1
|
Xiao L, Duan R, Liu W, Zhang C, Ma X, Xian M, Wang Q, Guo Q, Xiong W, Su P, Ye L, Li Y, Zhong L, Qian J, Lu Y, Zhao Z, Yi Q. Adoptively transferred tumor-specific IL-9-producing cytotoxic CD8 + T cells activate host CD4 + T cells to control tumors with antigen loss. NATURE CANCER 2025; 6:718-735. [PMID: 40181089 DOI: 10.1038/s43018-025-00935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2025] [Indexed: 04/05/2025]
Abstract
Host effector CD4+ T cells emerge as critical mediators for tumor regression but whether they can be activated by adoptively transferred CD8+ T cells remains unknown. We previously reported that adoptive transfer of interleukin 9 (IL-9)-producing cytotoxic CD8+ T (Tc9) cells achieved long-term control of tumor growth. Here, we demonstrate that murine tumor-specific Tc9 cells control the outgrowth of antigen-loss relapsed tumors by recruiting and activating host effector CD4+ T cells. Tc9 cells secreted IL-24 and recruited CCR7-expressing conventional type 2 dendritic cells (cDC2 cells) into tumor-draining lymph nodes to prime host CD4+ T cells against relapsed tumors. Host CD4+ T cell or cDC2 deficiency impaired the ability of Tc9 cells to control relapsed tumor outgrowth. Additionally, intratumoral IL24 expression correlates with cDC2 and CD4+ T cell gene signatures in human cancers and their expression is associated with better patient survival. This study reports a mechanism for activation of tumor-specific CD4+ T cells in vivo.
Collapse
Affiliation(s)
- Liuling Xiao
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA.
- First Affiliated Hospital, School of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Rui Duan
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Wendao Liu
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chuanchao Zhang
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Xingzhe Ma
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Miao Xian
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Qiang Wang
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Qi Guo
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Wei Xiong
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Pan Su
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Lingqun Ye
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Yabo Li
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Ling Zhong
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Jianfei Qian
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Yong Lu
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qing Yi
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
2
|
Dudziak D, Heger L, Agace WW, Bakker J, de Gruijl TD, Dress RJ, Dutertre C, Fenton TM, Fransen MF, Ginhoux F, Heyman O, Horev Y, Hornsteiner F, Kandiah V, Kles P, Lubin R, Mizraji G, Prokopi A, Saar O, Sopper S, Stoitzner P, Strandt H, Sykora MM, Toffoli EC, Tripp CH, van Pul K, van de Ven R, Wilensky A, Yona S, Zelle‐Rieser C. Guidelines for preparation and flow cytometry analysis of human nonlymphoid tissue DC. Eur J Immunol 2025; 55:e2250325. [PMID: 39668411 PMCID: PMC11739683 DOI: 10.1002/eji.202250325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs, and various nonlymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single-cell suspensions from human nonlymphoid tissues including lung, skin, gingiva, intestine as well as from tumors and tumor-draining lymph nodes with a subsequent analysis of dendritic cells by flow cytometry. Further, prepared single-cell suspensions can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, etc. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Diana Dudziak
- Institute of ImmunologyJena University HospitalFriedrich‐Schiller‐UniversityJenaGermany
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
| | - Lukas Heger
- Laboratory of Dendritic Cell BiologyDepartment of DermatologyUniversity Hospital ErlangenErlangenGermany
- Department of Transfusion Medicine and HemostaseologyUniversity Hospital ErlangenErlangenGermany
| | - William W Agace
- LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Immunology SectionLund UniversityLundSweden
| | - Joyce Bakker
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Tanja D. de Gruijl
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Regine J. Dress
- Institute of Systems ImmunologyHamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Marieke F. Fransen
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Department of Pulmonary DiseasesAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and ResearchSingaporeSingapore
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- SingHealth Duke‐NUS Academic Medical CentreTranslational Immunology InstituteSingaporeSingapore
- INSERM U1015, Gustave Roussy Cancer CampusVillejuifFrance
| | - Oded Heyman
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Yael Horev
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Florian Hornsteiner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Vinitha Kandiah
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Paz Kles
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Ruth Lubin
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Gabriel Mizraji
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Anastasia Prokopi
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Or Saar
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Sieghart Sopper
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Martina M Sykora
- Internal Medicine V, Hematology and OncologyMedical University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research CenterInnsbruckAustria
| | - Elisa C. Toffoli
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Christoph H. Tripp
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Kim van Pul
- Institute for Infection and ImmunologyCancer ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
| | - Rieneke van de Ven
- Cancer Center AmsterdamCancer ImmunologyAmsterdamThe Netherlands
- Amsterdam UMC location Vrije UniversiteitMedical OncologyAmsterdamThe Netherlands
- Department of Otolaryngology, Head and Neck SurgeryAmsterdam UMC location Vrije UniversiteitAmsterdamThe Netherlands
| | - Asaf Wilensky
- Department of PeriodontologyHadassah Medical CenterFaculty of Dental MedicineHebrew University of JerusalemIsrael
| | - Simon Yona
- Faculty of Dental MedicineThe Institute of Biomedical and Oral ResearchHebrew University of JerusalemIsrael
| | - Claudia Zelle‐Rieser
- Department of Dermatology, Venereology & AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Song P, Li Y, Zhang M, Lyu B, Cui Y, Gao S. Comprehensive Analysis of a Dendritic Cell Marker Genes Signature to Predict Prognosis and Immunotherapy Response in Lung Adenocarcinoma. J Immunother 2025; 48:6-17. [PMID: 38679823 DOI: 10.1097/cji.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
With the development of immune checkpoints inhibitors (ICIs), immunotherapy has recently taken center stage in cancer treatment. Dendritic cells exert complicated and important functions in antitumor immunity. This study aims to construct a novel dendritic cell marker gene signature (DCMGS) to predict the prognosis and immunotherapy response of lung adenocarcinoma (LUAD). DC marker genes in LUAD were identified by analysis of single-cell RNA sequencing data. 6 genes ( G0S2, KLF4, ALDH2, IER3, TXN, CD69 ) were screened as the most prognosis-related genes for constructing DCMGS on a training cohort from TCGA data set. Patients were divided into high-risk and low-risk groups by DCMGS risk score based on overall survival time. Then, the predictive ability of the risk model was validated in 6 independent cohorts. DCMGS was verified to be an independent prognostic factor in multivariate analysis. Furthermore, we performed pathway enrichment analysis to explore possible biological mechanisms of the powerful predictive ability of DCMGS, and immune cell infiltration landscape and inflammatory activities were exhibited to reflect the immune profile. Notably, we bridged DCMGS with expression of immune checkpoints and TCR/BCR repertoire diversity that can inflect immunotherapy response. Finally, the predictive ability of DCMGS in immunotherapy response was also validated by 2 cohorts that had received immunotherapy. As a result, the patients with lower DCMGS risk scores showed a better prognosis and immunotherapy response. In conclusion, DCMGS was suggested to be a promising prognostic indicator for LUAD and a desirable predictor for immunotherapy response.
Collapse
Affiliation(s)
- Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Moyan Zhang
- Department of Thoracic Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Araujo AM, Dekker JD, Garrison K, Su Z, Rhee C, Hu Z, Lee BK, Osorio D, Lee J, Iyer VR, Ehrlich LIR, Georgiou G, Ippolito G, Yi S, Tucker HO. Lymphoid origin of intrinsically activated plasmacytoid dendritic cells in mice. eLife 2024; 13:RP96394. [PMID: 39269281 PMCID: PMC11398865 DOI: 10.7554/elife.96394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as 'B-pDCs', have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.
