1
|
Liu M, Xiao R, Li X, Zhao Y, Huang J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr Rev Food Sci Food Saf 2025; 24:e70078. [PMID: 39970011 DOI: 10.1111/1541-4337.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 02/21/2025]
Abstract
Biotechnology has significantly advanced the production of recombinant proteins (RPs). This review examines the latest advancements in protein production technologies, including CRISPR, genetic engineering, vector integration, and fermentation, and their implications for the food industry. This review delineates the merits and shortcomings of prevailing host systems for RP production, underscoring molecular and process strategies pivotal for amplifying yields and purity. It traverses the spectrum of RP applications, challenges, and burgeoning trends, highlighting the imperative of employing robust hosts and cutting-edge genetic engineering to secure high-quality, high-yield outputs while circumventing protein aggregation and ensuring correct folding for enhanced activity. Recombinant technology has paved the way for the food industry to produce alternative proteins like leghemoglobin and cytokines, along with enzyme preparations such as proteases and lipases, and to modify microbial pathways for synthesizing beneficial compounds, including pigments, terpenes, flavonoids, and functional sugars. However, scaling microbial production to industrial scales presents economic, efficiency, and environmental challenges that demand innovative solutions, including high-throughput screening and CRISPR/Cas9 systems, to bolster protein yield and quality. Although recombinant technology holds much promise, it must navigate high costs and scalability to satisfy the escalating global demand for RPs in therapeutics and food. The variability in ethical and regulatory hurdles across regions further complicates market acceptance, underscoring an urgent need for robust regulatory frameworks for genetically modified organisms. These frameworks are essential for safeguarding the production process, ensuring product safety, and upholding the efficacy of RPs in industrial applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Ran Xiao
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Jihong Huang
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, P. R. China
| |
Collapse
|
2
|
Lima AJF, Hajdu KL, Abdo L, Batista-Silva LR, de Oliveira Andrade C, Correia EM, Aragão EAA, Bonamino MH, Lourenzoni MR. In silico and in vivo analysis reveal impact of c-Myc tag in FMC63 scFv-CD19 protein interface and CAR-T cell efficacy. Comput Struct Biotechnol J 2024; 23:2375-2387. [PMID: 38873646 PMCID: PMC11170440 DOI: 10.1016/j.csbj.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Anti-CD19 CAR-T cell therapy represents a breakthrough in the treatment of B-cell malignancies, and it is expected that this therapy modality will soon cover a range of solid tumors as well. Therefore, a universal cheap and sensitive method to detect CAR expression is of foremost importance. One possibility is the use of epitope tags such as c-Myc, HA or FLAG tags attached to the CAR extracellular domain, however, it is important to determine whether these tags can influence binding of the CAR with its target molecule. Here, we conducted in-silico structural modelling of an FMC63-based anti-CD19 single-chain variable fragment (scFv) with and without a c-Myc peptide tag added to the N-terminus portion and performed molecular dynamics simulation of the scFv with the CD19 target. We show that the c-Myc tag presence in the N-terminus portion does not affect the scFv's structural equilibrium and grants more stability to the scFv. However, intermolecular interaction potential (IIP) analysis reveals that the tag can approximate the complementarity-determining regions (CDRs) present in the scFv and cause steric impediment, potentially disturbing interaction with the CD19 protein. We then tested this possibility with CAR-T cells generated from human donors in a Nalm-6 leukemia model, showing that CAR-T cells with the c-Myc tag have overall worse antitumor activity, which was also observed when the tag was added to the C-terminus position. Ultimately, our results suggest that tag addition is an important aspect of CAR design and can influence CAR-T cell function, therefore its use should be carefully considered.
