1
|
Gill T. Exploring the Mucosal Immune Response in Axial Spondyloarthritis Through Immunoglobulin A-Coated Microbiota. Rheum Dis Clin North Am 2025; 51:283-293. [PMID: 40246441 DOI: 10.1016/j.rdc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In this review, we focus on the mucosal immune response through Immunoglobulin A (IgA)-coated microbes and their role in gut dysbiosis in axial spondyloarthritis (axSpA) and associated inflammatory bowel disease. IgA-coated microbes contribute significantly to the microbial dysbiosis observed in axSpA, potentially driving gut inflammation and translocating outside of the gut and initiating systemic immune activation, thus contributing to disease pathogenesis. These insights will provide new avenues for understanding and treating axSpA and other immune-mediated inflammatory disorders by targeting specific host immune-microbe interactions.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Casey Eye Insitute, Oregon Science & Health University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA.
| |
Collapse
|
2
|
Blutt SE, Miller AD, Conner ME. Dendritic cell expression of MyD88 is required for rotavirus-induced B cell activation. J Virol 2025:e0065325. [PMID: 40304491 DOI: 10.1128/jvi.00653-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Intestinal IgA, produced by local intestinal B cells, is thought to play a major role in protection against intestinal infections. Rotavirus, a well-characterized intestinal virus, induces a rapid viral-specific intestinal IgA response that occurs in the absence of T cells. Previous work has indicated that dendritic cells facilitate the early IgA response to rotavirus. To determine whether the early Peyer's patch B cell activation associated with rotavirus infection in mice requires dendritic cells, we depleted dendritic cells and assessed B cell activation. Depletion of CD11c+ cells in vivo prior to infection resulted in a complete abrogation of Peyer's patch B cell activation. With the use of in vitro cell-based assays, CD11c+, but not T or CD11b+ cells, was shown to be essential for rotavirus-induced activation of B cells. Investigation of several pathways of B cell activation revealed that dendritic cell expression of MyD88 and signaling through the type I interferon receptor were critical for the ability of the virus to induce B cell activation. These findings indicate that CD11c+ dendritic cells can modulate B cell responses to viruses through toll-like receptor and type I interferon signaling pathways.IMPORTANCEDendritic cells are key mediators of immune responses in the intestine. They can capture and process rotavirus antigens and present these antigens to B cells, which produce critical IgA antibody that is essential for clearance of rotavirus infection and protection from reinfection. In the work presented here, we demonstrate that dendritic cell expression of MyD88, a key component of pattern recognition pathways, and not classical IgA pathway molecules such as BAFF and APRIL, is critical for the ability of the dendritic cell to induce the activation of B cells. Our findings emphasize the important role that dendritic cells play in initiating and regulating immune responses including T cell-independent B cell activation. A consideration of the role of dendritic cells in B cell activation and antibody production is an important feature in the development of therapeutic and preventive modalities to combat intestinal viral infections.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Amber D Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Huffington Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Sakamoto Y, Niwa M, Muramatsu K, Shimo S. Effect of high-fat diet on IgA + cells and BAFF/APRIL in small intestinal villous lamina propria of mice. Cell Immunol 2025; 409-410:104911. [PMID: 39842230 DOI: 10.1016/j.cellimm.2024.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Obesity exacerbates susceptibility to infectious diseases. We investigated the effects of a high-fat diet (HFD) on intestinal immunity, particularly immunoglobulin (Ig)A-producing cells, B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL) localization. Mice (4- to 20-weeks old) were fed HFD or standard chow diet, and their jejunum and ileum were fixed using the in vivo cryotechnique. Immunohistochemistry was performed for IgA, BAFF, and APRIL. In the HFD group, IgA+, IgA+CD22+ (p < 0.001), and IgA+CD138- (p = 0.007) cell counts were diminished in the middle sections of the lamina propria of jejunal villi, and BAFF levels were significantly reduced in jejunal villi. The HFD effects on IgA+ cell distribution seem to be confined to jejunal villi, hinting at localized vulnerabilities in intestinal immunity during obesity. Moreover, in the HFD group, IgA+ B-cell counts were reduced in the middle jejunum, indicating inhibition of the IgA+ B-cells through a T-cell-independent pathway.
Collapse
Affiliation(s)
- Yuta Sakamoto
- Faculty of Health Sciences, Department of Rehabilitation, Health Science University, 7187 Kodachi, Fujikawaguchiko-Machi, Minamitsuru-Gun, Yamanashi, Japan; Graduate School of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, Japan.
| | - Masatoshi Niwa
- Faculty of Health Sciences, Department of Rehabilitation, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, Japan.
| | - Ken Muramatsu
- Faculty of Health Sciences, Department of Rehabilitation, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, Japan.
| | - Satoshi Shimo
- Faculty of Health Sciences, Department of Rehabilitation, Health Science University, 7187 Kodachi, Fujikawaguchiko-Machi, Minamitsuru-Gun, Yamanashi, Japan.
| |
Collapse
|
4
|
Gutzeit C, Grasset EK, Matthews DB, Maglione PJ, Britton GJ, Miller H, Magri G, Tomalin L, Stapylton M, Canales-Herrerias P, Sominskaia M, Guzman M, Pybus M, Tejedor Vaquero S, Radigan L, Tachó-Piñot R, Martín Nalda A, García Prat M, Martinez Gallo M, Dieli-Crimi R, Clemente JC, Mehandru S, Suarez-Farinas M, Faith JJ, Cunningham-Rundles C, Cerutti A. Gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses. SCIENCE ADVANCES 2025; 11:eado9455. [PMID: 39937896 PMCID: PMC11817949 DOI: 10.1126/sciadv.ado9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
The gut microbiota enhances systemic immunoglobulin G (IgG) responses to vaccines, but it is unknown whether this effect involves IgA, which coats intestinal microbes. That IgA may amplify postimmune IgG production is suggested by the impaired IgG response to pneumococcal vaccines in some IgA-deficient patients. Here, we found that antipneumococcal but not total IgG production was impaired in mice with IgA deficiency. The positive effect of gut IgA on antipneumococcal IgG responses started very early in life and could implicate gut bacteria, as these responses were attenuated in germ-free mice recolonized with gut microbes from IgA-deficient donors. IgA could exert this effect by constraining the systemic translocation of gut antigens, which was associated with chronic immune activation, including T cell overexpression of programmed cell death protein 1 (PD-1). This inhibitory receptor may attenuate antipneumococcal IgG production by causing B cell hyporesponsiveness, which improved upon anti-PD-1 treatment. Thus, gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilie K. Grasset
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dean B. Matthews
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Paul J. Maglione
- Pulmonary Center and Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn Institute for Data Science and Genome Technology, School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Miller
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lewis Tomalin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Stapylton
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pablo Canales-Herrerias
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musia Sominskaia
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mauricio Guzman
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), 02041 Barcelona, Spain
| | - Sonia Tejedor Vaquero
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lin Radigan
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roser Tachó-Piñot
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Andrea Martín Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Marina García Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Monica Martinez Gallo
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - Romina Dieli-Crimi
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - José C. Clemente
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saurabh Mehandru
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Gastroenterology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Cerutti
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| |
Collapse
|
5
|
Wu X, Huang Q, Chen X, Zhang B, Liang J, Zhang B. B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications. Theranostics 2025; 15:605-631. [PMID: 39744696 PMCID: PMC11671382 DOI: 10.7150/thno.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored. The delineation of B cell subsets is contingent upon distinct surface proteins and the specific transcription factors that define these subsets have yet to be fully described. Consequently, there is a pressing need for extensive and comprehensive exploration into tumor-infiltrating B cells and their cancer biology. Notably, B cells and other cellular entities assemble within the tumor milieu to establish tertiary lymphoid structures that facilitate localized immune activation and furnish novel insights for tumor research. It is of great significance to develop therapeutic strategies based on B cells, antibodies, and tertiary lymphoid structures. In this review, we address the role of B cells and tertiary lymphoid structures in tumor microenvironment, with the highlight on their spatiotemporal effect, prognostic value and therapeutic applications in tumor immunity.