Collapse
Affiliation(s)
| | - Joseph D Dekker
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Kendra Garrison
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Zhe Su
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Zicheng Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Daniel Osorio
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Gregory Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Stephen Yi
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
5
|
Wang Q, Yang Y, Chen Z, Li B, Niu Y, Li X. Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation. Pharmaceutics 2024; 16:666. [PMID: 38794327 PMCID: PMC11124897 DOI: 10.3390/pharmaceutics16050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Q.W.); (Y.Y.); (Z.C.); (B.L.); (Y.N.)
| |
Collapse
|
6
|
Beckmann K, Reitinger C, Yan X, Carle A, Blümle E, Jurkschat N, Paulmann C, Prassl S, Kazandjian LV, Loré K, Nimmerjahn F, Fischer S. Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy. Antibodies (Basel) 2024; 13:31. [PMID: 38651411 PMCID: PMC11036229 DOI: 10.3390/antib13020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.
Collapse
Affiliation(s)
| | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Anna Carle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | - Eva Blümle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | | | - Sandra Prassl
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
- FAU Profile Centre Immunomedicine, 91054 Erlangen, Germany
| | | |
Collapse
|
7
|
Amon L, Seichter A, Vurnek D, Heger L, Lächele L, Tochoedo NR, Kaszubowski T, Hatscher L, Baranska A, Tchitashvili G, Nimmerjahn F, Lehmann CHK, Dudziak D. Clec12A, CD301b, and FcγRIIB/III define the heterogeneity of murine DC2s and DC3s. Cell Rep 2024; 43:113949. [PMID: 38492222 DOI: 10.1016/j.celrep.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Lächele
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christian Herbert Kurt Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Heger L, Dudziak D, Amon L, Hatscher L, Kaszubowski T, Lehmann CHK. Guidelines for DC preparation and flow cytometric analysis of human lymphohematopoietic tissues. Eur J Immunol 2023; 53:e2249917. [PMID: 36563130 DOI: 10.1002/eji.202249917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single cell suspensions from human lymphohematopoietic tissues including blood, spleen, thymus, and tonsils with a focus on the subsequent analysis of DC via flow cytometry, as well as flow cytometric cell sorting of primary human DC. Further, prepared single cell suspensions as well as cell sorter-purified DC can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), D-91054, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
| |
Collapse
|
9
|
Gorodilova AV, Kitaeva KV, Filin IY, Mayasin YP, Kharisova CB, Issa SS, Solovyeva VV, Rizvanov AA. The Potential of Dendritic Cell Subsets in the Development of Personalized Immunotherapy for Cancer Treatment. Curr Issues Mol Biol 2023; 45:8053-8070. [PMID: 37886952 PMCID: PMC10605421 DOI: 10.3390/cimb45100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Since the discovery of dendritic cells (DCs) in 1973 by Ralph Steinman, a tremendous amount of knowledge regarding these innate immunity cells has been accumulating. Their role in regulating both innate and adaptive immune processes is gradually being uncovered. DCs are proficient antigen-presenting cells capable of activating naive T-lymphocytes to initiate and generate effective anti-tumor responses. Although DC-based immunotherapy has not yielded significant results, the substantial number of ongoing clinical trials underscores the relevance of DC vaccines, particularly as adjunctive therapy or in combination with other treatment options. This review presents an overview of current knowledge regarding human DCs, their classification, and the functions of distinct DC populations. The stepwise process of developing therapeutic DC vaccines to treat oncological diseases is discussed, along with speculation on the potential of combined therapy approaches and the role of DC vaccines in modern immunotherapy.
Collapse
Affiliation(s)
- Anna Valerevna Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Kristina Viktorovna Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Ivan Yurevich Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Yuri Pavlovich Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Chulpan Bulatovna Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Valeriya Vladimirovna Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| | - Albert Anatolyevich Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.V.G.); (K.V.K.); (I.Y.F.); (Y.P.M.); (C.B.K.); (V.V.S.)
| |
Collapse
|
10
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Uwazie CC, Faircloth TU, Parr RN, Reddy YU, Hematti P, Rajan D, Chinnadurai R. Contrariety of Human Bone Marrow Mesenchymal Stromal Cell Functionality in Modulating Circulatory Myeloid and Plasmacytoid Dendritic Cell Subsets. BIOLOGY 2023; 12:biology12050725. [PMID: 37237538 DOI: 10.3390/biology12050725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Mesenchymal Stromal Cells (MSCs) derived from bone marrow are widely tested in clinical trials as a cellular therapy for potential inflammatory disorders. The mechanism of action of MSCs in mediating immune modulation is of wide interest. In the present study, we investigated the effect of human bone-marrow-derived MSCs in modulating the circulating peripheral blood dendritic cell responses through flow cytometry and multiplex secretome technology upon their coculture ex vivo. Our results demonstrated that MSCs do not significantly modulate the responses of plasmacytoid dendritic cells. However, MSCs dose-dependently promote the maturation of myeloid dendritic cells. Mechanistic analysis showed that dendritic cell licensing cues (Lipopolysaccharide and Interferon-gamma) stimulate MSCs to secret an array of dendritic cell maturation-associated secretory factors. We also identified that MSC-mediated upregulation of myeloid dendritic cell maturation is associated with the unique predictive secretome signature. Overall, the present study demonstrated the dichotomy of MSC functionality in modulating myeloid and plasmacytoid dendritic cells. This study provides clues that clinical trials need to investigate if circulating dendritic cell subsets in MSC therapy can serve as potency biomarkers.
Collapse
Affiliation(s)
- Crystal C Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Rhett N Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Yenamala U Reddy
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, USA
| |
Collapse
|
12
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Orlova E, Loginova O, Shirshev S. Leptin regulates thymic plasmacytoid dendritic cell ability to influence the thymocyte distribution in vitro. Int Immunopharmacol 2023; 117:109912. [PMID: 36857934 DOI: 10.1016/j.intimp.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity. Thymic plasmacytoid DCs (pDCs) are predominated in the thymus. They play an important role in thymocyte differentiation. We have analyzed whether leptin mediates its effects on human thymocytes by influencing on pDCs. We used leptin at concentration corresponding to its level during II-III trimesters of physiological pregnancy. We cultivated leptin-primed pDCs with autologous thymocytes and estimated the main thymocyte subsets expressing αβ chains of the T-cell receptor (αβTCR), natural regulatory T-cells (tTreg), natural T-helpers producing interleukin-17 (nTh17) and invariant natural killer T-cells (iNKT) in vitro. We have shown that leptin augmented CD86, CD276 expressions and depressed IL-10 productions by pDCs. Leptin-primed pDCs decreased the percentage of CD4+CD8+αβTCR+ thymocytes, increased CD4hiCD8-/loαβTCR+ cells. pDCs cultivated with leptin decreased the number of iNKT precursors, and did not change the number of tTreg and nTh17 precursors. Thus, leptin's important role in regulation of thymic pDC abilities to influence on the thymocyte distribution was indicated in vitro.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Olga Loginova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Sergei Shirshev
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| |
Collapse
|
14
|
Jimenez DG, Altunbulakli C, Swoboda S, Sobti A, Askmyr D, Ali A, Greiff L, Lindstedt M. Single-cell analysis of myeloid cells in HPV + tonsillar cancer. Front Immunol 2023; 13:1087843. [PMID: 36741389 PMCID: PMC9893928 DOI: 10.3389/fimmu.2022.1087843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
The incidence of human papillomavirus-positive (HPV+) tonsillar cancer has been sharply rising during the last decades. Myeloid cells represent an appropriate therapeutic target due to their proximity to virus-infected tumor cells, and their ability to orchestrate antigen-specific immunity, within the tonsil. However, the interrelationship of steady-state and inflammatory myeloid cell subsets, and their impact on patient survival remains unexplored. Here, we used single-cell RNA-sequencing to map the myeloid compartment in HPV+ tonsillar cancer. We observed an expansion of the myeloid compartment in HPV+ tonsillar cancer, accompanied by interferon-induced cellular responses both in dendritic cells (DCs) and monocyte-macrophages. Our analysis unveiled the existence of four DC lineages, two macrophage polarization processes, and their sequential maturation profiles. Within the DC lineages, we described a balance shift in the frequency of progenitor and mature cDC favoring the cDC1 lineage in detriment of cDC2s. Furthermore, we observed that all DC lineages apart from DC5s matured into a common activated DC transcriptional program involving upregulation of interferon-inducible genes. In turn, the monocyte-macrophage lineage was subjected to early monocyte polarization events, which give rise to either interferon-activated or CXCL-producing macrophages, the latter enriched in advanced tumor stages. We validated the existence of most of the single-cell RNA-seq clusters using 26-plex flow cytometry, and described a positive impact of cDC1 and interferon-activated DCs and macrophages on patient survival using gene signature scoring. The current study contributes to the understanding of myeloid ontogeny and dynamics in HPV-driven tonsillar cancer, and highlights myeloid biomarkers that can be used to assess patient prognosis.
