navigate home and observed homing following displacements of up to 1 km. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, further supporting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homologue to the hippocampus, is involved in homing. Our comparisons of neural activity revealed evidence supporting a conservation of neural structures associated with navigation across vertebrates consistent with neural models of amphibian spatial cognition from recent laboratory studies. Our work furthers our evolutionary understanding of spatial behaviour and cognition in vertebrates and lays a foundation for studying the behavioural, sensory and neural bases of navigation in an invasive amphibian.
Collapse
Affiliation(s)
- Daniel A. Shaykevich
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
| | | | - Lauren A. O'Connell
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Matheson AMM, Chua NJ, Tosches MA. Iberian ribbed newts. Curr Biol 2025; 35:R49-R51. [PMID: 39837267 DOI: 10.1016/j.cub.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Matheson et al. introduce the Iberian ribbed newt (Pleurodeles waltl), a species of salamander that lives some of its adult life on land and some in water, requiring remarkable physiological and behavioral plasticity to adapt to these very different environments.
Collapse
Affiliation(s)
- Andrew M M Matheson
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Nicholas J Chua
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
13
|
Huang FBQ, Liao K, Sun YN, Li ZH, Zhang YR, Liao PF, Jiang SY, Zhu ZY, Chen DY, Lei Y, Liu SP, Lin YN, Zhuang ZK. Cross-species single-cell transcriptomics reveals neuronal similarities and heterogeneity in amniote pallium. Zool Res 2025; 46:193-208. [PMID: 39846196 PMCID: PMC11891007 DOI: 10.24272/j.issn.2095-8137.2024.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025] Open
Abstract
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( Macaca fascicularis) neocortex, complemented by datasets from humans ( Homo sapiens), mice ( Mus musculus), zebra finches ( Taeniopygia guttata), turtles ( Chrysemys picta bellii), and lizards ( Pogona vitticeps), enabling comprehensive cross-species comparison. Results revealed transcriptomic conservation and species-specific distinctions within the amniote pallium. Notable similarities were observed among cell subtypes, particularly within PVALB + inhibitory neurons, which exhibited species-preferred subtypes. Furthermore, correlations between pallial subregions and several transcription factor candidates were identified, including RARB, DLX2, STAT6, NR3C1, and THRB, with potential regulatory roles in gene expression in mammalian pallial neurons compared to their avian and reptilian counterparts. These results highlight the conserved nature of inhibitory neurons, remarkable regional divergence of excitatory neurons, and species-specific gene expression and regulation in amniote pallial neurons. Collectively, these findings provide valuable insights into the evolutionary dynamics of the amniote pallium.
Collapse
Affiliation(s)
- Fu-Bao-Qian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Yu-Nong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Zi-Hao Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Yan-Ru Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ping-Fang Liao
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yuan Jiang
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yong Zhu
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duo-Yuan Chen
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - Ying Lei
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - Shi-Ping Liu
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - You-Ning Lin
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China. E-mail:
| | - Zhen-Kun Zhuang
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China. E-mail:
| |
Collapse
|
14
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O’Connell LA. Neural and sensory basis of homing behavior in the invasive cane toad, Rhinella marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600658. [PMID: 38979178 PMCID: PMC11230440 DOI: 10.1101/2024.06.25.600658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The behavioral, sensory, and neural bases of vertebrate navigation are primarily described in mammals and birds. While many studies have explored amphibian navigation, none have characterized brain activity associated with navigation in the wild. To address this knowledge gap, we conducted a study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive cane toads in Hawai'i navigate home and observed homing following displacements of up to one kilometer. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, further supporting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homolog to the hippocampus, is involved in homing. Our comparisons of neural activity revealed evidence supporting a conservation of neural structures associated with navigation across vertebrates consistent with neural models of amphibian spatial cognition from recent laboratory studies. Our work furthers our evolutionary understanding of spatial behavior and cognition in vertebrates and lays a foundation for studying the behavioral, sensory, and neural bases of navigation in an invasive amphibian.
