1
|
He Y, Liang Y, Fan M, Zhang J, Miao Q. Jieyu Guben decoction alleviates combined allergic rhinitis and asthma syndrome by balancing Th17/Treg expression and restoring PPARD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156508. [PMID: 40031093 DOI: 10.1016/j.phymed.2025.156508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND This study was designed to assess the efficacy of the Jieyu Guben Decoction (JYGBD), a novel formula that has not been reported, in treating rats with combined allergic rhinitis and asthma syndrome (CARAS) and the mechanism. METHODS CARAS rats were induced by ovalbumin (OVA) sensitization and treated with JYGBD to analyze the allergic symptoms and the production of OVA-specific antibodies. Hematoxylin-eosin staining, periodic acid-Schiff staining, Toluidine blue staining, Giemsa staining, and MASSON staining were applied to examine the impact of JYGBD treatment on the histopathological damage of nasal mucosa and lungs. Targets of JYGBD were predicted, and the impact of JYGBD on T helper 17 (Th17) inflammation was analyzed. Peroxisome proliferator-activated receptor delta (PPARD) was artificially silenced to assess the effects of PPARD deficiency on Th17 inflammation. The regulation of PPARD on methyl-CpG-binding protein 2 (MECP2) was analyzed as well. RESULTS JYGBD alleviated allergic conditions in rats and inhibited inflammatory cell infiltration and damage in nasal mucosa and lung tissues. The molecular targets of JYGBD were related to Th17 differentiation, and JYGBD alleviated Th17 inflammation in CARAS rats and inhibited Th17 differentiation in vitro. PPARD-mediated transcriptional inhibition of MECP2 blocked signal transducer and activator of transcription 3 (STAT3) activation to alleviate Th17/regulatory T cells (Treg) imbalance. MECP2 deletion and inhibition of STAT3 signaling alleviated PPARD knockdown-induced Th17/Treg imbalance and attenuated CARAS in rats. CONCLUSION JYGBD induces PPARD-mediated transcriptional inhibition of MECP2 to block STAT3 signaling pathway activation, which restores Th17/Treg homeostasis to alleviate CARAS.
Collapse
Affiliation(s)
- Yi He
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yanxia Liang
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Maorong Fan
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| | - Jinzhi Zhang
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qing Miao
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| |
Collapse
|
2
|
Gonçalez JL, Shen J, Li W. Molecular Mechanisms of Rett Syndrome: Emphasizing the Roles of Monoamine, Immunity, and Mitochondrial Dysfunction. Cells 2024; 13:2077. [PMID: 39768168 PMCID: PMC11674639 DOI: 10.3390/cells13242077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the Methyl-CpG-binding Protein-2 (MECP2) gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT. Research has shown that monoamines-such as dopamine, norepinephrine, epinephrine, serotonin, and histamine-exhibit alterations in RTT, contributing to a range of neurological symptoms. Furthermore, the immune system in RTT individuals demonstrates dysfunction through the abnormal activity of microglia, macrophages, lymphocytes, and non-immune cells, leading to the atypical release of inflammatory mediators and disruptions in the NF-κB signaling pathway. Moreover, mitochondria, essential for energy production and calcium storage, also show dysfunction in this condition. The delicate balance of producing and scavenging reactive oxygen species-termed redox balance-is disrupted in RTT. Targeting these molecular pathways presents a promising avenue for developing effective therapies.
Collapse
Affiliation(s)
- Julia Lopes Gonçalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
- Graduate Program in Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jenny Shen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| |
Collapse
|
3
|
Maino E, Scott O, Rizvi SZ, Chan WS, Visuvanathan S, Zablah YB, Li H, Sengar AS, Salter MW, Jia Z, Rossant J, Cohn RD, Gu B, Ivakine EA. An Irak1-Mecp2 tandem duplication mouse model for the study of MECP2 duplication syndrome. Dis Model Mech 2024; 17:dmm050528. [PMID: 38881329 PMCID: PMC11552499 DOI: 10.1242/dmm.050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ori Scott
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Samar Z. Rizvi
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wing Suen Chan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Youssif Ben Zablah
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hongbin Li
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ameet S. Sengar
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W. Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengping Jia
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, the Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Abdelsalam M, Zaki MES, Abo El-Kheir NY, Salama MF, Osman AOBS. Study of MicroRNA-124 in Patients with Lupus Nephritis. Endocr Metab Immune Disord Drug Targets 2024; 24:1180-1185. [PMID: 38317459 DOI: 10.2174/0118715303250919231010073608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 08/06/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lupus nephritis is associated with a six-fold increase in mortality compared with the general population. MicroRNAs studies revealed that increased MicroRNA -21 and MicroRNA -155 levels represent risk factors for active LN patients. MicroRNAs can be used as biomarkers in the diagnosis of clinical stages of LN. OBJECTIVES The present study aimed to determine the level of miR-124 in patients with lupus nephritis by reverse transcriptase real-time polymerase chain reaction compared to healthy control and correlate its levels with biochemical findings in those patients. METHODS The study was a case-control study that included fifty patients with lupus nephritis in addition to fifty healthy controls. Blood samples from the participants were subjected to the determination of serological markers of SLE. Moreover, real-time PCR was used for the determination of miR-124. RESULTS The comparison of Micro-RNA124 between patients and control subjects revealed a statistically significant decrease in Micro-RNA124 in patients (1.193 ± 0.56) compared to the control (3.36 ± 0.50, p <0.001); the comparison of the level of MicroRNA 124 in the patients with different clinical and serological findings of SLE revealed a significant decrease in the level of MicroRNA 124 in patients with muscular findings (1.02 ± 0.5) compared to the patients with negative manifestations (1.47 ± 0.5, p =0.005). CONCLUSION In the present study, a comparison of MicroRNA-124 in LN patients with different stages compared to normal control showed a statistically significant decrease in Micro-RNA124 in patients with lupus nephritis p <0.001 with significant correlation to the patients' different clinical and serological findings of SLE. Therefore, it may be used as a new noninvasive therapeutic approach to monitor response to therapy, predict relapses, and identify the degree of the activity of the disease or the progression to the chronic stage.
Collapse
Affiliation(s)
- Mostafa Abdelsalam
- Department of Internal Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt and Nephrology and Dialysis Unit, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maysaa El Sayed Zaki
- Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mona Foda Salama
- Department of Medical Microbiology and Immunology-Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
5
|
Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther 2023; 31:1514-1532. [PMID: 36518080 PMCID: PMC10278049 DOI: 10.1016/j.ymthe.2022.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of the chemotherapeutic agents in cancer. Chronic inflammation provides a favorable environment for tumorigenesis by inducing immunosuppression, whereas acute inflammation prompts tumor suppression by generating anti-tumor immune responses. Inflammatory factors derived from interstitial cells or tumor cells can stimulate cell proliferation and survival by modulating oncogenes and/or tumor suppressors. Recently, a new class of RNAs, i.e., circular RNAs (circRNAs), has been implicated in inflammatory diseases. Although there are reports on circRNAs imparting functions in inflammatory insults, whether these circularized transcripts hold the potential to regulate inflammation-induced cancer or tumor-related inflammation, and modulate the interactions between tumor microenvironment (TME) and the inflammatory stromal/immune cells, awaits further elucidation. Contextually, the current review describes the molecular association between inflammation and cancer, and spotlights the regulatory mechanisms by which circRNAs can moderate TME in response to inflammatory signals/triggers. We also present comprehensive information about the immune cell(s)-specific expression and functions of the circRNAs in TME, modulation of inflammatory signaling pathways to drive tumorigenesis, and their plausible roles in inflammasomes and tumor development. Moreover, the therapeutic potential of these circRNAs in harnessing inflammatory responses in cancer is also discussed.