Collapse
Affiliation(s)
- Ana Julia Ferreira Lima
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
- Federal University of Ceará (UFC), Pici campus (Building 873), 60440-970 Fortaleza, Ceará, Brazil
| | - Karina Lobo Hajdu
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Luiza Abdo
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Clara de Oliveira Andrade
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Eduardo Mannarino Correia
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | | | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research coordination - Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcos Roberto Lourenzoni
- Research Group on Protein Engineering and Health Solutions (GEPeSS), Oswaldo Cruz Foundation Ceará (Fiocruz-CE), São José, Precabura, 61773-270 Eusébio, Ceará, Brazil
| |
Collapse
|
3
|
Mairaville C, Broyon M, Maurel M, Chentouf M, Chiavarina B, Turtoi A, Pirot N, Martineau P. Identification of monoclonal antibodies from naive antibody phage-display libraries for protein detection in formalin-fixed paraffin-embedded tissues. J Immunol Methods 2024; 532:113730. [PMID: 39059744 DOI: 10.1016/j.jim.2024.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively. Using these pseudo-tissues and previously described approaches based on differential panning, we isolated very efficient antibody clones, but not against HER2. To optimize HER2 targeting and tissue specificity, we first performed 3-4 rounds of in vitro panning using recombinant HER2 extracellular domain (ECD) to enrich the phage library in HER2 binders, followed by one panning round using the two FFPE pseudo-tissues to retain binders for IHC conditions. We then analyzed the bound phages using next-generation sequencing to identify antibody sequences specifically associated with the HER2-positive pseudo-tissue. Using this approach, the top-ranked clone identified by sequencing was specific to the HER2-positive pseudo-tissue and showed a staining pattern similar to that of the antibody used for the clinical diagnosis of HER2-positive breast cancer. However, we could not optimize staining on other tissues, showing that specificity was restricted to the tissue used for selection and screening. Therefore, future optimized protocols must consider tissue diversity early during the selection by panning using a wide collection of tissue types.
Collapse
Affiliation(s)
| | - Morgane Broyon
- BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Margaux Maurel
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | | | | | - Andrei Turtoi
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | - Nelly Pirot
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France; BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
4
|
Lee K, Cho MH, Kim MJ, Bhoo SH. A Small Epitope Tagging on the C-Terminus of a Target Protein Requires Extra Amino Acids to Enhance the Immune Responses of the Corresponding Antibody. J Microbiol Biotechnol 2024; 34:1222-1228. [PMID: 38783697 PMCID: PMC11239440 DOI: 10.4014/jmb.2401.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Protein-specific antibodies are essential for various aspects of protein research, including detection, purification, and characterization. When specific antibodies are unavailable, protein tagging is a useful alternative. Small epitope tags, typically less than 10 amino acids, are widely used in protein research due to the simple modification through PCR and reduced impact on the target protein's function compared to larger tags. The 2B8 epitope tag (RDPLPFFPP), reported by us in a previous study, has high specificity and sensitivity to the corresponding antibody. However, when attached to the C-terminus of the target protein in immunoprecipitation experiments, we observed a decrease in detection signal with reduced immunity and low protein recovery. This phenomenon was not unique to 2B8 and was also observed with the commercially available Myc tag. Our study revealed that C-terminal tagging of small epitope tags requires the addition of more than one extra amino acid to enhance (restore) antibody immunities. Moreover, among the amino acids we tested, serine was the best for the 2B8 tag. Our findings demonstrated that the interaction between a small epitope and a corresponding paratope of an antibody requires an extra amino acid at the C-terminus of the epitope. This result is important for researchers planning studies on target proteins using small epitope tags.
Collapse
Affiliation(s)
- Kyungha Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Man-Ho Cho
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Mi-Ju Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seong-Hee Bhoo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Vázquez‐Arias A, Vázquez‐Iglesias L, Pérez‐Juste I, Pérez‐Juste J, Pastoriza‐Santos I, Bodelon G. Bacterial surface display of human lectins in Escherichia coli. Microb Biotechnol 2024; 17:e14409. [PMID: 38380565 PMCID: PMC10884992 DOI: 10.1111/1751-7915.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents. New approaches for expression and engineering of lectins are in demand to overcome current limitations. Herein, we report the application of bacterial display for the expression of human galectin-3 and mannose-binding lectin in Escherichia coli. The analysis of the cell surface expression and binding activity of the surface-displayed lectins, including point and deletion mutants, in combination with molecular dynamics simulation, demonstrate the robustness and suitability of this approach. Furthermore, the display of functional mannose-binding lectin in the bacterial surface proved the feasibility of this method for disulfide bond-containing lectins. This work establishes for the first time bacterial display as an efficient means for the expression and engineering of human lectins, thereby increasing the available toolbox for glycobiology research.