Collapse
Affiliation(s)
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, Stanford, CA, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| |
Collapse
|
15
|
Zhong H, Han W, Gomez-Cabrero D, Tegner J, Gao X, Cui G, Aranda M. Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life. Nucleic Acids Res 2025; 53:gkae1316. [PMID: 39778870 PMCID: PMC11707536 DOI: 10.1093/nar/gkae1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/23/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Cross-species single-cell RNA-seq data hold immense potential for unraveling cell type evolution and transferring knowledge between well-explored and less-studied species. However, challenges arise from interspecific genetic variation, batch effects stemming from experimental discrepancies and inherent individual biological differences. Here, we benchmarked nine data-integration methods across 20 species, encompassing 4.7 million cells, spanning eight phyla and the entire animal taxonomic hierarchy. Our evaluation reveals notable differences between the methods in removing batch effects and preserving biological variance across taxonomic distances. Methods that effectively leverage gene sequence information capture underlying biological variances, while generative model-based approaches excel in batch effect removal. SATURN demonstrates robust performance across diverse taxonomic levels, from cross-genus to cross-phylum, emphasizing its versatility. SAMap excels in integrating species beyond the cross-family level, especially for atlas-level cross-species integration, while scGen shines within or below the cross-class hierarchy. As a result, our analysis offers recommendations and guidelines for selecting suitable integration methods, enhancing cross-species single-cell RNA-seq analyses and advancing algorithm development.
Collapse
Affiliation(s)
- Huawen Zhong
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Gomez-Cabrero
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Unit of Translational Bioinformatics, Navarrabiomed—Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jesper Tegner
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavagen 23A, SE-17165 Solna, Sweden
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- BioEngineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-Cell Transcriptomics Reveals Evolutionary Reconfiguration of Embryonic Cell Fate Specification in the Sea Urchin Heliocidaris erythrogramma. Genome Biol Evol 2025; 17:evae258. [PMID: 39587400 PMCID: PMC11719709 DOI: 10.1093/gbe/evae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of single-cell transcriptome analysis (scRNA-seq) developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states, respectively) reveal numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events and the primary signaling center are co-localized in the ancestral developmental gene regulatory network; remarkably, in H. erythrogramma, they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW, Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC, Canada V6T 1Z2
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Hecker N, Kempynck N, Mauduit D, Abaffyová D, Vandepoel R, Dieltiens S, Borm L, Sarropoulos I, González-Blas CB, De Man J, Davie K, Leysen E, Vandensteen J, Moors R, Hulselmans G, Lim L, De Wit J, Christiaens V, Poovathingal S, Aerts S. Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium. Science 2025; 387:eadp3957. [PMID: 39946451 DOI: 10.1126/science.adp3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/26/2024] [Indexed: 04/23/2025]
Abstract
Combinations of transcription factors govern the identity of cell types, which is reflected by genomic enhancer codes. We used deep learning to characterize these enhancer codes and devised three metrics to compare cell types in the telencephalon across amniotes. To this end, we generated single-cell multiome and spatially resolved transcriptomics data of the chicken telencephalon. Enhancer codes of orthologous nonneuronal and γ-aminobutyric acid-mediated (GABAergic) cell types show a high degree of similarity across amniotes, whereas excitatory neurons of the mammalian neocortex and avian pallium exhibit varying degrees of similarity. Enhancer codes of avian mesopallial neurons are most similar to those of mammalian deep-layer neurons. With this study, we present generally applicable deep learning approaches to characterize and compare cell types on the basis of genomic regulatory sequences.
Collapse
Affiliation(s)
- Nikolai Hecker
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Niklas Kempynck
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - David Mauduit
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Darina Abaffyová
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roel Vandepoel
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sam Dieltiens
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lars Borm
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University, Heidelberg University, Heidelberg, Germany
| | - Carmen Bravo González-Blas
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Julie De Man
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elke Leysen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jeroen Vandensteen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rani Moors
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lynette Lim
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joris De Wit
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Rueda-Alaña E, Senovilla-Ganzo R, Grillo M, Vázquez E, Marco-Salas S, Gallego-Flores T, Ordeñana-Manso A, Ftara A, Escobar L, Benguría A, Quintas A, Dopazo A, Rábano M, Vivanco MDM, Aransay AM, Garrigos D, Toval Á, Ferrán JL, Nilsson M, Encinas-Pérez JM, De Pittà M, García-Moreno F. Evolutionary convergence of sensory circuits in the pallium of amniotes. Science 2025; 387:eadp3411. [PMID: 39946453 DOI: 10.1126/science.adp3411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits' stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Enrique Vázquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Marco-Salas
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Tatiana Gallego-Flores
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Ordeñana-Manso
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Artemis Ftara
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Escobar
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miriam Rábano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - María dM Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana María Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel Garrigos
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Ángel Toval
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Juan Manuel Encinas-Pérez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Maurizio De Pittà
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- Basque Center for Applied Mathematics, Bilbao, Spain
- Computational Neuroscience Hub, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
19
|
Zaremba B, Fallahshahroudi A, Schneider C, Schmidt J, Sarropoulos I, Leushkin E, Berki B, Van Poucke E, Jensen P, Senovilla-Ganzo R, Hervas-Sotomayor F, Trost N, Lamanna F, Sepp M, García-Moreno F, Kaessmann H. Developmental origins and evolution of pallial cell types and structures in birds. Science 2025; 387:eadp5182. [PMID: 39946461 DOI: 10.1126/science.adp5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 04/23/2025]
Abstract
Innovations in the pallium likely facilitated the evolution of advanced cognitive abilities in birds. We therefore scrutinized its cellular composition and evolution using cell type atlases from chicken, mouse, and nonavian reptiles. We found that the avian pallium shares most inhibitory neuron types with other amniotes. Whereas excitatory neuron types in amniote hippocampal regions show evolutionary conservation, those in other pallial regions have diverged. Neurons in the avian mesopallium display gene expression profiles akin to the mammalian claustrum and deep cortical layers, while certain nidopallial cell types resemble neurons in the piriform cortex. Lastly, we observed substantial gene expression convergence between the dorsally located hyperpallium and ventrally located nidopallium during late development, suggesting that topological location does not always dictate gene expression programs determining functional properties in the adult avian pallium.
