1
|
Mansouri M, Fussenegger M. Engineering electrogenetic interfaces for mammalian cell control. Cell Chem Biol 2025; 32:521-528. [PMID: 39879984 DOI: 10.1016/j.chembiol.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells. In this paper, we outline endeavors to design direct electrogenetic interfaces to control cell behaviors in therapeutically engineered mammalian cells. We also discuss prospects for the world of electrogenetics, focusing on how to engineer the next generation of therapeutic cells controlled by electronic devices and the internet of the body.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
2
|
Katz LN, Bohlen MO, Yu G, Mejias-Aponte C, Sommer MA, Krauzlis RJ. Optogenetic Manipulation of Covert Attention in the Nonhuman Primate. J Cogn Neurosci 2025; 37:266-285. [PMID: 39509098 PMCID: PMC12022921 DOI: 10.1162/jocn_a_02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Optogenetics affords new opportunities to interrogate neuronal circuits that control behavior. In primates, the usefulness of optogenetics in studying cognitive functions remains a challenge. The technique has been successfully wielded, but behavioral effects have been demonstrated primarily for sensorimotor processes. Here, we tested whether brief optogenetic suppression of primate superior colliculus can change performance in a covert attention task, in addition to previously reported optogenetic effects on saccadic eye movements. We used an attention task that required the monkey to detect and report a stimulus change at a cued location via joystick release, while ignoring changes at an uncued location. When the cued location was positioned in the response fields of transduced neurons in the superior colliculus, transient light delivery coincident with the stimulus change disrupted the monkey's detection performance, significantly lowering hit rates. When the cued location was elsewhere, hit rates were unaltered, indicating that the effect was spatially specific and not a motor deficit. Hit rates for trials with only one stimulus were also unaltered, indicating that the effect depended on selection among distractors rather than a low-level visual impairment. Psychophysical analysis revealed that optogenetic suppression increased perceptual threshold, but only for locations matching the transduced site. These data show that optogenetic manipulations can cause brief and spatially specific deficits in covert attention, independent of sensorimotor functions. This dissociation of effect, and the temporal precision provided by the technique, demonstrates the utility of optogenetics in interrogating neuronal circuits that mediate cognitive functions in the primate.
Collapse
|
3
|
Duan X, Zhang C, Wu Y, Ju J, Xu Z, Li X, Liu Y, Ohdah S, Constantin OM, Pan Y, Lu Z, Wang C, Chen X, Gee CE, Nagel G, Hou ST, Gao S, Song K. Suppression of epileptic seizures by transcranial activation of K +-selective channelrhodopsin. Nat Commun 2025; 16:559. [PMID: 39789018 PMCID: PMC11718177 DOI: 10.1038/s41467-025-55818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive. There is a critical need for effective inhibitory optogenetic tools that are highly light-sensitive and capable of suppressing neuronal activity in deep brain tissue. In this study, we developed a highly sensitive moderately K+-selective channelrhodopsin (HcKCR1-hs) by molecular engineering of the recently discovered Hyphochytrium catenoides kalium (potassium) channelrhodopsin 1. Transcranial activation of HcKCR1-hs significantly prolongs the time to the first seizure, increases survival, and decreases seizure activity in several status epilepticus mouse models. Our approach for transcranial optogenetic inhibition of neural hyperactivity may be adapted for cell type-specific neuromodulation in both basic and preclinical settings.
Collapse
Affiliation(s)
- Xiaodong Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Chong Zhang
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Yujie Wu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhe Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yao Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Schugofa Ohdah
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Yifan Pan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghua Lu
- Research Center for Primate Neuromodulation and Neuroimaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Christine E Gee
- Institute for Synaptic Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany
| | - Sheng-Tao Hou
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, University Würzburg, Würzburg, Germany.
| | - Kun Song
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Cho N, Squair JW, Aureli V, James ND, Bole-Feysot L, Dewany I, Hankov N, Baud L, Leonhartsberger A, Sveistyte K, Skinnider MA, Gautier M, Laskaratos A, Galan K, Goubran M, Ravier J, Merlos F, Batti L, Pages S, Berard N, Intering N, Varescon C, Watrin A, Duguet L, Carda S, Bartholdi KA, Hutson TH, Kathe C, Hodara M, Anderson MA, Draganski B, Demesmaeker R, Asboth L, Barraud Q, Bloch J, Courtine G. Hypothalamic deep brain stimulation augments walking after spinal cord injury. Nat Med 2024; 30:3676-3686. [PMID: 39623087 DOI: 10.1038/s41591-024-03306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 12/15/2024]
Abstract
A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI. Unexpectedly, interrogation of this atlas nominated the lateral hypothalamus (LH). We demonstrate that glutamatergic neurons located in the LH (LHVglut2) contribute to the recovery of walking after incomplete SCI and that augmenting their activity improves walking. We translated this discovery into a deep brain stimulation therapy of the LH (DBSLH) that immediately augmented walking in mice and rats with SCI and durably increased recovery through the reorganization of residual lumbar-terminating projections from brainstem neurons. A pilot clinical study showed that DBSLH immediately improved walking in two participants with incomplete SCI and, in conjunction with rehabilitation, mediated functional recovery that persisted when DBSLH was turned off. There were no serious adverse events related to DBSLH. These results highlight the potential of targeting specific brain regions to maximize the engagement of spinal cord-projecting neurons in the recovery of neurological functions after SCI. Further trials must establish the safety and efficacy profile of DBSLH, including potential changes in body weight, psychological status, hormonal profiles and autonomic functions.
Collapse
Affiliation(s)
- Newton Cho
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jordan W Squair
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Viviana Aureli
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicholas D James
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Léa Bole-Feysot
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Inssia Dewany
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Hankov
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laetitia Baud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anna Leonhartsberger
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Kristina Sveistyte
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael A Skinnider
- Lewis-Sigler Institute of Integrative Genomics and Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Matthieu Gautier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Achilleas Laskaratos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Katia Galan
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jimmy Ravier
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Frederic Merlos
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Laura Batti
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Stéphane Pages
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Nadia Berard
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nadine Intering
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Camille Varescon
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | - Stefano Carda
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Kay A Bartholdi
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Thomas H Hutson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Claudia Kathe
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Michael Hodara
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Mark A Anderson
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Bogdan Draganski
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin Demesmaeker
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Leonie Asboth
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Quentin Barraud
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (.NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland.