Collapse
Affiliation(s)
| | | | - Sabine Swoboda
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Aastha Sobti
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ashfaq Ali
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, Reyes Moon A, Gregorova P, delBalzo L, Greenwald R, Bilen MA, Alemozaffar M, Joshi S, Cimmino C, Larsen C, Master V, Sanda M, Kissick H. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2023; 56:107-124.e5. [PMID: 36580918 PMCID: PMC10266440 DOI: 10.1016/j.immuni.2022.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
Improvements in tumor immunotherapies depend on better understanding of the anti-tumor T cell response. By studying human tumor-draining lymph nodes (TDLNs), we found that activated CD8+ T cells in TDLNs shared functional, transcriptional, and epigenetic traits with TCF1+ stem-like cells in the tumor. The phenotype and TCR overlap suggested that these TDLN cells were precursors to tumor-resident stem-like CD8+ T cells. Murine tumor models revealed that tumor-specific CD8+ T cells were activated in TDLNs but lacked an effector phenotype. These stem-like cells migrated into the tumor, where additional co-stimulation from antigen-presenting cells drove effector differentiation. This model of CD8+ T cell activation in response to cancer is different from that of canonical CD8+ T cell activation to acute viruses, and it proposes two stages of tumor-specific CD8+ T cell activation: initial activation in TDLNs and subsequent effector program acquisition within the tumor after additional co-stimulation.
Collapse
Affiliation(s)
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin G Barwick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Jansen
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Adriana Reyes Moon
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Gregorova
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luke delBalzo
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Greenwald
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Shreyas Joshi
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Cara Cimmino
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christian Larsen
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Martin Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
Rivera CA, Lennon-Duménil AM. Gut immune cells and intestinal niche imprinting. Semin Cell Dev Biol 2023:S1084-9521(23)00006-X. [PMID: 36635104 DOI: 10.1016/j.semcdb.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The intestine comprises the largest proportion of immune cells in the body. It is continuously exposed to new antigens and immune stimuli from the diet, microbiota but also from intestinal pathogens. In this review, we describe the main populations of immune cells present along the intestine, both from the innate and adaptive immune system. We later discuss how intestinal niches significantly impact the phenotype and function of gut immune populations at steady state and upon infection.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | |
Collapse
|
17
|
Boltjes A, Samat AAK, Plantinga M, Mokry M, Castelijns B, Swart JF, Vastert SJ, Creyghton M, Nierkens S, van Loosdregt J, van Wijk F. Conventional dendritic cells type 1 are strongly enriched, quiescent and relatively tolerogenic in local inflammatory arthritis. Front Immunol 2023; 13:1101999. [PMID: 36685500 PMCID: PMC9846246 DOI: 10.3389/fimmu.2022.1101999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Dendritic cells (DC) are crucial for initiating and shaping immune responses. So far, little is known about the functional specialization of human DC subsets in (local) inflammatory conditions. We profiled conventional (c)DC1, cDC2 and monocytes based on phenotype, transcriptome and function from a local inflammatory site, namely synovial fluid (SF) from patients suffering from a chronic inflammatory condition, Juvenile Idiopathic Arthritis (JIA) as well as patients with rheumatoid arthritis (RA). Methods Paired PB and SF samples from 32 JIA and 4 RA patients were collected for mononuclear cell isolation. Flow cytometry was done for definition of antigen presenting cell (APC) subsets. Cell sorting was done on the FACSAria II or III. RNA sequencing was done on SF APC subsets. Proliferation assays were done on co-cultures after CD3 magnetic activated cell sorting (MACS). APC Toll-like receptor (TLR) stimulation was done using Pam3CSK4, Poly(I:C), LPS, CpG-A and R848. Cytokine production was measured by Luminex. Results cDC1, a relatively small DC subset in blood, are strongly enriched in SF, and showed a quiescent immune signature without a clear inflammatory profile, low expression of pathogen recognition receptors (PRRs), chemokine and cytokine receptors, and poor induction of T cell proliferation and cytokine production, but selective production of IFNλ upon polyinosinic:polycytidylic acid exposure. In stark contrast, cDC2 and monocytes from the same environment, showed a pro-inflammatory transcriptional profile, high levels of (spontaneous) pro-inflammatory cytokine production, and strong induction of T cell proliferation and cytokine production, including IL-17. Although the cDC2 and monocytes showed an overlapping transcriptional core profile, there were clear differences in the transcriptional landscape and functional features, indicating that these cell types retain their lineage identity in chronic inflammatory conditions. Discussion Our findings suggest that at the site of inflammation, there is specific functional programming of human DCs, especially cDC2. In contrast, the enriched cDC1 remain relatively quiescent and seemingly unchanged under inflammatory conditions, pointing to a potentially more regulatory role.
Collapse
Affiliation(s)
- Arjan Boltjes
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands
| | - Anoushka Ashok Kumar Samat
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands
| | - Michal Mokry
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands
| | | | - Joost F. Swart
- Department of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands,Department of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Menno Creyghton
- Hubrecht Institute, Utrecht, Netherlands,Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands,Princess Ma´ xima Center for Pediatric Oncology, Blood and Marrow Transplantation Program, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands,Department of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht (UMC Utrecht), Utrecht, Netherlands,Department of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands,*Correspondence: Femke van Wijk,
| |
Collapse
|
18
|
Filardy AA, Ferreira JRM, Rezende RM, Kelsall BL, Oliveira RP. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol Lett 2023; 253:41-53. [PMID: 36623708 PMCID: PMC9907447 DOI: 10.1016/j.imlet.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.
