1
|
Naqvi W, Garg P, Srivastava P. Transcriptome Derived Artificial neural networks predict PRRC2A as a potent biomarker for epilepsy. J Genet Eng Biotechnol 2025; 23:100503. [PMID: 40390496 DOI: 10.1016/j.jgeb.2025.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/21/2025]
Abstract
Epilepsy refers to the occurrence of two or more than two reiterative seizures. The occurrence of seizure is governed by the excessive electrical discharges in the cortex of the brain. Bioinformatics is crucial in diagnosing, prognosticating, and treating neurological disorders. It uses methodologies, computational tools, software, and databases to probe disease molecular underpinnings and identify biomarkers. It aids clinicians in addressing patient parameters and translational research. Artificial neural networks (ANNs) are computer models that attempt to mimic the neurons present in the human brain. This computerized neuronal model is used for analyzing and comprehending large and complex data sets. In the present study, three GEO datasets (GSE190451, GSE140393, and GSE134697) were retrieved from NCBI for the identification of differentially expressed genes using the DESeq2 package. The study identified 7 up-regulated genes (PRRC2A, FCGR3B, HLA-DRB, ENSG00000280614, ENSG00000281181, SLN, C4A) in patients with epilepsy. Furthermore, WEKA software was used for feature selection and classification of DEGs using feature selection algorithms namely Correlation Feature Selection, ReliefF, and Information Gain and classification methods such as Logistic regression, Classification via regression, Random forest, Random subspace, and Logistic model trees. After the analysis, out of the 7 genes, the C4A gene was removed as it yielded the lowest feature selection statistics. Lastly, R Studio was used for constructing the Artificial Neural Network of the 6 identified DEGs. The model's performance was evaluated using the "pROC" R package, and an AUC of 0.720 was obtained, indicating that the model had excellent classification accuracy. The NeuralNet package of R revealed that PRRC2A had the highest generalized weight value indicating the increased expression of these genes when all other parameters are constant. Therefore, PRRC2A can be used as a potential biomarker for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Wayez Naqvi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
2
|
Huang H, Baxter AE, Zhang Z, Good CR, Alexander KA, Chen Z, Garcia PAA, Samareh P, Collins SM, Glastad KM, Wang L, Donahue G, Manne S, Giles JR, Shi J, Berger SL, Wherry EJ. Deciphering the role of histone modifications in memory and exhausted CD8 T cells. Sci Rep 2025; 15:17359. [PMID: 40389726 PMCID: PMC12089470 DOI: 10.1038/s41598-025-99804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Exhausted CD8 T cells (TEX) arising during chronic infections and cancer have reduced functional capacity and limited fate flexibility that prevents optimal disease control and response to immunotherapies. Compared to memory (TMEM) cells, TEX have a unique open chromatin landscape underlying a distinct gene expression program. How TEX transcriptional and epigenetic landscapes are regulated through histone post-translational modifications (hPTMs) remains unclear. Here, we profiled key activating (H3K27ac and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in naive CD8 T cells (TN), TMEM and TEX. We identified H3K27ac-associated super-enhancers that distinguish TN, TMEM and TEX, along with key transcription factor networks predicted to regulate these different transcriptional landscapes. Promoters of some key genes were poised in TN, but activated in TMEM or TEX whereas other genes poised in TN were repressed in TMEM or TEX, indicating that both repression and activation of poised genes may enforce these distinct cell states. Moreover, narrow peaks of repressive H3K9me3 were associated with increased gene expression in TEX, suggesting an atypical role for this modification. These data indicate that beyond chromatin accessibility, hPTMs differentially regulate specific gene expression programs of TEX compared to TMEM through both activating and repressive pathways.
Collapse
Affiliation(s)
- Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zhen Zhang
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, Anhui, China
| | - Charly R Good
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katherine A Alexander
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 11724, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paula A Agudelo Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Parisa Samareh
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sierra M Collins
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biology, University of Rochester, Rochester, NY, 14620, USA
| | - Lu Wang
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gregory Donahue
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Sada Japp A, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Luning Prak ET, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. Nat Commun 2025; 16:4621. [PMID: 40383826 PMCID: PMC12086209 DOI: 10.1038/s41467-025-59626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. However, characterization of the immunological processes occurring in human pancreatic lymphatic tissues is lacking. Here, we conduct a comprehensive study of immune cells from pancreatic, mesenteric, and splenic lymphatic tissues of non-diabetic control (ND), β cell autoantibody-positive non-diabetic (AAb+), and T1D donors using flow cytometry and CITEseq. Compared to ND pancreas-draining lymph nodes (pLN), AAb+ and T1D donor pLNs display decreased CD4+ Treg and increased stem-like CD8+ T cell signatures, while only T1D donor pLNs exhibit naive T cell and NK cell differentiation. Mesenteric LNs have modulations only in CD4+ Tregs and naive cells, while splenocytes lack these perturbations. Further, T cell expression of activation markers and IL7 receptor correlate with T1D genetic risk. These results demonstrate tissue-restricted immune changes occur before and after T1D onset.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - M Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Miao R, Liu Y, Shen S, Wang W, Wang S. Chromatin remodeling in lymphocytic function and fate: the multifaceted roles of SWI/SNF complex. Front Immunol 2025; 16:1575857. [PMID: 40342423 PMCID: PMC12058788 DOI: 10.3389/fimmu.2025.1575857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
The Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex comprises 10-15 subunits, which modulate the arrangement, location, or conformation of nucleosomes to upregulate chromatin accessibility. During lymphocytic differentiation and functional development, the SWI/SNF complex exerts its effects by binding to specific transcription factors (TFs) or DNA sequences via its subunits, which are thereafter recruited to the promoter or enhancer regions of target genes, rendering each subunit crucial wherein. The loss of individual subunits during lymphocytic differentiation not only disrupts the targeting of the SWI/SNF complex but also impairs its chromatin remodeling function, ultimately resulting in altered differentiation of immature lymphocytes, dysfunction of mature lymphocytes, and injured immune responses. Therefore, in this paper, we focus on TFs interacting with SWI/SNF complex subunits in lymphocytes, and summarize the effects of the loss of specific subunits of the SWI/SNF complex on lymphocytic differentiation and function, as well as the modification in the expression of key genes. We also summarize the potential clinical treatments and applications targeting the loss of SWI/SNF complex subunits, and focus on the application in Chimeric Antigen Receptor (CAR) technology. In conclusion, the SWI/SNF complex is a key regulatory factor in lymphocytic biology, involved in fundamental cellular processes and closely associated with hematological diseases and immune dysfunction. However, the specific roles of SWI/SNF complex subunits in different lymphocytic subpopulations remain unclear. Future clarification of the specific functions of these subunits in different lymphocytic subsets is expected to promote the development of immunotherapy and personalized therapy.