Collapse
Affiliation(s)
- Bastienne Zaremba
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Amir Fallahshahroudi
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Evgeny Leushkin
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Bianka Berki
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Enya Van Poucke
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Nils Trost
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
20
|
Gattoni G, Tosches MA. Constrained roads to complex brains. Science 2025; 387:716-717. [PMID: 39946487 DOI: 10.1126/science.adv2609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Neural development and brain circuit evolution converged in birds and mammals.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
21
|
Libé-Philippot B, Polleux F, Vanderhaeghen P. If you please, draw me a neuron - linking evolutionary tinkering with human neuron evolution. Curr Opin Genet Dev 2024; 89:102260. [PMID: 39357501 PMCID: PMC11625661 DOI: 10.1016/j.gde.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), NeuroMarseille, Marseille, France.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. https://twitter.com/@fpolleux
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
Colonna M, Konopka G, Liddelow SA, Nowakowski T, Awatramani R, Bateup HS, Cadwell CR, Caglayan E, Chen JL, Gillis J, Kampmann M, Krienen F, Marsh SE, Monje M, O'Dea MR, Patani R, Pollen AA, Quintana FJ, Scavuzzo M, Schmitz M, Sloan SA, Tesar PJ, Tollkuhn J, Tosches MA, Urbanek ME, Werner JM, Bayraktar OA, Gokce O, Habib N. Implementation and validation of single-cell genomics experiments in neuroscience. Nat Neurosci 2024; 27:2310-2325. [PMID: 39627589 DOI: 10.1038/s41593-024-01814-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/15/2024] [Indexed: 12/13/2024]
Abstract
Single-cell or single-nucleus transcriptomics is a powerful tool for identifying cell types and cell states. However, hypotheses derived from these assays, including gene expression information, require validation, and their functional relevance needs to be established. The choice of validation depends on numerous factors. Here, we present types of orthogonal and functional validation experiment to strengthen preliminary findings obtained using single-cell and single-nucleus transcriptomics as well as the challenges and limitations of these approaches.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajeshwar Awatramani
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, USA
| | - Helen S Bateup
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Neurophotonics, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marissa Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew Schmitz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, OH, USA
- Institute for Glial Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | - Madeleine E Urbanek
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Werner
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Toker IA, Ripoll-Sánchez L, Geiger LT, Saini KS, Beets I, Vértes PE, Schafer WR, Ben-David E, Hobert O. Molecular patterns of evolutionary changes throughout the whole nervous system of multiple nematode species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624988. [PMID: 39651161 PMCID: PMC11623510 DOI: 10.1101/2024.11.23.624988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
One avenue to better understand brain evolution is to map molecular patterns of evolutionary changes in neuronal cell types across entire nervous systems of distantly related species. Generating whole-animal single-cell transcriptomes of three nematode species from the Caenorhabditis genus, we observed a remarkable stability of neuronal cell type identities over more than 45 million years of evolution. Conserved patterns of combinatorial expression of homeodomain transcription factors are among the best classifiers of homologous neuron classes. Unexpectedly, we discover an extensive divergence in neuronal signaling pathways. While identities of neurotransmitter-producing neurons (glutamate, acetylcholine, GABA and several monoamines) remain stable, ionotropic and metabotropic receptors for all these neurotransmitter systems show substantial divergence, resulting in more than half of all neuron classes changing their capacity to be receptive to specific neurotransmitters. Neuropeptidergic signaling is also remarkably divergent, both at the level of neuropeptide expression and receptor expression, yet the overall dense network topology of the wireless neuropeptidergic connectome remains stable. Novel neuronal signaling pathways are suggested by our discovery of small secreted proteins that show no obvious hallmarks of conventional neuropeptides, but show similar patterns of highly neuron-type-specific and highly evolvable expression profiles. In conclusion, by investigating the evolution of entire nervous systems at the resolution of single neuron classes, we uncover patterns that may reflect basic principles governing evolutionary novelty in neuronal circuits.