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Batabyal S, Kim S, Carlson M, Narcisse D, Tchedre K, Dibas A, Sharif NA, Mohanty S. Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa. Transl Vis Sci Technol 2024; 13:25. [PMID: 39412768 PMCID: PMC11486081 DOI: 10.1167/tvst.13.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Retinal degeneration 1 and 10 (rd1 and rd10) mice are useful animal models of retinitis pigmentosa (RP) with rapidly and slowly progressive pathologies, respectively. Our study aims were to determine the effect of adeno-associated viral vector 2 (AAV2)-delivered multi-characteristic opsin (MCO-010; under the control of a metabotropic glutamate receptor-6 promoter enhancer) on the morphological and functional characteristics of vision in both rd1 and rd10 mice. Methods Various retinal measures of MCO-010 transduction and electrophysiological, behavioral, and other routine blood analyses were performed in the rd1 and/or rd10 mice after intravitreal injection of 1 µL of MCO-010 or AAV2 vehicle. Functional tests included electroretinogram, visually evoked potential, and behavior assay (optomotor and water maze). Retinal thickness, intraocular pressure, and plasma cytokine levels were also determined. Results Following intravitreal MCO-010 injection, approximately 80% of bipolar cells were transduced in the retina, and no alterations in retinal thickness were observed at 4 months post-injection. However, retinal thickness significantly decreased in control mice. MCO-010 treatment increased head movements and induced faster navigation of mice to the platform in a water-maze test. The MCO-010 gene therapy helped preserve visually evoked electrical response in the retina and visual cortex. No ocular toxicity, immunotoxicity, or phototoxicity was observed in the MCO-010-treated mice, even under chronic intense light conditions. Conclusions Intravitreal MCO-010 was well tolerated in rd1 and rd10 mice models of RP, and it appeared to attenuate retinal photoreceptor degeneration based on retinal structure and functional outcome measures. Translational Relevance As reported here, optogenetic treatment of the inner retina attenuates further retinal degeneration in addition to photosensitizing higher order neurons, and this disease-modifying aspect should be evaluated in optogenetic clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Adnan Dibas
- Nanoscope Technologies LLC, Bedford, TX, USA
| | | | - Samarendra Mohanty
- Nanoscope Technologies LLC, Bedford, TX, USA
- Nanoscope Therapeutics, Inc., Dallas, TX, USA
| |
Collapse
|
6
|
Bolonduro OA, Chen Z, Fucetola CP, Lai YR, Cote M, Kajola RO, Rao AA, Liu H, Tzanakakis ES, Timko BP. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402236. [PMID: 39054679 PMCID: PMC11423186 DOI: 10.1002/advs.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Bioelectronic medicine is emerging as a powerful approach for restoring lost endogenous functions and addressing life-altering maladies such as cardiac disorders. Systems that incorporate both modulation of cellular function and recording capabilities can enhance the utility of these approaches and their customization to the needs of each patient. Here we report an integrated optogenetic and bioelectronic platform for stable and long-term stimulation and monitoring of cardiomyocyte function in vitro. Optical inputs are achieved through the expression of a photoactivatable adenylyl cyclase, that when irradiated with blue light causes a dose-dependent and time-limited increase in the secondary messenger cyclic adenosine monophosphate with subsequent rise in autonomous cardiomyocyte beating rate. Bioelectronic readouts are obtained through a multi-electrode array that measures real-time electrophysiological responses at 32 spatially-distinct locations. Irradiation at 27 µW mm-2 results in a 14% elevation of the beating rate within 20-25 min, which remains stable for at least 2 h. The beating rate can be cycled through "on" and "off" light states, and its magnitude is a monotonic function of irradiation intensity. The integrated platform can be extended to stretchable and flexible substrates, and can open new avenues in bioelectronic medicine, including closed-loop systems for cardiac regulation and intervention, for example, in the context of arrythmias.
Collapse
Affiliation(s)
| | - Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yan-Ru Lai
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Megan Cote
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Rofiat O Kajola
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Akshita A Rao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Emmanuel S Tzanakakis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA
- Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
7
|
Sun C, Fan Q, Xie R, Luo C, Hu B, Wang Q. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared. Neurosci Bull 2024; 40:1173-1188. [PMID: 38372931 PMCID: PMC11306867 DOI: 10.1007/s12264-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Rougang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bingliang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
8
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
9
|
Li T, Wei Z, Jin F, Yuan Y, Zheng W, Qian L, Wang H, Hua L, Ma J, Zhang H, Gu H, Irwin MG, Wang T, Wang S, Wang Z, Feng ZQ. Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation. Nat Commun 2023; 14:8386. [PMID: 38104122 PMCID: PMC10725454 DOI: 10.1038/s41467-023-44065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bioelectronic medicine is a rapidly growing field where targeted electrical signals can act as an adjunct or alternative to drugs to treat neurological disorders and diseases via stimulating the peripheral nervous system on demand. However, current existing strategies are limited by external battery requirements, and the injury and inflammation caused by the mechanical mismatch between rigid electrodes and soft nerves. Here we report a wireless, leadless, and battery-free ferroelectret implant, termed NeuroRing, that wraps around the target peripheral nerve and demonstrates high mechanical conformability to dynamic motion nerve tissue. As-fabricated NeuroRing can act as an ultrasound receiver that converts ultrasound vibrations into electrostimulation pulses, thus stimulating the targeted peripheral nerve on demand. This capability is demonstrated by the precise modulation of the sacral splanchnic nerve to treat colitis, providing a framework for future bioelectronic medicines that offer an alternative to non-specific pharmacological approaches.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Research Center for Nature-inspired Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongjiu Yuan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongbo Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lisha Hua
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, 999077, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huanhuan Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Huaduo Gu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Michael G Irwin
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, 999077, China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
- Research Center for Nature-inspired Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
10
|
Hayward RF, Brooks FP, Yang S, Gao S, Cohen AE. Diminishing neuronal acidification by channelrhodopsins with low proton conduction. eLife 2023; 12:RP86833. [PMID: 37801078 PMCID: PMC10558203 DOI: 10.7554/elife.86833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems.