Collapse
Affiliation(s)
- Xing Wu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Qibo Huang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Binhao Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Junnan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
6
|
Spencer J, Jain S. Could tolerance to DNA be broken in the gut in systemic lupus erythematosus? Immunol Lett 2024; 270:106937. [PMID: 39490628 DOI: 10.1016/j.imlet.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The bacteria in the human colon outnumber the total number of nucleated cells in the human body by approximately 10:1. The DNA that the bacteria contain is enriched around 20-fold in immune stimulatory CpG motifs compared to the DNA of host cells. In addition, this DNA can have alternative more immunogeneic DNA structures and it may be presented to the immune system alongside other proinflammatory bacterial innate ligands such as LPS. To ensure that this immunostimulatory combination is not pathogenic, the luminal boundary of host tissues in the human gastrointestinal tract is protected by cells secreting bactericides together with the secreted enzyme DNASE1L3 that can break down bacterial DNA. Cells with RNA encoding DNASE1L3 are particularly abundant in the gut-associated lymphoid tissue where bacteria are specifically sampled into the body, alongside B cells noted for their T independent function. Importantly, individuals with loss of function mutations in DNASE1L3 develop anti-DNA antibodies and lupus symptoms. In this review, we explore the possibility that a perfect storm might break tolerance to DNA: when bacterial DNA from microbiota that is not digested by DNASE1L3 directly encounters B cells that are not necessarily restricted by T cell dependence.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Sahil Jain
- School of Immunology and Microbial Sciences, King's College London, London, UK; Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Chen JS, Lee D, Gowthaman U. T follicular helper cells in food allergy. Curr Opin Immunol 2024; 91:102461. [PMID: 39276414 DOI: 10.1016/j.coi.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
T follicular helper (Tfh) cells help direct the production of antibodies by B cells. In addition to promoting antibody responses to vaccination and infection, Tfh cells have been found to mediate antibody production to food antigens. Work over the past decade has delineated the specific phenotypes of Tfh cells that induce antibodies to food while also clarifying the divergent Tfh cell requirement for different food-specific antibody isotypes. Furthermore, Tfh and antibody responses to food can occur at multiple barrier sites - namely, skin, airway, and gut. Depending on the context of food antigen exposure, the immune response to food at these sites can be protective, as in the case of tolerance or immunotherapy, or pathogenic, as in the case of allergy. This review will highlight recent advances in our understanding of how Tfh cells promote antibodies to food as well as future avenues for continued discovery.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Donguk Lee
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Uthaman Gowthaman
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Koenen MH, de Steenhuijsen Piters WAA, de Jonge MI, Langereis JD, Nierkens S, Chu MLJN, van der Woude R, de Vries RP, Sanders EAM, Bogaert D, van der Vries E, Boes M, Verhagen LM. Salivary polyreactive antibodies and Haemophilus influenzae are associated with respiratory infection severity in young children with recurrent respiratory infections. Eur Respir J 2024; 64:2400317. [PMID: 39117429 PMCID: PMC11447288 DOI: 10.1183/13993003.00317-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mei Ling J N Chu
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Erhard van der Vries
- Department of Research and Development, GD Animal Health, Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Zhu Y, He H, Sun W, Wu J, Xiao Y, Peng Y, Hu P, Jin M, Liu P, Zhang D, Xie T, Huang L, He W, Wei M, Wang L, Xu X, Tang Y. IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1 via the TLR4 signaling pathway. Nephrol Dial Transplant 2024; 39:1624-1641. [PMID: 38402460 PMCID: PMC11427068 DOI: 10.1093/ndt/gfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4, are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear. METHODS We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted from clinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with lipopolysaccharide (LPS) and TLR4 inhibitor. RESULTS Compared with the other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in the untreated IgAN group, especially the enrichment of Escherichia-Shigella. Elevated Gd-IgA1 levels were found in untreated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients mimicked the IgAN phenotype with the activation of TLR4/MyD88/nuclear factor-κB pathway and B-cell stimulators in the intestine, and had with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in PBMCs of IgAN patients. This process may induce the overproduction of Gd-IgA1, which was inhibited by TLR4 inhibitors. CONCLUSIONS Our results illustrated that the gut-kidney axis is involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 via TLR4 signaling pathway production and B-cell stimulators.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Weiqian Sun
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Jiajun Wu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Yong Xiao
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yinshun Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Ping Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Meiping Jin
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Ping Liu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - DongLiang Zhang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Ting Xie
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Lusheng Huang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Weiming He
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Suzhou, P.R. China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou, P.R. China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
10
|
Kou Y, Zhang S, Chen J, Shen Y, Zhang Z, Huang H, Ma Y, Xiang Y, Liao L, Zhou J, Cheng W, Zhou Y, Yang H, Liu Z, Wei Y, Wang H, Wang Y. A mouse protozoan boosts antigen-specific mucosal IgA responses in a specific lipid metabolism- and signaling-dependent manner. Nat Commun 2024; 15:7914. [PMID: 39256385 PMCID: PMC11387640 DOI: 10.1038/s41467-024-52336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
IgA antibodies play an important role in mucosal immunity. However, there is still no effective way to consistently boost mucosal IgA responses, and the factors influencing these responses are not fully understood. We observed that colonization with the murine intestinal symbiotic protozoan Tritrichomonas musculis (T.mu) boosted antigen-specific mucosal IgA responses in wild-type C57BL/6 mice. This enhancement was attributed to the accumulation of free arachidonic acid (ARA) in the intestinal lumen, which served as a signal to stimulate the production of antigen-specific mucosal IgA. When ARA was prevented from undergoing its downstream metabolic transformation using the 5-lipoxygenase inhibitor zileuton or by blocking its downstream biological signaling through genetic deletion of the Leukotriene B4 receptor 1 (Blt1), the T.mu-mediated enhancement of antigen-specific mucosal IgA production was suppressed. Moreover, both T.mu transfer and dietary supplementation of ARA augmented the efficacy of an oral vaccine against Salmonella infection, with this effect being dependent on Blt1. Our findings elucidate a tripartite circuit linking nutrients from the diet or intestinal microbiota, host lipid metabolism, and the mucosal humoral immune response.