Collapse
|
24
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
25
|
Caglayan E, Konopka G. Evolutionary neurogenomics at single-cell resolution. Curr Opin Genet Dev 2024; 88:102239. [PMID: 39094380 DOI: 10.1016/j.gde.2024.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The human brain is composed of increasingly recognized heterogeneous cell types. Applying single-cell genomics to brain tissue can elucidate relative cell type proportions as well as differential gene expression and regulation among humans and other species. Here, we review recent studies that utilized high-throughput genomics approaches to compare brains among species at single-cell resolution. These studies identified genomic elements that are similar among species as well as evolutionary novelties on the human lineage. We focus on those human-relevant innovations and discuss the biological implications of these modifications. Finally, we discuss areas of comparative single-cell genomics that remain unexplored either due to needed technological advances or due to biological availability at the brain region or species level.
Collapse
Affiliation(s)
- Emre Caglayan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Hervas-Sotomayor F, Murat F. Gene duplication contributes to liver evolution. Nat Ecol Evol 2024; 8:1788-1789. [PMID: 39152329 DOI: 10.1038/s41559-024-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Affiliation(s)
| | - Florent Murat
- INRAE, Fish Physiology and Genomics Institute (LPGP), Rennes, France.
| |
Collapse
|
27
|
Sagi D, Tibi M, Admati I, Lerer-Goldshtein T, Hochgerner H, Zeisel A, Appelbaum L. Single-Cell Profiling Uncovers Evolutionary Divergence of Hypocretin/Orexin Neuronal Subpopulations. J Neurosci 2024; 44:e0095242024. [PMID: 39122556 PMCID: PMC11376333 DOI: 10.1523/jneurosci.0095-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Brain nuclei are traditionally defined by their anatomy, activity, and expression of specific markers. The hypothalamus contains discrete neuronal populations that coordinate fundamental behavioral functions, including sleep and wakefulness, in all vertebrates. Particularly, the diverse roles of hypocretin/orexin (Hcrt)-releasing neurons suggest functional heterogeneity among Hcrt neurons. Using single-cell RNA sequencing (scRNA-seq) and high-resolution imaging of the adult male and female zebrafish hypothalamic periventricular zone, we identified 21 glutamatergic and 28 GABAergic cell types. Integration of zebrafish and mouse scRNA-seq revealed evolutionary conserved and divergent hypothalamic cell types. The expression of specific genes, including npvf, which encodes a sleep-regulating neuropeptide, was enriched in subsets of glutamatergic Hcrt neurons in both larval and adult zebrafish. The genetic profile, activity, and neurite processing of the neuronal subpopulation that coexpresses both Hcrt and Npvf (Hcrt+Npvf+) differ from other Hcrt neurons. These interspecies findings provide a unified annotation of hypothalamic cell types and suggest that the heterogeneity of Hcrt neurons enables multifunctionality, such as consolidation of both wake and sleep by the Hcrt- and Npvf-releasing neuronal subpopulation.