Collapse
Affiliation(s)
- Renjie Miao
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shuo Shen
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shengjun Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
5
|
Cui N, Leary P, Ivanova VS, Stirm K, Kirsche L, Aceto N, Stenner F, Dieterich LC, Detmar M, Petrova E, Mundt S, Greter M, Tzankov A, Müller A. PDL1-expressing macrophages infiltrate diffuse large B-cell lymphoma and promote lymphoma growth in a MYC-driven experimental model. Blood Cancer J 2025; 15:66. [PMID: 40240348 PMCID: PMC12003652 DOI: 10.1038/s41408-025-01281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
The infiltration of diffuse large- and other mature B-cell lymphomas with T- and myeloid cells is a key tumor microenvironmental feature but is not currently factored into treatment decisions. Here, we have used multiplex immunofluorescence microscopy to quantify the immune infiltrates of >260 diffuse large B-cell- (DLBCL), follicular- (FL) and mantle cell lymphomas (MCL), and chronic lymphocytic leukemias (CLL) relative to clinical outcomes, mutational landscape and phenotype. MCL were found to be the "coldest" and DLBCL the "hottest" entities. The lymphoma microenvironment of DLBCL featured numerically dominant populations of CD8+ and T-follicular helper (Tfh) T-cells that were indicative of superior prognosis. Mutations in EZH2, PTEN and KMT2D were overrepresented in DLBCL with low CD8+ T-cell infiltration. A unique feature of DLBCL was its infiltration by large numbers of PDL1+ macrophages that constituted up to 70% of total cellularity. PDL1+ macrophage infiltration was mutually exclusive with regulatory T-cell infiltration. The inducible ablation of PDL1 on macrophages was sufficient to improve immune control of MYC-expressing lymphoma in a syngeneic immunocompetent model. These results implicate the macrophage/CD8+ T-cell axis as a key pathogenetic determinant and immunotherapeutic target in a subset of DLBCL patients with poor prognosis.
Collapse
Affiliation(s)
- Ningxuan Cui
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Functional Genomics Center Zürich, University of Zürich and Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Vanesa-Sindi Ivanova
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kristin Stirm
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Nicola Aceto
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Frank Stenner
- Clinic for Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Lothar C Dieterich
- European Center for Angioscience and Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Lin YZ, Liu CH, Wu WR, Liao TY, Lee CC, Li HW, Chung FC, Shen YC, Zhuo GY, Liu LC, Cheng WC, Wang SC. Memory-promoting function of miR-379-5p attenuates CD8 + T cell exhaustion by targeting immune checkpoints. J Immunother Cancer 2025; 13:e010363. [PMID: 40221151 PMCID: PMC11997822 DOI: 10.1136/jitc-2024-010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/16/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are epigenetic regulators of T cell maturation and exhaustion. However, the mechanisms by which miRNAs influence T cell function in tumor environments remain unclear. This study focuses on miR-379-5p, which counteracts T cell exhaustion and enhances antitumor responses. METHODS Native CD8+ T cells were isolated from the blood of healthy donors and subjected to chronic stimulation to induce exhaustion. RNA sequencing and miRNA sequencing were performed to identify differentially expressed miRNAs. These miRNAs underwent bioinformatics analyses, including DESeq enrichment, immune cell infiltration assessment, and patient prognostic outcomes in The Cancer Genome Atlas data sets to assess their potential involvement in T cell exhaustion and antitumor immunity. The biological functions of miRNA on T cell differentiation, cytotoxic killing, and immune checkpoint regulation were investigated using in vitro assays, OT-I B16F10-OVA models, and patient-derived tumor organoids. RESULTS MiR-379-5p is downregulated in exhausted T cells and negatively associated with exhausted tumor-infiltrating lymphocytes in advanced tumors. It correlates positively with better survival outcomes in breast cancer, cervical cancer and melanoma. In CD8+ T cells, miR-379-5p reduces the expression of immune checkpoint proteins T cell immunoglobulin and mucin-domain containing-3 (TIM3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) by targeting their 3' untranslated region. Overexpression of miR-379-5p in CD8+ T cell promotes differentiation into memory-like T effector cells and enhances cytotoxic killing of cancer cells. The transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) with increased expression in exhausted T cells and negatively regulates miR-379, restoring immune checkpoint expression and suppressing cancer-killing ability. In contrast, OT-I T cells expressing ectopic miR-379-5p show increased cytotoxicity against B16F10-OVA tumors in mice. Autologous T cells isolated from patients with breast cancer transduced with miR-379-5p significantly improve killing of tumor organoids derived from the same patients. CONCLUSIONS MiR-379-5p acts as an epigenetic tumor suppressor by enhancing CD8+ T cell effector functions and suppressing T cell exhaustion. MiR-379-5p could represent a novel marker and strategy for cancer immunotherapy, offering promising avenues for enhancing antitumor immune responses.
Collapse
Affiliation(s)
- You-Zhe Lin
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ting-Yi Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Wei Li
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Feng-Chi Chung
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Bresser K, Popović B, Wolkers MC. What's in a name: the multifaceted function of DNA- and RNA-binding proteins in T cell responses. FEBS J 2025; 292:1853-1867. [PMID: 39304985 PMCID: PMC12001178 DOI: 10.1111/febs.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 04/17/2025]
Abstract
Cellular differentiation allows cells to transition between different functional states and adapt to various environmental cues. The diversity and plasticity of this process is beautifully exemplified by T cells responding to pathogens, which undergo highly specialized differentiation tailored to the ongoing infection. Such antigen-induced T cell differentiation is regulated at the transcriptional level by DNA-binding proteins and at the post-transcriptional level by RNA-binding proteins. Although traditionally defined as separate protein classes, a growing body of evidence indicates an overlap between these two groups of proteins, collectively coined DNA/RNA-binding proteins (DRBPs). In this review, we describe how DRBPs might bind both DNA and RNA, discuss the putative functional relevance of this dual binding, and provide an exploratory analysis into characteristics that are associated with DRBPs. To exemplify the significance of DRBPs in T cell biology, we detail the activity of several established and putative DRBPs during the T cell response. Finally, we highlight several methodologies that allow untangling of the distinct functionalities of DRBPs at the DNA and RNA level, including key considerations to take into account when applying such methods.
Collapse
Affiliation(s)
- Kaspar Bresser
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- T Cell Differentiation Lab, Department of ResearchSanquin Blood Supply FoundationAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMC, University of AmsterdamThe Netherlands
- Cancer Immunology, Cancer Center AmsterdamAmsterdam Institute for Infection & ImmunityThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
8
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
9
|
Fei H, Lu X, Shi Z, Liu X, Yang C, Zhu X, Lin Y, Jiang Z, Wang J, Huang D, Liu L, Zhang S, Jiang L. Deciphering the preeclampsia-specific immune microenvironment and the role of pro-inflammatory macrophages at the maternal-fetal interface. eLife 2025; 13:RP100002. [PMID: 40152904 PMCID: PMC11952753 DOI: 10.7554/elife.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RA-CCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3-CCR7+Helios-CD127-CD8+) and pro-inflam Macs (CD206-CD163-CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163-CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206- pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1-IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal-fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.