Collapse
Affiliation(s)
- Javeria Qadir
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shuo-Yang Wen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Xu J, Zheng Y, Wang L, Liu Y, Wang X, Li Y, Chi G. miR-124: A Promising Therapeutic Target for Central Nervous System Injuries and Diseases. Cell Mol Neurobiol 2022; 42:2031-2053. [PMID: 33886036 PMCID: PMC11421642 DOI: 10.1007/s10571-021-01091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Central nervous system injuries and diseases, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, glioblastoma, multiple sclerosis, and the resulting neuroinflammation often lead to death or long-term disability. MicroRNAs are small, non-coding, single-stranded RNAs that regulate posttranscriptional gene expression in both physiological and pathological cellular processes, including central nervous system injuries and disorders. Studies on miR-124, one of the most abundant microRNAs in the central nervous system, have shown that its dysregulation is related to the occurrence and development of pathology within the central nervous system. Herein, we review the molecular regulatory functions, underlying mechanisms, and effective delivery methods of miR-124 in the central nervous system, where it is involved in pathological conditions. The review also provides novel insights into the therapeutic target potential of miR-124 in the treatment of human central nervous system injuries or diseases.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Liangjia Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
7
|
Zhong W, Kollipara A, Liu Y, Wang Y, O’Connell CM, Poston TB, Yount K, Wiesenfeld HC, Hillier SL, Li Y, Darville T, Zheng X. Genetic susceptibility loci for Chlamydia trachomatis endometrial infection influence expression of genes involved in T cell function, tryptophan metabolism and epithelial integrity. Front Immunol 2022; 13:1001255. [PMID: 36248887 PMCID: PMC9562917 DOI: 10.3389/fimmu.2022.1001255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Identify genetic loci of enhanced susceptibility to Chlamydial trachomatis (Ct) upper genital tract infection in women. Methods We performed an integrated analysis of DNA genotypes and blood-derived mRNA profiles from 200 Ct-exposed women to identify expression quantitative trait loci (eQTL) and determine their association with endometrial chlamydial infection using a mediation test. We further evaluated the effect of a lead eQTL on the expression of CD151 by immune cells from women with genotypes associated with low and high whole blood expression of CD151, respectively. Results We identified cis-eQTLs modulating mRNA expression of 81 genes (eGenes) associated with altered risk of ascending infection. In women with endometrial infection, eGenes involved in proinflammatory signaling were upregulated. Downregulated eGenes included genes involved in T cell functions pivotal for chlamydial control. eGenes encoding molecules linked to metabolism of tryptophan, an essential chlamydial nutrient, and formation of epithelial tight junctions were also downregulated in women with endometrial infection. A lead eSNP rs10902226 was identified regulating CD151, a tetrospanin molecule important for immune cell adhesion and migration and T cell proliferation. Further in vitro experiments showed that women with a CC genotype at rs10902226 had reduced rates of endometrial infection with increased CD151 expression in whole blood and T cells when compared to women with a GG genotype. Conclusions We discovered genetic variants associated with altered risk for Ct ascension. A lead eSNP for CD151 is a candidate genetic marker for enhanced CD4 T cell function and reduced susceptibility.
Collapse
Affiliation(s)
- Wujuan Zhong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yutong Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuhan Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taylor B. Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kacy Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Harold C. Wiesenfeld
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Sharon L. Hillier
- The University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Zhang J, Guo Y, Sun Y, Chang L, Wang X. Inhibition of microRNA-448 suppresses CD4 + T cell inflammatory activation via up-regulating suppressor of cytokine signaling 5 in systemic lupus erythematosus. Biochem Biophys Res Commun 2022; 596:88-96. [PMID: 35121374 DOI: 10.1016/j.bbrc.2022.01.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. MicroRNA-448 (miR-448) has a pro-inflammatory effect in various inflammation-related diseases and is up-regulated in serum of patients with SLE. However, the role of miR-448 in SLE development remains elusive. In our study, we found high expression of miR-448 in peripheral blood mononuclear cells (PBMCs) of SLE patients, and miR-448 level was positively associated with disease severity. Besides, miR-448 level was up-regulated during the growth of MRL/lpr mice. To investigate the function of miR-448 in SLE, we subjected 8-week MRL/lpr mice to injection of lentivirus (LV)-mediated anti-miR-448. Inhibition of miR-448 reduced serum IgG and anti-dsDNA IgG contents, 24 h urine protein and blood urea nitrogen (BUN) levels, increased complement C3 concentration, and ameliorated splenomegaly and lymphadenectasis in MRL/lpr mice. MiR-448 inhibition alleviated renal inflammatory infiltration and glycogen deposition. Moreover, miR-448 inhibition promoted Treg cell activation and inhibited Th17 cell proportion in naïve CD4+ T cells from spleens, along with elevated interleukin (IL)-10 and reduced IL-17A levels. In vitro, miR-448 inhibition diminished CD4+ T cell polarization toward Th17 cells under Th17-polarizing conditions. Further, luciferase reporter assay revealed that miR-448 binds to the 3'UTR of suppressor of cytokine signaling 5 (SOCS5). SOCS5 expression was down-regulated in the spleens of MRL/lpr mice and induced Th17 cells. SOCS5 deficiency partially reversed the role of miR-448 in Th17 differentiation and IL-17A expression in SLE. Taken together, inhibition of miR-448 impedes Th17 cell activation and tissue damages via targeting SOCS5 in SLE.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Guo
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lihua Chang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofei Wang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
10
|
Lin J, Tang J, Lin J, He Y, Yu Z, Jiang R, Yang B, Ou Q. YY1 regulation by miR-124-3p promotes Th17 cell pathogenicity through interaction with T-bet in rheumatoid arthritis. JCI Insight 2021; 6:e149985. [PMID: 34806650 PMCID: PMC8663781 DOI: 10.1172/jci.insight.149985] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Th17 cells are involved in rheumatoid arthritis (RA) pathogenesis. Our previous studies have revealed that transcription factor Yin Yang 1 (YY1) plays an important role in the pathogenic mechanisms of RA. However, whether YY1 has any role in Th17 cell pathogenicity and what molecular regulatory mechanism is involved remain poorly understood. Here, we found the proportion of pathogenic Th17 (pTh17) cells was significantly higher in RA than in control individuals and showed a potential relationship with YY1 expression. In addition, we also observed YY1 expression was increased in pTh17, and the pTh17 differentiation was hampered by YY1 knockdown. Consistently, knockdown of YY1 decreased the proportion of pTh17 cells and attenuated joint inflammation in collagen-induced arthritis mice. Mechanistically, YY1 could regulate the pathogenicity of Th17 cells through binding to the promoter region of transcription factor T-bet and interacting with T-bet protein. This function of YY1 for promoting pTh17 differentiation was specific to Th17 cells and not to Th1 cells. Moreover, we found miR-124-3p negatively correlated with YY1 in RA patients, and it could bind to 3'-UTR regions of YY1 to inhibit the posttranscriptional translation of YY1. Altogether, these findings indicate YY1 regulation by miR-124-3p could specifically promote Th17 cell pathogenicity in part through interaction with T-bet, and these findings present promising therapeutic targets in RA.
Collapse
Affiliation(s)
- Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junyu Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, and
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
12
|
Yoshioka M, Sawada Y, Nakamura M. Diagnostic Tools and Biomarkers for Severe Drug Eruptions. Int J Mol Sci 2021; 22:ijms22147527. [PMID: 34299145 PMCID: PMC8306321 DOI: 10.3390/ijms22147527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022] Open
Abstract
In accordance with the development of human technology, various medications have been speedily developed in the current decade. While they have beneficial impact on various diseases, these medications accidentally cause adverse reactions, especially drug eruption. This delayed hypersensitivity reaction in the skin sometimes causes a life-threatening adverse reaction, namely Stevens-Johnson syndrome and toxic epidermal necrolysis. Therefore, how to identify these clinical courses in early time points is a critical issue. To improve this problem, various biomarkers have been found for these severe cutaneous adverse reactions through recent research. Granulysin, Fas ligands, perforin, and granzyme B are recognized as useful biomarkers to evaluate the early onset of Stevens-Johnson syndrome and toxic epidermal necrolysis, and other biomarkers, such as miRNAs, high mobility group box 1 protein (HMGB1), and S100A2, which are also helpful to identify the severe cutaneous adverse reactions. Because these tools have been currently well developed, updates of the knowledge in this field are necessary for clinicians. In this review, we focused on the detailed biomarkers and diagnostic tools for drug eruption and we also discussed the actual usefulness of these biomarkers in the clinical aspects based on the pathogenesis of drug eruption.