Collapse
Affiliation(s)
- Dana Sagi
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| | - Muhammad Tibi
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Inbal Admati
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| | - Hannah Hochgerner
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Amit Zeisel
- The Faculty of Biotechnology and Food Engineering, Technion 3200, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 590002, Israel
| |
Collapse
|
28
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
29
|
Sotelo MI, Daneri MF, Bingman VP, Muzio RN. Amphibian spatial cognition, medial pallium and other supporting telencephalic structures. Neurosci Biobehav Rev 2024; 163:105739. [PMID: 38821152 DOI: 10.1016/j.neubiorev.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Vertebrate hippocampal formation is central to conversations on the comparative analysis of spatial cognition, especially in light of variation found in different vertebrate classes. Assuming the medial pallium (MP) of extant amphibians resembles the hippocampal formation (HF) of ancestral stem tetrapods, we propose that the HF of modern amniotes began with a MP characterized by a relatively undifferentiated cytoarchitecture, more direct thalamic/olfactory sensory inputs, and a more generalized role in associative learning-memory processes. As such, hippocampal evolution in amniotes, especially mammals, can be seen as progressing toward a cytoarchitecture with well-defined subdivisions, regional connectivity, and a functional specialization supporting map-like representations of space. We then summarize a growing literature on amphibian spatial cognition and its underlying brain organization. Emphasizing the MP/HF, we highlight that further research into amphibian spatial cognition would provide novel insight into the role of the HF in spatial memory processes, and their supporting neural mechanisms. A more complete reconstruction of hippocampal evolution would benefit from additional research on non-mammalian vertebrates, with amphibians being of particular interest.
Collapse
Affiliation(s)
- María Inés Sotelo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina
| | - M Florencia Daneri
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina
| | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, USA
| | - Rubén N Muzio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Biología del Comportamiento, Argentina; Universidad de Buenos Aires (UBA), Facultad de Psicología, Instituto de Investigaciones, Argentina.
| |
Collapse
|
30
|
Ratliff JM, Terral G, Lutzu S, Heiss J, Mota J, Stith B, Lechuga AV, Ramakrishnan C, Fenno LE, Daigle T, Deisseroth K, Zeng H, Ngai J, Tasic B, Sjulson L, Rudolph S, Kilduff TS, Batista-Brito R. Neocortical long-range inhibition promotes cortical synchrony and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599756. [PMID: 38948753 PMCID: PMC11213009 DOI: 10.1101/2024.06.20.599756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Behavioral states such as sleep and wake are highly correlated with specific patterns of rhythmic activity in the cortex. During low arousal states such as slow wave sleep, the cortex is synchronized and dominated by low frequency rhythms coordinated across multiple regions. Although recent evidence suggests that GABAergic inhibitory neurons are key players in cortical state modulation, the in vivo circuit mechanisms coordinating synchronized activity among local and distant neocortical networks are not well understood. Here, we show that somatostatin and chondrolectin co-expressing cells (Sst-Chodl cells), a sparse and unique class of neocortical inhibitory neurons, are selectively active during low arousal states and are largely silent during periods of high arousal. In contrast to other neocortical inhibitory neurons, we show these neurons have long-range axons that project across neocortical areas. Activation of Sst-Chodl cells is sufficient to promote synchronized cortical states characteristic of low arousal, with increased spike co-firing and low frequency brain rhythms, and to alter behavioral states by promoting sleep. Contrary to the prevailing belief that sleep is exclusively driven by subcortical mechanisms, our findings reveal that these long-range inhibitory neurons not only track changes in behavioral state but are sufficient to induce both sleep-like cortical states and sleep behavior, establishing a crucial circuit component in regulating behavioral states.
Collapse
Affiliation(s)
- Jacob M Ratliff
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Geoffrey Terral
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stefano Lutzu
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Jaime Heiss
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | - Julie Mota
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Bianca Stith
- Albert Einstein College of Medicine, New York City, NY, United States
| | | | | | - Lief E Fenno
- The University of Texas at Austin, Austin, TX, United States
| | - Tanya Daigle
- Allen Institute for Brain Science, Seattle, WA, United States
| | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, United States
| | - John Ngai
- National Institute of Neurological Disease and Stroke, Bethesda, MD, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA, United States
| | - Lucas Sjulson
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Stephanie Rudolph
- Albert Einstein College of Medicine, New York City, NY, United States
| | - Thomas S. Kilduff
- Biosciences Division, SRI International, Menlo Park, CA 94025, United States
| | | |
Collapse
|
31
|
Katayama R, Kumamoto T, Wada K, Hanashima C, Ohtaka-Maruyama C. Thalamic activity-dependent specification of sensory input neurons in the developing chick entopallium. J Comp Neurol 2024; 532:e25627. [PMID: 38813969 DOI: 10.1002/cne.25627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.