Collapse
Affiliation(s)
- Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan HospitalHangzhouChina
| | - Yuhan Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Ziqun Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Jianmin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| |
Collapse
|
10
|
Alrubayyi A, Hassan AS, Hare J, Hsieh A, Gilmour J, Price MA, Kilembe W, Karita E, Ruzagira E, Esbjörnsson J, Sanders EJ, Peppa D, Rowland-Jones SL. An early functional adaptive NK cell signature drives optimal CD8 + T-cell activation and predicts sustained HIV-1 viral control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643703. [PMID: 40166297 PMCID: PMC11956991 DOI: 10.1101/2025.03.17.643703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A better understanding of the immune responses associated with future viral control in humans during acute HIV-1 infection (AHI) is critical to inform vaccines and immune-based therapeutics. Natural killer (NK) cells and CD8 + T-cells are pivotal in antiviral defence, yet the dynamics and complementary roles of these effector subsets during AHI with different HIV-1 subtypes remain poorly understood. Access to a unique patient cohort recruited during and post-peak HIV-1 viral load with different HIV-1 subtypes and followed up longitudinally in the absence of antiretroviral therapy up to six years post estimated date of infection (EDI) provided a rare opportunity to fill this knowledge gap. Our data show an early expansion of FcεRγ - CD57 + NK cells with classical adaptive traits concomitant with an enhanced capacity for antibody-dependent cellular cytotoxicity (ADCC) and reactivity against HIV-1 antigens. This distinctive NK cell profile was more abundant in donors with subtype A infection compared to non-subtype A, partially driven by elevated pro-inflammatory cytokine levels and changes in the epigenetic landscape. The accumulation of adaptive NK cells during the first month of infection contributed to the optimal activation of CD8 + T-cells, promoting virus-specific responses. Notably, individuals with higher levels of FcεRγ - CD57 + adaptive NK cells during the first month of infection were more likely to exhibit long-term viral control in the absence of ART. These findings underscore the critical role of early, high-magnitude adaptive NK cell responses in CD8 + T-cell activation and subsequent immune control. This work provides novel insights into the correlates of protective immunity against HIV-1 infection, with implications for preventative or therapeutic vaccine strategies aimed at promoting adaptive NK cell responses. One Sentence Summary Early expansion of adaptive NK cells during acute HIV-1 infection promotes long-term viral control.
Collapse
|
11
|
Hundhausen N, Majumder S, Xiao Y, Haeusl SS, Goehler H, Seal R, Chiarolla CM, Rosenwald A, Eyrich M, Cicin-Sain L, Berberich-Siebelt F. NFAT single-deficient murine T cells reduce the risk of aGvHD while controlling cytomegalovirus infection. iScience 2025; 28:111937. [PMID: 40028277 PMCID: PMC11872454 DOI: 10.1016/j.isci.2025.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
NFAT is a family of transcription factors whose activation is inhibited by calcineurin inhibitors (CNIs). In allogeneic hematopoietic stem cell transplantation (allo-HCT), CNIs are employed to prevent and treat graft-versus-host disease (GvHD). Unfortunately, control of cytomegalovirus (CMV), which exacerbates clinical outcomes, is simultaneously lost. Since single NFAT deficiency in T cells ameliorates GvHD in our major mismatch model, we investigated whether protection is maintained during CMV infection. Reassuringly, NFAT-deficient T cells still improved GvHD upon acute CMV infection and after allo-HCT in latently CMV-infected mice, showing reduced proinflammatory and cytotoxic potential. In sharp contrast, CMV-specific NFAT-deficient CD8+ inflated memory T cells expanded more and with higher levels of interferon gamma (IFN-γ) and GzmB expression, effectively controlling CMV. Notably, NFAT-deficient inflated memory T cells could migrate to non-lymphoid tissues and fight CMV. Therefore, CMV infection does not interfere with the protective effect of NFAT inhibition to attenuate GvHD while allowing an anti-CMV response.
Collapse
Affiliation(s)
- Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Snigdha Majumder
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sigrun S. Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Helen Goehler
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Matthias Eyrich
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
12
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
13
|
Yang B, Piedfort O, Sanchez-Sanchez G, Lavergne A, Gong M, Peng G, Madrigal A, Petrellis G, Katsandegwaza B, Rodriguez LR, Balthazar A, Meyer SJ, Van Isterdael G, Van Duyse J, Andris F, Bai Q, Marichal T, Machiels B, Nitschke L, Najafabadi HS, King IL, Vermijlen D, Dewals BG. IL-4 induces CD22 expression to restrain the effector program of virtual memory T cells. Sci Immunol 2025; 10:eadk4841. [PMID: 39919198 DOI: 10.1126/sciimmunol.adk4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Parasitic helminths induce the production of interleukin-4 (IL-4), which causes the expansion of virtual memory CD8+ T cells (TVM cells), a cell subset that contributes to the control of coinfection with intracellular pathogens. However, the mechanisms regulating IL-4-dependent TVM cell activation and expansion remain ill defined. Here, we used single-cell RNA sequencing of CD8+ T cells to identify pathways that control IL-4-dependent TVM cell responses. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a selective surface marker of IL-4-induced TVM cells. CD22+ TVM cells were enriched for interferon-γ and granzyme A and retained a diverse TCR repertoire while enriched in self-reactive CDR3 sequences. CD22 intrinsically regulated the IL-4-induced CD8+ T cell effector program, resulting in reduced responsiveness of CD22+ TVM cells and regulatory functions to infection and inflammation. Thus, helminth-induced IL-4 drives the expansion and activation of TVM cells that is counterinhibited by CD22.
Collapse
Affiliation(s)
- Bin Yang
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Guillem Sanchez-Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, University of Liège, Liège, Belgium
| | - Meijiao Gong
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Garrie Peng
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Georgios Petrellis
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Lucia Rodriguez Rodriguez
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Alexis Balthazar
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Fabienne Andris
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Qiang Bai
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- PhyMedExp, INSERM U1046, University of Montpellier, Montpellier, France
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, ULiège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Bénédicte Machiels
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Benjamin G Dewals
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine - FARAH, University of Liège, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
14
|
Burtis AE, DeNicola DM, Ferguson ME, Santos RG, Pinilla C, Kriss MS, Orlicky DJ, Tamburini BAJ, Gillen AE, Burchill MA. Ag-driven CD8 + T cell clonal expansion is a prominent feature of MASH in humans and mice. Hepatology 2025; 81:591-608. [PMID: 39047085 PMCID: PMC11737124 DOI: 10.1097/hep.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear. Our study aimed to define the phenotype and T cell receptor diversity of T cells from human cirrhotic livers and an animal model of MASH to begin resolving their function in disease. APPROACH AND RESULTS In these studies, we evaluated differences in T cell phenotype in the context of liver disease. Accordingly, we isolated liver resident T cell populations from humans with cirrhosis and from mice with diet-induced MASH. Using both 5' single-cell sequencing and flow cytometry, we defined the phenotype and T cell receptor repertoire of liver resident T cells during health and disease. CONCLUSIONS MASH-induced human cirrhosis and diet-induced MASH in mice resulted in the accumulation of activated and clonally expanded T cells in the liver. The clonally expanded T cells in the liver expressed markers of chronic antigenic stimulation, including PD1 , TIGIT , and TOX . Overall, this study establishes for the first time that T cells undergo Ag-dependent clonal expansion and functional differentiation during the progression of MASH. These studies could lead to the identification of antigenic targets that drive T cell activation, clonal expansion, and recruitment to the liver during MASH.