Collapse
Affiliation(s)
- Rebecca Frank Hayward
- School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - F Phil Brooks
- Department of Chemistry, Harvard UniversityCambridgeUnited States
| | - Shang Yang
- Department of Neurophysiology, University of WurzburgWurzburgGermany
| | - Shiqiang Gao
- Department of Neurophysiology, University of WurzburgWurzburgGermany
| | - Adam E Cohen
- Department of Chemistry, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| |
Collapse
|
11
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
12
|
Hayward RF, Brooks FP, Yang S, Gao S, Cohen AE. Diminishing neuronal acidification by channelrhodopsins with low proton conduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527404. [PMID: 36798192 PMCID: PMC9934520 DOI: 10.1101/2023.02.07.527404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems. Statement of Significance Acidification is an undesirable artifact of optogenetic stimulation. Low proton-permeability opsins minimize this artifact while still allowing robust optogenetic control.
Collapse
Affiliation(s)
| | - F. Phil Brooks
- Department of Chemistry, Harvard University, Cambridge, MA 02138
| | - Shang Yang
- Department of Neurophysiology, University of Wurzburg, Germany
| | - Shiqiang Gao
- Department of Neurophysiology, University of Wurzburg, Germany
| | - Adam E Cohen
- Department of Chemistry, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
13
|
Bonaventura J, Boehm MA, Jedema HP, Solis O, Pignatelli M, Song X, Lu H, Richie CT, Zhang S, Gomez JL, Lam S, Morales M, Gharbawie OA, Pomper MG, Stein EA, Bradberry CW, Michaelides M. Expression of the excitatory opsin ChRERα can be traced longitudinally in rat and nonhuman primate brains with PET imaging. Sci Transl Med 2023; 15:eadd1014. [PMID: 37494470 PMCID: PMC10938262 DOI: 10.1126/scitranslmed.add1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Catalonia 08907, Spain
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Hank P. Jedema
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Oscar Solis
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marco Pignatelli
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaowei Song
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L. Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Omar A. Gharbawie
- Systems Neuroscience Center, Departments of Neurobiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Charles W. Bradberry
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
15
|
Reynolds JA, Vishweshwaraiah YL, Chirasani VR, Pritchard JR, Dokholyan NV. An engineered N-acyltransferase-LOV2 domain fusion protein enables light-inducible allosteric control of enzymatic activity. J Biol Chem 2023; 299:103069. [PMID: 36841477 PMCID: PMC10060751 DOI: 10.1016/j.jbc.2023.103069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Transferases are ubiquitous across all known life. While much work has been done to understand and describe these essential enzymes, there have been minimal efforts to exert tight and reversible control over their activity for various biotechnological applications. Here, we apply a rational, computation-guided methodology to design and test a transferase-class enzyme allosterically regulated by light-oxygen-voltage 2 sensing domain. We utilize computational techniques to determine the intrinsic allosteric networks within N-acyltransferase (Orf11/∗Dbv8) and identify potential allosteric sites on the protein's surface. We insert light-oxygen-voltage 2 sensing domain at the predicted allosteric site, exerting reversible control over enzymatic activity. We demonstrate blue-light regulation of N-acyltransferase (Orf11/∗Dbv8) function. Our study for the first time demonstrates optogenetic regulation of a transferase-class enzyme as a proof-of-concept for controllable transferase design. This successful design opens the door for many future applications in metabolic engineering and cellular programming.
Collapse
Affiliation(s)
- J A Reynolds
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Y L Vishweshwaraiah
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - V R Chirasani
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - J R Pritchard
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - N V Dokholyan
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Chemistry, Penn State University, University Park, Pennsylvania, USA.
| |
Collapse
|
16
|
Vinogradov S, Chafee MV, Lee E, Morishita H. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology 2023; 48:168-185. [PMID: 36180784 PMCID: PMC9700720 DOI: 10.1038/s41386-022-01451-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/05/2023]
Abstract
Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits. (3) Dysregulated plasticity processes interact across levels of scale and time and include compensatory mechanisms that have pathogenic importance. We present evidence that-given the centrality of progressive dysplastic changes, especially in prefrontal cortex-pharmacologic or neuromodulatory interventions will need to be supplemented by corrective learning experiences for the brain if we are to help people living with these illnesses to fully thrive.
Collapse
Affiliation(s)
- Sophia Vinogradov
- Department of Psychiatry & Behavioral Science, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik Lee
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Neuroscience, & Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Polley DB, Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci Biobehav Rev 2022; 137:104652. [PMID: 35385759 DOI: 10.1016/j.neubiorev.2022.104652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
As an academic pursuit, neuroscience is enjoying a golden age. From a clinical perspective, our field is failing. Conventional 20th century drugs and devices are not well-matched to the heterogeneity, scale, and connectivity of neural circuits that produce aberrant mental states and behavior. Laboratory-based methods for editing neural genomes and sculpting activity patterns are exciting, but their applications for hundreds of millions of people with mental health disorders is uncertain. We argue that mechanisms for regulating adult brain plasticity and remodeling pathological activity are substantially pre-wired, and we suggest new minimally invasive strategies to harness and direct these endogenous systems. Drawing from studies across the neuroscience literature, we describe approaches that identify neural biomarkers more closely linked to upstream causes-rather than downstream consequences-of disordered behavioral states. We highlight the potential for innovation and discovery in reverse engineering approaches that refine bespoke behavioral "agonists" to drive upstream neural biomarkers in normative directions and reduce clinical symptoms for select classes of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Daniela Schiller
- Department of Psychiatry, Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Nims RJ, Pferdehirt L, Guilak F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr Opin Biotechnol 2022; 73:374-379. [PMID: 34735987 PMCID: PMC10061441 DOI: 10.1016/j.copbio.2021.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
19
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
20
|
Vasan A, Orosco J, Magaram U, Duque M, Weiss C, Tufail Y, Chalasani SH, Friend J. Ultrasound Mediated Cellular Deflection Results in Cellular Depolarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101950. [PMID: 34747144 PMCID: PMC8805560 DOI: 10.1002/advs.202101950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/16/2021] [Indexed: 05/29/2023]
Abstract
Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here, high-speed digital holographic microscopy (kiloHertz order) is used to visualize the cellular membrane dynamics. It is shown that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, a biomechanical model that predicts changes in membrane voltage after ultrasound exposure is developed. Finally, the model predictions are validated using whole-cell patch clamp electrophysiology on primary neurons. Collectively, it is shown that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. The model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.