Collapse
Affiliation(s)
- Ryoka Katayama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyosuke Wada
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- School of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Carina Hanashima
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- School of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
32
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. Commun Biol 2024; 7:612. [PMID: 38773256 PMCID: PMC11109250 DOI: 10.1038/s42003-024-06315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates. Here we combine spatial transcriptomics and single nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the Mchenga conophorus cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell-types in the fish telencephalon and subpallial, hippocampal, and cortical cell-types in tetrapods, and find support for partial eversion of the teleost telencephalon. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
33
|
Niepoth N, Merritt JR, Uminski M, Lei E, Esquibies VS, Bando IB, Hernandez K, Gebhardt C, Wacker SA, Lutzu S, Poudel A, Soma KK, Rudolph S, Bendesky A. Evolution of a novel adrenal cell type that promotes parental care. Nature 2024; 629:1082-1090. [PMID: 38750354 PMCID: PMC11329292 DOI: 10.1038/s41586-024-07423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Jennifer R Merritt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Michelle Uminski
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Emily Lei
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Victoria S Esquibies
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Ina B Bando
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kimberly Hernandez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Christoph Gebhardt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, New York, NY, USA
| | - Stefano Lutzu
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Asmita Poudel
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Rudolph
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
35
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
36
|
Anneser L, Satou C, Hotz HR, Friedrich RW. Molecular organization of neuronal cell types and neuromodulatory systems in the zebrafish telencephalon. Curr Biol 2024; 34:298-312.e4. [PMID: 38157860 PMCID: PMC10808507 DOI: 10.1016/j.cub.2023.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The function of neuronal networks is determined not only by synaptic connectivity but also by neuromodulatory systems that broadcast information via distributed connections and volume transmission. To understand the molecular constraints that organize neuromodulatory signaling in the telencephalon of adult zebrafish, we used transcriptomics and additional approaches to delineate cell types, to determine their phylogenetic conservation, and to map the expression of marker genes at high granularity. The combinatorial expression of GPCRs and cell-type markers indicates that all neuronal cell types are subject to modulation by multiple monoaminergic systems and distinct combinations of neuropeptides. Individual cell types were associated with multiple (typically >30) neuromodulatory signaling networks but expressed only a few diagnostic GPCRs at high levels, suggesting that different neuromodulatory systems act in combination, albeit with unequal weights. These results provide a detailed map of cell types and brain areas in the zebrafish telencephalon, identify core components of neuromodulatory networks, highlight the cell-type specificity of neuropeptides and GPCRs, and begin to decipher the logic of combinatorial neuromodulation.
Collapse
Affiliation(s)
- Lukas Anneser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Chie Satou
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
37
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquive EL, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. RESEARCH SQUARE 2023:rs.3.rs-3603645. [PMID: 38045376 PMCID: PMC10690311 DOI: 10.21203/rs.3.rs-3603645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Methods Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Results Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Conclusions Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maximina H Yun
- Dresden University of Technology: Technische Universitat Dresden
| | | |
Collapse
|
39
|
Tibi M, Biton Hayun S, Hochgerner H, Lin Z, Givon S, Ophir O, Shay T, Mueller T, Segev R, Zeisel A. A telencephalon cell type atlas for goldfish reveals diversity in the evolution of spatial structure and cell types. SCIENCE ADVANCES 2023; 9:eadh7693. [PMID: 37910612 PMCID: PMC10619943 DOI: 10.1126/sciadv.adh7693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.
Collapse
Affiliation(s)
- Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Stav Biton Hayun
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Thomas Mueller
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
40
|
Song Y, Miao Z, Brazma A, Papatheodorou I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat Commun 2023; 14:6495. [PMID: 37838716 PMCID: PMC10576752 DOI: 10.1038/s41467-023-41855-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
The growing number of available single-cell gene expression datasets from different species creates opportunities to explore evolutionary relationships between cell types across species. Cross-species integration of single-cell RNA-sequencing data has been particularly informative in this context. However, in order to do so robustly it is essential to have rigorous benchmarking and appropriate guidelines to ensure that integration results truly reflect biology. Here, we benchmark 28 combinations of gene homology mapping methods and data integration algorithms in a variety of biological settings. We examine the capability of each strategy to perform species-mixing of known homologous cell types and to preserve biological heterogeneity using 9 established metrics. We also develop a new biology conservation metric to address the maintenance of cell type distinguishability. Overall, scANVI, scVI and SeuratV4 methods achieve a balance between species-mixing and biology conservation. For evolutionarily distant species, including in-paralogs is beneficial. SAMap outperforms when integrating whole-body atlases between species with challenging gene homology annotation. We provide our freely available cross-species integration and assessment pipeline to help analyse new data and develop new algorithms.