Collapse
Affiliation(s)
- Abbigayl E.C. Burtis
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Destiny M.C. DeNicola
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Megan E. Ferguson
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Clemencia Pinilla
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael S. Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus. Aurora, Colorado, USA
| | - Beth A. Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin E. Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus. Aurora, Colorado, USA
| | - Matthew A. Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
16
|
Zhang J, Pan T, Lee J, Goldberg S, King SA, Tang E, Hu Y, Chen L, Hoover A, Zhu L, Eng OS, Dekel B, Huang J, Wu X. Enabling tumor-specific drug delivery by targeting the Warburg effect of cancer. Cell Rep Med 2025; 6:101920. [PMID: 39809265 PMCID: PMC11866520 DOI: 10.1016/j.xcrm.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Metabolic reprogramming of tumor cells is an emerging hallmark of cancer. Among all the changes in cancer metabolism, increased glucose uptake and the accumulation of lactate under normoxic conditions (the "Warburg effect") is a common feature of cancer cells. In this study, we develop a lactate-responsive drug delivery platform by targeting the Warburg effect. We design and test a gold/mesoporous silica Janus nanoparticle system as a gated drug carrier, in which the gold particles are functionalized with lactate oxidase and the silica particles are capped with α-cyclodextrin through surface arylboronate modification. In the presence of lactate, the lactate oxidase generates hydrogen peroxide, which induces the self-immolation reaction of arylboronate, leading to uncapping and drug release. Our results demonstrate greatly improved drug delivery specificity and therapeutic efficacy with this platform for the treatment of different cancers. Our findings present an effective approach for drug delivery by metabolic targeting of tumors.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Jimmy Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sanja Goldberg
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | - Sarah Ann King
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lifeng Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Alex Hoover
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Oliver S Eng
- Department of Surgery, University of California, Irvine, Orange, CA 92868, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel; Division of Pediatric Nephrology and Pediatric Stem Cell Research Institute, Safra Children's Hospital, Sheba Medical Center, Tel Hasomer, Sago Center for Regenerative Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jun Huang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Kared H, Tan C, Narang V, Tan SW, Xian CH, Wei ATS, Lum J, Ruiz-Mateos E, Rajasuriar R, Kamarulzaman A, Ng TP, Larbi A. SLAMF7 defines subsets of human effector CD8 T cells. Sci Rep 2024; 14:30779. [PMID: 39730488 DOI: 10.1038/s41598-024-80971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses. In this study, we demonstrate that the combination of SLAMF7 with either CD27 or TCF-1 effectively identifies progenitor-like effector CD8 T cells, while SLAMF7 with GPR56 or TOX defines effector CD8 T cells. These markers allow for the clear segregation of these distinct cell subsets. SLAMF7+ CD8T cells are dynamically modulated during viral infections, including HIV, HCV, CMV, and SARS-CoV-2, as well as during aging. We further characterize the SLAMF7 signature at both phenotypic and transcriptional levels. Notably, during aging, the SLAMF7 pathway becomes dysregulated, resulting in persistent phosphorylation of STAT1. Additionally, SLAMF7 ligation in the presence of IL-15 induces TCF-1 expression, which promotes the homeostatic proliferation of progenitor-like effector CD8 T cells.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Chin Hui Xian
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Alicia Tay Seok Wei
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
18
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
19
|
Kim HJ, Ban JJ, Kang J, Im HR, Ko SH, Sung JJ, Park SH, Park JE, Choi SJ. Single-cell analysis reveals expanded CD8 + GZMK high T cells in CSF and shared peripheral clones in sporadic amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae428. [PMID: 39659975 PMCID: PMC11631212 DOI: 10.1093/braincomms/fcae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brain and spinal cord. Despite the crucial role of aberrant immune responses in ALS pathogenesis, studies investigating immunological profiles in the cerebrospinal fluid (CSF) of patients with ALS have reported inconsistent findings. Herein, we explored the intrathecal adaptive immune response and features of circulating T cells between CSF and blood of patients with ALS using single-cell RNA and T-cell receptor (TCR) sequencing. This study comprised a total of 11 patients with apparently sporadic ALS and three controls with non-inflammatory diseases. We collected CSF from all participants, and for three patients with ALS, we additionally obtained paired samples of peripheral blood mononuclear cells (PBMCs). Utilizing droplet-based single-cell RNA and TCR sequencing, we analysed immunological profiles, gene expression characteristics and clonality. Furthermore, we examined T-cell characteristics in both PBMC and CSF samples, evaluating the shared T-cell clones across these compartments. In the CSF, patients with ALS exhibited a lower proportion of CD4+ T cells (45.2 versus 61.2%, P = 0.005) and a higher proportion of CD8+ GZMK hi effector memory T cells (TEMs) than controls (21.7 versus 16.8%, P = 0.060). Higher clonality was observed in CD8+ TEMs in patients with ALS compared with controls. In addition, CSF macrophages of patients with ALS exhibited a significant increase in chemokines recruiting CD8+ TEMs. Immunohistochemical analysis showed slightly higher proportions of T cells in the perivascular and parenchymal spaces in patients with ALS than in controls, and CD8+ TEMs co-localized with neurons or astrocytes in the motor cortices of patients with ALS. Clonally expanded CD8+ GZMK hi TEMs primarily comprised shared T-cell clones between CSF and PBMCs. Moreover, the shared CD8+ TEMs of PBMCs exhibited gene expression profiles similar to CSF T cells. Patients with ALS showed an increase in proportion and clonality of CD8+ GZMK hi TEMs and activated features of macrophages in CSF. The shared T-cell clone between CSF and blood was mainly composed of expanded CD8+ GZMK hi TEMs. In conclusion, single-cell immune profiling provided novel insights into the pathogenesis of ALS, characterized by activated macrophages and clonally expanded CD8+ T cells potentially communicating with the central nervous system and peripheral circulation.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye-Ryeong Im
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Hi Ko
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
20
|
Short SM, Perez MD, Morse AE, Jennings RD, Howard DS, Foureau D, Chojecki A, David C, Blaha L, Shaw Y, Lee CJ, Park N, Marsac C, D'Agostino R, Khuri N, Grayson JM. High-dimensional Immune Profiles and Machine Learning May Predict Acute Myeloid Leukemia Relapse Early following Transplant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1441-1451. [PMID: 39373568 DOI: 10.4049/jimmunol.2300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Identification of early immune signatures associated with acute myeloid leukemia (AML) relapse following hematopoietic stem cell transplant (HSCT) is critical for patient outcomes. We analyzed PBMCs from 58 patients with AML undergoing HSCT, focusing on T cell subsets and functional profiles. High-dimensional flow cytometry coupled with Uniform Manifold Approximation and Projection dimensionality reduction and PhenoGraph clustering revealed distinct changes in CD4+ and CD8+ T cell populations in 16 patients who relapsed within 1 y of HSCT. We observed increased IL-2, IL-10, and IL-17-producing CD4+ T cells, alongside decreased CD8+ T cell function early in relapsing patients. Notably, relapsing patients exhibited increased TCF-1intermediate cells, which lacked granzyme B or IFN-γ production in the CD4+ T cell compartment. We then developed a supervised machine learning algorithm that predicted AML relapse with 90% accuracy within 30 d after HSCT using high-throughput assays. The algorithm leverages condensed immune phenotypic data, alongside the ADASYN algorithm, for data balancing and 100 rounds of XGBoost supervised learning. This approach holds potential for detecting relapse-associated immune signatures months before clinical manifestation. Our findings demonstrate a distinct immunological signature potentially capable of predicting AML relapse as early as 30 d after HSCT.