Collapse
Affiliation(s)
- Aditya Vasan
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Jeremy Orosco
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Uri Magaram
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Marc Duque
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Connor Weiss
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Yusuf Tufail
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology LaboratoryThe Salk Institute for Biological StudiesLa JollaCA92037USA
| | - James Friend
- Medically Advanced Devices LaboratoryDepartment of Mechanical and Aerospace EngineeringJacobs School of Engineering and Department of SurgerySchool of MedicineUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
21
|
Bruno G, Melle G, Barbaglia A, Iachetta G, Melikov R, Perrone M, Dipalo M, De Angelis F. All-Optical and Label-Free Stimulation of Action Potentials in Neurons and Cardiomyocytes by Plasmonic Porous Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100627. [PMID: 34486241 PMCID: PMC8564419 DOI: 10.1002/advs.202100627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/20/2021] [Indexed: 05/19/2023]
Abstract
Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.
Collapse
Affiliation(s)
- Giulia Bruno
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Giovanni Melle
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Andrea Barbaglia
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | | | | - Michela Perrone
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | - Michele Dipalo
- Plasmon NanotechnologiesIstituto Italiano di TecnologiaGenova16163Italy
| | | |
Collapse
|
22
|
Shokur S, Mazzoni A, Schiavone G, Weber DJ, Micera S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. MED 2021; 2:912-937. [DOI: 10.1016/j.medj.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
|
23
|
Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat Commun 2021; 12:3388. [PMID: 34099676 PMCID: PMC8184832 DOI: 10.1038/s41467-021-23572-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.
Collapse
|
24
|
Wang X, Cheng Y. Optical Manipulation of Perfused Mouse Heart Expressing Channelrhodopsin-2 in Rhythm Control. Methods Mol Biol 2021; 2191:377-390. [PMID: 32865755 DOI: 10.1007/978-1-0716-0830-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Optogenetics is a new approach using light intensity to modulate the electrical activity of excitable cells by the interaction of light-sensitive proteins. This method has been widely and enthusiastically utilized in some fields over the last decade. Localizing a photosensitive protein to a specific place in the membrane of cardiomyocytes at a specific time is essential for most biological processes. In this case, vectors are injected into the circulation to allow them to spread throughout the whole heart. The aim of this protocol is to perform different illumination modes with blue laser to investigate optical control of Langendorff-perfused mice hearts which were systematically injected with adeno-associated virus (AAV) for ChR2(H134R) gene transfer. Electrograms (EGs) and epicardium monophasic action potential (MAP) showed that ChR2 expression in the heart can be flexibly controlled by blue light across different illumination sites with corresponding triggered ectopic rhythm. Illumination intensity, pulse duration, and impulse frequency were associated with the light capture rate. Flexible control of the cardiac rhythm with optogenetics provides an innovative approach to cardiac research and therapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China.
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020; 108:1075-1090.e6. [PMID: 33080229 PMCID: PMC7962465 DOI: 10.1016/j.neuron.2020.09.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Leah Acker
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arash Afraz
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Albaugh
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Hidetoshi Amita
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariana R Andrei
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Alessandra Angelucci
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Amir Aschner
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Puiu F Balan
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Michele A Basso
- Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA
| | - Giacomo Benvenuti
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael J Caiola
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Yuzhi Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Spencer Chen
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Mykyta M Chernov
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrew M Clark
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, China
| | - Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Karl Deisseroth
- Neuroscience Program, Departments of Bioengineering, Psychiatry, and Behavioral Science, Wu Tsai Neurosciences Institute, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Seth W Egger
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Francesco Fabbrini
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Christopher R Fetsch
- The Solomon H. Snyder Department of Neuroscience & Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michal G Fortuna
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Robert M Friedman
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Alexander Gail
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Adriana Galvan
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Supriya Ghosh
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Marc Alwin Gieselmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Roberto A Gulli
- Zuckerman Institute, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eghbal A Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xing Hu
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Janina Hüer
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rundong Jiang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Niansheng Ju
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kohitij Kar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Klein
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Adam Kohn
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Misako Komatsu
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Masayuki Matsumoto
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ilya E Monosov
- Department of Neuroscience, Biomedical Engineering, Electrical Engineering, Neurosurgery and Pain Center, Washington University, St. Louis, MO 63110, USA
| | - Ross S Muers
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Lauri Nurminen
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael Ortiz-Rios
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Daniel J O'Shea
- Department of Electrical Engineering, Wu Tsai Neurosciences Institute, and Bio-X Institute, and Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Palfi
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Christopher I Petkov
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Sorin Pojoga
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas-Houston, Houston, TX 77030, USA
| | - Rishi Rajalingham
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evan D Remington
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cambria Revsine
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anna W Roe
- Division of Neuroscience, Oregon National Primate Resource Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Interdisciplinary Institute of Neuroscience and Technology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310029, China
| | - Philip N Sabes
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Hansjörg Scherberger
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK; Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wolfram Schultz
- Department of Physiology, Development of Neuroscience, University of Cambridge, Cambridge CB3 0LT, UK
| | - Eyal Seidemann
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Yann-Suhan Senova
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris (APHP), U955 INSERM IMRB eq.15, University of Paris 12 UPEC, Faculté de Médecine, Créteil 94010, France
| | - Michael N Shadlen
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science & Howard Hughes Medical Institute, Columbia University, NY 10027, USA
| | - David L Sheinberg
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Caitlin Siu
- Department of Ophthalmology, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Selina S Solomon
- Dominik P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas-Houston, Houston, TX 77030, USA
| | - William R Stauffer
- Systems Neuroscience Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Shiming Tang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Alexander Thiele
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Stefan Treue
- German Primate Center - Leibniz Institute for Primate Research, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany; Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Wim Vanduffel
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; MGH Martinos Center, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02144, USA
| | - Rufin Vogels
- Laboratory of Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P Whitmire
- Departments of Psychology and Neuroscience, Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Morris K. Udall Center of Excellence for Parkinson's Disease, Department of Neurology, Emory University, GA 30329, USA
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20982, USA
| | - Haoran Xu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Azadeh Yazdan-Shahmorad
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Bioengineering and Electrical and Computer Engineering, Washington National Primate Research Center, University of Washington, Seattle, WA 98105, USA
| | - Krishna V Shenoy
- Departments of Electrical Engineering, Bioengineering, and Neurobiology, Wu Tsai Neurosciences Institute and Bio-X Institute, Neuroscience Graduate Program, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James J DiCarlo
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Jang TM, Lee JH, Zhou H, Joo J, Lim BH, Cheng H, Kim SH, Kang IS, Lee KS, Park E, Hwang SW. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. SCIENCE ADVANCES 2020; 6:eabc9675. [PMID: 33177091 PMCID: PMC7673729 DOI: 10.1126/sciadv.abc9675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/23/2020] [Indexed: 05/06/2023]
Abstract
Underactive bladder or detrusor underactivity (DUA), that is, not being able to micturate, has received less attention with little research and remains unknown or limited on pathological causes and treatments as opposed to overactive bladder, although the syndrome may pose a risk of urinary infections or life-threatening kidney damage. Here, we present an integrated expandable electronic and optoelectronic complex that behaves as a single body with the elastic, time-dynamic urinary bladder with substantial volume changes up to ~300%. The system configuration of the electronics validated by the theoretical model allows conformal, seamless integration onto the urinary bladder without a glue or suture, enabling precise monitoring with various electrical components for real-time status and efficient optogenetic manipulation for urination at the desired time. In vivo experiments using diabetic DUA models demonstrate the possibility for practical uses of high-fidelity electronics in clinical trials associated with the bladder and other elastic organs.