Collapse
Affiliation(s)
- Alessandra A Filardy
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | - Jesuino R M Ferreira
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, USA
| | | |
Collapse
|
19
|
Elahi Z, Angel PW, Butcher SK, Rajab N, Choi J, Deng Y, Mintern JD, Radford K, Wells CA. The Human Dendritic Cell Atlas: An Integrated Transcriptional Tool to Study Human Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2352–2361. [PMID: 36427009 PMCID: PMC9719841 DOI: 10.4049/jimmunol.2200366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are functionally diverse and are present in most adult tissues, but deep understanding of human DC biology is hampered by relatively small numbers of these in circulation and their short lifespan in human tissues. We built a transcriptional atlas of human DCs by combining samples from 14 expression profiling studies derived from 10 laboratories. We identified significant gene expression variation of DC subset-defining markers across tissue type and upon viral or bacterial stimulation. We further highlight critical gaps between in vitro-derived DC subsets and their in vivo counterparts and provide evidence that monocytes or cord blood progenitor in vitro-differentiated DCs fail to capture the repertoire of primary DC subsets or behaviors. In constructing a reference DC atlas, we provide an important resource for the community wishing to identify and annotate tissue-specific DC subsets from single-cell datasets, or benchmark new in vitro models of DC biology.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. Angel
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Suzanne K. Butcher
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Rajab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jarny Choi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yidi Deng
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Justine D. Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Christine A. Wells
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Hamid B, Ebner F, Bechtold L, Kundik A, Rausch S, Hartmann S. Ascaris suum excretory/secretory products differentially modulate porcine dendritic cell subsets. Front Immunol 2022; 13:1012717. [DOI: 10.3389/fimmu.2022.1012717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Helminths produce excretory/secretory products (E/S) which can modulate the immune responses of their hosts. Dendritic cells (DC) are essential for initiating the host T cell response and are thus potential targets for modulation by helminth E/S. Here we study immunomodulation of porcine peripheral blood DC subsets following ex vivo stimulation with E/S from Ascaris suum, a common helminth of pigs with considerable public health and economic importance. Our data showed that the relative frequencies of DC subsets in porcine blood differ, with plasmacytoid DC (pDC) being the most prominent in healthy 6-month-old pigs. pDC are an important cytokine source, and we found that A. suum E/S suppressed production of the type 1 cytokines IL-12p40 and TNF-α by this subset following toll-like receptor (TLR) ligation. In contrast, conventional DC (cDC) are more efficient antigen presenters, and the expression of CD80/86, costimulatory molecules essential for efficient antigen presentation, were modulated differentially by A. suum E/S between cDC subsets. CD80/86 expression by type 1 cDC (cDC1) following TLR ligation was greatly suppressed by the addition of A. suum E/S, while CD80/86 expression by type 2 cDC (cDC2) was upregulated by A. suum E/S. Further, we found that IFN-γ production by natural killer (NK) cells following IL-12 and IL-18 stimulation was suppressed by A. suum E/S. Finally, in the presence of E/S, IFN-γ production by CD4+ T cells co-cultured with autologous blood-derived DC was significantly impaired. Together, these data provide a coherent picture regarding the regulation of type 1 responses by A. suum E/S. Responsiveness of pDC and cDC1 to microbial ligands is reduced in the presence of E/S, effector functions of Th1 cells are impaired, and cytokine-driven IFN-γ release by NK cells is limited.
Collapse
|
21
|
Segura E. Human dendritic cell subsets: An updated view of their ontogeny and functional specialization. Eur J Immunol 2022; 52:1759-1767. [PMID: 35187651 PMCID: PMC9790408 DOI: 10.1002/eji.202149632] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
Human DCs have been divided into several subsets based on their phenotype and ontogeny. Recent high throughput single-cell methods have revealed additional heterogeneity within human DC subsets, and new subpopulations have been proposed. In this review, we provide an updated view of the human DC subsets and of their ontogeny supported by recent clinical studies . We also summarize their main characteristics including their functional specialization.
Collapse
|
22
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
23
|
Wang D, Cui Q, Yang YJ, Liu AQ, Zhang G, Yu JC. Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. Biomed Pharmacother 2022; 155:113541. [PMID: 36127221 DOI: 10.1016/j.biopha.2022.113541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that are essential in mediating the body's natural and adaptive immune responses. The body can regulate the function of DCs in various ways to enhance their antitumor effects. In the tumour microenvironment (TME), antigen-specific T cell responses are initiated through DC processing and delivery of tumour-associated antigens (TAAs); conversely, tumour cells inhibit DC recruitment by releasing metabolites, cytokines and other regulatory TME and function. Different subpopulations of DCs exist in tumour tissues, and their functions vary. Insight into DC subgroups in TME allows assessment of the effectiveness of tumour immunotherapy. Astragalus polysaccharide (APS) is the main component of the Chinese herb Astragalus membranaceus. The study found that the antitumor effects of APS are closely related to DCs. APS can promote the expression of surface molecules CD80 and CD86, promote the maturation of DCs, and activate CTL to exert antitumor effects. We reviewed the application of DCs in tumor immunotherapy and the mechanism of modulation of DCs by Astragalus polysaccharide to provide new directions and strategies for tumor therapy and new drug development.
Collapse
Affiliation(s)
- Dong Wang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Qian Cui
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Yan Jie Yang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - A Qing Liu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Guan Zhang
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin, China
| | - Jian Chun Yu
- Department of Oncology, First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.
| |
Collapse
|
24
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
25
|
Lamiable O, Brewerton M, Ronchese F. IL-13 in dermal type-2 dendritic cell specialization: from function to therapeutic targeting. Eur J Immunol 2022; 52:1047-1057. [PMID: 35652857 DOI: 10.1002/eji.202149677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Skin functions as a barrier protecting the host against physical, thermal, chemical changes and microbial insults. The skin is populated by several immune cell types which are crucial to host defence and to maintain self-tolerance as well as equilibrium with beneficial microbiota. Conventional dendritic cells (cDCs) are antigen-presenting cells that patrol the skin and all other non-lymphoid tissues for self or foreign antigens, then migrate to draining lymph nodes to initiate T cell responses. This review article describes recent developments on skin cDC specialization, focusing on the role of IL-13, a cytokine essential to allergic immune responses that is also secreted at steady state by type-2 innate lymphoid cells in healthy skin and is required for dermal cDC differentiation. Furthermore, we contextualize how different therapeutics that block IL-13 signaling and were recently approved for the treatment of atopic dermatitis might affect cDCs in human skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Department of Clinical Immunology & Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| |
Collapse
|
26
|
Hoffmann C, Noel F, Grandclaudon M, Massenet-Regad L, Michea P, Sirven P, Faucheux L, Surun A, Lantz O, Bohec M, Ye J, Guo W, Rochefort J, Klijanienko J, Baulande S, Lecerf C, Kamal M, Le Tourneau C, Guillot-Delost M, Soumelis V. PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity. Nat Commun 2022; 13:1983. [PMID: 35418195 PMCID: PMC9008048 DOI: 10.1038/s41467-022-29516-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells (DC) are traditionally classified according to their ontogeny and their ability to induce T cell response to antigens, however, the phenotypic and functional state of these cells in cancer does not necessarily align to the conventional categories. Here we show, by using 16 different stimuli in vitro that activated DCs in human blood are phenotypically and functionally dichotomous, and pure cultures of type 2 conventional dendritic cells acquire these states (termed Secretory and Helper) upon appropriate stimuli. PD-L1highICOSLlow Secretory DCs produce large amounts of inflammatory cytokines and chemokines but induce very low levels of T helper (Th) cytokines following co-culturing with T cells. Conversely, PD-L1lowICOSLhigh Helper DCs produce low levels of secreted factors but induce high levels and a broad range of Th cytokines. Secretory DCs bear a single-cell transcriptomic signature indicative of mature migratory LAMP3+ DCs associated with cancer and inflammation. Secretory DCs are linked to good prognosis in head and neck squamous cell carcinoma, and to response to checkpoint blockade in Melanoma. Hence, the functional dichotomy of DCs we describe has both fundamental and translational implications in inflammation and immunotherapy. Phenotypic and functional states of dendritic cells critically influence the outcome of cancer and inflammation. Authors here show by single cell transcriptomics and in vitro validation assays that dichotomous PD-L1 and ICOSL expression assign dendritic cells to secretory and helper functions, with respective predominance of inflammatory cytokine expression or T helper cytokine induction.