Collapse
|
13
|
Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-Derived Exosomes Enriched by miRNA-124 Promote Anti-tumor Immune Response in CT-26 Tumor-Bearing Mice. Front Med (Lausanne) 2021; 8:619939. [PMID: 33987190 PMCID: PMC8110712 DOI: 10.3389/fmed.2021.619939] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Exosomes have been introduced as a new alternative delivery system for the transmission of small molecules. Tumor-derived exosomes (TEXs) not only contain tumor-associated antigens to stimulate antitumor immune responses but also act as natural carriers of microRNAs. The aim of the current study was to evaluate the efficacy of miR-124-3p-enriched TEX (TEXomiR) as cell-free vaccine in the induction of antitumor immune responses in a mouse model of colorectal cancer. Briefly, the exosomes were isolated from cultured CT-26 cell line, and modified calcium chloride method was used to deliver miR-124-3p mimic into the exosomes. We used a CT-26-induced BALB/c mouse model of colorectal cancer and analyzed the effect of TEXomiR on survival, tumor size, spleen and tumor-infiltrated lymphocytes, and splenocyte proliferation. Furthermore, intra-tumor regulatory T cells, cytotoxic activity of the splenocytes, and cytokine secretion was also evaluated to describe the anti-tumor immune response. When the tumor size reached 100 mm3, the mice were injected with TEXomiR, TEX, and/or phosphate-buffered saline (PBS) subcutaneously three times with 3-day interval, and then tumor size was monitored every 2 days. The in vitro results indicated that TEXs could efficiently deliver functional miR-124-3p mimic. The in vivo evaluation in tumor-bearing mice showed that treatment with TEXomiR can elicit a stronger anti-tumor immune response than unloaded TEX and PBS. Significant tumor growth inhibition and increased median survival time was achieved in tumor-bearing mice treated with TEXomiR. A significant decrease in CD4/CD8 and Treg/CD8 ratio in tumor tissue was demonstrated. Moreover, increased cytotoxicity and proliferation of splenocytes in the TEXomiR group compared to the TEX and PBS groups were identified. Taken together, our data demonstrated that tumor-derived exosomes efficiently deliver miR-124-3p mimic, and TEXomiR promotes anti-tumor immune responses.
Collapse
Affiliation(s)
- Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Camacho-Ordonez N, Ballestar E, Timmers HTM, Grimbacher B. What can clinical immunology learn from inborn errors of epigenetic regulators? J Allergy Clin Immunol 2021; 147:1602-1618. [PMID: 33609625 DOI: 10.1016/j.jaci.2021.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
The epigenome is at the interface between environmental factors and the genome, regulating gene transcription, DNA repair, and replication. Epigenetic modifications play a crucial role in establishing and maintaining cell identity and are especially crucial for neurology, musculoskeletal integrity, and the function of the immune system. Mutations in genes encoding for the components of the epigenetic machinery lead to the development of distinct disorders, especially involving the central nervous system and host defense. In this review, we focus on the role of epigenetic modifications for the function of the immune system. By studying the immune phenotype of patients with monogenic mutations in components of the epigenetic machinery (inborn errors of epigenetic regulators), we demonstrate the importance of DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and mRNA processing for immunity. Moreover, we give a short overview on therapeutic strategies targeting the epigenome.
Collapse
Affiliation(s)
- Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST- Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021; 700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner. Despite significant progresses in our understanding of MeCP2 over the last few decades, there is still a considerable knowledge gap to translate the in vitro and in vivo experimental findings into therapeutic interventions. In this review, we provide a synopsis of the role of MeCP2 in the pathophysiology of non-neurological disorders, MeCP2-based research directions and therapeutic strategies for non-neurological disorders are also discussed.
Collapse
|
16
|
Cicaloni V, Pecorelli A, Cordone V, Tinti L, Rossi M, Hayek J, Salvini L, Tinti C, Valacchi G. A proteomics approach to further highlight the altered inflammatory condition in Rett syndrome. Arch Biochem Biophys 2020; 696:108660. [PMID: 33159892 DOI: 10.1016/j.abb.2020.108660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with perturbed redox homeostasis and inflammation, which appear as possible key factors in RTT pathogenesis. In this study, using primary dermal fibroblasts from control and RTT subjects, we performed a proteomic analysis that, together with data mining approaches, allowed us to carry out a comprehensive characterization of RTT cellular proteome. Functional and pathway enrichment analyses showed that differentially expressed proteins in RTT were mainly enriched in biological processes related to immune/inflammatory responses. Overall, by using proteomic data mining as supportive approach, our results provide a detailed insight into the molecular pathways involved in RTT immune dysfunction that, causing tissue and organ damage, can increase the vulnerability of affected patients to unknown endogenous factors or infections.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Marco Rossi
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Cristina Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
17
|
Peng H, Xiong S, Ding X, Tang X, Wang X, Wang L, Liu Y. Long non‑coding RNA expression profiles identify lncRNA‑XLOC_I2_006631 as a potential novel blood biomarker for Hashimoto's thyroiditis. Int J Mol Med 2020; 46:2172-2184. [PMID: 33125100 PMCID: PMC7595668 DOI: 10.3892/ijmm.2020.4755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been increasingly recognized as important immune checkpoints involved in the pathogenesis of autoimmune diseases. However, the exact role of lncRNAs in Hashimoto's thyroiditis (HT) has been rarely studied. The aim of the present study was to investigate the role of lncRNAs and the potential biomarkers in HT, a total of 33 patients with HT and 32 healthy volunteers were enrolled in the present study, and five patients and five healthy controls were investigated using next generation sequencing. A total of 218 dysregulated lncRNAs, including 94 upregulated and 124 downregulated lncRNAs, were identified and examined in the peripheral blood mononuclear cells (PBMCs) from patients with HT. The majority of the lncRNAs were intergenic and exonic (66.06%). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that abnormally expressed lncRNAs were enriched in the 'NF‑kB expression', in the 'TGF‑β signaling pathway' and in the 'JAK‑STAT signaling pathway', which are associated with the immunopathogenic mechanisms of HT. In total, three lncRNAs (LOC729737, XLOC_I2_006631 and BC041964) were validated and had a trend identical to that detected by the sequencing results. The expression of lncRNA‑XLOC_I2_006631 was upregulated and was positively correlated with the serum concentrations of anti‑thyroperoxidase antibody in patients with HT. Methyl‑CpG‑binding protein 2 (MECP2) was identified as the potential regulatory gene of lncRNA‑XLOC_I2_006631 using a prediction program. The expression of MECP2 was increased and was positively correlated with the elevated expression levels of lncRNA‑XLOC_I2_006631 and anti‑thyroperoxidase antibody in patients with HT. Furthermore, lncRNA‑XLOC_I2_006631 was able to regulate MECP2 expression in vitro. Receiver operating characteristic curve analysis suggested that lncRNA‑XLOC_I2_006631 has a potential diagnostic value. Collectively, the present results indicated the important role of dysregulated lncRNAs in HT and demonstrated that lncRNA‑XLOC_I2_006631 functioned as a positive regulator of MECP2 expression, suggesting a potential mechanism. Thus, lncRNA‑XLOC_I2_006631 may be used as a biomarker of HT.