Collapse
Affiliation(s)
- Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, USA
- Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Jaesun Joo
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bong Hee Lim
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Il-Suk Kang
- National NanoFab Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kyu-Sung Lee
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunkyoung Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc Natl Acad Sci U S A 2020; 117:21138-21146. [PMID: 32817422 DOI: 10.1073/pnas.2007395117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic electronic devices implemented on flexible thin films are attracting increased attention for biomedical applications because they possess extraordinary conformity to curved surfaces. A neuronal device equipped with an organic light-emitting diode (OLED), used in combination with animals that are genetically engineered to include a light-gated ion channel, would enable cell type-specific stimulation to neurons as well as conformal contact to brain tissue and peripheral soft tissue. This potential application of the OLEDs requires strong luminescence, well over the neuronal excitation threshold in addition to flexibility. Compatibility with neuroimaging techniques such as MRI provides a method to investigate the evoked activities in the whole brain. Here, we developed an ultrathin, flexible, MRI-compatible OLED device and demonstrated the activation of channelrhodopsin-2-expressing neurons in animals. Optical stimulation from the OLED attached to nerve fibers induced contractions in the innervated muscles. Mechanical damage to the tissues was significantly reduced because of the flexibility. Owing to the MRI compatibility, neuronal activities induced by direct optical stimulation of the brain were visualized using MRI. The OLED provides an optical interface for modulating the activity of soft neuronal tissues.
Collapse
|
28
|
In Vivo Optogenetic Modulation with Simultaneous Neural Detection Using Microelectrode Array Integrated with Optical Fiber. SENSORS 2020; 20:s20164526. [PMID: 32823521 PMCID: PMC7472634 DOI: 10.3390/s20164526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023]
Abstract
The detection of neuroelectrophysiology while performing optogenetic modulation can provide more reliable and useful information for neural research. In this study, an optical fiber and a microelectrode array were integrated through hot-melt adhesive bonding, which combined optogenetics and electrophysiological detection technology to achieve neuromodulation and neuronal activity recording. We carried out the experiments on the activation and electrophysiological detection of infected neurons at the depth range of 900-1250 μm in the brain which covers hippocampal CA1 and a part of the upper cortical area, analyzed a possible local inhibition circuit by combining opotogenetic modulation and electrophysiological characteristics and explored the effects of different optical patterns and light powers on the neuromodulation. It was found that optogenetics, combined with neural recording technology, could provide more information and ideas for neural circuit recognition. In this study, the optical stimulation with low frequency and large duty cycle induces more intense neuronal activity and larger light power induced more action potentials of neurons within a certain power range (1.032 mW-1.584 mW). The present study provided an efficient method for the detection and modulation of neurons in vivo and an effective tool to study neural circuit in the brain.
Collapse
|
29
|
Hoffman CE, Parker WE, Rapoport BI, Zhao M, Ma H, Schwartz TH. Innovations in the Neurosurgical Management of Epilepsy. World Neurosurg 2020; 139:775-788. [PMID: 32689698 DOI: 10.1016/j.wneu.2020.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 10/23/2022]
Abstract
Technical limitations and clinical challenges have historically limited the diagnostic tools and treatment methods available for surgical approaches to the management of epilepsy. By contrast, recent technological innovations in several areas hold significant promise in improving outcomes and decreasing morbidity. We review innovations in the neurosurgical management of epilepsy in several areas, including wireless recording and stimulation systems (particularly responsive neurostimulation [NeuroPace]), conformal electrodes for high-resolution electrocorticography, robot-assisted stereotactic surgery, optogenetics and optical imaging methods, novel positron emission tomography ligands, and new applications of focused ultrasonography. Investigation into genetic causes of and susceptibilities to epilepsy has introduced a new era of precision medicine, enabling the understanding of cell signaling mechanisms underlying epileptic activity as well as patient-specific molecularly targeted treatment options. We discuss the emerging path to individualized treatment plans, predicted outcomes, and improved selection of effective interventions, on the basis of these developments.
Collapse
Affiliation(s)
- Caitlin E Hoffman
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA.