Collapse
Affiliation(s)
- Samantha M Short
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mildred D Perez
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexis E Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Rebecca Damron Jennings
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Dianna S Howard
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - David Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Aleksander Chojecki
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Camille David
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lauren Blaha
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yolanda Shaw
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - C Jiah Lee
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nuri Park
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caitlyn Marsac
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Natalia Khuri
- Department of Computer Science, Wake Forest University, Winston-Salem, NC
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
21
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Bohacova P, Terekhova M, Tsurinov P, Mullins R, Husarcikova K, Shchukina I, Antonova AU, Echalar B, Kossl J, Saidu A, Francis T, Mannie C, Arthur L, Harridge SDR, Kreisel D, Mudd PA, Taylor AM, McNamara CA, Cella M, Puram SV, van den Broek T, van Wijk F, Eghtesady P, Artyomov MN. Multidimensional profiling of human T cells reveals high CD38 expression, marking recent thymic emigrants and age-related naive T cell remodeling. Immunity 2024; 57:2362-2379.e10. [PMID: 39321807 DOI: 10.1016/j.immuni.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Thymic involution is a key factor in human immune aging, leading to reduced thymic output and a decline in recent thymic emigrant (RTE) naive T cells in circulation. Currently, the precise definition of human RTEs and their corresponding cell surface markers lacks clarity. Analysis of single-cell RNA-seq/ATAC-seq data distinguished RTEs by the expression of SOX4, IKZF2, and TOX and CD38 protein, whereby surface CD38hi expression universally identified CD8+ and CD4+ RTEs. We further determined the dynamics of RTEs and mature cells in a cohort of 158 individuals, including age-associated transcriptional reprogramming and shifts in cytokine production. Spectral cytometry profiling revealed two axes of aging common to naive CD8+ and CD4+ T cells: (1) a decrease in CD38++ cells (RTEs) and (2) an increase in CXCR3hi cells. Identification of RTEs enables direct assessment of thymic health. Furthermore, resolving the dynamics of naive T cell remodeling yields insight into vaccination and infection responsiveness throughout aging.
Collapse
Affiliation(s)
- Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Riley Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jan Kossl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Saidu
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Chelsea Mannie
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela M Taylor
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA
| | - Coleen A McNamara
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Theo van den Broek
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Ma L, Acuff NV, Joseph IB, Ptacin JL, Caffaro CE, San Jose KM, Aerni HR, Carrio R, Byers AM, Herman RW, Pavlova Y, Pena MJ, Chen DB, Buetz C, Ismaili TK, Pham HV, Cucchetti M, Sassoon I, Koriazova LK, Leveque JA, Shawver LK, Mooney JM, Milla ME. A Precision Engineered Interleukin-2 for Bolstering CD8+ T- and NK-cell Activity without Eosinophilia and Vascular Leak Syndrome in Nonhuman Primates. CANCER RESEARCH COMMUNICATIONS 2024; 4:2799-2814. [PMID: 39320047 PMCID: PMC11503527 DOI: 10.1158/2767-9764.crc-24-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W). We also conducted ex vivo studies using human primary cells to further evaluate SAR'245 stimulation of target cells alone and in combination with programmed cell-death 1 (PD-1) checkpoint inhibitors. The pharmacokinetic profile of SAR'245 in NHP demonstrated dose-proportional exposure that was comparable with redosing. It elicited expansion of peripheral CD8+ T and NK cells that was comparable with each dose and with multiple dosing regimens. Once-weekly dosing showed no significant adverse effects, including no hallmark signs of VLS at dosing levels up to 1 mg/kg. Ex vivo, SAR'245 enhanced T-cell receptor responses alone and in combination with PD-1 inhibitors without inducing cytokines associated with cytokine release syndrome or VLS. Results support the clinical development of SAR'245 as a drug candidate for the treatment of solid tumors, alone or in combination with PD-1 inhibitory agents. SIGNIFICANCE SAR-444245 (SAR'245, pegenzileukin) is an extended half-life IL-2 that targets effector CD8+ T and NK cells, with little effect on regulatory T cells. We show that in the nonhuman primate model that closely approximates human immune function and response to IL-2, SAR'245 selectively activates CD8+ T and NK effectors without significant serious side effects (vascular leak syndrome or cytokine release syndrome), suggesting its potential for the treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Lina Ma
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | - Hans R. Aerni
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - Rob W. Herman
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - David B. Chen
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guo H, Guo L, Wang B, Jiang X, Wu Z, Mo X, Sun Y, Zhang Y, Wang Z, Kong J, Yan C, Huang X. Distinct Immune Homeostasis Remodeling Patterns after HLA-Matched and Haploidentical Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400544. [PMID: 39225336 PMCID: PMC11497014 DOI: 10.1002/advs.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a variety of hematopoietic disorders, and also provides a valuable platform for investigating the development of donor-derived immune cells in recipients post-HSCT. The immune system remodels from the donor to the recipient during allo-HSCT. However, little is known about the cell profile alterations as donor homeostasis rebalances to recipient homeostasis following HSCT. Here, multi-omics technology is applied at both the single cell and bulk sample levels, as well as spectrum flow cytometry and fluorescent transgenic mouse models, to dissect the dynamics of the rebalanced homeostatic immune system in recipients after allo-HSCT. The data reveal that all immune subpopulations observed in donors are successfully restored in recipients, though with varying levels of abundance. The remodeling of immune homeostasis exhibits different patterns in HLA-matched and haploidentical HSCT, highlighting distinct biases in T cell reconstitution from the central and peripheral pathways. Furthermore, ZNF683 is critical for maintaining the persistence and quiescence of CD8 T-cell in haploidentical HSCT. The research can serve as a foundation for developing novel strategies to induce immune tolerance.
Collapse
Affiliation(s)
- Huidong Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Liping Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Bixia Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xinya Jiang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
| | - Zhigui Wu
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Xiao‐Dong Mo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yu‐Qian Sun
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yuan‐Yuan Zhang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Zhi‐Dong Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Jun Kong
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Chen‐Hua Yan
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xiao‐Jun Huang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
25
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
27
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
28
|
Bao K, Gu X, Song Y, Zhou Y, Chen Y, Yu X, Yuan W, Shi L, Zheng J, Hong M. TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma. Nat Commun 2024; 15:7850. [PMID: 39245681 PMCID: PMC11381517 DOI: 10.1038/s41467-024-52252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Immune memory has been expanded to group 2 innate lymphoid cells (ILC2s), but the cellular and molecular bases remain incompletely understood. Based on house dust mite (HDM)-induced mice asthma models and human samples, we applied flow cytometry, parabiosis, in vivo imaging and adoptive transplantation to confirm the persistence, migration and function of CD45+lineage-CD90.2+NK1.1-NKp46-ST2-KLRG1+IL-17RB+ memory-like ILC2s (ml-ILC2s). Regulated by CCR9/CCL25 and S1P signaling, ml-ILC2s reside in the lamina propria of small intestines (siLP) in asthma remission, and subsequently move to airway upon re-encountering antigens or alarmins. Furthermore, ml-ILC2s possess properties of longevity, potential of rapid proliferation and producing IL-13, and display transcriptional characteristics with up-regulation of Tox and Tcf-7. ml-ILC2s transplantation restore the asthmatic changes abrogated by Tox and Tcf7 knockdown. Our data identify siLP ml-ILC2s as a memory-like subset, which promotes asthma relapse. Targeting TCF-1 and TOX might be promising for preventing asthma recurrence.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Yu
- Nanjing Haikerui Pharmaceutical Technology Co., LTD, Nanjing, 210023, China
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
29
|
De Munter S, Buhl JL, De Cock L, Van Parys A, Daneels W, Pascal E, Deseins L, Ingels J, Goetgeluk G, Jansen H, Billiet L, Pille M, Van Duyse J, Bonte S, Vandamme N, Van Dorpe J, Offner F, Leclercq G, Taghon T, Depla E, Tavernier J, Kerre T, Drost J, Vandekerckhove B. Knocking Out CD70 Rescues CD70-Specific NanoCAR T Cells from Antigen-Induced Exhaustion. Cancer Immunol Res 2024; 12:1236-1251. [PMID: 38874582 DOI: 10.1158/2326-6066.cir-23-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma patient-derived xenograft (PDX) model. Although the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy but rather CD70 interaction in cis with the nanoCAR-induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9 resulted in dramatically enhanced functionality in the diffuse large B-cell lymphoma PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knockout CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that wild-type CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. Conversely, the gene signature of knockout CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products leading to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.