Collapse
Affiliation(s)
- Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Si Xiong
- Department of Endocrinology, The Fifth People's Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Xuehua Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Li Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
18
|
Wu L, Xia J, Li D, Kang Y, Fang W, Huang P. Mechanisms of M2 Macrophage-Derived Exosomal Long Non-coding RNA PVT1 in Regulating Th17 Cell Response in Experimental Autoimmune Encephalomyelitisa. Front Immunol 2020; 11:1934. [PMID: 33013847 PMCID: PMC7500097 DOI: 10.3389/fimmu.2020.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) is pivotal for multiple sclerosis (MS), but the potential mechanism of lncRNA PVT1 in MS animal model, experimental autoimmune encephalomyelitis (EAE) still remains unclear. In this study, macrophages were firstly isolated and induced to polarize into M2 macrophages. M2 macrophage-derived exosomes (M2-exos) were extracted and identified, and EAE mouse model was established and treated with M2-exos. The effect of M2-exos on EAE mice was evaluated by clinical scores. The proportion of Treg and Th17 cells in spinal cord cells and splenocytes, and levels of inflammatory factors were measured. The targeting relationships among PVT1, miR-21-5p, and SOCS5 were verified. The expression of JAKs/STAT3 pathway-related proteins was measured. After M2-exo treatment, the clinical score of EAE mice decreased, and demyelination and inflammatory infiltration improved; Th17 cells decreased, Treg cells increased, and the levels of inflammatory factors decreased significantly. SOCS5 and PVT1 were downregulated and miR-21-5p was upregulated in EAE mice. PVT1 could sponge miR-21-5p to regulate SOCS5. SOCS5 alleviated EAE symptoms by repressing the JAKs/STAT3 pathway. Together, M2-exos-carried lncRNA PVT1 sponged miR-21-5p to upregulate SOCS5 and inactivate the JAKs/STAT3 pathway, thus reducing inflammation and protecting EAE mice. This study may offer novel treatments for MS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, China
| | - Jinjin Xia
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Donghui Li
- Department of Neurology, Changxing Hospital, Second Affiliated Hospital of Medical College of Zhejiang University, Huzhou, China
| | - Ying Kang
- Department of Pollution Source Statistics, Zhejiang Provincial Environmental Monitoring Center, Hangzhou, China
| | - Wei Fang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Bone marrow fat: friend or foe in people with diabetes mellitus? Clin Sci (Lond) 2020; 134:1031-1048. [PMID: 32337536 DOI: 10.1042/cs20200220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Global trends in the prevalence of overweight and obesity put the adipocyte in the focus of huge medical interest. This review highlights a new topic in adipose tissue biology, namely the emerging pathogenic role of fat accumulation in bone marrow (BM). Specifically, we summarize current knowledge about the origin and function of BM adipose tissue (BMAT), provide evidence for the association of excess BMAT with diabetes and related cardiovascular complications, and discuss potential therapeutic approaches to correct BMAT dysfunction. There is still a significant uncertainty about the origins and function of BMAT, although several subpopulations of stromal cells have been suggested to have an adipogenic propensity. BM adipocytes are higly plastic and have a distinctive capacity to secrete adipokines that exert local and endocrine functions. BM adiposity is abundant in elderly people and has therefore been interpreted as a component of the whole-body ageing process. BM senescence and BMAT accumulation has been also reported in patients and animal models with Type 2 diabetes, being more pronounced in those with ischaemic complications. Understanding the mechanisms responsible for excess and altered function of BMAT could lead to new treatments able to preserve whole-body homeostasis.
Collapse
|
20
|
Pecorelli A, Cervellati C, Cordone V, Hayek J, Valacchi G. Compromised immune/inflammatory responses in Rett syndrome. Free Radic Biol Med 2020; 152:100-106. [PMID: 32119978 DOI: 10.1016/j.freeradbiomed.2020.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Mutations in X-linked gene methyl-CpG-binding protein 2 (MECP2), a key transcriptional regulator, account for most cases of Rett syndrome (RTT), a devastating neurodevelopmental disorder with no known cure. Despite extensive research to elucidate MeCP2 functions, the mechanisms underlying RTT pathophysiology are still unclear. In addition to a variety of neurological symptoms, RTT also includes a plethora of additional phenotypical features including altered lipid metabolism, redox imbalance, immune dysfunction and mitochondrial abnormalities that explain its multisystemic nature. Here, we provide an overview of the current knowledge on the potential role of dysregulated inflammatory and immune responses in RTT. The findings show that abnormalities of humoral and cell-mediated immunity together with chronic low-grade inflammation in multiple organs represent not only clinical manifestations of RTT but rather can contribute to its development and deteriorating course. A future research challenge could be to target therapeutically immune dysfunction as a novel means for RTT management.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Carlo Cervellati
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
21
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. miR-802 participates in the inflammatory process of inflammatory bowel disease by suppressing SOCS5. Biosci Rep 2020; 40:BSR20192257. [PMID: 32211804 PMCID: PMC7138906 DOI: 10.1042/bsr20192257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/01/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aims to reveal the detailed molecular mechanism of microRNA (miR)-802 in the progression of inflammatory bowel disease (IBD). IBD tissues were obtained from IBD patients, followed by CD4+ cells isolation. Then, qRT-PCR and ELISA were used to detect the expression of miR-802, suppressor of cytokine signaling 5 (SOCS5), interleukin (IL)-17A and tumor necrosis factor (TNF)-α. Transfection of miR-802 mimics and miR-802 inhibitor in CD4+ cells was detected by Western blot. TargetScan and luciferase reporter assay were used to detect the relationship between SOCS5 and miR-802. Finally, colitis mice model was established to verify whether miR-802 inhibitor was involved in the protective effect of colonic mucosa. The miR-802 was highly expressed in inflamed mucosa and PBMC cells of IBD. The highest expression of miR-802 was observed in CD4+ T cells based on different immune cell subsets analysis. SOCS5 was the target gene of miR-802. The mice model experiments showed that blockade of miR-802 could alleviate mice colitis. Our study suggests that up-regulation of miR-802 plays an important role in inflammatory process of IBD via targeting SOCS5. Moreover, the differentiation of Th17 and secretion of TNF-α in IBD could be stimulated by miR-802.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Ruoyu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Minghan Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Defeng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zichao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Benhua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zhenglei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Dingguo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, No. 7019, Yitian Road Road, Shenzhen City, Guangdong Province 518026, China
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People’s Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| |
Collapse
|
22
|
Cui M, Chen S, Zhang S, Cheng A, Pan Y, Huang J, Hu Z, Zhang X, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Liu Y, Zhang L, Yu Y, Yin Z, Jing B, Rehman MU, Tian B, Pan L, Jia R. Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Front Microbiol 2020; 11:596. [PMID: 32373087 PMCID: PMC7186361 DOI: 10.3389/fmicb.2020.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a member of Flaviviridae family, causes acute egg-drop syndrome in ducks. MicroRNAs (miRNAs) have been found to be involved in various biological processes, including tumor genesis, viral infection, and immune response. However, the functional effect of miRNAs on DTMUV replication remains largely unclear. This study aimed to elucidate the role of host microRNA-221-3p (miR-221-3p) in regulating DTMUV replication. Here, we indicated that the expression of miR-221-3p was significantly upregulated in duck embryo fibroblasts (DEFs) during DTMUV infection. Transfection of miR-221-3p mimic significantly reduced interferon (IFN) β production, whereas transfection of miR-221-3p inhibitor conversely significantly increased the expression of IFN-β in DTMUV-infected DEF. Moreover, we found that viral RNA copies, viral E protein expression level, and virus titer, which represent the replication and proliferation of virus, were all enhanced when transfecting the miR-221-3p mimic into DEF; reverse results were also observed by transfecting the miR-221-3p inhibitor. We also found that the expression of suppressor of cytokine signaling 5 (SOCS5) was downregulated in DEF infected with DTMUV. Besides, we further proved that SOCS5 is a target of miR-221-3p and that miR-221-3p could negatively modulate SOCS5 expression at both mRNA and protein levels. Finally, our results showed that overexpression of SOCS5 inhibited DTMUV replication and knockdown of SOCS5 enhanced DTMUV replication. Thus, our findings reveal a novel host evasion mechanism adopted by DTMUV via miR-221-3p, which may hew out novel strategies for designing miRNA-based vaccines and therapies.