Collapse
Affiliation(s)
- Yuyao Song
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| | - Zhichao Miao
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Alvis Brazma
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| |
Collapse
|
41
|
Krienen FM, Levandowski KM, Zaniewski H, del Rosario RC, Schroeder ME, Goldman M, Wienisch M, Lutservitz A, Beja-Glasser VF, Chen C, Zhang Q, Chan KY, Li KX, Sharma J, McCormack D, Shin TW, Harrahill A, Nyase E, Mudhar G, Mauermann A, Wysoker A, Nemesh J, Kashin S, Vergara J, Chelini G, Dimidschstein J, Berretta S, Deverman BE, Boyden E, McCarroll SA, Feng G. A marmoset brain cell census reveals regional specialization of cellular identities. SCIENCE ADVANCES 2023; 9:eadk3986. [PMID: 37824615 PMCID: PMC10569717 DOI: 10.1126/sciadv.adk3986] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.
Collapse
Affiliation(s)
- Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kirsten M. Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather Zaniewski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ricardo C.H. del Rosario
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret E. Schroeder
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martin Wienisch
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria F. Beja-Glasser
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cindy Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken Y. Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katelyn X. Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jitendra Sharma
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dana McCormack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tay Won Shin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Andrew Harrahill
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Nyase
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gagandeep Mudhar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Abigail Mauermann
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josselyn Vergara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriele Chelini
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura n.1, Rovereto (TN) 38068, Italy
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sabina Berretta
- Basic Neuroscience Division, McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ed Boyden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Gumnit E, Tosches MA. A cell type atlas of the lamprey brain. Nat Ecol Evol 2023; 7:1591-1592. [PMID: 37710040 DOI: 10.1038/s41559-023-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
43
|
Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Santos-Durán GN, Martik ML, Stundl J, Green SA, Brüning T, Mößinger K, Schmidt J, Schneider C, Sepp M, Murat F, Smith JJ, Bronner ME, Rodicio MC, Barreiro-Iglesias A, Medeiros DM, Arendt D, Kaessmann H. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat Ecol Evol 2023; 7:1714-1728. [PMID: 37710042 PMCID: PMC10555824 DOI: 10.1038/s41559-023-02170-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
Collapse
Affiliation(s)
- Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | - A Phillip Oel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Zoology, Comenius University, Bratislava, Slovakia
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel N Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
44
|
Zeppilli S, Gurrola AO, Demetci P, Brann DH, Attey R, Zilkha N, Kimchi T, Datta SR, Singh R, Tosches MA, Crombach A, Fleischmann A. Mammalian olfactory cortex neurons retain molecular signatures of ancestral cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553130. [PMID: 37645751 PMCID: PMC10461972 DOI: 10.1101/2023.08.13.553130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cerebral cortex diversified extensively during vertebrate evolution. Intriguingly, the three-layered mammalian olfactory cortex resembles the cortical cytoarchitecture of non-mammals yet evolved alongside the six-layered neocortex, enabling unique comparisons for investigating cortical neuron diversification. We performed single-nucleus multiome sequencing across mouse three- to six-layered cortices and compared neuron types across mice, reptiles and salamander. We identified neurons that are olfactory cortex-specific or conserved across mouse cortical areas. However, transcriptomically similar neurons exhibited area-specific epigenetic states. Additionally, the olfactory cortex showed transcriptomic divergence between lab and wild-derived mice, suggesting enhanced circuit plasticity through adult immature neurons. Finally, olfactory cortex neurons displayed marked transcriptomic similarities to reptile and salamander neurons. Together, these data indicate that the mammalian olfactory cortex retains molecular signatures representative of ancestral cortical traits.