| | - Whitney E Parker
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Benjamin I Rapoport
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
30
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Liu Y, Urso A, Martins da Ponte R, Costa T, Valente V, Giagka V, Serdijn WA, Constandinou TG, Denison T. Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications. ACTA ACUST UNITED AC 2020. [DOI: 10.1109/mssc.2020.2987506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Butler CR, Boychuk JA, Pomerleau F, Alcala R, Huettl P, Ai Y, Jakobsson J, Whiteheart SW, Gerhardt GA, Smith BN, Slevin JT. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Res 2019; 159:106244. [PMID: 31816591 DOI: 10.1016/j.eplepsyres.2019.106244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Genesis of acquired epilepsy includes transformations spanning genetic-to- network-level modifications, disrupting the regional excitatory/inhibitory balance. Methodology concurrently tracking changes at multiple levels is lacking. Here, viral vectors are used to differentially express two opsin proteins in neuronal populations within dentate gyrus (DG) of hippocampus. When activated, these opsins induced excitatory or inhibitory neural output that differentially affected neural networks and epileptogenesis. In vivo measures included behavioral observation coupled to real-time measures of regional glutamate flux using ceramic-based amperometric microelectrode arrays (MEAs). RESULTS Using MEA technology, phasic increases of extracellular glutamate were recorded immediately upon application of blue light/488 nm to DG of rats previously transfected with an AAV 2/5 vector containing an (excitatory) channelrhodopsin-2 transcript. Rats receiving twice-daily 30-sec light stimulation to DG ipsilateral to viral transfection progressed through Racine seizure stages. AAV 2/5 (inhibitory) halorhodopsin-transfected rats receiving concomitant amygdalar kindling and DG light stimuli were kindled significantly more slowly than non-stimulated controls. In in vitro slice preparations, both excitatory and inhibitory responses were independently evoked in dentate granule cells during appropriate light stimulation. Latency to response and sensitivity of responses suggest a degree of neuron subtype-selective functional expression of the transcripts. CONCLUSIONS This study demonstrates the potential for coupling MEA technology and optogenetics for real-time neurotransmitter release measures and modification of seizure susceptibility in animal models of epileptogenesis. This microelectrode/optogenetic technology could prove useful for characterization of network and system level dysfunction in diseases involving imbalanced excitatory/inhibitory control of neuron populations and guide development of future treatment strategies.
Collapse
Affiliation(s)
- Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States
| | - Francois Pomerleau
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Ramona Alcala
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Peter Huettl
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Yi Ai
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Johan Jakobsson
- Wallenburg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States
| | - Greg A Gerhardt
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - John T Slevin
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States.
| |
Collapse
|
33
|
Sun S, Zhang G, Cheng Z, Gan W, Cui M. Large-scale femtosecond holography for near simultaneous optogenetic neural modulation. OPTICS EXPRESS 2019; 27:32228-32234. [PMID: 31684439 PMCID: PMC7045872 DOI: 10.1364/oe.27.032228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For better understanding of brain functions, optogenetic neural modulation has been widely employed in neural science research. For deep tissue in vivo applications, large-scale two-photon based near simultaneous 3D laser excitation is needed. Although 3D holographic laser excitation is nowadays common practice, the inherent short coherence length of the commonly used femtosecond pulses fundamentally restricts the achievable field-of-view. Here we report a technique for near simultaneous large-scale femtosecond holographic 3D excitation. Specifically, we achieved two-photon excitation over 1.3 mm field-of-view within 1.3 milliseconds, which is sufficiently fast even for spike timing recording. The method is scalable and compatible with the commonly used two-photon sources and imaging systems in neuroscience research.
Collapse
Affiliation(s)
- Shiyi Sun
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Guangle Zhang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Laiou P, Avramidis E, Lopes MA, Abela E, Müller M, Akman OE, Richardson MP, Rummel C, Schindler K, Goodfellow M. Quantification and Selection of Ictogenic Zones in Epilepsy Surgery. Front Neurol 2019; 10:1045. [PMID: 31632339 PMCID: PMC6779811 DOI: 10.3389/fneur.2019.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023] Open
Abstract
Network models of brain dynamics provide valuable insight into the healthy functioning of the brain and how this breaks down in disease. A pertinent example is the use of network models to understand seizure generation (ictogenesis) in epilepsy. Recently, computational models have emerged to aid our understanding of seizures and to predict the outcome of surgical perturbations to brain networks. Such approaches provide the opportunity to quantify the effect of removing regions of tissue from brain networks and thereby search for the optimal resection strategy. Here, we use computational models to elucidate how sets of nodes contribute to the ictogenicity of networks. In small networks we fully elucidate the ictogenicity of all possible sets of nodes and demonstrate that the distribution of ictogenicity across sets depends on network topology. However, the full elucidation is a combinatorial problem that becomes intractable for large networks. Therefore, we combine computational models with a genetic algorithm to search for minimal sets of nodes that contribute significantly to ictogenesis. We demonstrate the potential applicability of these methods in practice by identifying optimal sets of nodes to resect in networks derived from 20 individuals who underwent resective surgery for epilepsy. We show that they have the potential to aid epilepsy surgery by suggesting alternative resection sites as well as facilitating the avoidance of brain regions that should not be resected.
Collapse
Affiliation(s)
- Petroula Laiou
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Marinho A. Lopes
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
| | - Eugenio Abela
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Michael Müller
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ozgur E. Akman
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Mark P. Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Department of Neurology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
35
|
Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. PHOTONICS 2019. [DOI: 10.3390/photonics6030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dissecting the functional roles of neuronal circuits and their interaction is a crucial step in basic neuroscience and in all the biomedical field. Optogenetics is well-suited to this purpose since it allows us to study the functionality of neuronal networks on multiple scales in living organisms. This tool was recently used in a plethora of studies to investigate physiological neuronal circuit function in addition to dysfunctional or pathological conditions. Moreover, optogenetics is emerging as a crucial technique to develop new rehabilitative and therapeutic strategies for many neurodegenerative diseases in pre-clinical models. In this review, we discuss recent applications of optogenetics, starting from fundamental research to pre-clinical applications. Firstly, we described the fundamental components of optogenetics, from light-activated proteins to light delivery systems. Secondly, we showed its applications to study neuronal circuits in physiological or pathological conditions at the cortical and subcortical level, in vivo. Furthermore, the interesting findings achieved using optogenetics as a therapeutic and rehabilitative tool highlighted the potential of this technique for understanding and treating neurological diseases in pre-clinical models. Finally, we showed encouraging results recently obtained by applying optogenetics in human neuronal cells in-vitro.
Collapse
|
36
|
Özgün A, Marote A, Behie LA, Salgado A, Garipcan B. Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation. J Neural Transm (Vienna) 2019; 126:1281-1290. [PMID: 31317262 DOI: 10.1007/s00702-019-02045-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
Magnetic fields with different frequency and intensity parameters exhibit a wide range of effects on different biological models. Extremely low frequency magnetic field (ELF MF) exposure is known to augment or even initiate neuronal differentiation in several in vitro and in vivo models. This effect holds potential for clinical translation into treatment of neurodegenerative conditions such as autism, Parkinson's disease and dementia by promoting neurogenesis, non-invasively. However, the lack of information on underlying mechanisms hinders further investigation into this phenomenon. Here, we examine involvement of glutamatergic Ca2+ channel, N-methyl-D-aspartate (NMDA) receptors in the process of human neuronal differentiation under ELF MF exposure. We show that human neural progenitor cells (hNPCs) differentiate more efficiently under ELF MF exposure in vitro, as demonstrated by the abundance of neuronal markers. Furthermore, they exhibit higher intracellular Ca2+ levels as evidenced by c-fos expression and more elongated mature neurites. We were able to neutralize these effects by blocking NMDA receptors with memantine. As a result, we hypothesize that the effects of ELF MF exposure on neuronal differentiation originate from the effects on NMDA receptors, which sequentially triggers Ca2+-dependent cascades that lead to differentiation. Our findings identify NMDA receptors as a new key player in this field that will aid further research in the pursuit of effect mechanisms of ELF MFs.