Collapse
Affiliation(s)
- Caroline Hoffmann
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France. .,Institut Curie, Department of Surgical Oncology, Paris & Saint-Cloud, France. .,Université Paris Sciences Lettres (PSL), Paris, France.
| | - Floriane Noel
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010, Paris, France
| | - Maximilien Grandclaudon
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France.,Université Paris Sciences Lettres (PSL), Paris, France
| | - Lucile Massenet-Regad
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010, Paris, France.,Université Paris-Saclay, Orsay, France
| | - Paula Michea
- Institut Paoli Calmette, INSERM U1068-CNRS UMR7258-AMU UM105, Marseille, France.,Université Aix-Marseille, Marseille, France
| | - Philemon Sirven
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France.,Université Paris Sciences Lettres (PSL), Paris, France
| | - Lilith Faucheux
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010, Paris, France.,Statistic and Epidemiologic Research Center Sorbonne Paris Cité, INSERM UMR-1153, ECSTRRA team, Paris, France
| | - Aurore Surun
- Institut Curie, SIREDO Cancer Center, Paris, France
| | - Olivier Lantz
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France.,Université Paris Sciences Lettres (PSL), Paris, France.,CIC IGR-Curie 1428, Center of Clinical Investigation, Paris, France
| | - Mylene Bohec
- Université Paris Sciences Lettres (PSL), Paris, France.,Institut Curie, NGS platform, Paris, France
| | - Jian Ye
- City of Hope Comprehensive Cancer Center, Department of Immuno-Oncology, Duarte, CA, USA
| | - Weihua Guo
- City of Hope Comprehensive Cancer Center, Department of Immuno-Oncology, Duarte, CA, USA
| | - Juliette Rochefort
- Cimi Paris, INSERM U1135, and Hospital Pitié Salpêtrière, Odontology department, Université de Paris, Paris, France
| | - Jerzy Klijanienko
- Université Paris Sciences Lettres (PSL), Paris, France.,Institut Curie, Department of pathology, Paris, France
| | - Sylvain Baulande
- Université Paris Sciences Lettres (PSL), Paris, France.,Institut Curie, NGS platform, Paris, France
| | - Charlotte Lecerf
- Université Paris Sciences Lettres (PSL), Paris, France.,Institut Curie, Department of Drug Development, and Innovation (D3i), Paris & Saint-Cloud, France
| | - Maud Kamal
- Université Paris Sciences Lettres (PSL), Paris, France.,Institut Curie, Department of Drug Development, and Innovation (D3i), Paris & Saint-Cloud, France
| | - Christophe Le Tourneau
- Université Paris-Saclay, Orsay, France.,Institut Curie, Department of Drug Development, and Innovation (D3i), Paris & Saint-Cloud, France.,Institut Curie, INSERM U900, Saint-Cloud, France
| | - Maude Guillot-Delost
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France.,Université Paris Sciences Lettres (PSL), Paris, France.,CIC IGR-Curie 1428, Center of Clinical Investigation, Paris, France
| | - Vassili Soumelis
- Institut Curie, INSERM U932, Immunity and Cancer, Paris, France. .,Université Paris Sciences Lettres (PSL), Paris, France. .,Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010, Paris, France. .,Institut Curie, Clinical immunology department, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, F-75010, Paris, France. .,Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010, Paris, France.
| |
Collapse
|
27
|
Oliveira NA, Sevim H. Dendritic cell differentiation from human induced pluripotent stem cells: challenges and progress. Stem Cells Dev 2022; 31:207-220. [PMID: 35316109 DOI: 10.1089/scd.2021.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are the major antigen-presenting cells of the immune system responsible for initiating and coordinating immune responses. These abilities provide potential for several clinical applications, such as the development of immunogenic vaccines. However, difficulty in obtaining DCs from conventional sources, such as bone marrow (BM), peripheral blood (PBMC), and cord blood (CB), is a significantly hinders routine application. The use of human induced pluripotent stem cells (hiPSCs) is a valuable alternative for generating sufficient numbers of DCs to be used in basic and pre-clinical studies. Despite the many challenges that must be overcome to achieve an efficient protocol for obtaining the major DC types from hiPSCs, recent progress has been made. Here we review the current state of developing DCs from hiPSCs, as well as the key elements required to enable the routine use of hiPSC-derived DCs in pre-clinical and clinical assays.
Collapse
Affiliation(s)
- Nelio Aj Oliveira
- Jackson Laboratory - Farmington, 481263, Cell Engineering , Farmington, Connecticut, United States, 06032-2374;
| | - Handan Sevim
- Hacettepe Universitesi, 37515, Faculty of Science Department of Biology, Ankara, Ankara, Turkey;
| |
Collapse
|
28
|
Rosa FF, Pires CF, Kurochkin I, Halitzki E, Zahan T, Arh N, Zimmermannová O, Ferreira AG, Li H, Karlsson S, Scheding S, Pereira CF. Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Sci Immunol 2022; 7:eabg5539. [PMID: 35245086 DOI: 10.1126/sciimmunol.abg5539] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type 1 conventional dendritic cells (cDC1s) are rare immune cells critical for the induction of antigen-specific cytotoxic CD8+ T cells, although the genetic program driving human cDC1 specification remains largely unexplored. We previously identified PU.1, IRF8, and BATF3 transcription factors as sufficient to induce cDC1 fate in mouse fibroblasts, but reprogramming of human somatic cells was limited by low efficiency. Here, we investigated single-cell transcriptional dynamics during human cDC1 reprogramming. Human induced cDC1s (hiDC1s) generated from embryonic fibroblasts gradually acquired a global cDC1 transcriptional profile and expressed antigen presentation signatures, whereas other DC subsets were not induced at the single-cell level during the reprogramming process. We extracted gene modules associated with successful reprogramming and identified inflammatory signaling and the cDC1-inducing transcription factor network as key drivers of the process. Combining IFN-γ, IFN-β, and TNF-α with constitutive expression of cDC1-inducing transcription factors led to improvement of reprogramming efficiency by 190-fold. hiDC1s engulfed dead cells, secreted inflammatory cytokines, and performed antigen cross-presentation, key cDC1 functions. This approach allowed efficient hiDC1 generation from adult fibroblasts and mesenchymal stromal cells. Mechanistically, PU.1 showed dominant and independent chromatin targeting at early phases of reprogramming, recruiting IRF8 and BATF3 to shared binding sites. The cooperative binding at open enhancers and promoters led to silencing of fibroblast genes and activation of a cDC1 program. These findings provide mechanistic insights into human cDC1 specification and reprogramming and represent a platform for generating patient-tailored cDC1s, a long-sought DC subset for vaccination strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Fábio F Rosa
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal.,Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Cristiana F Pires
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Skolkovo Institute of Science and Technology, Nobel Street, Building 3, Moscow 143026, Russia
| | - Evelyn Halitzki
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Tasnim Zahan
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Nejc Arh
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Olga Zimmermannová
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Alexandra G Ferreira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal.,Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Hongzhe Li
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, BMC B12, 221 84 Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Skåne, 222 42 Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal
| |
Collapse
|
29
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Liu D, Duan L, Rodda LB, Lu E, Xu Y, An J, Qiu L, Liu F, Looney MR, Yang Z, Allen CDC, Li Z, Marson A, Cyster JG. CD97 promotes spleen dendritic cell homeostasis through the mechanosensing of red blood cells. Science 2022; 375:eabi5965. [PMID: 35143305 PMCID: PMC9310086 DOI: 10.1126/science.abi5965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are crucial for initiating adaptive immune responses. However, the factors that control DC positioning and homeostasis are incompletely understood. We found that type-2 conventional DCs (cDC2s) in the spleen depend on Gα13 and adhesion G protein-coupled receptor family member-E5 (Adgre5, or CD97) for positioning in blood-exposed locations. CD97 function required its autoproteolytic cleavage. CD55 is a CD97 ligand, and cDC2 interaction with CD55-expressing red blood cells (RBCs) under shear stress conditions caused extraction of the regulatory CD97 N-terminal fragment. Deficiency in CD55-CD97 signaling led to loss of splenic cDC2s into the circulation and defective lymphocyte responses to blood-borne antigens. Thus, CD97 mechanosensing of RBCs establishes a migration and gene expression program that optimizes the antigen capture and presentation functions of splenic cDC2s.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lihui Duan
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lauren B Rodda