Collapse
Affiliation(s)
- Min Cui
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuling Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
24
|
Wu X, Cai D, Zhang F, Li M, Wan Q. Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR-616 in endometrial carcinoma. Life Sci 2019; 231:116549. [PMID: 31200002 DOI: 10.1016/j.lfs.2019.116549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) is emerging as an important regulator in various physiological and pathological processes. Recently, it was found that lncRNA long non-coding RNA tumor suppressor candidate 7 (TUSC7) could play tumor suppressive roles in several cancers. However, the function and underlying regulatory mechanism of lncRNA TUSC7 in endometrial carcinoma (EC) remains largely unclear. METHODS The expression levels of TUSC7 and microRNAs-616 (miR-616) were analyzed by real-time PCR and in situ hybridization. Cell cycle and cell metastasis associated protein expressions were determined by western blotting. Cell proliferation, cycle and metastasis were determined by CCK-8 cell viability, colony formation, flow cytometer, wound scratch and transwell assays respectively in vitro. RNA pull-down, luciferase and western blotting assays were used to examine the target relationship between TUSC7 and miR-616 or that between miR-616 and suppressors of cytokine signaling 4 (5) (SOCS4 (SOCS5)). The functional effects of TUSC7 through sponging miR-616 were further examined using a xenograft tumor mouse model in vivo. RESULTS TUSC7 was downexpressed in EC tissues and cell lines, and TUSC7 upregulation could remarkably inhibit cell proliferation, cycle progression and metastasis in EC cells. Mechanistic investigations demonstrated that TUSC7 can interact with miR-616 and decrease its expression, thereby upregulating the expression of miR-616's targets SOCS4 (SOCS5). Additionally, in vivo experiments using a xenograft tumor mouse model revealed that TUSC7 can serve as a tumor suppressor through sponging miR-616, and upregulating SOCS4 (SOCS5) in EC. CONCLUSIONS In this study, a newly identified regulatory mechanism of lncRNA TUSC7/miR-616/ SOCS4 (SOCS5) axis was systematically studied, which may hold promise as a promising target for EC treatment.
Collapse
Affiliation(s)
- Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Dongge Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Mu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qiuyuan Wan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
25
|
Zhang L, Zhang X, Si F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1578-1588. [PMID: 31933975 PMCID: PMC6947142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRs) are short non-coding RNAs that function as guide molecules in RNA silencing by inducing mRNA degradation or blocking protein translation. Increasing evidence has shown that miRNAs play an important role in regulating the pathological process of lupus nephritis (LN), but the precise role of miR-124 in LN is still unknown. Here, we found that miR-124 expression is significantly reduced in patients with active LN compared with those patients with non-active LN and the absence of LN. Additionally, the miR-124 level was negatively correlated with serum IL-1β, IL-6, TNF-α, and TRAF6 mRNA expressions in active LN patients. Receiver operating characteristic and logistic regression analyses revealed miR-124 is a significant diagnostic biomarker for active LN. Furthermore, transfection of the miR-124 mimic into human renal mesangial cells (HRMCs) resulted in significantly reduced cell proliferation, induced cell apoptosis, and decreased synthesis of inflammatory factors. Moreover, a dual luciferase assay showed that TRAF6 was a direct target of miR-124, and the expression of TRAF6 was suppressed by miR-124 through direct binding to the 3'-UTR of mRNA. Mechanistic studies demonstrated that the over-expression of TRAF6 could abrogate miR-124-related effects on cell proliferation, apoptosis and the synthesis of inflammatory factors in HRMCs. Taken together, these findings indicate that downregulated miR-124 represents a novel diagnostic marker in human LN and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephropathy, Tianjin Nankai HospitalTianjin, China
| | - Xingkun Zhang
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| | - Fuquan Si
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
26
|
Sanchez-Mejias A, Kwon J, Chew XH, Siemens A, Sohn HS, Jing G, Zhang B, Yang H, Tay Y. A novel SOCS5/miR-18/miR-25 axis promotes tumorigenesis in liver cancer. Int J Cancer 2018; 144:311-321. [DOI: 10.1002/ijc.31857] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/14/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Avencia Sanchez-Mejias
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Junsu Kwon
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Angela Siemens
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Hye Seon Sohn
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Guo Jing
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine; National University of Singapore; Singapore 117599 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117597 Singapore
| |
Collapse
|
27
|
Daniel S, Nylander V, Ingerslev LR, Zhong L, Fabre O, Clifford B, Johnston K, Cohn RJ, Barres R, Simar D. T cell epigenetic remodeling and accelerated epigenetic aging are linked to long-term immune alterations in childhood cancer survivors. Clin Epigenetics 2018; 10:138. [PMID: 30400990 PMCID: PMC6219017 DOI: 10.1186/s13148-018-0561-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/07/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cancer treatments have substantially improved childhood cancer survival but are accompanied by long-term complications, notably chronic inflammatory diseases. We hypothesize that cancer treatments could lead to long-term epigenetic changes in immune cells, resulting in increased prevalence of inflammatory diseases in cancer survivors. Results To test this hypothesis, we established the epigenetic and transcriptomic profiles of immune cells from 44 childhood cancer survivors (CCS, > 16 years old) on full remission (> 5 years) who had received chemotherapy alone or in combination with total body irradiation (TBI) and hematopoietic stem cell transplant (HSCT). We found that more than 10 years post-treatment, CCS treated with TBI/HSCT showed an altered DNA methylation signature in T cell, particularly at genes controlling immune and inflammatory processes and oxidative stress. DNA methylation remodeling in T cell was partially associated with chronic expression changes of nearby genes, increased frequency of type 1 cytokine-producing T cell, elevated systemic levels of these cytokines, and over-activation of related signaling pathways. Survivors exposed to TBI/HSCT were further characterized by an Epigenetic-Aging-Signature of T cell consistent with accelerated epigenetic aging. To investigate the potential contribution of irradiation to these changes, we established two cell culture models. We identified that radiation partially recapitulated the immune changes observed in survivors through a bystander effect that could be mediated by circulating factors. Conclusion Cancer treatments, in particular TBI/HSCT, are associated with long-term immune disturbances. We propose that epigenetic remodeling of immune cells following cancer therapy augments inflammatory- and age-related diseases, including metabolic complications, in childhood cancer survivors. Electronic supplementary material The online version of this article (10.1186/s13148-018-0561-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia
| | - Vibe Nylander
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Lars R Ingerslev
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Odile Fabre
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Briana Clifford
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia
| | - Karen Johnston
- School of Women's and Children's Health, UNSW Sydney and Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney and Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Romain Barres
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia. .,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Wallace Wurth Building East Room 420, Sydney, NSW, 2052, Australia. .,The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Panum, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
28
|
Strati F, Calabrò A, Donati C, De Felice C, Hayek J, Jousson O, Leoncini S, Renzi D, Rizzetto L, De Filippo C, Cavalieri D. Intestinal Candida parapsilosis isolates from Rett syndrome subjects bear potential virulent traits and capacity to persist within the host. BMC Gastroenterol 2018; 18:57. [PMID: 29720131 PMCID: PMC5930502 DOI: 10.1186/s12876-018-0785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1β and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.
Collapse
Affiliation(s)
- Francesco Strati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy.,Present address: T Cell Development Lab, Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Antonio Calabrò
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Lisa Rizzetto
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agriculture Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
29
|
Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem Biophys Res Commun 2018; 500:145-151. [PMID: 29605298 DOI: 10.1016/j.bbrc.2018.03.204] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs.