Collapse
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Shenghan Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yusi Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Haohan Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Longxiang Liao
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junyang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Spencer J, Dionisi C. Immature B cell homing shapes human lymphoid tissue structure and function. J Exp Med 2024; 221:e20240085. [PMID: 39093311 PMCID: PMC11296955 DOI: 10.1084/jem.20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Balasubramaniam M, Mokhtar AMA. Past and present discovery of the BAFF/APRIL system - A bibliometric study from 1999 to 2023. Cell Signal 2024; 120:111201. [PMID: 38714287 DOI: 10.1016/j.cellsig.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytokines from the Tumour Necrosis Factor (TNF) family are important regulators of both physiological and pathological processes. The discovery of novel TNF ligands and receptors, BAFF and APRIL, have opened up new possibilities for scientists to explore the effect of these cytokines on the human immune system. The role of BAFF/APRIL system in B lymphocytes is particularly important for survival and maintenance of homeostasis. Aberrant expression of the system is associated with various immunological disorders. Hence, this study provides a comprehensive overview of the past and present BAFF/APRIL system research development in a bibliometric perspective. To our best knowledge, this is the first ever bibliometric analysis conducted focusing on the BAFF/APRIL system. A total of 1055 relevant documents were retrieved from WoSCC. Microsoft Excel, VOSviewer, and Biblioshiny of R studio were bibliometric tools used to analyse the scientific literature. From 1999, the annual publications showed an upward trend, with Journal of Immunology being the most productive journal. USA leads the race for BAFF/APRIL system research developments. Pascal Schneider, a senior researcher affiliated with University of Lausanne, Switzerland was recognised as the most productive author and institution in the BAFF/APRIL system research field. The research focus transitioned from focusing on the role of the system in B cell biology, to immunological disorders and finally to development of BAFF/APRIL targeting drugs. Despite several studies elucidating briefly the pathway mechanism of BAFF/APRIL system in B-cell selection, substantial research on the mechanism of action in disease models and T cell activation and development of immunomodulating drugs from natural origins remains largely unexplored. Therefore, future research focusing on these areas are crucial for the deeper understanding of the system in disease manifestations and progression allowing a better treatment management for various immunological disorders.
Collapse
Affiliation(s)
- Muggunna Balasubramaniam
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Ana Masara Ahmad Mokhtar
- Small G protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
14
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Montorsi L, Pitcher MJ, Zhao Y, Dionisi C, Demonti A, Tull TJ, Dhami P, Ellis RJ, Bishop C, Sanderson JD, Jain S, D'Cruz D, Gibbons DL, Winkler TH, Bemark M, Ciccarelli FD, Spencer J. Double-negative B cells and DNASE1L3 colocalise with microbiota in gut-associated lymphoid tissue. Nat Commun 2024; 15:4051. [PMID: 38744839 PMCID: PMC11094119 DOI: 10.1038/s41467-024-48267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.
Collapse
Affiliation(s)
- Lucia Montorsi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael J Pitcher
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Yuan Zhao
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alicia Demonti
- School of Immunology and Microbial Sciences, King's College London, London, UK
- École Normale Supérieure de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Thomas J Tull
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard J Ellis
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Cynthia Bishop
- Advanced Cytometry Platform (Flow Core), Research and Development Department at Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Sahil Jain
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David D'Cruz
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Deena L Gibbons
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
16
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
17
|
Kulsvehagen L, Ayroza Galvão Ribeiro Gomes AB, Pröbstel AK. MOG-IgA as a Potential Marker of Germinal Center Activity-Reply. JAMA Neurol 2024; 81:298. [PMID: 38227339 DOI: 10.1001/jamaneurol.2023.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Affiliation(s)
- Laila Kulsvehagen
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Ana Beatriz Ayroza Galvão Ribeiro Gomes
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
- Departamento de Neurologia, Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
19
|
Liu X, Lin X, Hong H, Wang J, Tao Y, Huai Y, Pang H, Liu M, Li J, Bo R. Polysaccharide from Atractylodes macrocephala Koidz Binding with Zinc Oxide Nanoparticles as a Novel Mucosal Immune Adjuvant for H9N2 Inactivated Vaccine. Int J Mol Sci 2024; 25:2132. [PMID: 38396809 PMCID: PMC10889192 DOI: 10.3390/ijms25042132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.
Collapse
Affiliation(s)
- Xiaopan Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
| | - Xinyi Lin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
| | - Hailong Hong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
| | - Jing Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
| | - Ya Tao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
| | - Yuying Huai
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Mingjiang Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jingui Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruonan Bo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.L.); (H.H.); (J.W.); (Y.T.); (Y.H.); (M.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Deng X, Ge T, Shen K, Wang J, Mu W, Luo H, Gu J, Zhang M, Xiao M. Novel heterozygous mutations of TNFRSF13B in EBV-associated T/NK lymphoproliferative diseases (EBV-T/NK-LPDs). BLOOD SCIENCE 2024; 6:e00180. [PMID: 38226020 PMCID: PMC10789450 DOI: 10.1097/bs9.0000000000000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| |
Collapse
|
21
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Brīvība M, Silamiķele L, Kalniņa I, Silamiķelis I, Birzniece L, Ansone L, Jagare L, Elbere I, Kloviņš J. Metformin targets intestinal immune system signaling pathways in a high-fat diet-induced mouse model of obesity and insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1232143. [PMID: 37795356 PMCID: PMC10546317 DOI: 10.3389/fendo.2023.1232143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Research findings of the past decade have highlighted the gut as the main site of action of the oral antihyperglycemic agent metformin despite its pharmacological role in the liver. Extensive evidence supports metformin's modulatory effect on the composition and function of gut microbiota, nevertheless, the underlying mechanisms of the host responses remain elusive. Our study aimed to evaluate metformin-induced alterations in the intestinal transcriptome profiles at different metabolic states. Methods The high-fat diet-induced mouse model of obesity and insulin resistance of both sexes was developed in a randomized block experiment and bulk RNA-Seq of the ileum tissue was the method of choice for comparative transcriptional profiling after metformin intervention for ten weeks. Results We found a prominent transcriptional effect of the diet itself with comparatively fewer genes responding to metformin intervention. The overrepresentation of immune-related genes was observed, including pronounced metformin-induced upregulation of immunoglobulin heavy-chain variable region coding Ighv1-7 gene in both high-fat diet and control diet-fed animals. Moreover, we provide evidence of the downregulation NF-kappa B signaling pathway in the small intestine of both obese and insulin-resistant animals as well as control animals after metformin treatment. Finally, our data pinpoint the gut microbiota as a crucial component in the metformin-mediated downregulation of NF-kappa B signaling evidenced by a positive correlation between the Rel and Rela gene expression levels and abundances of Parabacteroides distasonis, Bacteroides spp., and Lactobacillus spp. in the gut microbiota of the same animals. Discussion Our study supports the immunomodulatory effect of metformin in the ileum of obese and insulin-resistant C57BL/6N mice contributed by intestinal immunoglobulin responses, with a prominent emphasis on the downregulation of NF-kappa B signaling pathway, associated with alterations in the composition of the gut microbiome.