Collapse
Affiliation(s)
- Alba Vázquez‐Arias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Lorena Vázquez‐Iglesias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | | | - Jorge Pérez‐Juste
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Isabel Pastoriza‐Santos
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Gustavo Bodelon
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Biología Funcional y Ciencias de la SaludUniversidade de VigoVigoSpain
| |
Collapse
|
6
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
7
|
Fuchs ACD. Specific, sensitive and quantitative protein detection by in-gel fluorescence. Nat Commun 2023; 14:2505. [PMID: 37130834 PMCID: PMC10154401 DOI: 10.1038/s41467-023-38147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
Recombinant proteins in complex solutions are typically detected with tag-specific antibodies in Western blots. Here we describe an antibody-free alternative in which tagged proteins are detected directly in polyacrylamide gels. For this, the highly specific protein ligase Connectase is used to selectively fuse fluorophores to target proteins carrying a recognition sequence, the CnTag. Compared to Western blots, this procedure is faster, more sensitive, offers a better signal-to-noise ratio, requires no optimization for different samples, allows more reproducible and accurate quantifications, and uses freely available reagents. With these advantages, this method represents a promising alternative to the state of the art and may facilitate studies on recombinant proteins.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
9
|
Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. J Cell Sci 2022; 135:277104. [DOI: 10.1242/jcs.259618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ABSTRACT
Protein phosphorylation on serine and threonine residues is a widely distributed post-translational modification on proteins that acts to regulate their function. Phosphoprotein phosphatases (PPPs) contribute significantly to a plethora of cellular functions through the accurate dephosphorylation of phosphorylated residues. Most PPPs accomplish their purpose through the formation of complex holoenzymes composed of a catalytic subunit with various regulatory subunits. PPP holoenzymes then bind and dephosphorylate substrates in a highly specific manner. Despite the high prevalence of PPPs and their important role for cellular function, their mechanisms of action in the cell are still not well understood. Nevertheless, substantial experimental advancements in (phospho-)proteomics, structural and computational biology have contributed significantly to a better understanding of PPP biology in recent years. This Review focuses on recent approaches and provides an overview of substantial new insights into the complex mechanism of PPP holoenzyme regulation and substrate selectivity.
Collapse
Affiliation(s)
- Thomas Kokot
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg 1 , Freiburg 79104 , Germany
- University of Freiburg, 2 Faculty of Biology , Freiburg 79104 , Germany
| |
Collapse
|
10
|
Yinsheng Z, Miyoshi K, Qin Y, Fujiwara Y, Yoshimura T, Katayama T. TMEM67 is required for the gating function of the transition zone that controls entry of membrane-associated proteins ARL13B and INPP5E into primary cilia. Biochem Biophys Res Commun 2022; 636:162-169. [DOI: 10.1016/j.bbrc.2022.10.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/26/2022]
|
11
|
Curtis MW, Fierros CH, Hahn BL, Surdel MC, Kessler J, Anderson PN, Vandewalle-Capo M, Bonde M, Zhu J, Bergström S, Coburn J. Identification of amino acid domains of Borrelia burgdorferi P66 that are surface exposed and important for localization, oligomerization, and porin function of the protein. Front Cell Infect Microbiol 2022; 12:991689. [PMID: 36211976 PMCID: PMC9539438 DOI: 10.3389/fcimb.2022.991689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
P66, a bifunctional integral outer membrane protein, is necessary for Borrelia burgdorferi to establish initial infection and to disseminate in mice. The integrin binding function of P66 facilitates extravasation and dissemination, but the role of its porin function during murine infection has not been investigated. A limitation to studying P66 porin function during mammalian infection has been the lack of structural information for P66. In this study, we experimentally characterized specific domains of P66 with regard to structure and function. First, we aligned the amino acid sequences of P66 from Lyme disease-causing Borrelia and relapsing fever-causing Borrelia to identify conserved and unique domains between these disease-causing clades. Then, we examined whether specific domains of P66 are exposed on the surface of the bacteria by introducing c-Myc epitope tags into each domain of interest. The c-Myc epitope tag inserted C-terminally to E33 (highly conserved domain), to T187 (integrin binding region domain and a non-conserved domain), and to E334 (non-conserved domain) were all detected on the surface of Borrelia burgdorferi. The c-Myc epitope tag inserted C-terminally to E33 and D303 in conserved domains disrupted P66 oligomerization and porin function. In a murine model of infection, the E33 and D303 mutants exhibited decreased infectivity and dissemination. Taken together, these results suggest the importance of these conserved domains, and potentially P66 porin function, in vivo.