Collapse
MESH Headings
- Humans
- CD27 Ligand
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Gene Knockout Techniques
- Cell Line, Tumor
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Juliane L Buhl
- Princess Máxima Center and Oncode Institute, Utrecht, the Netherlands
| | - Laurenz De Cock
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Willem Daneels
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lucas Deseins
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | | | - Tessa Kerre
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jarno Drost
- Princess Máxima Center and Oncode Institute, Utrecht, the Netherlands
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- GMP Unit cell Therapy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
30
|
Wang X, Zhang J, Zhong P, Wei X. Exhaustion of T cells after renal transplantation. Front Immunol 2024; 15:1418238. [PMID: 39165360 PMCID: PMC11333218 DOI: 10.3389/fimmu.2024.1418238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Renal transplantation is a life-saving treatment for patients with end-stage renal disease. However, the challenge of transplant rejection and the complications associated with immunosuppressants necessitates a deeper understanding of the underlying immune mechanisms. T cell exhaustion, a state characterized by impaired effector functions and sustained expression of inhibitory receptors, plays a dual role in renal transplantation. While moderate T cell exhaustion can aid in graft acceptance by regulating alloreactive T cell responses, excessive exhaustion may impair the recipient's ability to control viral infections and tumors, posing significant health risks. Moreover, drugs targeting T cell exhaustion to promote graft tolerance and using immune checkpoint inhibitors for cancer treatment in transplant recipients are areas deserving of further attention and research. This review aims to provide a comprehensive understanding of the changes in T cell exhaustion levels after renal transplantation and their implications for graft survival and patient outcomes. We discuss the molecular mechanisms underlying T cell exhaustion, the role of specific exhaustion markers, the potential impact of immunosuppressive therapies, and the pharmaceutical intervention on T cell exhaustion levels. Additionally, we demonstrate the potential to modulate T cell exhaustion favorably, enhancing graft survival. Future research should focus on the distinctions of T cell exhaustion across different immune states and subsets, as well as the interactions between exhausted T cells and other immune cells. Understanding these dynamics is crucial for optimizing transplant outcomes and ensuring long-term graft survival while maintaining immune competence.
Collapse
Affiliation(s)
- Xiujia Wang
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xiuwang Wei
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
31
|
Mietz J, Kaulfuss M, Egli L, Opitz L, Münz C, Chijioke O. Human effector CD8 + T cells with an activated and exhausted-like phenotype control tumour growth in vivo in a humanized tumour model. EBioMedicine 2024; 106:105240. [PMID: 38986249 PMCID: PMC11296066 DOI: 10.1016/j.ebiom.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Humanized tumour models could be particularly valuable for cancer immunotherapy research, as they may better reflect human-specific aspects of the interfaces between tumour and immune system of human cancer. However, endogenous antitumour immunity in humanized models is still largely undefined. METHODS We established an autologous humanized mouse tumour model by using NSG mice reconstituted with human immune cells from hematopoietic progenitors and tumours generated from transformed autologous human B cells. We demonstrate growth of solid lymphoid tumours after subcutaneous implantation, infiltration by endogenous human immune cells and immunocompetence of the model. FINDINGS We found human T cell subsets described in human cancer, including progenitor exhausted (Tpex), terminally exhausted (Tex-term) and tissue-resident (TRM) cells in tumour-bearing humanized mice with accumulation of Tex-term and TRM in the tumour. In addition, we identified tumour-reactive CD8+ T cells through expression of CD137. This subpopulation of de novo arising human CD137+ CD8+ T cells displayed a highly proliferative, fully activated effector and exhausted-like phenotype with enhanced expression of activation and exhaustion markers like PD-1, CD39, CD160, TIM-3, TIGIT and TOX, the senescence marker CD57 (B3GAT1) and cytolytic effector molecules such as PRF1, GZMH and NKG7. Moreover, these CD137+ CD8+ T cells exhibited tumour-specific clonal expansion and presented signature overlap with tumour-reactive CD8+ T cells described in human cancer. We demonstrate superior anticancer activity of this activated and exhausted-like human CD8+ T cell subset by adoptive transfer experiments using recipients bearing autologous human tumours. Mice adoptively transferred with CD137+ CD8+ T cells showed reduced tumour growth and higher CD8+ T cell tumour infiltration, correlating with control of human tumours. INTERPRETATION We established an immunocompetent humanized tumour model, providing a tool for immunotherapy research and defined effective anticancer activity of human effector CD8+ T cells with an activated and exhausted-like phenotype, supporting clinical exploration of such cells in adoptive T cell therapies. FUNDING Swiss Cancer Research foundation.
Collapse
Affiliation(s)
- Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Hirsch T, Neyens D, Duhamel C, Bayard A, Vanhaver C, Luyckx M, Sala de Oyanguren F, Wildmann C, Dauguet N, Squifflet JL, Montiel V, Deschamps M, van der Bruggen P. IRF4 impedes human CD8 T cell function and promotes cell proliferation and PD-1 expression. Cell Rep 2024; 43:114401. [PMID: 38943641 DOI: 10.1016/j.celrep.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.