Collapse
Affiliation(s)
- Monta Brīvība
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pabst O, Nowosad CR. B cells and the intestinal microbiome in time, space and place. Semin Immunol 2023; 69:101806. [PMID: 37473559 DOI: 10.1016/j.smim.2023.101806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The gut immune system is shaped by the continuous interaction with the microbiota. Here we dissect temporal, spatial and contextual layers of gut B cell responses. The microbiota impacts on the selection of the developing pool of pre-immune B cells that serves as substrate for B cell activation, expansion and differentiation. However, various aspects of the gut B cell response display unique features. In particular, occurrence of somatically mutated B cells, chronic gut germinal centers in T cell-deficient settings and polyreactive binding of gut IgA to the microbiota questioned the nature and microbiota-specificity of gut germinal centers. We propose a model to reconcile these observations incorporating recent work demonstrating microbiota-specificity of gut germinal centers. We speculate that adjuvant effects of the microbiota might modify permissiveness for B cell to enter and exit gut germinal centers. We propose that separating aspects of time, space and place facilitate the occasionally puzzling discussion of gut B cell responses to the microbiota.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, USA; Translational Immunology Center, NYU Grossman School of Medicine, New York University, New York, USA.
| |
Collapse
|
24
|
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Lv J, Liu L, Hao C, Li G, Fu P, Xing G, Zheng H, Chen N, Wang C, Luo P, Xie D, Zuo L, Li R, Mao Y, Dong S, Zhang P, Zheng H, Wang Y, Qin W, Wang W, Li L, Jiao W, Fang J, Zhang H. Randomized Phase 2 Trial of Telitacicept in Patients With IgA Nephropathy With Persistent Proteinuria. Kidney Int Rep 2023; 8:499-506. [PMID: 36938094 PMCID: PMC10014376 DOI: 10.1016/j.ekir.2022.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction To date, no specific therapies have been approved for immunoglobulin A nephropathy (IgAN) treatment. Telitacicept is a fusion protein composed of transmembrane activator and calcium-modulating cyclophilin ligand interactor and fragment crystallizable portion of immunoglobulin G (IgG), which neutralizes the B lymphocyte stimulator and a proliferation-inducing ligand. Methods This phase 2 randomized placebo-controlled trial aimed to evaluate the efficacy and safety of telitacicept in patients with IgAN. Participants with an estimated glomerular filtration rate (eGFR) >35 ml/min per 1.73 m2 and proteinuria ≥0.75 g/d despite optimal supportive therapy, were randomized 1:1:1 to receive subcutaneous telitacicept 160 mg, telitacicept 240 mg, or placebo weekly for 24 weeks. The primary end point was the change in 24-hour proteinuria at week 24 from baseline. Results Forty-four participants were randomized into placebo (n = 14), telitacicept 160 mg (n = 16), and telitacicept 240 mg (n = 14) groups. Continuous reductions in serum IgA, IgG, and IgM levels were observed in the telitacicept group. Telitacicept 240 mg therapy reduced mean proteinuria by 49% from baseline (change in proteinuria vs. placebo, 0.88; 95% confidence interval, -1.57 to -0.20; P = 0.013), whereas telitacicept 160 mg reduced it by 25% (-0.29; 95% confidence interval, -0.95 to 0.37; P = 0.389). The eGFR remained stable over time. Adverse events (AEs) were similar in all groups. Treatment-emergent AEs were mild or moderate, and no severe AEs were reported. Conclusion Telitacicept treatment led to a clinically meaningful reduction in proteinuria in patients with IgAN in the present phase 2 clinical trial. This effect is indicative of a reduced risk for future kidney disease progression.
Collapse
Affiliation(s)
- Jicheng Lv
- Renal Division, Peking University First Hospital Peking University Institute of Nephrology Key Laboratory of Renal Disease, Ministry of Health of China Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education. Research Units of Diagnosis and Treatment of Immune-mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital Peking University Institute of Nephrology Key Laboratory of Renal Disease, Ministry of Health of China Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education. Research Units of Diagnosis and Treatment of Immune-mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuanming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guisen Li
- Renal Division and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Ping Fu
- Department of Nephrology, West China Hospital, Sichuan University, Sichuan, China
| | - Guangqun Xing
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Hongguang Zheng
- Department of Nephrology, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caili Wang
- The First Affiliated Hospitals of Baotou Medical College, Inner Mongolia University of Science and Technology, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Jilin, China
| | - Deqiong Xie
- Division of Nephrology, The Second People's Hospital of Yibin, Yibin, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, Beijing, China
| | - Shaoshao Dong
- Department of Nephrology, Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Pengfei Zhang
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, China
| | - Huixiao Zheng
- The Second Affiliated Hospital of Xingtai Medical College, Hebei, China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wei Qin
- Department of Nephrology, West China Hospital, Sichuan University, Sichuan, China
| | | | - Lin Li
- RemeGen Co., Ltd., Yantai Shandong, China
| | | | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, China
- Jianmin Fang, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Hong Zhang
- Renal Division, Peking University First Hospital Peking University Institute of Nephrology Key Laboratory of Renal Disease, Ministry of Health of China Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education. Research Units of Diagnosis and Treatment of Immune-mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Hong Zhang, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology; Beijing, China.
| |
Collapse
|
26
|
Nishimoto Y, Kawai J, Mori K, Hartanto T, Komatsu K, Kudo T, Fukuda S. Dietary supplement of mushrooms promotes SCFA production and moderately associates with IgA production: A pilot clinical study. Front Nutr 2023; 9:1078060. [PMID: 36698463 PMCID: PMC9868702 DOI: 10.3389/fnut.2022.1078060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Background Mushrooms are rich in dietary fiber, and fiber intake has been reported to increase the levels of short-chain fatty acids (SCFAs). It has also been reported that SCFAs promote immunoglobulin A (IgA) production, indicating involvement in systemic immunity. Objectives The objective of this study was to evaluate the effects of mushroom consumption on the amount of intestinal IgA. We also aimed to comprehensively evaluate the gut microbiota and intestinal metabolome and to conduct an exploratory analysis of their relationship with IgA. Methods Healthy adults (n = 80) were enrolled in a parallel group trial. Participants consumed a diet with mushrooms or a placebo diet once daily for 4 weeks. Gut microbiota profiles were assessed by sequencing the bacterial 16S ribosomal RNA-encoding gene. Intestinal metabolome profiles were analyzed using capillary electrophoresis-time of flight mass spectrometry (CE-TOFMS). Results Mushroom consumption tended to increase IgA levels at 4 weeks of consumption compared to those in the control group (p = 0.0807; Hedges' g = 0.480). The mushroom group had significantly higher levels of intestinal SCFAs, such as butyrate and propionate, than the control group (p = 0.001 and 0.020; Hedges' g = 0.824 and 0.474, respectively). Correlation analysis between the changes in the amount of intestinal IgA and the baseline features of the intestinal environment showed that the increasing amount of intestinal IgA was positively correlated with the baseline levels of SCFAs (Spearman's R = 0.559 and 0.419 for butyrate and propionate, respectively). Conclusion Consumption of mushrooms significantly increased the intestinal SCFAs and IgA in some subjects. The increase in intestinal IgA levels was more prominent in subjects with higher SCFA levels at baseline. This finding provides evidence that mushroom alters the intestinal environment, but the intensity of the effect still depends on the baseline intestinal environment. This trial was registered at www.umin.ac.jp as UMIN000043979.