Collapse
Affiliation(s)
- Michael W. Curtis
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christa H. Fierros
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew C. Surdel
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julie Kessler
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip N. Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marine Vandewalle-Capo
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mari Bonde
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jieqing Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sven Bergström
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Meyerink BL, KC P, Tiwari NK, Kittock CM, Klein A, Evans CM, Pilaz LJ. Breasi-CRISPR: an efficient genome-editing method to interrogate protein localization and protein-protein interactions in the embryonic mouse cortex. Development 2022; 149:dev200616. [PMID: 35993342 PMCID: PMC9637389 DOI: 10.1242/dev.200616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/15/2022] [Indexed: 09/29/2023]
Abstract
In developing tissues, knowing the localization and interactors of proteins of interest is key to understanding their function. Here, we describe the Breasi-CRISPR approach (Brain Easi-CRISPR), combining Easi-CRISPR with in utero electroporation to tag endogenous proteins within embryonic mouse brains. Breasi-CRISPR enables knock-in of both short and long epitope tag sequences with high efficiency. We visualized epitope-tagged proteins with varied expression levels, such as ACTB, LMNB1, EMD, FMRP, NOTCH1 and RPL22. Detection was possible by immunohistochemistry as soon as 1 day after electroporation and we observed efficient gene editing in up to 50% of electroporated cells. Moreover, tagged proteins could be detected by immunoblotting in lysates from individual cortices. Next, we demonstrated that Breasi-CRISPR enables the tagging of proteins with fluorophores, allowing visualization of endogenous proteins by live imaging in organotypic brain slices. Finally, we used Breasi-CRISPR to perform co-immunoprecipitation mass-spectrometry analyses of the autism-related protein FMRP to discover its interactome in the embryonic cortex. Together, these data demonstrate that Breasi-CRISPR is a powerful tool with diverse applications that will propel the understanding of protein function in neurodevelopment.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Pratiksha KC
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Claire M. Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Abigail Klein
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Claire M. Evans
- Histology Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
13
|
Russo G, Unkauf T, Meier D, Wenzel EV, Langreder N, Schneider KT, Wiesner R, Bischoff R, Stadler V, Dübel S. In vitro evolution of myc-tag antibodies: in-depth specificity and affinity analysis of Myc1-9E10 and Hyper-Myc. Biol Chem 2022; 403:479-494. [PMID: 35312243 DOI: 10.1515/hsz-2021-0405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
One of the most widely used epitope tags is the myc-tag, recognized by the anti-c-Myc hybridoma antibody Myc1-9E10. Combining error-prone PCR, DNA shuffling and phage display, we generated an anti-c-Myc antibody variant (Hyper-Myc) with monovalent affinity improved to 18 nM and thermal stability increased by 37%. Quantification of capillary immunoblots and by flow cytometry demonstrated improved antigen detection by Hyper-Myc. Further, three different species variants of this antibody were generated to allow the use of either anti-human, anti-mouse or anti-rabbit Fc secondary antibodies for detection. We characterized the specificity of both antibodies in depth: individual amino acid exchange mapping demonstrated that the recognized epitope was not changed by the in vitro evolution process. A laser printed array of 29,127 different epitopes representing all human linear B-cell epitopes of the Immune Epitope Database allowing to chart unwanted reactivities with mimotopes showed these to be very low for both antibodies and not increased for Hyper-Myc despite its improved affinity. The very low background reactivity of Hyper-Myc was confirmed by staining of myc-tag transgenic zebrafish whole mounts. Hyper-Myc retains the very high specificity of Myc1-9E10 while allowing myc-tag detection at lower concentrations and with either anti-mouse, anti-rabbit or anti human secondary antibodies.