Collapse
|
30
|
Deregulation of SOCS5 suppresses dendritic cell function in chronic lymphocytic leukemia. Oncotarget 2018; 7:46301-46314. [PMID: 27317770 PMCID: PMC5216799 DOI: 10.18632/oncotarget.10093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/28/2016] [Indexed: 01/07/2023] Open
Abstract
One cause of morbidity and mortality in chronic lymphocytic leukemia (CLL) is infection, which results from defects in a number of components of the immune system. In particular, dendritic cells (DCs) are functionally defective in patients with CLL. To understand the molecular mechanism for this abnormality, we focused on signal transduction pathways that regulate the function of monocyte-derived dendritic cells (Mo-DCs). Monocytes from CLL patients exhibit high IL-4Rα expression due to the enhanced activation of STAT3. However, IL-4R signaling is decoupled from activation of its downstream mediator STAT6 by enhanced levels of the negative regulator SOCS5. This impairs differentiation of functionally mature DCs leading to decreased expression of HLA-DR and costimulatory molecules, and reduced secretion of pro-inflammatory cytokines in LPS-activated DCs. Moreover, Mo-DCs from CLL patients display a decreased ability to induce pro-inflammatory T-cell responses. IL-10-treatment of monocytes from healthy donors mimics the alteration in signaling observed in CLL patients, through enhanced STAT3-dependent expression of SOCS5. The higher level of SOCS5 inhibits STAT6 activation and leads to defective DC differentiation. These findings indicate that SOCS5 mediates the impaired function of DCs in CLL patients, and has the potential to be a new therapeutic target for reversing cancer-associated immune suppression.
Collapse
|
31
|
Hou M, Li W, Xie Z, Ai J, Sun B, Tan G. Effects of anticholinergic agent on miRNA profiles and transcriptomes in a murine model of allergic rhinitis. Mol Med Rep 2017; 16:6558-6569. [PMID: 28901404 PMCID: PMC5865825 DOI: 10.3892/mmr.2017.7411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Anticholinergic agent, ipratropium bromide (IB) ameliorates symptoms of allergic rhinitis (AR) using neuroimmunologic mechanisms. However, the underlying molecular mechanism remains largely unclear. In the present study, 27 mice with AR induced by ovalbumin were randomly allocated to one of three groups: Model group, model group with IB treatment for 2 weeks, and model group with IB treatment for 4 weeks. Allergic symptoms were evaluated according to symptoms scores. Differentially expressed genes [microRNAs (miRNAs) and messenger RNAs (mRNAs)] of nasal mucosa were identified by microarray analysis. The expression levels of candidate genes were measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The data indicates that the symptoms scores in allergic mice were significantly reduced by IB treatment. In the nasal mucosa of allergic mice with IB treatment, 207 mRNAs and 87 miRNAs were differentially expressed, when compared with the sham group. IB treatment significantly downregulated the expression levels of interleukin‑4Rα and prostaglandin D2 synthase, whereas the leukemia inhibitory factor, A20 and nuclear receptor subfamily 4, group A, member 1 expression levels were upregulated. Similarly, the expression levels of mmu‑miR‑124‑3p/5p, ‑133b‑5p, ‑133a‑3p/5p, ‑384‑3p, ‑181a‑5p, ‑378a‑5p and ‑3071‑5p were significantly increased. RT‑qPCR data further validated these mRNA and miRNA expression levels. Thus, IB treatment regulated expression of allergic immune‑associated mRNAs and miRNAs of the nasal mucosa in allergic mice, which may be associated with ameliorated nasal allergic symptoms.
Collapse
Affiliation(s)
- Minghua Hou
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Li
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuozhong Xie
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingang Ai
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bo Sun
- Department of Otolaryngology-Head Neck Surgery, Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
32
|
Sbardella D, Tundo GR, Campagnolo L, Valacchi G, Orlandi A, Curatolo P, Borsellino G, D'Esposito M, Ciaccio C, Cesare SD, Pierro DD, Galasso C, Santarone ME, Hayek J, Coletta M, Marini S. Retention of Mitochondria in Mature Human Red Blood Cells as the Result of Autophagy Impairment in Rett Syndrome. Sci Rep 2017; 7:12297. [PMID: 28951555 PMCID: PMC5614985 DOI: 10.1038/s41598-017-12069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Rett Syndrome (RTT), which affects approximately 1:10.000 live births, is a X-linked pervasive neuro-developmental disorder which is caused, in the vast majority of cases, by a sporadic mutation in the Methyl-CpG-binding protein-2 (MeCP2) gene. This is a transcriptional activator/repressor with presumed pleiotropic activities. The broad tissue expression of MeCP2 suggests that it may be involved in several metabolic pathways, but the molecular mechanisms which provoke the onset and progression of the syndrome are largely unknown. In this paper, we report that primary fibroblasts that have been isolated from RTT patients display a defective formation of autophagosomes under conditions of nutrient starvation and that the mature Red Blood Cells of some RTT patients retain mitochondria. Moreover, we provide evidence regarding the accumulation of the p62/SQSTM1 protein and ubiquitin-aggregated structures in the cerebellum of Mecp2 knockout mouse model (Mecp2−/y) during transition from the non-symptomatic to the symptomatic stage of the disease. Hence, we propose that a defective autophagy could be involved in the RTT clinical phenotype, which introduces new molecular perspectives in the pathogenesis of the syndrome.
Collapse
Affiliation(s)
- Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Curatolo
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A.Buzzati Traverso", Naples, Italy.,IRCCS Neuromed, Pozzuoli, (Is), Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- University Department of Pediatrics, Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
33
|
Ghosh S, Klein RS. Sex Drives Dimorphic Immune Responses to Viral Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:1782-1790. [PMID: 28223406 DOI: 10.4049/jimmunol.1601166] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extragonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Luchting B, Heyn J, Hinske LC, Azad SC. Expression of miRNA-124a in CD4 Cells Reflects Response to a Multidisciplinary Treatment Program in Patients With Chronic Low Back Pain. Spine (Phila Pa 1976) 2017; 42:E226-E233. [PMID: 28207662 DOI: 10.1097/brs.0000000000001763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective evaluation of microRNA (miRNA) expression in patients with chronic low back pain (CLBP). OBJECTIVE The aim of this study was to evaluate whether pain- and T cell-related miRNAs are differentially expressed in CLBP when compared with healthy volunteers and whether these miRNAs may distinguish between responders and nonresponders to a multidisciplinary treatment program. SUMMARY OF BACKGROUND DATA CLBP is a common health problem worldwide. Multidisciplinary pain treatment programs have been proven as an effective treatment option. miRNAs are known to be important mediators of gene regulation in various processes, including pathophysiology of pain. The expression of miRNAs in CLBP and changes due to a multidisciplinary treatment programs are still unknown. METHODS Thirty-four patients with CLBP were enrolled (46.5 ± 12.7 yrs). CLBP was defined as low back pain with an average intensity of numerical rating scale (NRS) ≥3 during the last 4 weeks, persisting longer than 6 months, and not attributable to a recognized specific pathological condition. Expression of pain- and T cell-related miRNAs in human CD4 cells were determined using TaqMan assays and RealTime PCR. MiRNA expression in patients with CLBP was compared with the expression in healthy volunteers before a multidisciplinary treatment program started. The multidisciplinary outpatient program (4 weeks, 5 days a week, 8 h per day) is a clinically established outpatient program and comprises medical (examination, education), physical (exercise), work-related, and psychological therapy components. After the program, differentially expressed miRNAs in CLBP (before treatment) were analyzed once more. Expression of these miRNAs in patients who respond to the treatment (n = 14) was compared with those who did not respond (n = 20). Response to therapy was defined as reduction of pain of ≥50% (NRS) from baseline. RESULTS MiRNA-124a (patients: 0.79 ± 0.63 vs. healthy volunteers: 0.30 ± 0.16; P < 0.001), miRNA-150 (patients: 0.75 ± 0.21 vs. healthy volunteers: 0.56 ± 0.20; P = 0.025), and miRNA-155 (patients: 0.55 ± 0.14 vs. healthy volunteers: 0.38 ± 0.16; P = 0.017) were significantly upregulated in CLBP patients when compared with healthy volunteers. After the multidisciplinary treatment program, patients who respond to the treatment showed only an increase of miRNA-124a expression (before treatment: 0.54 ± 0.26 vs. after treatment: 1.05 ± 0.56, P = 0.007). CONCLUSION MiRNA-124a upregulation is associated with therapy response in a multidisciplinary treatment programs and might help to identify more specific and mechanism-based treatment strategies for CLBP. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Benjamin Luchting
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
35
|
Toghi M, Taheri M, Arsang-Jang S, Ohadi M, Mirfakhraie R, Mazdeh M, Sayad A. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 2017; 375:481-485. [PMID: 28196747 DOI: 10.1016/j.jns.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/01/2017] [Accepted: 02/07/2017] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease, and the most common cause of nontraumatic disability in young people. The etiology of this disease is not well defined yet. Cytokines play an important role in differentiation, maturation and survival of a wide range of cells, including cells of the immune system. Suppressor of cytokine signaling (SOCS) proteins are the most important regulators of this cytokine signaling pathway. The aim of present study was to compare the expression levels of SOCS1, SOCS2, SOCS3 and SOCS5 genes in the blood of 50 relapsing-remitting MS (RR-MS) patients and 50 healthy controls by Taqman Quantitative Real-Time PCR in patients and healthy control group. We observed that SOCS1 and SOCS5 expression was significantly down-regulated (P=0.045 and P=0.044, respectively); whereas, no significant difference was observed between MS patients and controls for SOCS2 and SOCS3 gene expression (P=0.747 and P=0.439, respectively). In addition, there was no significant correlation between the expression of SOCS1, SOCS2, SOCS3 and SOCS5 genes and clinical findings, such as the level of physical disability in the MS patients according to the Kurtzke Expanded Disability Status Scale (EDSS) criterion and disease duration. However, a significant positive correlation was observed between expression levels of SOCS genes. This study shows that loss of balance among various members of the SOCS family proteins may contribute to pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Mehdi Toghi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Genomic Research Center, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Cronk JC, Herz J, Kim TS, Louveau A, Moser EK, Sharma AK, Smirnov I, Tung KS, Braciale TJ, Kipnis J. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice. JCI Insight 2017; 2:e88257. [PMID: 28138553 PMCID: PMC5256138 DOI: 10.1172/jci.insight.88257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression.