Collapse
Affiliation(s)
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | | | | | | | - Shinji Fukuda
- Metagen Inc., Tsuruoka, Japan,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan,Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan,*Correspondence: Shinji Fukuda,
| |
Collapse
|
27
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Cumpelik A, Cody E, Yu SMW, Grasset EK, Dominguez-Sola D, Cerutti A, Heeger PS. Cutting Edge: Neutrophil Complement Receptor Signaling Is Required for BAFF-Dependent Humoral Responses in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:19-23. [PMID: 36454023 PMCID: PMC9780177 DOI: 10.4049/jimmunol.2200410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022]
Abstract
T cell-independent (TI) B cell responses to nonprotein Ags involve multiple cues from the innate immune system. Neutrophils express complement receptors and activated neutrophils can release BAFF, but mechanisms effectively linking neutrophil activation to TI B cell responses are incompletely understood. Using germline and conditional knockout mice, we found that TI humoral responses involve alternative pathway complement activation and neutrophil-expressed C3a and C5a receptors (C3aR1/C5aR1) that promote BAFF-dependent B1 cell expansion and TI Ab production. Conditional absence of C3aR1/C5aR1 on neutrophils lowered serum BAFF levels, led to fewer Peyer's patch germinal center B cells, reduced germinal center B cells IgA class-switching, and lowered fecal IgA levels. Together, the results indicate that sequential activation of complement on neutrophils crucially supports humoral TI and mucosal IgA responses through upregulating neutrophil production of BAFF.
Collapse
Affiliation(s)
- Arun Cumpelik
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Evan Cody
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel Mon-Wei Yu
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie K Grasset
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David Dominguez-Sola
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrea Cerutti
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter S Heeger
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
29
|
Huo J, Zhang A, Wang S, Cheng H, Fan D, Huang R, Wang Y, Wan B, Zhang G, He H. Splenic-targeting biomimetic nanovaccine for elevating protective immunity against virus infection. J Nanobiotechnology 2022; 20:514. [PMID: 36463277 PMCID: PMC9719655 DOI: 10.1186/s12951-022-01730-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The prevalence of viral infectious diseases has become a serious threat to public safety, economic and social development. Vaccines have been served as the most effective platform to prevent virus transmission via the activation of host immune responses, while the low immunogenicity or safety, the high cost of production, storage, transport limit their effective clinical application. Therefore, there is a need to develop a promising strategy to improve the immunogenicity and safety of vaccines. METHODS We developed a splenic-targeting biomimetic nanovaccine (NV) that can boost protective humoral and cellular immunity against african swine fever virus (ASFV) infection. The universal PLGA nanoparticles (CMR-PLGA/p54 NPs) coated with mannose and CpG (TLR9 agonist) co-modified red blood cell (RBC) membrane were prepared, which comprised a viral antigen (p54) and can be served as a versatile nanovaccine for elevating protective immunity. RESULTS CMR-PLGA/p54 NVs could be effectively uptaken by BMDC and promoted BMDC maturation in vitro. After subcutaneous immunization, antigen could be effectively delivered to the splenic dendritic cells (DCs) due to the splenic homing ability of RBC and DC targeting capacity of mannose, which promoted antigen presentation and DCs maturation, and further elicited higher levels of cytokines secretion and specific IgG titers, CD4+ and CD8+ T cells activation and B maturation. Moreover, NVs demonstrated notable safety during the immunization period. CONCLUSIONS This study demonstrates the high potential of CMR-PLGA NPs as vaccine delivery carriers to promote humoral and cellular immune responses, and it provides a promising strategy to develop safe and effective vaccines against viral infectious diseases.
Collapse
Affiliation(s)
- Jian Huo
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Angke Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Shuqi Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hanghang Cheng
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Daopeng Fan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ran Huang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yanan Wang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Bo Wan
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Gaiping Zhang
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| | - Hua He
- grid.108266.b0000 0004 1803 0494College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Engineering Laboratory of Animal Biological Products, Longhu Laboratory, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
30
|
Takeuchi T, Ohno H. IgA in human health and diseases: Potential regulator of commensal microbiota. Front Immunol 2022; 13:1024330. [PMID: 36439192 PMCID: PMC9685418 DOI: 10.3389/fimmu.2022.1024330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Gut microbiota has extensive and tremendous impacts on human physiology and pathology. The regulation of microbiota is therefore a cardinal problem for the mutualistic relationship, as both microbial overgrowth and excessive immune reactions toward them could potentially be detrimental to host homeostasis. Growing evidence suggests that IgA, the most dominant secretory immunoglobulin in the intestine, regulates the colonization of commensal microbiota, and consequently, the microbiota-mediated intestinal and extra-intestinal diseases. In this review, we discuss the interactions between IgA and gut microbiota particularly relevant to human pathophysiology. We review current knowledge about how IgA regulates gut microbiota in humans and about the molecular mechanisms behind this interaction. We further discuss the potential role of IgA in regulating human diseases by extrapolating experimental findings, suggesting that IgA can be a future therapeutic strategy that functionally modulates gut microbiota.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
31
|
Abstract
Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA
+
B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.
Collapse
|
32
|
Ng KW, Hobbs A, Wichmann C, Victora GD, Donaldson GP. B cell responses to the gut microbiota. Adv Immunol 2022; 155:95-131. [PMID: 36357013 DOI: 10.1016/bs.ai.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most antibody produced by humans originates from mucosal B cell responses. The rules, mechanisms, and outcomes of this process are distinct from B cell responses to infection. Within the context of the intestine, we discuss the induction of follicular B cell responses by microbiota, the development and maintenance of mucosal antibody-secreting cells, and the unusual impacts of mucosal antibody on commensal bacteria. Much remains to be learned about the interplay between B cells and the microbiota, but past and present work hints at a complex, nuanced relationship that may be critical to the way the mammalian gut fosters a beneficial microbial ecosystem.
Collapse
Affiliation(s)
- Kevin W Ng
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Alvaro Hobbs
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Christopher Wichmann
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States; Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States; Immune Regulation Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States.