Collapse
Affiliation(s)
- Alp Özgün
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Leo A Behie
- Canada Research Chair in Biomedical Engineering (Emeritus), Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal.
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
37
|
O'Reilly KC, Perica MI, Fenton AA. Synaptic plasticity/dysplasticity, process memory and item memory in rodent models of mental dysfunction. Schizophr Res 2019; 207:22-36. [PMID: 30174252 PMCID: PMC6395534 DOI: 10.1016/j.schres.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Activity-dependent changes in the effective connection strength of synapses are a fundamental feature of a nervous system. This so-called synaptic plasticity is thought to underlie storage of information in memory and has been hypothesized to be crucial for the effects of cognitive behavioral therapy. Synaptic plasticity stores information in a neural network, creating a trace of neural activity from past experience. The plasticity can also change the behavior of the network so the network can differentially transform/compute information in future activations. We discuss these two related but separable functions of synaptic plasticity; one we call "item memory" as it represents and stores items of information in memory, the other we call "process memory" as it encodes and stores functions such as computations to modify network information processing capabilities. We review evidence of item and process memory operations in behavior and evidence that experience modifies the brain's functional networks. We discuss neurodevelopmental rodent models relevant for understanding mental illness and compare two models in which one model, neonatal ventral hippocampal lesion (NVHL) has beneficial adult outcomes after being exposed to an adolescent cognitive experience that is potentially similar to cognitive behavioral therapy. The other model, gestational day 17 methylazoxymethanol acetate (GD17-MAM), does not benefit from the same adolescent cognitive experience. We propose that process memory is altered by early cognitive experience in NVHL rats but not in GD17-MAM rats, and discuss how dysplasticity factors may contribute to the differential adult outcomes after early cognitive experience in the NVHL and MAM models.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Pharmacology, Robert F. Furchgott Center for Neuroscience, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
38
|
Choi JR, Kim SM, Ryu RH, Kim SP, Sohn JW. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects. Exp Neurobiol 2018; 27:453-471. [PMID: 30636899 PMCID: PMC6318554 DOI: 10.5607/en.2018.27.6.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.
Collapse
Affiliation(s)
- Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Seong-Min Kim
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| | - Rae-Hyung Ryu
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| |
Collapse
|
39
|
Pycroft L, Stein J, Aziz T. Deep brain stimulation: An overview of history, methods, and future developments. Brain Neurosci Adv 2018; 2:2398212818816017. [PMID: 32166163 PMCID: PMC7058209 DOI: 10.1177/2398212818816017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation has already revolutionised the clinical management of treatment-resistant movement disorders and offers novel treatment options for an increasing range of neurological and psychiatric illnesses. In this article, we briefly review the history of deep brain stimulation, particularly focusing on the last 50 years, which have seen rapid development in the safety and efficacy of deep brain stimulation. We then discuss the current state of the art in deep brain stimulation, focusing on emerging indications and recent technological advances that have improved the field. Finally, we consider the future developments in technology, technique, and research that will impact deep brain stimulation; particularly focusing on closed-loop stimulation techniques and emerging techniques such as optogenetics, cybersecurity risk, implantation timing, and impediments to undertaking high-quality research.
Collapse
Affiliation(s)
- Laurie Pycroft
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Bergeron D. Nanoparticle-Mediated Upconversion of Near-Infrared Light: A Step Closer to Optogenetic Neuromodulation in Humans. Stereotact Funct Neurosurg 2018; 96:270-271. [DOI: 10.1159/000491399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022]
|
41
|
Goncalves SB, Ribeiro JF, Silva AF, Costa RM, Correia JH. Design and manufacturing challenges of optogenetic neural interfaces: a review. J Neural Eng 2018; 14:041001. [PMID: 28452331 DOI: 10.1088/1741-2552/aa7004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. SIGNIFICANCE Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.
Collapse
Affiliation(s)
- S B Goncalves
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes, Portugal
| | | | | | | | | |
Collapse
|
42
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
43
|
Gene-Based Neuromodulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Caravaca AS, Tsaava T, Goldman L, Silverman H, Riggott G, Chavan SS, Bouton C, Tracey KJ, Desimone R, Boyden ES, Sohal HS, Olofsson PS. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J Neural Eng 2017; 14:066005. [PMID: 28628030 PMCID: PMC6130808 DOI: 10.1088/1741-2552/aa7a42] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible 'microelectrode' array, for recording and stimulation of the mouse vagus nerve. APPROACH The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. MAIN RESULTS Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. SIGNIFICANCE This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.