Collapse
Affiliation(s)
- Thibault Hirsch
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Damien Neyens
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Duhamel
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Mathieu Luyckx
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Claude Wildmann
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Squifflet
- Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Virginie Montiel
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mélanie Deschamps
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
33
|
Wang Y, Ma L, Chen Y, Yun W, Yu J, Meng X. Prognostic effect of TCF1+ CD8+ T cell and TOX+ CD8+ T cell infiltration in lung adenocarcinoma. Cancer Sci 2024; 115:2184-2195. [PMID: 38590234 PMCID: PMC11247562 DOI: 10.1111/cas.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Recent studies have highlighted the pivotal roles of T cell transcription factors TCF-1 and TOX in modulating the immune response in cancer, with TCF-1 maintaining CD8+ T cell stemness and TOX promoting T cell exhaustion. The prognostic significance of these factors in lung adenocarcinoma (LUAD) remains a critical area of investigation. The retrospective study included 191 patients with LUAD who underwent surgery, of whom 83% were in stages II and III. These patients were divided into exploratory (n = 135) and validation (n = 56) groups based on the time of diagnosis. Multiplex fluorescence immunohistochemistry was used to examine the infiltration levels of CD8+ T cells, TCF1+ CD8+ T cells, and TOX+ CD8+ T cells. The percentage of CD8+ T cells in tumor was markedly lower than that in stroma (p < 0.05). In tumor-draining lymph nodes (TDLNs) invaded by tumor, the proportion of stem-like TCF1+ CD8+ T cells was significantly decreased (p < 0.01). Importantly, higher infiltration levels of CD8+ T cells and TCF1+ CD8+ T cells were associated with improved disease-free survival (DFS) (p = 0.009 and p = 0.006, respectively) and overall survival (OS) (p = 0.018 and p = 0.010, respectively). This study underscores the potential of TCF1+ CD8+ T cells as prognostic biomarkers in LUAD, providing insights into the tumor immune microenvironment and guiding future therapeutic strategies.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Lin Ma
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yu Chen
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhua Yun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| | - Xiangjiao Meng
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanChina
| |
Collapse
|
34
|
Strongin Z, Raymond Marchand L, Deleage C, Pampena MB, Cardenas MA, Beusch CM, Hoang TN, Urban EA, Gourves M, Nguyen K, Tharp GK, Lapp S, Rahmberg AR, Harper J, Del Rio Estrada PM, Gonzalez-Navarro M, Torres-Ruiz F, Luna-Villalobos YA, Avila-Rios S, Reyes-Teran G, Sekaly R, Silvestri G, Kulpa DA, Saez-Cirion A, Brenchley JM, Bosinger SE, Gordon DE, Betts MR, Kissick HT, Paiardini M. Distinct SIV-specific CD8 + T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat Immunol 2024; 25:1245-1256. [PMID: 38886592 PMCID: PMC11969417 DOI: 10.1038/s41590-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laurence Raymond Marchand
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth A Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mael Gourves
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Perla M Del Rio Estrada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio Gonzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comision Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Rafick Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Asier Saez-Cirion
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
36
|
Sabag B, Puthenveetil A, Levy M, Joseph N, Doniger T, Yaron O, Karako-Lampert S, Lazar I, Awwad F, Ashkenazi S, Barda-Saad M. Dysfunctional natural killer cells can be reprogrammed to regain anti-tumor activity. EMBO J 2024; 43:2552-2581. [PMID: 38637625 PMCID: PMC11217363 DOI: 10.1038/s44318-024-00094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural killer (NK) cells are critical to the innate immune system, as they recognize antigens without prior sensitization, and contribute to the control and clearance of viral infections and cancer. However, a significant proportion of NK cells in mice and humans do not express classical inhibitory receptors during their education process and are rendered naturally "anergic", i.e., exhibiting reduced effector functions. The molecular events leading to NK cell anergy as well as their relation to those underlying NK cell exhaustion that arises from overstimulation in chronic conditions, remain unknown. Here, we characterize the "anergic" phenotype and demonstrate functional, transcriptional, and phenotypic similarities to the "exhausted" state in tumor-infiltrating NK cells. Furthermore, we identify zinc finger transcription factor Egr2 and diacylglycerol kinase DGKα as common negative regulators controlling NK cell dysfunction. Finally, experiments in a 3D organotypic spheroid culture model and an in vivo tumor model suggest that a nanoparticle-based delivery platform can reprogram these dysfunctional natural killer cell populations in their native microenvironment. This approach may become clinically relevant for the development of novel anti-tumor immunotherapeutic strategies.
Collapse
Affiliation(s)
- Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tirtza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orly Yaron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Sarit Karako-Lampert
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Itay Lazar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shahar Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
37
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Wu MH, Valenca-Pereira F, Cendali F, Giddings EL, Pham-Danis C, Yarnell MC, Novak AJ, Brunetti TM, Thompson SB, Henao-Mejia J, Flavell RA, D'Alessandro A, Kohler ME, Rincon M. Deleting the mitochondrial respiration negative regulator MCJ enhances the efficacy of CD8 + T cell adoptive therapies in pre-clinical studies. Nat Commun 2024; 15:4444. [PMID: 38789421 PMCID: PMC11126743 DOI: 10.1038/s41467-024-48653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Felipe Valenca-Pereira
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily L Giddings
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Catherine Pham-Danis
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Yarnell
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda J Novak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tonya M Brunetti
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| | - Mercedes Rincon
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
40
|
Egli L, Kaulfuss M, Mietz J, Picozzi A, Verhoeyen E, Münz C, Chijioke O. CAR T cells outperform CAR NK cells in CAR-mediated effector functions in head-to-head comparison. Exp Hematol Oncol 2024; 13:51. [PMID: 38745250 PMCID: PMC11092129 DOI: 10.1186/s40164-024-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND CAR NK cells as vehicles for engineered "off-the-shelf" cellular cancer immunotherapy have attracted significant interest. Nonetheless, a comprehensive comparative assessment of the anticancer activity of CAR T cells and CAR NK cells carrying approved benchmark anti-CD19 CAR constructs is missing. Here, we report a direct head-to-head comparison of CD19-directed human T and NK cells. METHODS We generated CAR T and CAR NK cells derived from healthy donor PBMC by retroviral transduction with the same benchmark second-generation anti-CD19 CAR construct, FMC63.28z. We investigated IFN-γ secretion and direct cytotoxicity in vitro against various CD19+ cancer cell lines as well as in autologous versus allogeneic settings. Furthermore, we have assessed anticancer activity of CAR T and CAR NK cells in vivo using a xenograft lymphoma model in an autologous versus allogeneic setting and a leukemia model. RESULTS Our main findings are a drastically reduced capacity for CAR-mediated IFN-γ production and lower CAR-mediated cytotoxicity of CAR NK cells relative to CAR T cells in vitro. Consistent with these in vitro findings, we report superior anticancer activity of autologous CAR T cells compared with allogeneic CAR NK cells in vivo. CONCLUSIONS CAR T cells had significantly higher CAR-mediated effector functions than CAR NK cells in vitro against several cancer cell lines and autologous CAR T cells outperformed allogeneic CAR NK cells both in vitro and in vivo. CAR NK cells will likely benefit from further engineering to enhance anticancer activity to ultimately fulfill the promise of an effective off-the-shelf product.