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
33
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Yang C, Chen-Liaw A, Spindler MP, Tortorella D, Moran TM, Cerutti A, Faith JJ. Immunoglobulin A antibody composition is sculpted to bind the self gut microbiome. Sci Immunol 2022; 7:eabg3208. [PMID: 35857580 PMCID: PMC9421563 DOI: 10.1126/sciimmunol.abg3208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Despite being the most abundantly secreted immunoglobulin isotype, the pattern of reactivity of immunoglobulin A (IgA) antibodies toward each individual's own gut commensal bacteria still remains elusive. By colonizing germ-free mice with defined commensal bacteria, we found that the binding specificity of bulk fecal and serum IgA toward resident gut bacteria resolves well at the species level and has modest strain-level specificity. IgA hybridomas generated from lamina propria B cells of gnotobiotic mice showed that most IgA clones recognized a single bacterial species, whereas a small portion displayed cross-reactivity. Orally administered hybridoma-produced IgAs still retained bacterial antigen binding capability, implying the potential for a new class of therapeutic antibodies. Species-specific IgAs had a range of strain specificities. Given the distinctive bacterial species and strain composition found in each individual's gut, our findings suggest the IgA antibody repertoire is shaped uniquely to bind "self" gut bacteria.
Collapse
Affiliation(s)
- Chao Yang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew P. Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas M. Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona 08003, Spain
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
35
|
Melcher C, Yu J, Duong VHH, Westphal K, Helmi Siasi Farimany N, Shaverskyi A, Zhao B, Strowig T, Glage S, Brand K, Chan AC, Föger N, Lee KH. B cell-mediated regulatory mechanisms control tumor-promoting intestinal inflammation. Cell Rep 2022; 40:111051. [PMID: 35830810 DOI: 10.1016/j.celrep.2022.111051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Mechanisms underlying tumor-promoting inflammatory processes in colitis-associated colorectal cancer (CAC) remain largely elusive. Here, we provide genetic evidence for distinct B cell-mediated immunoregulatory mechanisms that protect from chronic colitis versus CAC. We demonstrate an inherent capacity of interleukin-10 (IL-10)-producing B cells to differentiate into immunoglobulin A (IgA) plasma cells (PCs) upon Toll-like receptor (TLR) activation. Our data show that B cell-derived IL-10 is essential to limit pathogenic T helper type 1 (Th1)/Th17 T cell responses during chronic colitis, while IgA PCs derived from IL-10+ B cells are being implicated in restraining tumorigenesis during CAC. Formation of a tumor-protective intestinal environment was associated with clonal expansion of specific types of colonic IgA PCs and development of an altered microbiota that attenuated CAC. We thus propose that regulatory B cell-mediated immunomodulation entails temporal release of IL-10, which is superseded by the generation of specific IgA affecting the microbial community, thereby controlling chronic inflammation and tumorigenesis in a distinctive but interrelated manner.
Collapse
Affiliation(s)
- Christian Melcher
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Jinbo Yu
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Vu Huy Hoang Duong
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Katrin Westphal
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Noushin Helmi Siasi Farimany
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Shaverskyi
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Experimental Pathology, Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Andrew C Chan
- Research, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Niko Föger
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany; Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
36
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Smulski CR, Zhang L, Burek M, Teixidó Rubio A, Briem JS, Sica MP, Sevdali E, Vigolo M, Willen L, Odermatt P, Istanbullu D, Herr S, Cavallari M, Hess H, Rizzi M, Eibel H, Schneider P. Ligand-independent oligomerization of TACI is controlled by the transmembrane domain and regulates proliferation of activated B cells. Cell Rep 2022; 38:110583. [PMID: 35354034 DOI: 10.1016/j.celrep.2022.110583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations.
Collapse
Affiliation(s)
- Cristian R Smulski
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany; Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina.
| | - Luyao Zhang
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Malte Burek
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Ariadna Teixidó Rubio
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Jana-Susann Briem
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Mauricio P Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina; Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Eirini Sevdali
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Patricia Odermatt
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Duygu Istanbullu
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Stephanie Herr
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | | | - Marta Rizzi
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
38
|
Is There a Role for Gut Microbiome Dysbiosis in IgA Nephropathy? Microorganisms 2022; 10:microorganisms10040683. [PMID: 35456735 PMCID: PMC9031807 DOI: 10.3390/microorganisms10040683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis and one of the leading causes of renal failure worldwide. The pathophysiology of IgAN involves nephrotoxic IgA1-immune complexes. These complexes are formed by galactose-deficient (Gd) IgA1 with autoantibodies against the hinge region of Gd-IgA1 as well as soluble CD89, an immune complex amplifier with an affinity for mesangial cells. These multiple molecular interactions result in the induction of the mesangial IgA receptor, CD71, injuring the kidney and causing disease. This review features recent immunological and microbiome studies that bring new microbiota-dependent mechanisms developing the disease based on data from IgAN patients and a humanized mouse model of IgAN. Dysbiosis of the microbiota in IgAN patients is also discussed in detail. Highlights of this review underscore that nephrotoxic IgA1 in the humanized mice originates from mucosal surfaces. Fecal microbiota transplantation (FMT) experiments in mice using stools from patients reveal a possible microbiota dysbiosis in IgAN with the capacity to induce progression of the disease whereas FMT from healthy hosts has beneficial effects in mice. The continual growth of knowledge in IgAN patients and models can lead to the development of new therapeutic strategies targeting the microbiota to treat this disease.
Collapse
|
39
|
Han X, Guo J, Qin Y, Huang W, You Y, Zhan J. Dietary regulation of the SIgA-gut microbiota interaction. Crit Rev Food Sci Nutr 2022; 63:6379-6392. [PMID: 35125055 DOI: 10.1080/10408398.2022.2031097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gut microbiota (GM) is essential for host health, and changes in the GM are related to the development of various diseases. Recently, secretory immunoglobulin A (SIgA), the most abundant immunoglobulin isotype in the intestinal mucosa, has been found to play an essential role in controlling GM. SIgA dysfunction can lead to changes in the GM and is associated with the development of various GM-related diseases. Although in early stage, recent studies have shown that assorted dietary interventions, including vitamins, amino acids, fatty acids, polyphenols, oligo/polysaccharides, and probiotics, can influence the intestinal SIgA response and SIgA-GM interaction. Dietary intervention can enhance the SIgA response by directly regulating it (from top to bottom) or by regulating the GM structure or gene expression (from bottom to top). Furthermore, intensive studies involving the particular influence of dietary intervention on SIgA-binding to the GM and SIgA repertoire and the precise regulation of the SIgA response via dietary intervention are still exceedingly scarce and merit further consideration. This review summarizes the existing knowledge and (possible) mechanisms of the influence of dietary intervention on the SIgA-GM interaction. Key issues are considered, and the approaches in addressing these issues in future studies are also discussed.
Collapse
Affiliation(s)
- Xue Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing
| | - Jielong Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yue Qin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
41
|
Wittner J, Schulz SR, Steinmetz TD, Berges J, Hauke M, Channell WM, Cunningham AF, Hauser AE, Hutloff A, Mielenz D, Jäck HM, Schuh W. Krüppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunol 2022; 15:668-682. [PMID: 35347229 PMCID: PMC9259478 DOI: 10.1038/s41385-022-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, β7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.