Collapse
Affiliation(s)
- Giulio Russo
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,Abcalis GmbH, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Tobias Unkauf
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Doris Meier
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Esther Veronika Wenzel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,Abcalis GmbH, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Nora Langreder
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany.,iTUBS mbH, Wilhelmsgarten 3, D-38100 Braunschweig, Germany
| | - Kai-Thomas Schneider
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Rebecca Wiesner
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Ralf Bischoff
- Division of Functional Genome Analysis, Research Program "Functional and Structural Genomics", German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Volker Stadler
- Pepperprint GmbH, Rischerstrasse 12, D-69123 Heidelberg, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| |
Collapse
|
14
|
Sharifi MJ, Vakili E, Ilkhanipoor H, Zekavat OR, Bordbar M. Elevated CD9 expression as a potential biomarker for diagnosis of Bernard-Soulier syndrome. Blood Coagul Fibrinolysis 2022; 33:159-161. [PMID: 35165218 DOI: 10.1097/mbc.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diagnosis of inherited platelet glycoprotein disorders is based on specific laboratory techniques such as aggregometry and flow cytometry. Flowcytometry is a powerful method, but equivocal results are produced in some cases. New cluster of differentiation markers could resolve the diagnostic dilemmas. Abnormal expression of CD9 in Bernard-Soulier syndrome (BSS) is recently reported. We aimed to determine the diagnostic significance of CD9 expression in a cohort of Iranian patients with inherited platelet glycoprotein defects. Twelve BSS, 21 Glanzmann thrombasthenia and 16 healthy controls were included in the present study. Flowcytometric diagnosis of BSS and Glanzmann thrombasthenia was made by analysis of CD41/61 and CD42a/42b CD markers. Moreover, phycoerythrin-labelled anti CD9 was examined in patients and healthy controls. The mean fluorescence intensity (MFI) of CD9 among the three groups was compared using suitable statistical methods and a P value of less than 0.05 considered statistically significant. Mean MFI of CD9 was 990.0 in BSS patients versus 421.2 and 317.3 in individuals with Glanzmann thrombasthenia and healthy controls, respectively (P < 0.05). Between the two-group comparison of means by the Mann--Whitney test revealed a P value of less than 0.001 for BSS group versus GT (2.4-fold) and BSS versus healthy controls (2.9-fold). CD9 molecule also expressed differently in patients with Glanzmann thrombasthenia in comparison with healthy controls (P < 0.001), although with a less magnitude (1.3-fold). According to our findings, CD9 is a potential biomarker for laboratory diagnosis of inherited glycoprotein defects, especially to elucidate the ambiguous results in BSS cases.
Collapse
Affiliation(s)
- Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences Pediatric Department Pediatric Endocrinology and Metabolism Department, Shiraz University of Medical Sciences Hematology Research Center, Shiraz, Iran
| | | | | | | | | |
Collapse
|
15
|
Gunasekara H, Munaweera R, Novotná L, Lillemeier BF, Hu YS. Chaotropic Perturbation of Noncovalent Interactions of the Hemagglutinin Tag Monoclonal Antibody Fragment Enables Superresolution Molecular Census. ACS NANO 2022; 16:129-139. [PMID: 34797055 PMCID: PMC11196025 DOI: 10.1021/acsnano.1c04237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibody-antigen interactions represent one of the most exploited biomolecular interactions in experimental biology. While numerous techniques harnessed immobilized antibodies for nanoscale fluorescence imaging, few utilized their reversible binding kinetics. Here, we investigated noncovalent interactions of the monoclonal hemagglutinin (HA) epitope tag antibody, 12CA5, in the fixed cellular environment. We observed that the use of a chaotropic agent, potassium thiocyanate (KSCN), promoted the dissociation of the 12CA5 antibody fragment (Fab), which already displayed faster dissociation compared to its immunoglobulin G (IgG) counterpart. Molecular dynamic simulations revealed notable root-mean-square deviations and destabilizations in the presence of KSCN, while the hydrogen-bonding network remained primarily unaffected at the antigen-binding site. The reversible interactions enabled us to achieve a superresolution molecular census of local populations of 3xHA tagged microtubule fibers with improved molecular quantification consistency compared to single-molecule localization microscopy (SMLM) techniques utilizing standard immunofluorescence staining for sample labeling. Our technique, termed superresolution census of molecular epitope tags (SR-COMET), highlights the utilization of reversible antibody-antigen interactions for SMLM-based quantitative superresolution imaging.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| | - Rangika Munaweera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Björn F. Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Faculty of Biology and Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| |
Collapse
|
16
|
Miyoshi T, Friedman TB, Watanabe N. Fast-dissociating but highly specific antibodies are novel tools in biology, especially useful for multiplex super-resolution microscopy. STAR Protoc 2021; 2:100967. [PMID: 34841279 PMCID: PMC8605432 DOI: 10.1016/j.xpro.2021.100967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast-dissociating, highly specific monoclonal antibodies (FDSAs) are single-molecule imaging probes useful for many biological assays including consecutive, multiplexable super-resolution microscopy. We developed a screening assay to characterize the kinetics of antibody-antigen interactions using single-molecule microscopy and established a pipeline to identify FDSAs from thousands of monoclonal candidates. Provided here are detailed protocols to prepare multi-well glass-bottom plates necessary for our assay to identify hybridoma clones secreting FDSAs. Synthesis of fluorescently labeled Fab fragments (Fab probes) from FDSAs is also described. For complete details on the use and execution of this protocol, please refer to Miyoshi et al. (2021).