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erick Lu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fengchun Liu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Rivera CA, Randrian V, Richer W, Gerber-Ferder Y, Delgado MG, Chikina AS, Frede A, Sorini C, Maurin M, Kammoun-Chaari H, Parigi SM, Goudot C, Cabeza-Cabrerizo M, Baulande S, Lameiras S, Guermonprez P, Reis e Sousa C, Lecuit M, Moreau HD, Helft J, Vignjevic DM, Villablanca EJ, Lennon-Duménil AM. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity 2022; 55:129-144.e8. [PMID: 34910930 PMCID: PMC8751639 DOI: 10.1016/j.immuni.2021.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Violaine Randrian
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Wilfrid Richer
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | | | - Aleksandra S Chikina
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France; Institut Curie, CNRS UMR 144, PSL Research University, 75005 Paris, France
| | - Annika Frede
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Chiara Sorini
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Mathieu Maurin
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Hana Kammoun-Chaari
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France
| | - Sara M Parigi
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Christel Goudot
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sonia Lameiras
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Pierre Guermonprez
- Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Paris, France
| | | | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France; Université de Paris, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | - Hélène D Moreau
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Julie Helft
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Eduardo J Villablanca
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | | |
Collapse
|
32
|
Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, Yang J, Webb GR, Munoz-Erazo L, Hyde EJ, Wakelin KA, Tang SC, Chappell SC, von Daake S, Brombacher F, Mackay CR, Sher A, Tussiwand R, Connor LM, Gallego-Ortega D, Jankovic D, Le Gros G, Hepworth MR, Lamiable O, Ronchese F. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote T H2 and inhibit T H17 cell polarization. Nat Immunol 2021; 22:1538-1550. [PMID: 34795444 DOI: 10.1038/s41590-021-01067-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 01/27/2023]
Abstract
The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.
Collapse
Affiliation(s)
- Johannes U Mayer
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Dermatology and Allergology, Phillips University Marburg, Marburg, Germany
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David A Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rita G Domingues
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jianping Yang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Evelyn J Hyde
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town component & Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Charles R Mackay
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Immune Regulation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Gallego-Ortega
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Centre for Single-Cell Technology, School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
33
|
Liu L, Hu J, Wang Y, Lei H, Xu D. The role and research progress of the balance and interaction between regulatory T cells and other immune cells in obesity with insulin resistance. Adipocyte 2021; 10:66-79. [PMID: 33472506 PMCID: PMC7834085 DOI: 10.1080/21623945.2021.1876375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolic homoeostasis in adipose tissue plays a major role in obesity-related insulin resistance (IR). Regulatory T (Treg) cells have been recorded to regulate metabolic homoeostasis in adipose tissue. However, their specific mechanism is not yet known. This review aims to present the role of Treg cells and other immune cells in obesity-associated IR, focusing on the balance of numbers and functions of Treg cells and other immune cells as well as the crucial role of their interactions in maintaining adipose tissue homoeostasis. Th1 cells, Th17 cells, CD8+ T cells, and pro-inflammatory macrophages mediate the occurrence of obesity and IR by antagonizing Treg cells, while anti-inflammatory dendritic cells, eosinophils and type 2 innate lymphoid cells (ILC2s) regulate the metabolic homoeostasis of adipose tissue by promoting the proliferation and differentiation of Treg cells. γ δ T cells and invariant natural killer T (iNKT) cells have complex effects on Treg cells, and their roles in obesity-associated IR are controversial. The balance of Treg cells and other immune cells can help maintain the metabolic homoeostasis of adipose tissue. Further research needs to explore more specific molecular mechanisms, thus providing more precise directions for the treatment of obesity with IR.
Collapse
Affiliation(s)
- Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Alcántara-Hernández M, Idoyaga J. Mass cytometry profiling of human dendritic cells in blood and tissues. Nat Protoc 2021; 16:4855-4877. [PMID: 34480131 PMCID: PMC10538357 DOI: 10.1038/s41596-021-00599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
The immune system comprises distinct functionally specialized cell populations, which can be characterized in depth by mass cytometry protein profiling. Unfortunately, the low-throughput nature of mass cytometry has made it challenging to analyze minor cell populations. This is the case for dendritic cells, which represent 0.2-2% of all immune cells in tissues and yet perform the critical task of initiating and modulating immune responses. Here, we provide an optimized step-by-step protocol for the characterization of well-known and emerging human dendritic cell populations in blood and tissues using mass cytometry. We provide detailed instructions for the generation of single-cell suspensions, sample enrichment, staining, acquisition and data analysis. We also include a barcoding option that reduces acquisition variability and allows the analysis of low numbers of dendritic cells, i.e., ~20,000. In contrast to other protocols, we emphasize the use of negative selection approaches to enrich for minor populations of immune cells while avoiding their activation. The entire procedure can be completed in 2-3 d and can be conveniently paused at several stages. The procedure described in this robust and reliable protocol allows the analysis of human dendritic cells in health and disease and during vaccination.
Collapse
Affiliation(s)
- Marcela Alcántara-Hernández
- Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
36
|
Wilson NR, Bover L, Konopleva M, Han L, Neelapu S, Pemmaraju N. CD303 (BDCA-2) - a potential novel target for therapy in hematologic malignancies. Leuk Lymphoma 2021; 63:19-30. [PMID: 34486917 DOI: 10.1080/10428194.2021.1975192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) serve as immunoregulatory antigen-presenting cells that play a role in various inflammatory, viral, and malignant conditions. Malignant proliferation of pDCs is implicated in the pathogenesis of certain hematologic cancers, specifically blastic plasmacytoid dendritic cell neoplasm (BPDCN) and acute myelogenous leukemia with clonal expansion of pDC (pDC-AML). In recent years, BPDCN and pDC-AML have been successfully treated with targeted therapy of pDC-specific surface marker, CD123. However, relapsed and refractory BPDCN remains an elusive cancer, with limited therapeutic options. CD303 is another specific surface marker of human pDCs, centrally involved in antigen presentation and immune tolerance. Monoclonal antibodies directed against CD303 have been studied in preclinical models and have achieved disease control in patients with cutaneous lupus erythematosus. We performed a comprehensive review of benign and malignant disorders in which CD303 have been studied, as there may be a potential future CD303-directed therapy for many of these conditions.
Collapse
Affiliation(s)
- Nathaniel R Wilson
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Bover
- Departments of Genomic Medicine and Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lina Han
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Heger L, Lühr JJ, Amon L, Smith AS, Eissing N, Dudziak D. Six-Color Confocal Immunofluorescence Microscopy with 4-Laser Lines. Methods Mol Biol 2021; 2350:21-30. [PMID: 34331276 DOI: 10.1007/978-1-0716-1593-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Confocal immunofluorescence microscopy is an advanced imaging technique routinely applied in the laboratory and clinics. Histological analyses are performed from tissue material. In general, a single fluorochrome per laser is employed, limiting simultaneous analysis to four antigens in one staining with a conventional 4-laser line microscope. Here, we describe a protocol for combining fluorochromes with the same excitation but different emission properties that allows for the analysis of six different antigens in confocal immunofluorescence microscopy with a conventional 4-laser line microscope. The proposed multiplexed method permits the identification and characterization of complex cell populations in rare tissue material.