Collapse
Affiliation(s)
- Jens Wittner
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobit D. Steinmetz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - William M. Channell
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adam F. Cunningham
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Anja E. Hauser
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.418217.90000 0000 9323 8675Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreas Hutloff
- grid.412468.d0000 0004 0646 2097Institute of Immunology and Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk Mielenz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Silva KKDPE, de Oliveira EE, Elias CMM, Pereira IE, Pinheiro RO, Sarno EN, Duthie MS, Teixeira HC. Serum IgA Antibodies Specific to M. leprae Antigens as Biomarkers for Leprosy Detection and Household Contact Tracking. Front Med (Lausanne) 2021; 8:698495. [PMID: 34447763 PMCID: PMC8382955 DOI: 10.3389/fmed.2021.698495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Leprosy remains endemic in several developing countries, such as India and Brazil, in part due to delayed diagnosis that facilitates ongoing transmission. Although immunoglobulins against several Mycobacterium leprae antigens have been indicated for the early diagnosis, and IgA participates in the early stages of leprosy and in subclinical infection, relatively little research has examined anti-M. leprae IgA responses. Here, we investigated serum IgA reactivity against NDO-HSA, LID-1 and NDO-LID, in paucibacillary (PB) and multibacillary (MB) patients and their household contacts, using enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy of each ELISA was evaluated by receiver operating characteristic (ROC) curve analysis. Our data reveal elevated IgA serum levels against the three M. leprae specific antigens in MB patients, whereas IgA reactivity in PB patients was increased only to NDO-HSA. Further, MB and PB household contacts displayed higher IgA reactivity to NDO-HSA than non-endemic controls. Our data suggest measurement of serum IgA against NDO-HSA as an additional tool in the diagnosis and classification of the disease, with potential utility for household contact follow-up.
Collapse
Affiliation(s)
- Kyssia Karen de Paiva E Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Erick Esteves de Oliveira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina Martins Moreira Elias
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ingrid Estevam Pereira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Henrique Couto Teixeira
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
43
|
Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin Immunopathol 2021; 43:627-637. [PMID: 34379174 PMCID: PMC8551147 DOI: 10.1007/s00281-021-00879-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Antibodies are key elements of protective immunity. In the mucosal immune system in particular, secretory immunoglobulin A (SIgA), the most abundantly produced antibody isotype, protects against infections, shields the mucosal surface from toxins and environmental factors, and regulates immune homeostasis and a peaceful coexistence with our microbiota. However, the dark side of IgA biology promotes the formation of immune complexes and provokes pathologies, e.g., IgA nephropathy (IgAN). The precise mechanisms of how IgA responses become deregulated and pathogenic in IgAN remain unresolved. Yet, as the field of microbiota research moved into the limelight, our basic understanding of IgA biology has been taking a leap forward. Here, we discuss the structure of IgA, the anatomical and cellular foundation of mucosal antibody responses, and current concepts of how we envision the interaction of SIgA and the microbiota. We center on key concepts in the field while taking account of both historic findings and exciting new observations to provide a comprehensive groundwork for the understanding of IgA biology from the perspective of a mucosal immunologist.
Collapse
Affiliation(s)
- Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
44
|
Takeuchi T, Ohno H. Reciprocal regulation of IgA and the gut microbiota: a key mutualism in the intestine. Int Immunol 2021; 33:781-786. [PMID: 34346497 DOI: 10.1093/intimm/dxab049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
The mammalian intestine is home to trillions of microbes, and their colonization contributes to host physiology through the production of indispensable metabolites and competition against pathogens. However, it is also important to balance this symbiotic relationship, as overgrowth and translocation of microbes could trigger a fatal infection. IgA is the major immunoglobulin class produced and secreted in the intestine and is considered to play a pivotal role in maintaining homeostasis. In this review, we summarize recent studies exploring the interactions between IgA and the gut microbiota, and explain how different types of IgA could coexist to regulate the gut microbiota. In particular, we discuss two important aspects of IgA in controlling the gut microbes: function and specificity. Differences in these two aspects appear attributable to how IgA is induced and are associated with the functions of IgA as well. Together, our review delineates a recent understanding of IgA-microbiome interactions and proposes a future direction to clarify its complexity.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama, Japan
| |
Collapse
|
45
|
Abstract
IgA mediates microbial homeostasis at the intestinal mucosa. Within the gut, IgA acts in a context-dependent manner to both prevent and promote bacterial colonization and to influence bacterial gene expression, thus providing exquisite control of the microbiota. IgA-microbiota interactions are highly diverse across individuals and populations, yet the factors driving this variation remain poorly understood. In this Review, we summarize evidence for the host, bacterial and environmental factors that influence IgA-microbiota interactions. Recent advances have helped to clarify the antigenic specificity and immune selection of intestinal IgA and have highlighted the importance of microbial glycan recognition. Furthermore, emerging evidence suggests that diet and nutrition play an important role in shaping IgA recognition of the microbiota. IgA-microbiota interactions are disrupted during both overnutrition and undernutrition and may be altered dynamically in response to diet, with potential implications for host health. We situate this research in the context of outstanding questions and future directions in order to better understand the fascinating paradigm of IgA-microbiota homeostasis.
Collapse
|
46
|
Guo J, Han X, Huang W, You Y, Jicheng Z. Interaction between IgA and gut microbiota and its role in controlling metabolic syndrome. Obes Rev 2021; 22:e13155. [PMID: 33150692 DOI: 10.1111/obr.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin isotype secreted into the mucosal tissues, mainly intestinal mucus. Humans can produce several grams of IgA every day, accounting for three quarters of the body's total immunoglobulin content. IgA, together with mucus and antimicrobial peptides, forms the first line of defence for intestinal epithelial cells, protecting them from a significant number of intestinal antigens. IgA also plays a principal role in controlling the gut microbiota (GM), and disruption in IgA can result in dysbiosis, such as the enrichment of Proteobacteria, which are generally bound by IgA. Proteobacteria overexpansion is also usually seen in obesity and colitis. Consistent with this, IgA dysfunction frequently results in metabolic syndrome (MetS), including conditions such as obesity, adiposity, insulin resistance, and inflammation. In contrast, enhanced IgA function can improve, and even prevent, MetS. Interactions among IgA, GM, and metabolism provide a promising avenue to combat MetS.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Zhan Jicheng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Cascalho M, Platt JL. TNFRSF13B Diversification Fueled by B Cell Responses to Environmental Challenges-A Hypothesis. Front Immunol 2021; 12:634544. [PMID: 33679786 PMCID: PMC7925820 DOI: 10.3389/fimmu.2021.634544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
B cell differentiation and memory are controlled by the transmembrane activator and CAML interactor (TACI), a receptor encoded by TNFRSF13B. TNFRSF13B mutations are frequently found in common variable immunodeficiency (CVID) and in IgA -deficiency; yet, ~98% of those with mutant TNFRSF13B are healthy. Indeed, TNFRSF13B is among the 5% most polymorphic genes in man. Other mammals evidence polymorphism at comparable loci. We hypothesize that TNFRSF13B diversity might promote rather than detract from well-being by controlling key elements of innate immunity. We shall discuss how extraordinary diversity of TNFRSF13B could have evolved and persisted across diverse species of mammals by controlling innate and adaptive B cell responses in apparently paradoxical ways.