Collapse
Affiliation(s)
- A S Caravaca
- Department of Medicine, Solna, Karolinska Institutet, Center for Molecular Medicine, Center for Bioelectronic Medicine, Karolinska University Hospital, Stockholm, Solna, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Galvan A, Stauffer WR, Acker L, El-Shamayleh Y, Inoue KI, Ohayon S, Schmid MC. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. J Neurosci 2017; 37:10894-10903. [PMID: 29118219 PMCID: PMC5678022 DOI: 10.1523/jneurosci.1839-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center and Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329,
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Ken-Ichi Inoue
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shay Ohayon
- McGovern Institute for Brain Research, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom NE2 4HH
| |
Collapse
|
46
|
Repina NA, Rosenbloom A, Mukherjee A, Schaffer DV, Kane RS. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior. Annu Rev Chem Biomol Eng 2017; 8:13-39. [PMID: 28592174 PMCID: PMC5747958 DOI: 10.1146/annurev-chembioeng-060816-101254] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cells are bombarded by extrinsic signals that dynamically change in time and space. Such dynamic variations can exert profound effects on behaviors, including cellular signaling, organismal development, stem cell differentiation, normal tissue function, and disease processes such as cancer. Although classical genetic tools are well suited to introduce binary perturbations, new approaches have been necessary to investigate how dynamic signal variation may regulate cell behavior. This fundamental question is increasingly being addressed with optogenetics, a field focused on engineering and harnessing light-sensitive proteins to interface with cellular signaling pathways. Channelrhodopsins initially defined optogenetics; however, through recent use of light-responsive proteins with myriad spectral and functional properties, practical applications of optogenetics currently encompass cell signaling, subcellular localization, and gene regulation. Now, important questions regarding signal integration within branch points of signaling networks, asymmetric cell responses to spatially restricted signals, and effects of signal dosage versus duration can be addressed. This review summarizes emerging technologies and applications within the expanding field of optogenetics.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley, California 94720;
| | - Alyssa Rosenbloom
- Department of Bioengineering, University of California, Berkeley, California 94720;
| | - Abhirup Mukherjee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, California 94720;
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720;
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; ,
| |
Collapse
|
47
|
Wang D, Yu Z, Yan J, Xue F, Ren G, Jiang C, Wang W, Piao Y, Yang X. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence. Front Neurol 2017; 8:215. [PMID: 28572790 PMCID: PMC5435768 DOI: 10.3389/fneur.2017.00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 02/05/2023] Open
Abstract
The therapy of focal epilepsy remains unsatisfactory for as many as 25% of patients. The photolysis of caged-γ-aminobutyric acid (caged-GABA) represents a novel and alternative option for the treatment of intractable epilepsy. Our previous experimental results have demonstrated that the use of blue light produced by light-emitting diode to uncage ruthenium-bipyridine-triphenylphosphine-c-GABA (RuBi-GABA) can rapidly terminate paroxysmal seizure activity both in vitro and in vivo. However, the optimal concentration of RuBi-GABA, and the intensity of illumination to abort seizures, remains unknown. The aim of this study was to explore the optimal anti-seizure effects of RuBi-GABA by using implantable fibers to introduce blue light into the neocortex of a 4-aminopyridine-induced acute seizure model in rats. We then investigated the effects of different combinations of RuBi-GABA concentrations and light intensity upon seizure. Our results show that the anti-seizure effect of RuBi-GABA has obvious concentration and light intensity dependence. This is the first example of using an implantable device for the photolysis of RuBi-GABA in the therapy of neocortical seizure, and an optimal combination of RuBi-GABA concentration and light intensity was explored. These results provide important experimental data for future clinical translational studies.
Collapse
Affiliation(s)
- Dan Wang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Zhixin Yu
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Fenqin Xue
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Guoping Ren
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Chenxi Jiang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Weimin Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Yamauchi Y, Konno M, Ito S, Tsunoda SP, Inoue K, Kandori H. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiol 2017. [PMID: 28630812 PMCID: PMC5468465 DOI: 10.2142/biophysico.14.0_57] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microbial rhodopsins are membrane proteins found widely in archaea, eubacteria and eukaryotes (fungal and algal species). They have various functions, such as light-driven ion pumps, light-gated ion channels, light sensors and light-activated enzymes. A light-driven proton pump bacteriorhodopsin (BR) contains a DTD motif at positions 85, 89, and 96, which is unique to archaeal proton pumps. Recently, channelrhodopsins (ChRs) containing the DTD motif, whose sequential identity is ~20% similar to BR and to cation ChRs in Chlamydomonas reinhardtii (CrCCRs), were found. While extensive studies on ChRs have been performed with CrCCR2, the molecular properties of DTD ChRs remain an intrigue. In this paper, we studied a DTD rhodopsin from G. theta (GtCCR4) using electrophysiological measurements, flash photolysis, and low-temperature difference FTIR spectroscopy. Electrophysiological measurements clearly showed that GtCCR4 functions as a light-gated cation channel, similar to other G. theta DTD ChRs (GtCCR1-3). Light-driven proton pump activity was also suggested for GtCCR4. Both electrophysiological and flash photolysis experiments showed that channel closing occurs upon reprotonation of the Schiff base, suggesting that the dynamics of retinal and channels are tightly coupled in GtCCR4. From Fourier transform infrared (FTIR) spectroscopy at 77 K, we found that the primary reaction is an all-trans to a 13-cis photoisomerization, like other microbial rhodopsins, although perturbations in the secondary structure were much smaller in GtCCR4 than in CrCCR2.
Collapse
Affiliation(s)
- Yumeka Yamauchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
49
|
A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching. Sci Rep 2017; 7:45654. [PMID: 28368033 PMCID: PMC5377356 DOI: 10.1038/srep45654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Collapse
|
50
|
Yekhlef L, Breschi GL, Taverna S. Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex. Sci Rep 2017; 7:43230. [PMID: 28230208 PMCID: PMC5322365 DOI: 10.1038/srep43230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023] Open
Abstract
We investigated whether an anti-epileptic effect is obtained by selectively activating excitatory neurons expressing ChR2 under the promoter for the synaptic vesicular glutamate transporter 2 (VGLUT2). VGLUT2-expressing cells were optically stimulated while local field potential and whole-cell patch-clamp recordings were performed in mouse entorhinal cortical slices perfused with the proconvulsive compound 4-aminopyridine (4-AP). In control conditions, blue light flashes directly depolarized the majority of putative glutamatergic cells, which in turn synaptically excited GABAergic interneurons. During bath perfusion with 4-AP, photostimuli triggered a fast EPSP-IPSP sequence which was often followed by tonic-clonic seizure-like activity closely resembling spontaneous ictal discharges. The GABAA-receptor antagonist gabazine blocked the progression of both light-induced and spontaneous seizures. Surprisingly, prolonged photostimuli delivered during ongoing seizures caused a robust interruption of synchronous discharges. Such break was correlated with a membrane potential depolarization block in principal cells, while putative GABAergic interneurons changed their firing activity from a burst-like to an irregular single-spike pattern. These data suggest that photostimulation of glutamatergic neurons triggers seizure-like activity only in the presence of an intact GABAergic transmission and that selectively activating the same glutamatergic cells robustly interrupts ongoing seizures by inducing a strong depolarization block, resulting in the disruption of paroxysmal burst-like firing.
Collapse
Affiliation(s)
- Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Gian Luca Breschi
- Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|