Collapse
Affiliation(s)
- Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Physics, Nano-Optics, Sandoghdar Division, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ana-Sunčana Smith
- Physics Underlying Life Sciences Group, Institute for Theoretical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Group for Computational Life Sciences, Division of Physical Chemistry, Institute Ruąer Bošković, Zagreb, Croatia
| | - Nathalie Eissing
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. .,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany. .,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany. .,Medical Immunology Campus Erlangen, Erlangen, Germany.
| |
Collapse
|
38
|
Forbes JM, McCarthy DA, Kassianos AJ, Baskerville T, Fotheringham AK, Giuliani KTK, Grivei A, Murphy AJ, Flynn MC, Sullivan MA, Chandrashekar P, Whiddett R, Radford KJ, Flemming N, Beard SS, D'Silva N, Nisbet J, Morton A, Teasdale S, Russell A, Isbel N, Jones T, Couper J, Healy H, Harris M, Donaghue K, Johnson DW, Cotterill A, Barrett HL, O'Moore-Sullivan T. T-Cell Expression and Release of Kidney Injury Molecule-1 in Response to Glucose Variations Initiates Kidney Injury in Early Diabetes. Diabetes 2021; 70:1754-1766. [PMID: 34285121 PMCID: PMC8385614 DOI: 10.2337/db20-1081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022]
Abstract
Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E -/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.
Collapse
Affiliation(s)
- Josephine M Forbes
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Domenica A McCarthy
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Tracey Baskerville
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kurt T K Giuliani
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Anca Grivei
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mitchell A Sullivan
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Preeti Chandrashekar
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Rani Whiddett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicole Flemming
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sam S Beard
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Neisha D'Silva
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Janelle Nisbet
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Adam Morton
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Stephanie Teasdale
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
| | - Anthony Russell
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Diabetes and Endocrinology, Metro South Health, Brisbane, Queensland, Australia
| | - Nicole Isbel
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy Jones
- Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Jennifer Couper
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Healy
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston, Queensland, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mark Harris
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Kim Donaghue
- The Children's Hospital at Westmead and University of Sydney, Sydney, New South Wales, Australia
| | - David W Johnson
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
- Metro South Integrated Nephrology and Transplant Service, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Andrew Cotterill
- Children's Health Queensland, South Brisbane, Queensland, Australia
| | - Helen L Barrett
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Trisha O'Moore-Sullivan
- Mater Young Adult Health Centre, Mater Misericordiae Ltd, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
39
|
Plantinga M, van den Beemt DAMH, Dünnebach E, Nierkens S. CD14 Expressing Precursors Give Rise to Highly Functional Conventional Dendritic Cells for Use as Dendritic Cell Vaccine. Cancers (Basel) 2021; 13:cancers13153818. [PMID: 34359719 PMCID: PMC8345076 DOI: 10.3390/cancers13153818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Dendritic cells are attractive candidates for immunotherapy to prevent disease recurrence in cancer patients. Dendritic cells are a plastic population of antigen presenting cells and a variety of protocols have been described to generate dendritic cells from either monocytes or stem cells. To induce long lasting immunity, dendritic cells need to have a fully mature phenotype and activate naïve T-cells. Here, we describe a good manufacturer protocol to generate very potent conventional DC-like cells, derived from cord blood stem cells via a CD14+CD115+ precursor stage. They express high levels of CD1c and strongly activate both naïve as well as antigen-experienced T-cells. Implementation of this protocol in the clinic could advance the efficiency of dendritic cell based vaccines. Abstract Induction of long-lasting immunity by dendritic cells (DCs) makes them attractive candidates for anti-tumor vaccination. Although DC vaccinations are generally considered safe, clinical responses remain inconsistent in clinical trials. This initiated studies to identify subsets of DCs with superior capabilities to induce effective and memory anti-tumor responses. The use of primary DCs has been suggested to overcome the functional limitations of ex vivo monocyte-derived DCs (moDC). The ontogeny of primary DCs has recently been revised by the introduction of DC3, which phenotypically resembles conventional (c)DC2 as well as moDC. Previously, we developed a protocol to generate cDC2s from cord blood (CB)-derived stem cells via a CD115-expressing precursor. Here, we performed index sorting and single-cell RNA-sequencing to define the heterogeneity of in vitro developed DC precursors and identified CD14+CD115+ expressing cells that develop into CD1c++DCs and the remainder cells brought about CD123+DCs, as well as assessed their potency. The maturation status and T-cell activation potential were assessed using flow cytometry. CD123+DCs were specifically prone to take up antigens but only modestly activated T-cells. In contrast, CD1c++ are highly mature and specialized in both naïve as well as antigen-experienced T-cell activation. These findings show in vitro functional diversity between cord blood stem cell-derived CD123+DC and CD1c++DCs and may advance the efficiency of DC-based vaccines.
Collapse
Affiliation(s)
- Maud Plantinga
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Denise A M H van den Beemt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
40
|
Gao Y, Li H, Li Z, Xie L, Liu X, Huang Z, Chen B, Lin X, Wang X, Zheng Y, Su W. Single-Cell Analysis Reveals the Heterogeneity of Monocyte-Derived and Peripheral Type-2 Conventional Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:837-848. [PMID: 34282004 DOI: 10.4049/jimmunol.2100094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are critical for pathogen recognition and Ag processing/presentation. Human monocyte-derived DCs (moDCs) have been extensively used in experimental studies and DC-based immunotherapy approaches. However, the extent of human moDC and peripheral DCs heterogeneity and their interrelationship remain elusive. In this study, we performed single-cell RNA sequencing of human moDCs and blood DCs. We identified seven subtypes within moDCs: five corresponded to type 2 conventional DCs (cDC2s), and the other two were CLEC10A+CD127+ cells with no resemblance to any peripheral DC subpopulations characterized to date. Moreover, we defined five similar subtypes in human cDC2s, revealed the potential differentiation trajectory among them, and unveiled the transcriptomic differences between moDCs and cDC2s. We further studied the transcriptomic changes of each moDC subtype during maturation, demonstrating SLAMF7 and IL15RA as maturation markers and CLEC10A and SIGLEC10 as markers for immature DCs. These findings will enable more accurate functional/developmental analyses of human cDC2s and moDCs.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China; and .,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China;
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China;
| |
Collapse
|
41
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
42
|
Hatscher L, Lehmann CHK, Purbojo A, Onderka C, Liang C, Hartmann A, Cesnjevar R, Bruns H, Gross O, Nimmerjahn F, Ivanović-Burmazović I, Kunz M, Heger L, Dudziak D. Select hyperactivating NLRP3 ligands enhance the T H1- and T H17-inducing potential of human type 2 conventional dendritic cells. Sci Signal 2021; 14:14/680/eabe1757. [PMID: 33906973 DOI: 10.1126/scisignal.abe1757] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detection of microorganisms and danger signals by pattern recognition receptors on dendritic cells (DCs) and the consequent formation of inflammasomes are pivotal for initiating protective immune responses. Although the activation of inflammasomes leading to secretion of the cytokine IL-1β is typically accompanied by pyroptosis (an inflammatory form of lytic programmed cell death), some cells can survive and exist in a state of hyperactivation. Here, we found that the conventional type 2 DC (cDC2) subset is the major human DC subset that is transcriptionally and functionally poised for inflammasome formation and response without pyroptosis. When cDC2 were stimulated with ligands that relatively weakly activated the inflammasome, the cells did not enter pyroptosis but instead secreted IL-12 family cytokines and IL-1β. These cytokines induced prominent T helper type 1 (TH1) and TH17 responses that were superior to those seen in response to Toll-like receptor (TLR) stimulation alone or to stronger, classical inflammasome ligands. These findings not only define the human cDC2 subpopulation as a prime target for the treatment of inflammasome-dependent inflammatory diseases but may also inform new approaches for adjuvant and vaccine development.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Constantin Onderka
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Olaf Gross
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany.,Department Chemistry, Ludwigs Maximilians University, 81377 Munich, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany. .,Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, 91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
43
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
44
|
Yun TJ, Igarashi S, Zhao H, Perez OA, Pereira MR, Zorn E, Shen Y, Goodrum F, Rahman A, Sims PA, Farber DL, Reizis B. Human plasmacytoid dendritic cells mount a distinct antiviral response to virus-infected cells. Sci Immunol 2021; 6:6/58/eabc7302. [PMID: 33811059 DOI: 10.1126/sciimmunol.abc7302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) can rapidly produce interferons and other soluble factors in response to extracellular viruses or virus mimics such as CpG-containing DNA. pDCs can also recognize live cells infected with certain RNA viruses, but the relevance and functional consequences of such recognition remain unclear. We studied the response of primary DCs to the prototypical persistent DNA virus, human cytomegalovirus (CMV). Human pDCs produced high amounts of type I interferon (IFN-I) when incubated with live CMV-infected fibroblasts but not with free CMV; the response involved integrin-mediated adhesion, transfer of DNA-containing virions to pDCs, and the recognition of DNA through TLR9. Compared with transient polyfunctional responses to CpG or free influenza virus, pDC response to CMV-infected cells was long-lasting, dominated by the production of IFN-I and IFN-III, and lacked diversification into functionally distinct populations. Similarly, pDC activation by influenza-infected lung epithelial cells was highly efficient, prolonged, and dominated by interferon production. Prolonged pDC activation by CMV-infected cells facilitated the activation of natural killer cells critical for CMV control. Last, patients with CMV viremia harbored phenotypically activated pDCs and increased circulating IFN-I and IFN-III. Thus, recognition of live infected cells is a mechanism of virus detection by pDCs that elicits a unique antiviral immune response.