Collapse
Affiliation(s)
- Marilia Cascalho
- Department of Surgery and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey L Platt
- Department of Surgery and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
48
|
Friedmann D, Unger S, Keller B, Rakhmanov M, Goldacker S, Zissel G, Frye BC, Schupp JC, Prasse A, Warnatz K. Bronchoalveolar Lavage Fluid Reflects a T H1-CD21 low B-Cell Interaction in CVID-Related Interstitial Lung Disease. Front Immunol 2021; 11:616832. [PMID: 33613543 PMCID: PMC7892466 DOI: 10.3389/fimmu.2020.616832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background About 20% of patients with common variable immunodeficiency (CVID) suffer from interstitial lung disease (ILD) as part of a systemic immune dysregulation. Current understanding suggests a role of B cells in the pathogenesis based on histology and increased levels of BAFF and IgM associated with active disease corroborated by several reports which demonstrate the successful use of rituximab in CVID-ILD. It is debated whether histological confirmation by biopsy or even video-assisted thoracoscopy is required and currently not investigated whether less invasive methods like a bronchoalveolar lavage (BAL) might provide an informative diagnostic tool. Objective To gain insight into potential immune mechanisms underlying granulomatous and lymphocytic interstitial lung disease (GLILD) and to define biomarkers for progressive ILD by characterizing the phenotype of B- and T-cell populations and cytokine profiles in BAL fluid (BALF) of CVID-ILD compared to sarcoidosis patients and healthy donors (HD). Methods Sixty-four CVID, six sarcoidosis, and 25 HD BALF samples were analyzed by flow cytometric profiling of B- and T-cells and for cytokines by ELISA and Multiplexing LASER Bead technology. Results Both sarcoidosis and CVID-ILD are characterized by a predominantly T-cell mediated lymphocytosis in the BALF. There is an increase in T follicular helper (TFH)-like memory and decrease of regulatory T cells in CVID-ILD BALF. This TFH-like cell subset is clearly skewed toward TH1 cells in CVID-ILD. In contrast to sarcoidosis, CVID-ILD BALF contains a higher percentage of B cells comprising mostly CD21low B cells, but less class-switched memory B cells. BALF analysis showed increased levels of APRIL, CXCL10, and IL-17. Conclusion Unlike in sarcoidosis, B cells are expanded in BALF of CVID-ILD patients. This is associated with an expansion of TFH- and TPH-like cells and an increase in APRIL potentially supporting B-cell survival and differentiation and proinflammatory cytokines reflecting not only the previously described TH1 profile seen in CVID patients with secondary immune dysregulation. Thus, the analysis of BALF might be of diagnostic value not only in the diagnosis of CVID-ILD, but also in the evaluation of the activity of the disease and in determining potential treatment targets confirming the prominent role of B-cell targeted strategies.
Collapse
Affiliation(s)
- David Friedmann
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Baerbel Keller
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirzokhid Rakhmanov
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Human Genetics and Laboratory Diagnostics (AHC), Martinsried, Germany
| | - Sigune Goldacker
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, University Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn C. Frye
- Department of Pneumology, University Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas C. Schupp
- Department of Pneumology, University Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Klaus Warnatz
- Divison of Immunodeficiency, Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Jackson MA, Pearson C, Ilott NE, Huus KE, Hegazy AN, Webber J, Finlay BB, Macpherson AJ, Powrie F, Lam LH. Accurate identification and quantification of commensal microbiota bound by host immunoglobulins. MICROBIOME 2021; 9:33. [PMID: 33516266 PMCID: PMC7847592 DOI: 10.1186/s40168-020-00992-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Identifying which taxa are targeted by immunoglobulins can uncover important host-microbe interactions. Immunoglobulin binding of commensal taxa can be assayed by sorting bound bacteria from samples and using amplicon sequencing to determine their taxonomy, a technique most widely applied to study Immunoglobulin A (IgA-Seq). Previous experiments have scored taxon binding in IgA-Seq datasets by comparing abundances in the IgA bound and unbound sorted fractions. However, as these are relative abundances, such scores are influenced by the levels of the other taxa present and represent an abstract combination of these effects. Diversity in the practical approaches of prior studies also warrants benchmarking of the individual stages involved. Here, we provide a detailed description of the design strategy for an optimised IgA-Seq protocol. Combined with a novel scoring method for IgA-Seq datasets that accounts for the aforementioned effects, this platform enables accurate identification and quantification of commensal gut microbiota targeted by host immunoglobulins. RESULTS Using germ-free and Rag1-/- mice as negative controls, and a strain-specific IgA antibody as a positive control, we determine optimal reagents and fluorescence-activated cell sorting (FACS) parameters for IgA-Seq. Using simulated IgA-Seq data, we show that existing IgA-Seq scoring methods are influenced by pre-sort relative abundances. This has consequences for the interpretation of case-control studies where there are inherent differences in microbiota composition between groups. We show that these effects can be addressed using a novel scoring approach based on posterior probabilities. Finally, we demonstrate the utility of both the IgA-Seq protocol and probability-based scores by examining both novel and published data from in vivo disease models. CONCLUSIONS We provide a detailed IgA-Seq protocol to accurately isolate IgA-bound taxa from intestinal samples. Using simulated and experimental data, we demonstrate novel probability-based scores that adjust for the compositional nature of relative abundance data to accurately quantify taxon-level IgA binding. All scoring approaches are made available in the IgAScores R package. These methods should improve the generation and interpretation of IgA-Seq datasets and could be applied to study other immunoglobulins and sample types. Video abstract.
Collapse
Affiliation(s)
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Kelsey E. Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Ahmed N. Hegazy
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Gastroenterology, Infectiology, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jonathan Webber
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Andrew J. Macpherson
- Maurice Müller Laboratories, Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
- University Clinic of Visceral Surgery and Medicine, Inselspital, 3010 Bern, Switzerland
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Lilian H. Lam
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Wang A, Rojas O, Lee D, Gommerman JL. Regulation of neuroinflammation by B cells and plasma cells. Immunol Rev 2020; 299:45-60. [PMID: 33107072 DOI: 10.1111/imr.12929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
The remarkable success of anti-CD20 B cell depletion therapies in reducing the burden of multiple sclerosis (MS) disease has prompted significant interest in how B cells contribute to neuroinflammation. Most focus has been on identifying pathogenic CD20+ B cells. However, an increasing number of studies have also identified regulatory functions of B lineage cells, particularly the production of IL-10, as being associated with disease remission in anti-CD20-treated MS patients. Moreover, IL-10-producing B cells have been linked to the attenuation of inflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. In addition to IL-10-producing B cells, antibody-producing plasma cells (PCs) have also been implicated in suppressing neuroinflammation. This review will examine regulatory roles for B cells and PCs in MS and EAE. In addition, we speculate on the involvement of regulatory PCs and the cytokine BAFF in the context of anti-CD20 treatment. Lastly, we explore how the microbiota could influence anti-inflammatory B cell behavior. A better understanding of the contributions of different B cell subsets to the regulation of neuroinflammation, and factors that impact the development, maintenance, and migration of such subsets, will be important for rationalizing next-generation B cell-directed therapies for the treatment of MS.
Collapse
Affiliation(s)
- Angela Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dennis Lee
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|