Collapse
Affiliation(s)
- James C. Cronk
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| | - Jasmin Herz
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
| | - Antoine Louveau
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Emily K. Moser
- Beirne B. Carter Center for Immunology Research
- Department of Pharmacology
| | | | - Igor Smirnov
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Kenneth S. Tung
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas J. Braciale
- Medical Scientist Training Program
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| |
Collapse
|
37
|
Ciaccio C, Di Pierro D, Sbardella D, Tundo GR, Curatolo P, Galasso C, Santarone ME, Casasco M, Cozza P, Cortelazzo A, Rossi M, De Felice C, Hayek J, Coletta M, Marini S. Oxygen exchange and energy metabolism in erythrocytes of Rett syndrome and their relationships with respiratory alterations. Mol Cell Biochem 2017; 426:205-213. [PMID: 28063007 DOI: 10.1007/s11010-016-2893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, mainly affecting females, which is associated to a mutation on the methyl-CpG-binding protein 2 gene. In the pathogenesis and progression of classic RTT, red blood cell (RBC) morphology has been shown to be an important biosensor for redox imbalance and chronic hypoxemia. Here we have evaluated the impact of oxidation and redox imbalance on several functional properties of RTT erythrocytes. In particular, we report for the first time a stopped-flow measurement of the kinetics of oxygen release by RBCs and the analysis of the intrinsic affinity of the hemoglobin (Hb). According to our experimental approach, RBCs from RTT patients do not show any intrinsic difference with respect to those from healthy controls neither in Hb's oxygen-binding affinity nor in O2 exchange processes at 37 °C. Therefore, these factors do not contribute to the observed alteration of the respiratory function in RTT patients. Moreover, the energy metabolism of RBCs, from both RTT patients and controls, was evaluated by ion-pairing HPLC method and related to the level of malondialdehyde and to the oxidative radical scavenging capacity of red cells. Results have clearly confirmed significant alterations in antioxidant defense capability, adding important informations concerning the high-energy compound levels in RBCs of RTT subjects, underlying possible correlations with inflammatory tissue alterations.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paolo Curatolo
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Marta Elena Santarone
- Department of Systems Medicine, University Hospital of Rome Tor Vergata, Rome, Italy
| | | | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alessio Cortelazzo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, AOUS, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Siena, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
38
|
Downregulated expression of microRNA-124 in pediatric intestinal failure patients modulates macrophages activation by inhibiting STAT3 and AChE. Cell Death Dis 2016; 7:e2521. [PMID: 27977009 PMCID: PMC5260981 DOI: 10.1038/cddis.2016.426] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
Intestinal inflammation plays a critical role in the pathogenesis of intestinal failure (IF). The macrophages are essential to maintain the intestinal homeostasis. However, the underlying mechanisms of intestinal macrophages activation remain poorly understood. Since microRNAs (miRNAs) have pivotal roles in regulation of immune responses, here we aimed to investigate the role of miR-124 in the activation of intestinal macrophages. In this study, we showed that the intestinal macrophages increased in pediatric IF patients and resulted in the induction of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The miRNA fluorescence in situ hybridization analysis showed that the expression of miR-124 significantly reduced in intestinal macrophages in IF patients. Overexpression of miR-124 was sufficient to inhibit intestinal macrophages activation by attenuating production of IL-6 and TNF-α. Further studies showed that miR-124 could directly target the 3′-untranslated region of both signal transducer and activator of transcription 3 (STAT3) and acetylcholinesterase (AChE) mRNAs, and suppress their protein expressions. The AChE potentially negates the cholinergic anti-inflammatory signal by hydrolyzing the acetylcholine. We here showed that intestinal macrophages increasingly expressed the AChE and STAT3 in IF patients when compared with controls. The inhibitors against to STAT3 and AChE significantly suppressed the lipopolysaccharides-induced IL-6 and TNF-α production in macrophages. Taken together, these findings highlight an important role for miR-124 in the regulation of intestinal macrophages activation, and suggest a potential application of miR-124 in pediatric IF treatment regarding as suppressing intestinal inflammation.
Collapse
|
39
|
Pecorelli A, Cervellati C, Hayek J, Valacchi G. OxInflammation in Rett syndrome. Int J Biochem Cell Biol 2016; 81:246-253. [DOI: 10.1016/j.biocel.2016.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
|
40
|
Qin Z, Wang PY, Su DF, Liu X. miRNA-124 in Immune System and Immune Disorders. Front Immunol 2016; 7:406. [PMID: 27757114 PMCID: PMC5047895 DOI: 10.3389/fimmu.2016.00406] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Peng-Yuan Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai , China
| |
Collapse
|
41
|
Cronk JC, Derecki NC, Litvak V, Kipnis J. Unexpected cellular players in Rett syndrome pathology. Neurobiol Dis 2016; 92:64-71. [PMID: 25982834 PMCID: PMC4644494 DOI: 10.1016/j.nbd.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome is a devastating neurodevelopmental disorder, primarily caused by mutations of methyl CpG-binding protein 2 (MeCP2). Although the genetic cause of disease was identified over a decade ago, a significant gap still remains in both our clinical and scientific understanding of its pathogenesis. Neurons are known to be primary players in pathology, with their dysfunction being the key in Rett syndrome. While studies in mice have demonstrated a clear causative - and potential therapeutic - role for neurons in Rett syndrome, recent work has suggested that other tissues also contribute significantly to progression of the disease. Indeed, Rett syndrome is known to present with several common peripheral pathologies, such as osteopenia, scoliosis, gastrointestinal problems including nutritional defects, and general growth deficit. Mouse models assessing the potential role of non-neuronal cell types have confirmed both roles in disease and potential therapeutic targets. A new picture is emerging in which neurons both initiate and drive pathology, while dysfunction of other cell types and peripheral tissues exacerbate disease, possibly amplifying further neurologic problems, and ultimately result in a positive feedback loop of progressively worsening symptoms. Here, we review what is known about neuronal and non-neuronal cell types, and discuss how this new, integrative understanding of the disease may allow for additional clinical and scientific pathways for treating and understanding Rett syndrome.