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Bolognesi MM, Mascadri F, Furia L, Faretta M, Bosisio FM, Cattoretti G. Antibodies validated for routinely processed tissues stain frozen sections unpredictably. Biotechniques 2021; 70:137-148. [PMID: 33541132 DOI: 10.2144/btn-2020-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Antibody validation for tissue staining is required for reproducibility; criteria to ensure validity have been published recently. The majority of these recommendations imply the use of routinely processed (formalin-fixed, paraffin-embedded) tissue. Materials & methods: We applied to lightly fixed frozen sections a panel of 126 antibodies validated for formalin-fixed, paraffin-embedded tissue with extended criteria. Results: Less than 30% of the antibodies performed as expected with all fixations. 35% preferred one fixation over another, 13% gave nonspecific staining and 23% did not stain at all. Conclusion: Individual antibody variability of the paratope's fitness for the fixed antigen may be the cause. Revalidation of established antibody panels is required when they are applied to sections whose fixation and processing are different from the tissue where they were initially validated.
Collapse
Affiliation(s)
- Maddalena M Bolognesi
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Francesco Mascadri
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan 20139, Italy
| | - Francesca M Bosisio
- Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Giorgio Cattoretti
- Pathology, Department of Medicine & Surgery, Università di Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.,Department of Pathology, Ospedale San Gerardo, ASST-Monza, Via Pergolesi 33, Monza 20900, Italy
| |
Collapse
|
18
|
Li H, Wu C, Du M, Chen Y, Hou X, Yang Y, Xie K. A versatile nanoluciferase toolkit and optimized in-gel detection method for protein analysis in plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:13. [PMID: 37309479 PMCID: PMC10236060 DOI: 10.1007/s11032-021-01210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 06/14/2023]
Abstract
Dissection of gene function requires sophisticated tools to monitor gene expression. Gene tagging with epitope peptides and fluorescent protein tags is a routine method to investigate protein expression using tag-specific antibodies and western blotting with tedious blotting and immunodetection steps. Nanoluciferase (NanoLuc) exhibits extremely bright bioluminescence and is engineered as a sensitive genetic reporter. Due to its small size and high bioluminescent activity, NanoLuc could be engineered to function as a novel protein tag that permits direct detection of tagged protein in the gel matrix (in-gel detection). In this study, we developed Gateway compatible vectors to tag proteins with NanoLuc in plants. We also tailored the in-gel detection conditions which can detect NanoLuc-tagged MPK3 from as low as 200 pg of total protein extracts. Compared to FLAG tag and western blotting-based detection, NanoLuc tag and optimized in-gel detection exhibit increased detection sensitivity but omit the blotting and immunodetection steps. We also demonstrated versatile applications of the NanoLuc-based in-gel detection method for protein expression analysis, probing protein-protein interactions by coimmunoprecipitation, and in vivo protein phosphorylation detection with Phos-tag gel electrophoresis. Finally, NanoLuc was used to tag the gene at its endogenous locus using the wheat dwarf virus replicon and CRISPR/Cas9-mediated gene targeting. Our data suggest that NanoLuc tag and in-gel detection permit fast detection of tagged protein with high sensitivity. The versatile NanoLuc toolkit and convenient in-gel detection method are expected to facilitate in vitro and in vivo protein analysis for plant functional genomics. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01210-7.
Collapse
Affiliation(s)
- Hong Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Caiyun Wu
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Manman Du
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yache Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072 China
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, State College, PA 16802 USA
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
19
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Assi M, Pirlot B, Stroobant V, Thissen JP, Jacquemin P. A Novel KRAS Antibody Highlights a Regulation Mechanism of Post-Translational Modifications of KRAS during Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176361. [PMID: 32887255 PMCID: PMC7504708 DOI: 10.3390/ijms21176361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
KRAS is a powerful oncogene responsible for the development of many cancers. Despite the great progress in understanding its function during the last decade, the study of KRAS expression, subcellular localization, and post-translational modifications remains technically challenging. Accordingly, many facets of KRAS biology are still unknown. Antibodies could be an effective and easy-to-use tool for in vitro and in vivo research on KRAS. Here, we generated a novel rabbit polyclonal antibody that allows immunolabeling of cells and tissues overexpressing KRAS. Cell transfection experiments with expression vectors for the members of the RAS family revealed a preferential specificity of this antibody for KRAS. In addition, KRAS was sensitively detected in a mouse tissue electroporated with an expression vector. Interestingly, our antibody was able to detect endogenous forms of unprenylated (immature) and prenylated (mature) KRAS in mouse organs. We found that KRAS prenylation was increased ex vivo and in vivo in a model of KRASG12D-driven tumorigenesis, which was concomitant with an induction of expression of essential KRAS prenylation enzymes. Therefore, our tool helped us to put the light on new regulations of KRAS activation during cancer initiation. The use of this tool by the RAS community could contribute to discovering novel aspects of KRAS biology.