Collapse
Affiliation(s)
- Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Arianna Picozzi
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Els Verhoeyen
- International Center for Infectiology, research team Enveloped Viruses, Vectors and Innate Responses, Institut national de la Santé et de la recherche médicale, unité 1111, Unité mixte de recherche 5308, Centre national de la recherche scientifique, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- Université Côte d'Azur, Institut National de La Santé Et de La Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Zhang Q, Zheng F, Chen Y, Liang CL, Liu H, Qiu F, Liu Y, Huang H, Lu W, Dai Z. The TOPK Inhibitor HI-TOPK-032 Enhances CAR T-cell Therapy of Hepatocellular Carcinoma by Upregulating Memory T Cells. Cancer Immunol Res 2024; 12:631-643. [PMID: 38407902 DOI: 10.1158/2326-6066.cir-23-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are emerging as an effective antitumoral therapy. However, their therapeutic effects on solid tumors are limited because of their short survival time and the immunosuppressive tumor microenvironment. Memory T cells respond more vigorously and persist longer than their naïve/effector counterparts. Therefore, promoting CAR T-cell development into memory T cells could further enhance their antitumoral effects. HI-TOPK-032 is a T-LAK cell-originated protein kinase (TOPK)-specific inhibitor that moderately represses some types of tumors. However, it is unknown whether HI-TOPK-032 works on hepatocellular carcinoma (HCC) and whether it impacts antitumoral immunity. Using both subcutaneous and orthotopic xenograft tumor models of two human HCC cell lines, Huh-7 and HepG2, we found that HI-TOPK-032 significantly improved proliferation/persistence of CD8+ CAR T cells, as evidenced by an increase in CAR T-cell counts or frequency of Ki-67+CD8+ cells and a decrease in PD-1+LAG-3+TIM-3+CD8+ CAR T cells in vivo. Although HI-TOPK-032 did not significantly suppress HCC growth, it enhanced the capacity of CAR T cells to inhibit tumor growth. Moreover, HI-TOPK-032 augmented central memory CD8+ T cell (TCM) frequency while increasing eomesodermin expression in CD8+ CAR T cells in tumor-bearing mice. Moreover, it augmented CD8+ CAR TCM cells in vitro and reduced their expression of immune checkpoint molecules. Finally, HI-TOPK-032 inhibited mTOR activation in CAR T cells in vitro and in tumors, whereas overactivation of mTOR reversed the effects of HI-TOPK-032 on CD8+ TCM cells and tumor growth. Thus, our studies have revealed mechanisms underlying the antitumoral effects of HI-TOPK-032 while advancing CAR T-cell immunotherapy.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yuchao Chen
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Chun-Ling Liang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Huazhen Liu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yunshan Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
42
|
Upadhye A, Meza Landeros KE, Ramírez-Suástegui C, Schmiedel BJ, Woo E, Chee SJ, Malicki D, Coufal NG, Gonda D, Levy ML, Greenbaum JA, Seumois G, Crawford J, Roberts WD, Schoenberger SP, Cheroutre H, Ottensmeier CH, Vijayanand P, Ganesan AP. Intra-tumoral T cells in pediatric brain tumors display clonal expansion and effector properties. NATURE CANCER 2024; 5:791-807. [PMID: 38228835 DOI: 10.1038/s43018-023-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Collapse
Affiliation(s)
- Aditi Upadhye
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kevin E Meza Landeros
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | - Edwin Woo
- Southampton University Hospitals NHS Trust, Southampton, UK
| | - Serena J Chee
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Denise Malicki
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - David Gonda
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Michael L Levy
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | | | | | - John Crawford
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Children's Hospital Orange County, Irvine, CA, USA
| | - William D Roberts
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Anusha-Preethi Ganesan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Minnie SA, Waltner OG, Zhang P, Takahashi S, Nemychenkov NS, Ensbey KS, Schmidt CR, Legg SRW, Comstock M, Boiko JR, Nelson E, Bhise SS, Wilkens AB, Koyama M, Dhodapkar MV, Chesi M, Riddell SR, Green DJ, Spencer A, Furlan SN, Hill GR. TIM-3 + CD8 T cells with a terminally exhausted phenotype retain functional capacity in hematological malignancies. Sci Immunol 2024; 9:eadg1094. [PMID: 38640253 PMCID: PMC11093588 DOI: 10.1126/sciimmunol.adg1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Chronic antigen stimulation is thought to generate dysfunctional CD8 T cells. Here, we identify a CD8 T cell subset in the bone marrow tumor microenvironment that, despite an apparent terminally exhausted phenotype (TPHEX), expressed granzymes, perforin, and IFN-γ. Concurrent gene expression and DNA accessibility revealed that genes encoding these functional proteins correlated with BATF expression and motif accessibility. IFN-γ+ TPHEX effectively killed myeloma with comparable efficacy to transitory effectors, and disease progression correlated with numerical deficits in IFN-γ+ TPHEX. We also observed IFN-γ+ TPHEX within CD19-targeted chimeric antigen receptor T cells, which killed CD19+ leukemia cells. An IFN-γ+ TPHEX gene signature was recapitulated in TEX cells from human cancers, including myeloma and lymphoma. Here, we characterize a TEX subset in hematological malignancies that paradoxically retains function and is distinct from dysfunctional TEX found in chronic viral infections. Thus, IFN-γ+ TPHEX represent a potential target for immunotherapy of blood cancers.
Collapse
Affiliation(s)
- Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Nicole S. Nemychenkov
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Samuel RW. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Melissa Comstock
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Julie R. Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
- Department of Pediatrics, University of Washington; WA, UNITED STATES
| | - Ethan Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Alec B. Wilkens
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
| | - Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology, Atlanta, GA, UNITED STATES
- Winship Cancer Institute, Emory University, Atlanta, GA, UNITED STATES
| | - Marta Chesi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, UNITED STATES
| | - Stanley R. Riddell
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
- Division of Medical Oncology, University of Washington; Seattle, WA, UNITED STATES
| | - Damian J. Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
- Division of Medical Oncology, University of Washington; Seattle, WA, UNITED STATES
| | - Andrew Spencer
- Australian Center for Blood Diseases, Monash University/The Alfred Hospital, Melbourne, VIC, AUSTRALIA
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, VIC, AUSTRALIA
- Department of Clinical Haematology, Monash University, Melbourne, VIC
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
- Department of Pediatrics, University of Washington; WA, UNITED STATES
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center; Seattle, WA, UNITED STATES
- Division of Medical Oncology, University of Washington; Seattle, WA, UNITED STATES
| |
Collapse
|
44
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Burtis AEC, DeNicola DMC, Ferguson ME, Santos RG, Pinilla C, Kriss MS, Orlicky DJ, Tamburini BAJ, Gillen AE, Burchill MA. Antigen-driven CD8 + T cell clonal expansion is a prominent feature of MASH in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.583964. [PMID: 38562766 PMCID: PMC10983976 DOI: 10.1101/2024.03.20.583964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background and Aims Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear. Our study aimed to define the phenotype and T cell receptor diversity of T cells from human cirrhotic livers and an animal model of MASH to begin resolving their function in disease. Approach and Results In these studies, we evaluated differences in T cell phenotype in the context of liver disease we isolated liver resident T cell populations from individuals with cirrhosis and a murine model of MASH. Using both 5' single cell sequencing and flow cytometry we defined the phenotype and T cell receptor repertoire of liver resident T cells during health and disease. Conclusions MASH-induced cirrhosis and diet-induced MASH in mice resulted in the accumulation of activated and clonally expanded T cells in the liver. The clonally expanded T cells in the liver expressed markers of chronic antigenic stimulation, including PD1 , TIGIT and TOX . Overall, this study establishes for the first time that T cells undergo antigen-dependent clonal expansion and functional differentiation during the progression of MASH. These studies could lead to the identification of potential antigenic targets that drive T cell activation, clonal expansion, and recruitment to the liver during MASH.
Collapse
|
47
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Erratum to: Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:179-222. [PMID: 38505662 PMCID: PMC10949969 DOI: 10.20411/pai.v8i2.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
[This corrects the article DOI: 10.20411/pai.v8i2.665.].
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
48
|
Han X, Zhang G, Wu X, Xu S, Liu J, Wang K, Liu T, Wu P. Microfluidics-enabled fluorinated assembly of EGCG-ligands-siTOX nanoparticles for synergetic tumor cells and exhausted t cells regulation in cancer immunotherapy. J Nanobiotechnology 2024; 22:90. [PMID: 38439048 PMCID: PMC10910710 DOI: 10.1186/s12951-024-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation. Using a microfluidic approach, a library of LFNPs/siTOX complexes were prepared by altering the placement of the hydrophobe (LA), the surface PEGylation density, and the siTOX ratio. Among the different formulations tested, the lead formulation, LFNPs3-3/siTOX complexes, demonstrated enhanced siRNA complexation, sensitive drug release, improved stability and delivery efficacy, and acceptable biosafety. Upon administration by the intravenous injection, this formulation was able to evoke a robust immune response by inhibiting PD-L1 expression and mitigating T cell exhaustion. Overall, this study provides valuable insights into the fluorinated assembly and concomitant optimization of the EGCG-based delivery system. Furthermore, it offers a promising strategy for cancer immunotherapy, highlighting its potential in improving response rates in ''cold'' tumors.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaozhen Wu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Pengkai Wu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
49
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
50
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:115-157. [PMID: 38455668 PMCID: PMC10919397 DOI: 10.20411/pai.v8i2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|