Collapse
Affiliation(s)
- Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Suzu Igarashi
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Haoquan Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcus R Pereira
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Adeeb Rahman
- Precision Immunology Institute, Department of Genetics and Genomic Sciences, Tisch Cancer Institute, and Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter A Sims
- Department of Systems Biology, Department of Biochemistry & Molecular Biophysics, and Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Surgery and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Sittig SP, van Beek JJP, Flórez-Grau G, Weiden J, Buschow SI, van der Net MC, van Slooten R, Verbeek MM, Geurtz PBH, Textor J, Figdor CG, de Vries IJM, Schreibelt G. Human type 1 and type 2 conventional dendritic cells express indoleamine 2,3-dioxygenase 1 with functional effects on T cell priming. Eur J Immunol 2021; 51:1494-1504. [PMID: 33675038 PMCID: PMC8251546 DOI: 10.1002/eji.202048580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are key regulators of the immune system that shape T cell responses. Regulation of T cell induction by DCs may occur via the intracellular enzyme indoleamine 2,3‐dioxygenase 1 (IDO), which catalyzes conversion of the essential amino acid tryptophan into kynurenine. Here, we examined the role of IDO in human peripheral blood plasmacytoid DCs (pDCs), and type 1 and type 2 conventional DCs (cDC1s and cDC2s). Our data demonstrate that under homeostatic conditions, IDO is selectively expressed by cDC1s. IFN‐γ or TLR ligation further increases IDO expression in cDC1s and induces modest expression of the enzyme in cDC2s, but not pDCs. IDO expressed by conventional DCs is functionally active as measured by kynurenine production. Furthermore, IDO activity in TLR‐stimulated cDC1s and cDC2s inhibits T cell proliferation in settings were DC‐T cell cell‐cell contact does not play a role. Selective inhibition of IDO1 with epacadostat, an inhibitor currently tested in clinical trials, rescued T cell proliferation without affecting DC maturation status or their ability to cross‐present soluble antigen. Our findings provide new insights into the functional specialization of human blood DC subsets and suggest a possible synergistic enhancement of therapeutic efficacy by combining DC‐based cancer vaccines with IDO inhibition.
Collapse
Affiliation(s)
- Simone P Sittig
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jasper J P van Beek
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mirjam C van der Net
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne van Slooten
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Ben H Geurtz
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Hsieh LE, Sidney J, Burns JC, Boyle DL, Firestein GS, Altman Y, Sette A, Franco A. IgG Epitopes Processed and Presented by IgG + B Cells Induce Suppression by Human Thymic-Derived Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1194-1203. [PMID: 33579724 DOI: 10.4049/jimmunol.2001009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/06/2021] [Indexed: 01/27/2023]
Abstract
We described a human regulatory T cell (Treg) population activated by IgG+ B cells presenting peptides of the heavy C region (Fc) via processing of the surface IgG underlying a model for B cell-Treg cooperation in the human immune regulation. Functionally, Treg inhibited the polarization of naive T cells toward a proinflammatory phenotype in both a cognate and a noncognate fashion. Their fine specificities were similar in healthy donors and patients with rheumatoid arthritis, a systemic autoimmune disease. Four immunodominant Fc peptides bound multiple HLA class II alleles and were recognized by most subjects in the two cohorts. The presentation of Fc peptides that stimulate Treg through the processing of IgG by dendritic cells (DC) occurred in myeloid DC classical DC 1 and classical DC 2. Different routes of Ag processing of the IgG impacted Treg expansion in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Li-En Hsieh
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Jane C Burns
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - David L Boyle
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Gary S Firestein
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Yoav Altman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
47
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol 2021; 52:101481. [PMID: 34023170 PMCID: PMC8545750 DOI: 10.1016/j.smim.2021.101481] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DC) are key sentinels of the host immune response with an important role in linking innate and adaptive immunity and maintaining tolerance. There is increasing recognition that DC are critical determinants of initiating and sustaining effective T-cell-mediated anti-tumor immune responses. Recent progress in immuno-oncology has led to the evolving insight that the presence and function of DC within the tumor microenvironment (TME) may dictate efficacy of cancer immunotherapies as well as conventional cancer therapies, including immune checkpoint blockade, radiotherapy and chemotherapy. As such, improved understanding of dendritic cell immunobiology specifically focusing on their role in T-cell priming, migration into tissues and TME, and the coordinated in vivo responses of functionally specialized DC subsets will facilitate a better mechanistic understanding of how tumor-immune surveillance can be leveraged to improve patient outcomes and to develop novel DC-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
49
|
Heger L, Amon L, Lehmann CH, Dudziak D. Systems Immunology Approaches for Understanding of Primary Dendritic Cell Subpopulations in the Past, Present and Future. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11609-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Mair F, Liechti T. Comprehensive Phenotyping of Human Dendritic Cells and Monocytes. Cytometry A 2020; 99:231-242. [PMID: 33200508 DOI: 10.1002/cyto.a.24269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Professional antigen-presenting cells (APCs), which include dendritic cells (DCs) and monocytes are essential for inducing and steering adaptive T-cell responses. Recent technological developments in single-cell analysis have significantly advanced our understanding of APC subset heterogeneity. To accurately resolve this functional diversity and to account for tissue-specific adaptation, novel phenotyping markers have been described more recently. While some of these largely overlap with traditionally used markers, more fine-grained phenotyping might be essential during inflammatory settings, where the traditional distinction between monocytes and dendritic cells has become blurred. Within this phenotype report, we provide a concise overview of traditional and recently described markers for the phenotyping of DCs and monocytes in the human system.
Collapse
Affiliation(s)
- Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, Maryland, USA
| |
Collapse
|