Collapse
Affiliation(s)
- Mohamad Assi
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (M.A.); (P.J.); Tel.: +32-2764-75-31 (M.A. & P.J.)
| | - Boris Pirlot
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels, Belgium; (B.P.); (J.-P.T.)
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jean-Paul Thissen
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 1200 Brussels, Belgium; (B.P.); (J.-P.T.)
| | - Patrick Jacquemin
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (M.A.); (P.J.); Tel.: +32-2764-75-31 (M.A. & P.J.)
| |
Collapse
|
21
|
Marqués G, Pengo T, Sanders MA. Imaging methods are vastly underreported in biomedical research. eLife 2020; 9:55133. [PMID: 32780019 PMCID: PMC7434332 DOI: 10.7554/elife.55133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
A variety of microscopy techniques are used by researchers in the life and biomedical sciences. As these techniques become more powerful and more complex, it is vital that scientific articles containing images obtained with advanced microscopes include full details about how each image was obtained. To explore the reporting of such details we examined 240 original research articles published in eight journals. We found that the quality of reporting was poor, with some articles containing no information about how images were obtained, and many articles lacking important basic details. Efforts by researchers, funding agencies, journals, equipment manufacturers and staff at shared imaging facilities are required to improve the reporting of experiments that rely on microscopy techniques.
Collapse
Affiliation(s)
- Guillermo Marqués
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, United States
| | - Thomas Pengo
- University of Minnesota Informatics Institute , University of Minnesota, Minneapolis, United States
| | - Mark A Sanders
- University Imaging Centers and Department of Neuroscience, University of Minnesota, Minneapolis, United States
| |
Collapse
|
22
|
Human arylamine N-acetyltransferase 2 genotype-dependent protein expression in cryopreserved human hepatocytes. Sci Rep 2020; 10:7566. [PMID: 32372066 PMCID: PMC7200704 DOI: 10.1038/s41598-020-64508-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Human N-acetyltransferases (NAT; EC 2.3.1.5) catalyze the N-acetylation of arylamine and hydrazine drugs and the O-acetylation of N-hydroxylated metabolites of aromatic and heterocyclic amines. Two different isoforms of this protein, N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2), are expressed in human hepatocytes. Both are encoded by a single 870-bp open reading frame that exhibits genetic polymorphisms in human populations. NAT1 and NAT2 share more than 85% gene and protein sequence, making it challenging to produce antibodies with high specificity for NAT1 or NAT2. In the present study, we compared methods for the quantification of immunoreactive NAT1 and NAT2 with seven different antibodies and investigated the relationship of NAT2 genotype to NAT2 mRNA and protein expression in cryopreserved human hepatocytes. Sulfamethazine (NAT2-selective substrate) and NAT2 protein expression differed significantly with NAT2 acetylator genotype (p < 0.0001). NAT2 protein expression and sulfamethazine NAT2 catalytic activity correlated highly across the cryopreserved human hepatocytes of rapid, intermediate, and slow acetylator NAT2 genotypes. In conclusion, our data describe a specific analytical method for the quantification of NAT1 and NAT2 protein expression. We showed that the NAT2 activity in human hepatocytes is directly correlated to expression levels of NAT2 protein but not mRNA.
Collapse
|
23
|
Abstract
Monoclonal antibodies recognize epitopes so specifically that altering a single residue can disrupt binding. In this issue of Science Signaling, Schüchner et al and Frohner et al report that flanking amino acids and an underappreciated posttranslational modification perturb epitope affinity for two groups of widely used monoclonal antibodies.
Collapse
Affiliation(s)
- Kevin A Janes
- Departments of Biomedical Engineering and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|