Collapse
|
45
|
Kozol RA, Conith AJ, Yuiska A, Cree-Newman A, Tolentino B, Benesh K, Paz A, Lloyd E, Kowalko JE, Keene AC, Albertson C, Duboue ER. A brain-wide analysis maps structural evolution to distinct anatomical module. eLife 2023; 12:e80777. [PMID: 37498318 PMCID: PMC10435234 DOI: 10.7554/elife.80777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
The vertebrate brain is highly conserved topologically, but less is known about neuroanatomical variation between individual brain regions. Neuroanatomical variation at the regional level is hypothesized to provide functional expansion, building upon ancestral anatomy needed for basic functions. Classically, animal models used to study evolution have lacked tools for detailed anatomical analysis that are widely used in zebrafish and mice, presenting a barrier to studying brain evolution at fine scales. In this study, we sought to investigate the evolution of brain anatomy using a single species of fish consisting of divergent surface and cave morphs, that permits functional genetic testing of regional volume and shape across the entire brain. We generated a high-resolution brain atlas for the blind Mexican cavefish Astyanax mexicanus and coupled the atlas with automated computational tools to directly assess variability in brain region shape and volume across all populations. We measured the volume and shape of every grossly defined neuroanatomical region of the brain and assessed correlations between anatomical regions in surface fish, cavefish, and surface × cave F2 hybrids, whose phenotypes span the range of surface to cave. We find that dorsal regions of the brain are contracted, while ventral regions have expanded, with F2 hybrid data providing support for developmental constraint along the dorsal-ventral axis. Furthermore, these dorsal-ventral relationships in anatomical variation show similar patterns for both volume and shape, suggesting that the anatomical evolution captured by these two parameters could be driven by similar developmental mechanisms. Together, these data demonstrate that A. mexicanus is a powerful system for functionally determining basic principles of brain evolution and will permit testing how genes influence early patterning events to drive brain-wide anatomical evolution.
Collapse
Affiliation(s)
- Robert A Kozol
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Andrew J Conith
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Anders Yuiska
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexia Cree-Newman
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Bernadeth Tolentino
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Kasey Benesh
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| | - Evan Lloyd
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Alex C Keene
- Department of Biology, Texas A&M UniversityCollege StationUnited States
| | - Craig Albertson
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
| |
Collapse
|
46
|
Hegarty BE, Gruenhagen GW, Johnson ZV, Baker CM, Streelman JT. Spatially resolved cell atlas of the teleost telencephalon and deep homology of the vertebrate forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549873. [PMID: 37503039 PMCID: PMC10370212 DOI: 10.1101/2023.07.20.549873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking differences in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely 'everted' telencephalon, which has made it challenging to compare brain regions in fish to those in other vertebrates. Here we combine spatial transcriptomics and single-nucleus RNA-sequencing to generate a spatially-resolved transcriptional atlas of the cichlid fish telencephalon. We then compare cell-types and anatomical regions in the cichlid telencephalon with those in amphibians, reptiles, birds, and mammals. We uncover striking transcriptional similarities between cell populations in the fish telencephalon and subpallial, hippocampal, and cortical cell populations in tetrapods. Ultimately, our work lends new insights into the organization and evolution of conserved cell-types and regions in the vertebrate forebrain.
Collapse
Affiliation(s)
- Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30329
| | - Cristina M Baker
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
47
|
Dell'Anno MT, Conti L, Onorati M. Editorial: Molecular and cellular logic of cerebral cortex development, evolution, and disease. Front Neuroanat 2023; 17:1242684. [PMID: 37485468 PMCID: PMC10362336 DOI: 10.3389/fnana.2023.1242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
| | - Luciano Conti
- Department of Cellular, Computational and Integrated Biology, University of Trento, Trento, Italy
| | - Marco Onorati
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543633. [PMID: 37333184 PMCID: PMC10274724 DOI: 10.1101/2023.06.04.543633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Maximina H Yun
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
49
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
50
|
Pandey S, Moyer AJ, Thyme SB. A single-cell transcriptome atlas of the maturing zebrafish telencephalon. Genome Res 2023; 33:658-671. [PMID: 37072188 PMCID: PMC10234298 DOI: 10.1101/gr.277278.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
The zebrafish telencephalon is composed of highly specialized subregions that regulate complex behaviors such as learning, memory, and social interactions. The transcriptional signatures of the neuronal cell types in the telencephalon and the timeline of their emergence from larva to adult remain largely undescribed. Using an integrated analysis of single-cell transcriptomes of approximately 64,000 cells obtained from 6-day-postfertilization (dpf), 15-dpf, and adult telencephalon, we delineated nine main neuronal cell types in the pallium and eight in the subpallium and nominated novel marker genes. Comparing zebrafish and mouse neuronal cell types revealed both conserved and absent types and marker genes. Mapping of cell types onto a spatial larval reference atlas created a resource for anatomical and functional studies. Using this multiage approach, we discovered that although most neuronal subtypes are established early in the 6-dpf fish, some emerge or expand in number later in development. Analyzing the samples from each age separately revealed further complexity in the data, including several cell types that expand substantially in the adult forebrain and do not form clusters at the larval stages. Together, our work provides a comprehensive transcriptional analysis of the cell types in the zebrafish telencephalon and a resource for dissecting its development and function.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| | - Anna J Moyer
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| |
Collapse
|