Collapse
Affiliation(s)
- James C Cronk
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Noel C Derecki
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Vladimir Litvak
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Liu L, Ling X, Wu M, Chen J, Chen S, Tan Q, Chen J, Liu J, Zou F. Rb silencing mediated by the down-regulation of MeCP2 is involved in cell transformation induced by long-term exposure to hydroquinone. Mol Carcinog 2016; 56:651-663. [DOI: 10.1002/mc.22523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/04/2016] [Accepted: 07/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Linhua Liu
- Department of Occupational Health and Occupational Medicine; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou PR China
- Department of Environmental and Occupational Health; Dongguan Key Laboratory of Environmental Medicine; School of Public Health; Guangdong Medical University; Dongguan PR China
| | - Xiaoxuan Ling
- Department of Environmental and Occupational Health; Dongguan Key Laboratory of Environmental Medicine; School of Public Health; Guangdong Medical University; Dongguan PR China
- School of Public Health; Guangzhou Medical University; Guangzhou PR China
| | - Minhua Wu
- Department of Histology and Embryology; Guangdong Medical University; Zhanjiang PR China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou PR China
- Department of Environmental and Occupational Health; Dongguan Key Laboratory of Environmental Medicine; School of Public Health; Guangdong Medical University; Dongguan PR China
| | - Shaoqiao Chen
- Department of Clinical Laboratory; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou PR China
| | - Qiang Tan
- Foshan Institute of Occupational Disease Prevention and Control; Foshan PR China
| | - Jiansong Chen
- School of Public Health; Guangzhou Medical University; Guangzhou PR China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health; Dongguan Key Laboratory of Environmental Medicine; School of Public Health; Guangdong Medical University; Dongguan PR China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine; Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health and Tropical Medicine; Southern Medical University; Guangzhou PR China
| |
Collapse
|
43
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
44
|
Hohos NM, Lee K, Ji L, Yu M, Kandasamy MM, Phillips BG, Baile CA, He C, Schmitz RJ, Meagher RB. DNA cytosine hydroxymethylation levels are distinct among non-overlapping classes of peripheral blood leukocytes. J Immunol Methods 2016; 436:1-15. [PMID: 27164004 PMCID: PMC5131182 DOI: 10.1016/j.jim.2016.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Peripheral blood leukocytes are the most commonly used surrogates to study epigenome-induced risk and epigenomic response to disease-related stress. We considered the hypothesis that the various classes of peripheral leukocytes differentially regulate the synthesis of 5-methylcytosine (5mCG) and its removal via Ten-Eleven Translocation (TET) dioxygenase catalyzed hydroxymethylation to 5-hydroxymethylcytosine (5hmCG), reflecting their responsiveness to environment. Although it is known that reductions in TET1 and/or TET2 activity lead to the over-proliferation of various leukocyte precursors in bone marrow and in development of chronic myelomonocytic leukemia and myeloproliferative neoplasms, the role of 5mCG hydroxymethylation in peripheral blood is less well studied. RESULTS We developed simplified protocols to rapidly and reiteratively isolate non-overlapping leukocyte populations from a single small sample of fresh or frozen whole blood. Among peripheral leukocyte types we found extreme variation in the levels of transcripts encoding proteins involved in cytosine methylation (DNMT1, 3A, 3B), the turnover of 5mC by demethylation (TET1, 2, 3), and DNA repair (GADD45A, B, G) and in the global and gene-region-specific levels of DNA 5hmCG (CD4+ T cells≫CD14+ monocytes>CD16+ neutrophils>CD19+ B cells>CD56+ NK cells>Siglec8+ eosinophils>CD8+ T cells). CONCLUSIONS Our data taken together suggest a potential hierarchy of responsiveness among classes of leukocytes with CD4+, CD8+ T cells and CD14+ monocytes being the most distinctly poised for a rapid methylome response to physiological stress and disease.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA.
| | - Kevin Lee
- Department of Genetics, University of Georgia, Athens, GA, USA.
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| | - Miao Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | | | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, USA.
| | - Clifton A Baile
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | | | | |
Collapse
|
45
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
46
|
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disease, previously included into the autistic spectrum disorders, affecting almost exclusively females (frequency 1:10,000). RTT leads to intellective deficit, purposeful hands use loss and late major motor impairment besides featuring breathing disorders, epilepsy and increased risk of sudden death. The condition is caused in up to 95% of the cases by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Our group has shown a number of previously unrecognized features, such as systemic redox imbalance, chronic inflammatory status, respiratory bronchiolitis-associated interstitial lung disease-like lung disease, and erythrocyte morphology changes. While evidence on an intimate involvement of MeCP2 in the immune response is cumulating, we have recently shown a cytokine dysregulation in RTT. Increasing evidence on the relationship between MeCP2 and an immune dysfunction is reported, with, apparently, a link between MECP2 gene polymorphisms and autoimmune diseases, including primary Sjögren's syndrome, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis. Antineuronal (i.e., brain proteins) antibodies have been shown in RTT. Recently, high levels of anti-N-glucosylation (N-Glc) IgM serum autoantibodies [i.e., anti-CSF114(N-Glc) IgMs] have been detected by our group in a statistically significant number of RTT patients. In the current review, the Authors explore the current evidence, either in favor or against, the presence of an autoimmune component in RTT.
Collapse
|
47
|
Xia Y, Chen K, Zhang MH, Wang LC, Ma CY, Lin YL, Zhao YR. MicroRNA-124 involves in ankylosing spondylitis by targeting ANTXR2. Mod Rheumatol 2015; 25:784-9. [PMID: 25736362 DOI: 10.3109/14397595.2015.1023887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES A recent genome-wide association study or GWAS identified that anthrax roxin receptor 2 (ANTXR2) was one of the risk loci for ankylosing spondylitis (AS). Previous study also showed that ANTXR2 could potentially affect new bone formation. This study aimed to investigate the possible mechanisms of ANTXR2 involved in AS pathogenesis. METHODS The expression level of ANTXR2 and miR-124 in peripheral blood was detected by quantitative real-time polymerase chain reaction or qRT-PCR. ANTXR2 was predicted to be a target gene of miR-124 by TargetScan, which was confirmed by luciferase reporter assays. Western blot analysis was used to further investigate the effect of miR-124 on c-Jun N-terminal kinase (JNK) activation and evaluate the activated status of autophagy. RESULTS We evidenced that ANTXR2 was downregulated and miR-124 was upregulated in peripheral blood from AS patients. Intriguingly, miR-124 targeted ANTXR2 and overexpression of miR-124 in Jurkat cells notably inhibited ANTXR2 expression. ANTXR2 inhibition by miR-124 promoted JNK activation and induced autophagy. CONCLUSIONS Our results suggested that miR-124 might induce autophagy to participate in AS by targeting ANTXR2, which might be implicated in pathological process of AS.
Collapse
Affiliation(s)
- Yu Xia
- a Department of Central Laboratory , Shandong Provincial Hospital affiliated to Shandong University , Jinan , China
| | | | | | | | | | | | | |
Collapse
|
48
|
Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:421624. [PMID: 26236424 PMCID: PMC4510261 DOI: 10.1155/2015/421624] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.
Collapse
|
49
|
Abstract
It has been unclear whether alteration in DNA methylation at cytokine genes during T helper (Th) cell differentiation is a cause or consequence of gene expression. In this issue of Immunity, Ichiyama et al. (2015) show that oxidation of 5-methylcytosine by the methylcytosine dioxygenase Tet2 regulates cytokine production in Th cells.
Collapse
|
50
|
De Felice C, Signorini C, Leoncini S, Durand T, Ciccoli L, Hayek J. Oxidative stress: a hallmark of Rett syndrome. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico “S. M. alle Scotte”, I-53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Silvia Leoncini
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247- CNRS-UM -ENSCM, BP 14491, 34093, Montpellier, Cedex 5, France
| | - Lucia Ciccoli
- Department of Molecular & Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| |
Collapse
|